1
|
Lai YC, Ducoste JJ, de Los Reyes FL. Growth of Dunaliella viridis in multiple cycles of reclaimed media after repeated high pH-induced flocculation and harvesting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 891:164087. [PMID: 37209725 DOI: 10.1016/j.scitotenv.2023.164087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Minimizing the use of water for growing microalgae is crucial for lowering the energy and costs of animal feed, food, and biofuel production from microalgae. Dunaliella spp., a haloterant species that can accumulate high intracellular levels of lipids, carotenoids, or glycerol can be harvested effectively using low-cost and scalable high pH-induced flocculation. However, the growth of Dunaliella spp. in reclaimed media after flocculation and the impact of recycling on the flocculation efficiency have not been explored. In this study, repeated cycles of growth of Dunaliella viridis in repeatedly reclaimed media from high pH-induced flocculation were studied by evaluating cell concentrations, cellular components, dissolved organic matter (DOM), and bacterial community shifts in the reclaimed media. In reclaimed media, D. viridis grew to the same concentrations of cells and intracellular components as fresh media-107 cells/mL with cellular composition of 3 % lipids, 40 % proteins, and 15 % carbohydrates-even though DOM accumulated and the dominant bacterial populations changed. There was a decrease in the maximum specific growth rate and flocculation efficiency from 0.72 d-1 to 0.45 d-1 and from 60 % to 48 %, respectively. This study shows the potential of repeated (at least five times) flocculation and reuse of media as a possible way of reducing the costs of water and nutrients with some tradeoffs in growth rate and flocculation efficiency.
Collapse
Affiliation(s)
- Yi-Chun Lai
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 915 Partners Way, Raleigh, NC 27695, USA.
| | - Joel J Ducoste
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 915 Partners Way, Raleigh, NC 27695, USA.
| | - Francis L de Los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 915 Partners Way, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Casanova LM, Macrae A, de Souza JE, Neves Junior A, Vermelho AB. The Potential of Allelochemicals from Microalgae for Biopesticides. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091896. [PMID: 37176954 PMCID: PMC10181251 DOI: 10.3390/plants12091896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Improvements in agricultural productivity are required to meet the demand of a growing world population. Phytopathogens, weeds, and insects are challenges to agricultural production. The toxicity and widespread application of persistent synthetic pesticides poses a major threat to human and ecosystem health. Therefore, sustainable strategies to control pests are essential for agricultural systems to enhance productivity within a green paradigm. Allelochemicals are a less persistent, safer, and friendly alternative to efficient pest management, as they tend to be less toxic to non-target organisms and more easily degradable. Microalgae produce a great variety of allelopathic substances whose biocontrol potential against weeds, insects, and phytopathogenic fungi and bacteria has received much attention. This review provides up-to-date information and a critical perspective on allelochemicals from microalgae and their potential as biopesticides.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Andrew Macrae
- Sustainable Biotechnology and Microbial Bioinformatics Laboratory, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Jacqueline Elis de Souza
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Athayde Neves Junior
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane Beatriz Vermelho
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
3
|
Gu D, Xiao Q, Zhao Y, Yu X. A low-cost technique for biodiesel production in Ankistrodesmus sp. EHY by using harvested microalgal effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159461. [PMID: 36257437 DOI: 10.1016/j.scitotenv.2022.159461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The present study aims to use Ankistrodesmus sp. EHY to develop a viable and economic lipid production strategy using recycling of harvested microalgal effluent. In comparison to the control, the highest lipid content (52.4 %) and productivity (250.72 mg L-1 d-1) were achieved when 40 % recycled medium was used. Consistent with the trend of lipid accumulation, the six key lipogenetic genes were upregulated, as well as reactive oxygen species (ROS), glutathione (GSH) and genes encoding antioxidant enzymes during cultivation in recycled medium. Moreover, the consumption of dissolved organic carbon (DOC) and the increased humic acid (HA) in the recycled medium might also be associated with lipid biosynthesis. The biodiesel parameters of alga biomass-derived lipids were fitted to the standard of commercial biodiesel. In conclusion, this study offers an economically viable strategy for microalgal biofuel production and wastewater treatment using recycling of harvested microalgal effluent.
Collapse
Affiliation(s)
- Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiu Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
4
|
Saravanan A, Deivayanai VC, Senthil Kumar P, Rangasamy G, Varjani S. CO 2 bio-mitigation using genetically modified algae and biofuel production towards a carbon net-zero society. BIORESOURCE TECHNOLOGY 2022; 363:127982. [PMID: 36126842 DOI: 10.1016/j.biortech.2022.127982] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
CO2 sequestration carried by biological methodologies shows enhanced potential and has the advantage that biomass produced from the captured CO2 can be used for different applications. Bio-mitigation of carbons through a micro-algal system addresses a promising and feasible option. This review mostly focused on the role of algae, particular mechanisms, bioreactors in algae cultivation, and genetically modified algae in CO2 fixation and energy generation systems. A combination of CO2 bio-mitigation and biofuel production might deliver an extremely promising alternative to current CO2 mitigation systems. Bio mitigation in which the excess carbon is captured and bio fixation which the carbon is captured by algae or autotrophs and used for producing biofuel. This review revealed that steps for biofuel production from algae include factors affecting, harvesting techniques, oil extraction and transesterification. This review helps environmentalists and researchers to assess the effect of algae-based biorefinery on the green environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - V C Deivayanai
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| |
Collapse
|
5
|
López-Rosales L, López-García P, Benyachou MA, Molina-Miras A, Gallardo-Rodríguez JJ, Cerón-García MC, Sánchez Mirón A, García-Camacho F. Treatment of secondary urban wastewater with a low ammonium-tolerant marine microalga using zeolite-based adsorption. BIORESOURCE TECHNOLOGY 2022; 359:127490. [PMID: 35724909 DOI: 10.1016/j.biortech.2022.127490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The low tolerance of marine microalgae to ammonium and hyposalinity limits their use in urban wastewater (UWW) treatments. In this study, using the marine microalga Amphidinium carterae, it is demonstrated for the first time that this obstacle can be overcome by introducing a zeolite-based adsorption step to obtain a tolerable UWW stream. The maximum ammonium adsorption capacities measured in the natural zeolite used are among the highest reported. The microalga grows satisfactorily in mixtures of zeolite-treated UWW and seawater at a wide range of proportions, both with and without adjusting the salinity, as long as the ammonium concentration is below the threshold tolerated by the microalgae (6.3 mg L-1). A proof of concept performed in 10-L bubble column photobioreactors with different culture strategies, including medium recycling, showed an enhanced biomass yield relative to a control with no UWW. No noticeable effect was observed on the production of specialty metabolites.
Collapse
Affiliation(s)
- L López-Rosales
- Chemical Engineering Department, University of Almería, Almería 04120, Spain; Research Center CIAMBITAL, University of Almería, Almería 04120, Spain
| | - P López-García
- Chemical Engineering Department, University of Almería, Almería 04120, Spain
| | - M A Benyachou
- Chemical Engineering Department, University of Almería, Almería 04120, Spain
| | - A Molina-Miras
- Chemical Engineering Department, University of Almería, Almería 04120, Spain
| | - J J Gallardo-Rodríguez
- Chemical Engineering Department, University of Almería, Almería 04120, Spain; Research Center CIAMBITAL, University of Almería, Almería 04120, Spain
| | - M C Cerón-García
- Chemical Engineering Department, University of Almería, Almería 04120, Spain; Research Center CIAMBITAL, University of Almería, Almería 04120, Spain
| | - A Sánchez Mirón
- Chemical Engineering Department, University of Almería, Almería 04120, Spain; Research Center CIAMBITAL, University of Almería, Almería 04120, Spain
| | - F García-Camacho
- Chemical Engineering Department, University of Almería, Almería 04120, Spain; Research Center CIAMBITAL, University of Almería, Almería 04120, Spain.
| |
Collapse
|
6
|
Peter AP, Yew GY, Tang DYY, Koyande AK, Chew KW, Show PL. Microalgae's prospects in attaining sustainable economic and environmental development. J Biotechnol 2022; 357:18-27. [PMID: 35970361 DOI: 10.1016/j.jbiotec.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 06/21/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Sustainable Development Goals (SDGs) have been part of much worldwide cooperation in engineering design, nutrients production that contributes towards a better and more sustainable future. This review intends to uncover a potential renewable source that could significantly contribute to various goals under the SDGs. The prospects of algae tackling the socio-ecological, economic, and environmental issues faced globally are discussed, along with approaches of algae that can be utilized to achieve many of the SDGs are reviewed and discussed. Moreover, the recent trends in terms of engineering application that co-relate to novel algae-based technology has also been included. Apart from that, algae have high oil content which is suitable for producing affordable and clean energy, which can be used for biofuels or electricity generation. The promising characteristics of algae will lead to its global acceptance and utilization for sustainability to help create a better world.
Collapse
Affiliation(s)
- Angela Paul Peter
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Selangor Darul Ehsan, Malaysia
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Selangor Darul Ehsan, Malaysia
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Selangor Darul Ehsan, Malaysia
| | - Apurav Krishna Koyande
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; School of Energy and Chemical Engineering, Xiamen University, Jalan Sunsuria Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
7
|
Paquette AJ, Vadlamani A, Demirkaya C, Strous M, De la Hoz Siegler H. Nutrient management and medium reuse for cultivation of a cyanobacterial consortium at high pH and alkalinity. Front Bioeng Biotechnol 2022; 10:942771. [PMID: 36032714 PMCID: PMC9402938 DOI: 10.3389/fbioe.2022.942771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Alkaliphilic cyanobacteria have gained significant interest due to their robustness, high productivity, and ability to convert CO2 into bioenergy and other high value products. Effective nutrient management, such as re-use of spent medium, will be essential to realize sustainable applications with minimal environmental impacts. In this study, we determined the solubility and uptake of nutrients by an alkaliphilic cyanobacterial consortium grown at high pH and alkalinity. Except for Mg, Ca, Co, and Fe, all nutrients are in fully soluble form. The cyanobacterial consortium grew well without any inhibition and an overall productivity of 0.15 g L−1 d−1 (AFDW) was achieved. Quantification of nutrient uptake during growth resulted in the empirical formula CH1.81N0.17O0.20P0.013S0.009 for the consortium biomass. We showed that spent medium can be reused for at least five growth/harvest cycles. After an adaptation period, the cyanobacterial consortium fully acclimatized to the spent medium, resulting in complete restoration of biomass productivity.
Collapse
Affiliation(s)
- Alexandre J. Paquette
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- *Correspondence: Alexandre J. Paquette,
| | | | - Cigdem Demirkaya
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
8
|
Li Z, Liu Y, Zhou T, Cao L, Cai Y, Wang Y, Cui X, Yan H, Ruan R, Zhang Q. Effects of Culture Conditions on the Performance of Arthrospira platensis and Its Production of Exopolysaccharides. Foods 2022; 11:foods11142020. [PMID: 35885263 PMCID: PMC9316341 DOI: 10.3390/foods11142020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
Exopolysaccharides (EPS) produced by Arthrospira platensis (A. platensis) has been widely applied in industry and commerce for its various activities but the accumulation of EPS in culture medium may influence the growth of A. platensis reversely. This work aims to explore the impacts of initial pH, nitrogen source and concentration, phosphate concentration and recycle times of the culture medium on the growth of A. platensis and the secretion of its EPS. The results showed that EPS accumulated with the increase in recycle times of culture medium. The optimal initial pH for the growth of A. platensis was 8.50, and high pH of 11.5 inhibited the growth of biomass while resulting in highest EPS content of 92.87 mg/g DW. Excessive and limited nitrogen (NaNO3 of 25.00 g/L and NaNO3 < 2.50 g/L) and phosphate (K2HPO4 of 5.00 g/L and K2HPO4 < 0.50 g/L) inhibited the biomass production of A. platensis by 1.28−30.77% and 14.29−45.05%, respectively. EPS yield of 97.57 mg/g DW and 40.90 mg/g DW were obtained under NaNO3 of 25.00 g/L and K2HPO4 of 5.00 g/L due to salt stress. These findings are beneficial in providing a theoretical basis for high yield EPS from A. platensis without affecting biomass yield.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Yihui Cai
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Hongbin Yan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Roger Ruan
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering and Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
- Correspondence: ; Tel.: +86-18070118735
| |
Collapse
|
9
|
Chu R, Hu D, Zhu L, Li S, Yin Z, Yu Y. Recycling spent water from microalgae harvesting by fungal pellets to re-cultivate Chlorella vulgaris under different nutrient loads for biodiesel production. BIORESOURCE TECHNOLOGY 2022; 344:126227. [PMID: 34743995 DOI: 10.1016/j.biortech.2021.126227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Fungal pellet is an emerging material to collect oleaginous microalgae, but rare studies have noticed that harvested water is available resource for the next round of cultivation. To systematically optimize regrowth performances of microalgae Chlorella vulgaris, separated water after harvesting by fungi Aspergillus oryzae was prepared under different N/P ratios. The results showed that chlorophylls and enzymes were significantly affected by the proportion of N and P. Although nutrient deficiency was functioned as a stress factor to restrict carbohydrate and protein synthesis, lipid content was obviously increased by 12.69%. The percentage of saturated fatty acids associated with oxidation stability increased, while this part in fresh wastewater accounted for only 36.96%. The favorable biomass concentration (1.37 g/L) with the highest lipid yield (0.42 g/L) appeared in N/P of 6:1. More strikingly, suitable conditions could save 52.4% of cultivation costs. These experiments confirmed that reusing bioflocculated water could be effectively utilized for biodiesel production.
Collapse
Affiliation(s)
- Ruoyu Chu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dan Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| |
Collapse
|
10
|
Lo E, Arora N, Philippidis GP. Deciphering metabolic alterations in algae cultivated in spent media as means for enhancing algal biorefinery sustainability. BIORESOURCE TECHNOLOGY 2021; 342:125890. [PMID: 34543816 DOI: 10.1016/j.biortech.2021.125890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The recycling of unfiltered spent media during cultivation of Chlorella vulgaris was studied using metabolomics in an effort to enhance water and nutrient sustainability and reduce operating costs in algal biorefineries. Cultivation in spent media resulted in reduced biomass and lipid productivity by 14% and 19%, respectively, compared to fresh media. The decrease was related to a detected lower nutrient uptake. Nevertheless, carbohydrate content (28% of dry cell weight) and α-linolenic acid content (27 % of fatty acids) were higher in spent media cultures than in fresh media. Metabolomics analysis of intracellular metabolites revealed downregulation of nitrogen assimilation, tricarboxylic acid cycle, structural lipids, and energy metabolism, but upregulation of stress mitigation and carbohydrate synthesis. No growth was supported by spent media during a second cultivation cycle and was likely due to the identified extracellular accumulation of humic acid and free fatty acids that acted as growth auto-inhibitors.
Collapse
Affiliation(s)
- Enlin Lo
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA; Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| | - Neha Arora
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| | - George P Philippidis
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
11
|
The Effect of Various Salinities and Light Intensities on the Growth Performance of Five Locally Isolated Microalgae [Amphidinium carterae, Nephroselmis sp., Tetraselmis sp. (var. red pappas), Asteromonas gracilis and Dunaliella sp.] in Laboratory Batch Cultures. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9111275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
After a 1.5-year screening survey in the lagoons of Western Greece in order to isolate and culture sturdy species of microalgae for aquaculture or other value-added uses, as dictated primarily by satisfactory potential for their mass culture, five species emerged, and their growth was monitored in laboratory conditions. Amphidinium carterae, Nephroselmis sp., Tetraselmis sp. (var. red pappas), Asteromonas gracilis, and Dunaliella sp. were batch cultured using low (20 ppt), sea (40 ppt), and high salinity (50 or 60 or 100 ppt) and in combination with low (2000 lux) and high (8000 lux) intensity illumination. The results exhibited that all these species can be grown adequately in all salinities and with the best growth in terms of maximum cell density, specific growth rate (SGR), and biomass yield (g dry weight/L) at high illumination (8000 lux). The five species examined exhibited different responses in the salinities used, whereby Amphidinium clearly performs best in 20 ppt, far better than 40 ppt, and even more so than 50 ppt. Nephroselmis and Tetraselmis grow almost the same in 20 and 40 ppt and less well in 60 ppt. Asteromonas performs best in 100 ppt, although it can grow quite well in both 40 and 60 ppt. Dunaliella grows equally well in all salinities (20, 40, 60 ppt). Concerning the productivity, assessed as the maximum biomass yield at the end of the culture period, the first rank is occupied by Nephroselmis with ~3.0 g d.w./L, followed by Tetraselmis (2.0 g/L), Dunaliella (1.58 g/L), Amphidinium (1.19 g/L), and Asteromonas (0.7 g/L) with all values recorded at high light (8000 lux).
Collapse
|
12
|
Wu M, Du M, Wu G, Lu F, Li J, Lei A, Zhu H, Hu Z, Wang J. Water reuse and growth inhibition mechanisms for cultivation of microalga Euglena gracilis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:132. [PMID: 34090512 PMCID: PMC8180174 DOI: 10.1186/s13068-021-01980-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microalgae can contribute to more than 40% of global primary biomass production and are suitable candidates for various biotechnology applications such as food, feed products, drugs, fuels, and wastewater treatment. However, the primary limitation for large-scale algae production is the fact that algae requires large amounts of fresh water for cultivation. To address this issue, scientists around the world are working on ways to reuse the water to grow microalgae so that it can be grown in successive cycles without the need for fresh water. RESULTS In this study, we present the results when we cultivate microalgae with cultivation water that is purified and reused. Specifically, we purify the cultivation water using an ultrafiltration membrane (UFM) treatment and investigate how this treatment affects: the biomass and biochemical components of the microalgae; characteristics of microalgae growth inhibitors; the mechanism whereby potential growth inhibitors are secreted (followed using metabolomics analysis); the effect of activated carbon (AC) treatment and advanced oxidation processes (AOPs) on the removal of growth inhibitors of Euglena gracilis. Firstly, the results show that E. gracilis can be only cultivated through two growth cycles with water that has been filtered and reused, and the growth of E. gracilis is significantly inhibited when the water is used a third time. Secondly, as the number of reused water cycles increases, the Cl- concentration gradually increases in the cultivation water. When the Cl- concentration accumulates to a level of fivefold higher than that of the control, growth of E. gracilis is inhibited as the osmolality tolerance range is exceeded. Interestingly, the osmolality of the reused water can be reduced by replacing NH4Cl with urea as the source of nitrogen in the cultivation water. Thirdly, E. gracilis secretes humic acid (HA)-which is produced by the metabolic pathways for valine, leucine, and isoleucine biosynthesis and by linoleic acid metabolism-into the cultivation water. Because HA contains large fluorescent functional groups, specifically extended π(pi)-systems containing C=C and C=O groups and aromatic rings, we were able to observe a positive correlation between HA concentration and the rate of inhibition of E. gracilis growth using fluorescence spectroscopy. Moreover, photosynthetic efficiency is adversely interfered by HA, thereby reductions in the synthetic efficiency of paramylon and lipid in E. gracilis. In this way, we are able to confirm that HA is the main growth inhibitor of E. gracilis. Finally, we verify that all the HA is removed or converted into nutrients efficiently by AC or UV/H2O2/O3 treatments, respectively. As a result of these treatments, growth of E. gracilis is restored (AC treatment) and the amount of biomass is promoted (UV/H2O2/O3 treatment). CONCLUSIONS These studies have important practical and theoretical significance for the cyclic cultivation of E. gracilis and for saving water resources. Our work may also provide a useful reference for other microalgae cultivation.
Collapse
Affiliation(s)
- Mingcan Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Guimei Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Feimiao Lu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jing Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Hui Zhu
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Di Caprio F, Pipitone LM, Altimari P, Pagnanelli F. Extracellular and intracellular phenol production by microalgae during photoautotrophic batch cultivation. N Biotechnol 2020; 62:1-9. [PMID: 33358937 DOI: 10.1016/j.nbt.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022]
Abstract
Understanding the mechanisms of phenol production by microalgae can contribute to the development of microalgal biorefinery processes with higher economic and environmental sustainability. However, little is known about how phenols are produced and accumulate during microalgal cultivation. In this study, both extracellular and intracellular phenol production by two microalgal strains (Tetradesmus obliquus and Chlorella sp.) were investigated throughout a conventional photoautotrophic batch cultivation. The highest intracellular phenol content (10-25 mg g-1) and productivity (12-18 mg L-1 d-1) were attained for both strains in the first part of the batch, indicating a positive relation with nutrient availability and biomass productivity. Extracellular phenol production was 2-20 fold lower than intracellular phenols, but reached up to 27 mg L-1 for T. obliquus and 13 mg L-1 for Chlorella sp. The latter finding highlights relevant issues about the management of the exhausted culture medium, due to likely antimicrobial effects.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- University Sapienza of Rome, Department of Chemistry, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Luca Maria Pipitone
- University Sapienza of Rome, Department of Chemistry, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pietro Altimari
- University Sapienza of Rome, Department of Chemistry, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Pagnanelli
- University Sapienza of Rome, Department of Chemistry, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
14
|
Kim DH, Yun HS, Kim YS, Kim JG. Effects of Co-culture on Improved Productivity and Bioresource for Microalgal Biomass Using the Floc-Forming Bacteria Melaminivora Jejuensis. Front Bioeng Biotechnol 2020; 8:588210. [PMID: 33392165 PMCID: PMC7775480 DOI: 10.3389/fbioe.2020.588210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Bacterial and algal floc formation was induced by inoculating three species of wastewater-derived bacteria (Melaminivora jejuensis, Comamonas flocculans, and Escherichia coli) into algal cultures (Chlorella sorokiniana). Bacterial and algal flocs formed in algal cultures inoculated with M. jejuensis and C. flocculans, and these flocs showed higher sedimentation rates than pure algal culture. The floc formed by M. jejuensis (4988.46 ± 2589.81 μm) was 10-fold larger than the floc formed by C. flocculans (488.60 ± 226.22 μm), with a three-fold higher sedimentation rate (M. jejuensis, 91.08 ± 2.32% and C. flocculans, 32.55 ± 6.33%). Biomass and lipid productivity were improved with M. jejuensis inoculation [biomass, 102.25 ± 0.35 mg/(L·day) and 57.80 ± 0.20 mg/(L·day)] compared with the productivity obtained under pure algal culture conditions [biomass, 78.00 ± 3.89 mg/(L·day) and lipids, 42.26 ± 2.11 mg/(L·day)]. Furthermore, the fatty acid composition of the biomass produced under pure algal culture conditions was mainly composed of C16:0 (43.67%) and C18:2 (45.99%), whereas the fatty acid composition of the biomass produced by M. jejuensis was mainly C16:0 (31.80%), C16:1 (24.45%), C18:1 (20.23%), and C18:2 (16.11%). These results suggest the possibility of developing an efficient method for harvesting microalgae using M. jejuensis and provide information on how to improve biomass productivity using floc-forming bacteria.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Hyun-Sik Yun
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Young-Saeng Kim
- Research Institute of Ulleung-Do & Dok-Do, Kyungpook National University, Daegu, South Korea
| | - Jong-Guk Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea.,School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
15
|
Loftus SE, Hunt DE, Johnson ZI. Reused cultivation water from a self-inhibiting alga does not inhibit other algae but alters their microbiomes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minutum. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100567] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Molina-Miras A, López-Rosales L, Sánchez-Mirón A, López-Rodríguez M, Cerón-García M, García-Camacho F, Molina-Grima E. Influence of culture medium recycling on the growth of a marine dinoflagellate microalga and bioactives production in a raceway photobioreactor. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Fret J, Roef L, Diels L, Tavernier S, Vyverman W, Michiels M. Combining medium recirculation with alternating the microalga production strain: a laboratory and pilot scale cultivation test. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Identification of auto-inhibitors in the reused culture media of the Chlorophyta Scenedesmus acuminatus. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Sha J, Lu Z, Ye J, Wang G, Hu Q, Chen Y, Zhang X. The inhibition effect of recycled Scenedesmus acuminatus culture media: Influence of growth phase, inhibitor identification and removal. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101612] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Loftus SE, Johnson ZI. Reused Cultivation Water Accumulates Dissolved Organic Carbon and Uniquely Influences Different Marine Microalgae. Front Bioeng Biotechnol 2019; 7:101. [PMID: 31157215 PMCID: PMC6528441 DOI: 10.3389/fbioe.2019.00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/23/2019] [Indexed: 11/26/2022] Open
Abstract
Reusing growth medium (water supplemented with nutrients) for microalgae cultivation is required for economical and environmentally sustainable production of algae bioproducts (fuels, feed, and food). However, reused medium often contains microbes and dissolved organic matter that may affect algae growth. While the accumulation of dissolved organic carbon (DOC) in reused medium has been demonstrated, it is unclear whether DOC concentrations affect algae growth or subsequent rates of algal DOC release. To address these questions, lab-scale experiments were conducted with three marine microalgae strains, Navicula sp. SFP, Staurosira sp. C323, and Chlorella sp. D046, grown in medium reused up to four times. Navicula sp. and Chlorella sp. grew similarly in reused medium as in fresh medium, while Staurosira sp. became completely inhibited in reused medium. Across the three algae, there was no broad trend between initial DOC concentration in reused medium and algae growth response. Navicula sp. released less DOC overall in reused medium than in fresh medium, but DOC release rates did not decrease proportionally with increased DOC concentrations. Net DOC accumulation was much lower than gross DOC released by Navicula sp. and Staurosira sp., indicating the majority of released DOC was degraded. Additionally, biodegradation experiments with reused media showed no further net decrease in DOC, suggesting the accumulated DOC was recalcitrant to the associated bacteria. Overall, these results suggest that taxa-specific factors may be responsible for algae growth response in reused medium, and that DOC release and accumulation are insensitive to prior cultivation rounds. Choosing an algae strain that is uninhibited by accumulated DOC is therefore critical to ensure successful water reuse in the algae industry.
Collapse
Affiliation(s)
- Sarah E. Loftus
- Duke University Marine Lab, Nicholas School of the Environment, Beaufort, NC, United States
| | - Zackary I. Johnson
- Duke University Marine Lab, Nicholas School of the Environment, Beaufort, NC, United States
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC, United States
| |
Collapse
|
22
|
Li Y, Zhang Z, Duan Y, Wang H. The effect of recycling culture medium after harvesting of Chlorella vulgaris biomass by flocculating bacteria on microalgal growth and the functionary mechanism. BIORESOURCE TECHNOLOGY 2019; 280:188-198. [PMID: 30771574 DOI: 10.1016/j.biortech.2019.01.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Microalgal cultivation and harvesting are two main factors that restrict the development of microalgae. To help solve these two questions, flocculating bacteria and recycling culture medium were investigated in this study. Proteins in bacterial cells of Bacillus sp. y3 and y6 exhibited direct flocculation activities on Chlorella vulgaris cells. The recycling culture media after harvest of microalgal biomass by strain y3 and y6 could promote C. vulgaris growth. The determination of bacterial community confirmed that strain Bw in C. vulgaris phycosphere was the bacterial species that played the major promotion effect on microalgal growth. The functionary mechanism of strain y3 and y6 on microalgal growth was determined that they can influence C. vulgaris growth by changing the concentration of strain Bw to regulate algal ROS and antioxidant system response. The present study can provide effective research ideas and the application potential for the cultivation and harvesting of microalgae.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Marine Environmental Science, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhiyu Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yingxing Duan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Marine Environmental Science, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| |
Collapse
|
23
|
Das P, Thaher M, AbdulQuadir M, Khan S, Chaudhary A, Al-Jabri H. Long-term semi-continuous cultivation of a halo-tolerant Tetraselmis sp. using recycled growth media. BIORESOURCE TECHNOLOGY 2019; 276:35-41. [PMID: 30611084 DOI: 10.1016/j.biortech.2018.12.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
In this study, a halotolerant Tetraselmis sp. was selected for 11-month outdoor semi-continuous cultivation in one sq. m raceway tank in the Qatari desert. A fraction of the culture was harvested using ferric chloride, and the growth media was returned to the tank. The recycling of culture media continued till the culture salinity reached 8% NaCl; 90% culture was then harvested, and the remaining culture fraction was used as inoculum for a new cultivation cycle. The growth of Tetraselmis sp. was not affected by incremental salinity although the intracellular metabolites varied; the average biomass productivity was 17.8 g/m2/d. Harvesting efficiency was slightly affected by the increase in salinity. Iron content in the harvested biomass was in the range of 1.5-3.3%, and acidic solution (pH = 1.48) was able to recover 91.3% iron from the harvested biomass. Nonetheless, Tetraselmis sp. could be grown continuously throughout the year in Qatar's climate condition.
Collapse
Affiliation(s)
- Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mahmoud Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohammed AbdulQuadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Afeefa Chaudhary
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
24
|
Leow S, Shoener BD, Li Y, DeBellis JL, Markham J, Davis R, Laurens LML, Pienkos PT, Cook SM, Strathmann TJ, Guest JS. A Unified Modeling Framework to Advance Biofuel Production from Microalgae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13591-13599. [PMID: 30358989 DOI: 10.1021/acs.est.8b03663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Modeling efforts to understand the financial implications of microalgal biofuels often assume a static basis for microalgae biomass composition and cost, which has constrained cultivation and downstream conversion process design and limited in-depth understanding of their interdependencies. For this work, a dynamic biological cultivation model was integrated with thermo-chemical/biological unit process models for downstream biorefineries to increase modeling fidelity, to provide mechanistic links among unit operations, and to quantify minimum product selling prices of biofuels via techno-economic analysis. Variability in design, cultivation, and conversion parameters were characterized through Monte Carlo simulation, and sensitivity analyses were conducted to identify key cost and fuel yield drivers. Cultivating biomass to achieve the minimum biomass selling price or to achieve maximum lipid content were shown to lead to suboptimal fuel production costs. Depending on biomass composition, both hydrothermal liquefaction and a biochemical fractionation process (combined algal processing) were shown to have advantageous minimum product selling prices, which supports continued investment in multiple conversion pathways. Ultimately, this work demonstrates a clear need to leverage integrated modeling platforms to advance microalgae biofuel systems as a whole, and specific recommendations are made for the prioritization of research and development pathways to achieve economical biofuel production from microalgae.
Collapse
Affiliation(s)
- Shijie Leow
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign . Newmark Civil Engineering Laboratory, 205 N. Mathews Ave. , Urbana , Illinois 61801 , United States
- Department of Civil and Environmental Engineering , Colorado School of Mines . 1500 Illinois St. , Golden , Colorado 80401 , United States
| | - Brian D Shoener
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign . Newmark Civil Engineering Laboratory, 205 N. Mathews Ave. , Urbana , Illinois 61801 , United States
| | - Yalin Li
- Department of Civil and Environmental Engineering , Colorado School of Mines . 1500 Illinois St. , Golden , Colorado 80401 , United States
| | - Jennifer L DeBellis
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign . Newmark Civil Engineering Laboratory, 205 N. Mathews Ave. , Urbana , Illinois 61801 , United States
| | - Jennifer Markham
- National Bioenergy Center , National Renewable Energy Laboratory . 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Ryan Davis
- National Bioenergy Center , National Renewable Energy Laboratory . 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Lieve M L Laurens
- National Bioenergy Center , National Renewable Energy Laboratory . 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Philip T Pienkos
- National Bioenergy Center , National Renewable Energy Laboratory . 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Sherri M Cook
- Department of Civil, Environmental and Architectural Engineering , University of Colorado Boulder . 4001 Discovery Drive , Boulder , Colorado 80309 , United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering , Colorado School of Mines . 1500 Illinois St. , Golden , Colorado 80401 , United States
- National Bioenergy Center , National Renewable Energy Laboratory . 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign . Newmark Civil Engineering Laboratory, 205 N. Mathews Ave. , Urbana , Illinois 61801 , United States
| |
Collapse
|
25
|
Sachdeva N, Giambarresi G, Poughon L, Cabrera JC, Leroy B, Lasseur C, Dussap CG, Wattiez R. Assessment of transient effects of alternative nitrogen sources in continuous cultures of Arthrospira sp. using proteomic, modeling and biochemical tools. BIORESOURCE TECHNOLOGY 2018; 267:492-501. [PMID: 30041143 DOI: 10.1016/j.biortech.2018.07.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
The ability of cyanobacterium Arthrospira sp. to assimilate waste nitrogen sources (ammonium and urea) makes it an important candidate for wastewater management. The aim of this work was to evaluate a cultivation approach based on continuous-transitional-feeding regime (nitrate-ammonium-nitrate) in a photobioreactor to assess the effects of ammonium salts on Arthrospira sp. PCC 8005 metabolism. Using a comprehensive biochemical, proteomic and stoichiometric profiling of biomass, this study demonstrated that the proposed cultivation approach could increase the proteins and pigments yields by 20-30%, compared to the respective yields obtained from wild-type Arthrospira sp. strain A light-energy-transfer model was used to predict the biomass and oxygen productivities of Arthrospira sp. cultivated under transitional-feeding regime. 95 ± 2% match was observed between the experimental and simulated productivities. This study thus opened new avenues for use of ammonium rich wastewater for commercial production of high value pigments, biofuel and bioplastics using Arthrospira sp.
Collapse
Affiliation(s)
- Neha Sachdeva
- Department of Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons 7000, Belgium
| | - Giuseppe Giambarresi
- Department of Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons 7000, Belgium
| | - Laurent Poughon
- Institut Pascal, Université Clermont Auvergne, CNRS, SIGMA Clermont, 4 avenue Blaise Pascal, Aubière 63178, France
| | | | - Baptiste Leroy
- Department of Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons 7000, Belgium
| | | | - Claude-Gilles Dussap
- Institut Pascal, Université Clermont Auvergne, CNRS, SIGMA Clermont, 4 avenue Blaise Pascal, Aubière 63178, France
| | - Ruddy Wattiez
- Department of Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons 7000, Belgium.
| |
Collapse
|