1
|
Qin J, Kurt E, LBassi T, Sa L, Xie D. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Front Microbiol 2023; 14:1280296. [PMID: 38029217 PMCID: PMC10662050 DOI: 10.3389/fmicb.2023.1280296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Omega-3 fatty acids, including alpha-linolenic acids (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have shown major health benefits, but the human body's inability to synthesize them has led to the necessity of dietary intake of the products. The omega-3 fatty acid market has grown significantly, with a global market from an estimated USD 2.10 billion in 2020 to a predicted nearly USD 3.61 billion in 2028. However, obtaining a sufficient supply of high-quality and stable omega-3 fatty acids can be challenging. Currently, fish oil serves as the primary source of omega-3 fatty acids in the market, but it has several drawbacks, including high cost, inconsistent product quality, and major uncertainties in its sustainability and ecological impact. Other significant sources of omega-3 fatty acids include plants and microalgae fermentation, but they face similar challenges in reducing manufacturing costs and improving product quality and sustainability. With the advances in synthetic biology, biotechnological production of omega-3 fatty acids via engineered microbial cell factories still offers the best solution to provide a more stable, sustainable, and affordable source of omega-3 fatty acids by overcoming the major issues associated with conventional sources. This review summarizes the current status, key challenges, and future perspectives for the biotechnological production of major omega-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
2
|
Abbas N, Riaz S, Mazhar S, Essa R, Maryam M, Saleem Y, Syed Q, Perveen I, Bukhari B, Ashfaq S, Abidi SHI. Microbial production of docosahexaenoic acid (DHA): biosynthetic pathways, physical parameter optimization, and health benefits. Arch Microbiol 2023; 205:321. [PMID: 37642791 DOI: 10.1007/s00203-023-03666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Omega-3 fatty acids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and α-linolenic acid (ALA), are essential polyunsaturated fatty acids with diverse health benefits. The limited conversion of dietary DHA necessitates its consumption as food supplements. Omega-3 fatty acids possess anti-arrhythmic and anti-inflammatory capabilities, contributing to cardiovascular health. Additionally, DHA consumption is linked to improved vision, brain, and memory development. Furthermore, omega-3 fatty acids offer protection against various health conditions, such as celiac disease, Alzheimer's, hypertension, thrombosis, heart diseases, depression, diabetes, and certain cancers. Fish oil from pelagic cold-water fish remains the primary source of omega-3 fatty acids, but the global population burden creates a demand-supply gap. Thus, researchers have explored alternative sources, including microbial systems, for omega-3 production. Microbial sources, particularly oleaginous actinomycetes, microalgae like Nannochloropsis and among microbial systems, Thraustochytrids stand out as they can store up to 50% of their dry weight in lipids. The microbial production of omega-3 fatty acids is a potential solution to meet the global demand, as these microorganisms can utilize various carbon sources, including organic waste. The biosynthesis of omega-3 fatty acids involves both aerobic and anaerobic pathways, with bacterial polyketide and PKS-like PUFA synthase as essential enzymatic complexes. Optimization of physicochemical parameters, such as carbon and nitrogen sources, pH, temperature, and salinity, plays a crucial role in maximizing DHA production in microbial systems. Overall, microbial sources hold significant promise in meeting the global demand for omega-3 fatty acids, offering an efficient and sustainable solution for enhancing human health.
Collapse
Affiliation(s)
- Naaz Abbas
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Sana Riaz
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan.
| | - Sania Mazhar
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Ramsha Essa
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Maria Maryam
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Yasar Saleem
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Quratulain Syed
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Ishrat Perveen
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Bakhtawar Bukhari
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Saira Ashfaq
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Syed Hussain Imam Abidi
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| |
Collapse
|
3
|
Rohman A, Irnawati, Windarsih A, Riswanto FDO, Indrayanto G, Fadzillah NA, Riyanto S, Bakar NKA. Application of Chromatographic and Spectroscopic-Based Methods for Analysis of Omega-3 (ω-3 FAs) and Omega-6 (ω-6 FAs) Fatty Acids in Marine Natural Products. Molecules 2023; 28:5524. [PMID: 37513396 PMCID: PMC10383577 DOI: 10.3390/molecules28145524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Omega-3 fatty acids v(ω-3 FAs) such as EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) and omega-6 fatty acids (ω-6 FAs) such as linoleic acid and arachidonic acid are important fatty acids responsible for positive effects on human health. The main sources of ω-3 FAs and ω-6 FAs are marine-based products, especially fish oils. Some food, supplements, and pharmaceutical products would include fish oils as a source of ω-3 FAs and ω-6 FAs; therefore, the quality assurance of these products is highly required. Some analytical methods mainly based on spectroscopic and chromatographic techniques have been reported. Molecular spectroscopy such as Infrared and Raman parallel to chemometrics has been successfully applied for quantitative analysis of individual and total ω-3 FAs and ω-6 FAs. This spectroscopic technique is typically applied as the alternative method to official methods applying chromatographic methods. Due to the capability to provide the separation of ω-3 FAs and ω-6 FAs from other components in the products, gas and liquid chromatography along with sophisticated detectors such as mass spectrometers are ideal analytical methods offering sensitive and specific results that are suitable for routine quality control.
Collapse
Affiliation(s)
- Abdul Rohman
- Halal Center, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Irnawati
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Study Program of Pharmacy, Faculty of Pharmacy, Halu Oleo University, Kendari 93232, Indonesia
| | - Anjar Windarsih
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | | | - Nurrulhidayah A Fadzillah
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia
| | - Sugeng Riyanto
- Study Program of Pharmacy, Faculty of Health Sciences and Pharmacy, Universitas Gunadarma, Jakarta 16451, Indonesia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
4
|
Fierli D, Aranyos A, Barone ME, Parkes R, Touzet N. Influence of exogenous phytohormone supplementation on the pigment and fatty acid content of three marine diatoms. Appl Microbiol Biotechnol 2022; 106:6195-6207. [PMID: 36040486 DOI: 10.1007/s00253-022-12140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Abstract
Diatoms are ubiquitous photosynthetic microorganisms with great potential for biotechnological applications. However, their commercialisation is hampered by production costs, requiring hence optimisation of cultivation methods. Phytohormones are plant growth regulators which may be used to influence physiological processes in microalgae, including diatoms. In this study, the model species Phaeodactylum tricornutum (Phaeodactylaceae) and two Irish isolates of Stauroneis sp. (Stauroneidaceae) and Nitzschia sp. (Bacillariaceae) were grown with varying amounts of the phytohormones indoleacetic acid (IAA), gibberellic acid (GA3), methyl jasmonate (MJ), abscisic acid (ABA) or salicylic acid (SA), and their influence on pigment and fatty acid profiles was monitored. The application of GA3 (200 mg/l) stimulated the growth of P. tricornutum which accumulated 52% more dry biomass compared to the control and concomitantly returned the highest eicosapentaenoic acid (EPA) yield (0.6 mg/l). The highest fucoxanthin yield (0.18 mg/l) was obtained for P. tricornutum cultivated with GA3 (2 mg/l) supplementation. In Stauroneis sp., SA (1 mg/l) had the most positive effect on EPA, the content of which was enhanced up to 45.7 μg/mg (4.6% of total dry weight). The SA (1 mg/l) treatment also boosted carotenogenesis in Nitzschia sp., leading to 1.7- and 14-fold increases in fucoxanthin and β-carotene compared to the control, respectively. Of note, MJ (0.5 mg/l) increased the EPA content of all diatom species compared to their controls. These results indicate that phytohormone-based treatments can be used to alter the pigment and lipid content of microalgae, which tend to respond in dose- and species-specific manners to individual compounds.Key points• Response to phytohormones was investigated in diatoms from distinct families.• MJ (0.5 mg/l) caused an increase in EPA cellular content in all three diatoms.• Phytohormones mostly caused dose-dependent and species-specific responses.
Collapse
Affiliation(s)
- David Fierli
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland.
| | - Anita Aranyos
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| | - Maria Elena Barone
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| | - Rachel Parkes
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| | - Nicolas Touzet
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| |
Collapse
|
5
|
Ali Kubar A, Jin N, Cui Y, Hu X, Qian J, Zan X, Zhang C, Zhu F, Kumar S, Huo S. Magnetic/electric field intervention on oil-rich filamentous algae production in the application of acrylonitrile butadiene styrene based wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 356:127272. [PMID: 35526707 DOI: 10.1016/j.biortech.2022.127272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Globally, the release of acrylonitrile-butadienestyrene (ABS) wastewater from numerous industries is a serious concern. Recently, oil-rich filamentous algae Tribonema sp has been grown utilizing toxic but nutrient-rich ABS effluent. Here, Tribonema sp. was cultivated under intervention of different magneto-electric combinatory fields (MCFs) (control, 0.6 V/cm, 1 h/d-1.2 V/cm, 1 h/d-0.6 V/cm, and 1 h/d-1.2 V/cm). Results showed MCF (1 h/d-0.6 V/cm) intervention increased the biomass by 9.7% (2.4 g/L) combined with high removal efficiencies (95% and 99%) of ammonium nitrogen and total phosphorus. The chemical oxygen demand (COD) removal rate increased to 82%, 6% higher than the control. Moreover, MCF of 1 h/d-0.6 V/cm significantly increased lipid and carbohydrate by 7.71% and 4.73% respectively. MCF increased premium fatty acid content such as palmitic acid (C16:0), myristic acid (C14: 0), and hexadecenoic acid (C16:1). MCF intervention also supported a diverse microbial flora, offering a favorable solution for ABS wastewater treatment.
Collapse
Affiliation(s)
- Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Nana Jin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Novel microalgae strains from selected lower Himalayan aquatic habitats as potential sources of green products. PLoS One 2022; 17:e0267788. [PMID: 35536837 PMCID: PMC9089879 DOI: 10.1371/journal.pone.0267788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/16/2022] [Indexed: 12/03/2022] Open
Abstract
Microalgal biomass provides a renewable source of biofuels and other green products. However, in order to realize economically viable microalgal biorefinery, strategic identification and utilization of suitable microalgal feedstock is fundamental. Here, a multi-step suboptimal screening strategy was used to target promising microalgae strains from selected freshwaters of the study area. The resulting strains were found to be affiliated to seven closely-related genera of the family Scenedesmaceae, as revealed by both morphologic and molecular characterization. Following initial screening under upper psychrophilic to optimum mesophilic (irregular temperature of 14.1 to 35.9°C) cultivation conditions, superior strains were chosen for further studies. Further cultivation of the selected strains under moderate to extreme mesophilic cultivation conditions (irregular temperature of 25.7 to 42.2°C), yielded up to 74.12 mgL-1day-1, 19.96 mgL-1day-1, 48.56%, 3.34 μg/mL and 1.20 μg/mL, for biomass productivity, lipid productivity, carbohydrate content, pigments content and carotenoids content respectively. These performances were deemed promising compared with some previous, optimum conditions-based reports. Interestingly, the fatty acids profile and the high carotenoids content of the studied strains revealed possible tolerance to the stress caused by the changing suboptimal cultivation conditions. Overall, strains AY1, CM6, LY2 and KL10 were exceptional and may present sustainable, promising feedstock for utilization in large-scale generation of green products, including biodiesel, bioethanol, pigments and dietary supplements. The findings of this study, which exposed promising, eurythermal strains, would expand the current knowledge on the search for promising microalgae strains capable of performing under the largely uncontrolled large-scale cultivation settings.
Collapse
|
7
|
Ahmad A, Banat F, Alsafar H, Hasan SW. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150585. [PMID: 34597562 DOI: 10.1016/j.scitotenv.2021.150585] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
A growing world population is causing hazardous compounds to form at an increasingly rapid rate, calling for ecological action. Wastewater management and treatment is an expensive process that requires appropriate integration technology to make it more feasible and cost-effective. Algae are of great interest as potential feedstocks for various applications, including environmental sustainability, biofuel production, and the manufacture of high-value bioproducts. Bioremediation with microalgae is a potential approach to reduce wastewater pollution. The need for effective nutrient recovery, greenhouse gas reduction, wastewater treatment, and biomass reuse has led to a wide interest in the use of microalgae for wastewater treatment. Furthermore, algae biomass can be used to produce bioenergy and high-value bioproducts. The use of microalgae as medicine (production of bioactive and medicinal compounds), biofuels, biofertilizers, and food additives has been explored by researchers around the world. Technological and economic barriers currently prevent the commercial use of algae, and optimal downstream processes are needed to reduce production costs. Therefore, the simultaneous use of microalgae for wastewater treatment and biofuel production could be an economical approach to address these issues. This article provides an overview of algae and their application in bioremediation, bioenergy production, and bioactive compound production. It also highlights the current problems and opportunities in the algae-based sector, which has recently become quite promising.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Habiba Alsafar
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Gu W, Kavanagh JM, McClure DD. Towards a sustainable supply of omega-3 fatty acids: Screening microalgae for scalable production of eicosapentaenoic acid (EPA). ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Parkes R, Barone ME, Aranyos A, Fierli D, Koehler H, Gillespie E, Touzet N. Species-specific responses in pigments and fatty acids of five freshwater chlorophytes exposed to varying cultivation conditions. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Mc Gee D, Archer L, Parkes R, Fleming GTA, Santos HM, Touzet N. The role of methyl jasmonate in enhancing biomass yields and bioactive metabolites in Stauroneis sp. (Bacillariophyceae) revealed by proteome and biochemical profiling. J Proteomics 2021; 249:104381. [PMID: 34536592 DOI: 10.1016/j.jprot.2021.104381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/17/2022]
Abstract
The diatom Stauroneis sp. was previously identified as a promising source of fucoxanthin and omega-3 oils. Methyl jasmonate (MJ) supplementation is known to enhance metabolite yields in this species without impacting on growth or photosynthesis. Therefore, a label-free proteomics approach was undertaken to further evaluate the functional role of MJ on the diatom's physiology. Of the twenty cultivation regimes were screened, Uf/2 medium with green+white LED's induced the greatest metabolic response when exposed to 10 μM MJ treatment. These conditions significantly enhanced the pigment and total cellular lipids contents. The increase in fucoxanthin correlating with a 20% increase in Trolox reducing equivalent in the total antioxidant assay, indicating a non-enzymatic antioxidant role of fucoxanthin to mitigate the detrimental effects of a redox imbalance within chloroplasts. The proteomics identified 197 proteins up-regulated 48 h after MJ exposure including cell signalling cascades, photosynthetic processes, carbohydrate metabolism, lipid biosynthesis and chloroplast biogenesis. MJ strengthened the dark reactions of photosynthesis to support growth and metabolite fluxes. The MJ-induced ER stress protein triggered lipid body production, facilitating metabolite turnover and trafficking between cellular organelles. Plastid terminal oxidase and glutamate 1-semialdehyde 2,1-aminomutase may act as MJ-induced ROS responsive regulatory switch to support chloroplast biosynthesis. SIGNIFICANCE STATEMENT: Phytohormones represents a promising tool to enhance the high-value metabolite yields in plants and algae, however little is known of the role of methyl jasmonate in diatoms at a molecular level. A shotgun proteomics approach was undertaken to determine the influence of MJ on the diatom's cellular physiology in the marine diatom Stauroneis sp., revealing a signal transduction cascade leading to increased lipid and pigment content and identified promising targets for genetic engineering.
Collapse
Affiliation(s)
- Dónal Mc Gee
- Centre for Environmental Research, Sustainability and Innovation (CERIS), School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland.
| | - Lorraine Archer
- Centre for Environmental Research, Sustainability and Innovation (CERIS), School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
| | - Rachel Parkes
- Centre for Environmental Research, Sustainability and Innovation (CERIS), School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
| | - Gerard T A Fleming
- Microbiology Department, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Hugo M Santos
- Bioscope Research Group, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829_516 Caparica, Portugal
| | - Nicolas Touzet
- Centre for Environmental Research, Sustainability and Innovation (CERIS), School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
| |
Collapse
|
11
|
Parkes R, Archer L, Gee DM, Smyth TJ, Gillespie E, Touzet N. Differential responses in EPA and fucoxanthin production by the marine diatom Stauroneis sp. under varying cultivation conditions. Biotechnol Prog 2021; 37:e3197. [PMID: 34337902 DOI: 10.1002/btpr.3197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 01/03/2023]
Abstract
There has been an increasing drive toward better valorising raw biological materials in the context of the sustainability of bio-based industries and the circular economy. As such, microalgae hold the ability to biosynthesise valuable metabolites, which are sought after within the bioenergy, pharmaceuticals, cosmetics or nutrition sectors. Owing to their bioactivities, the xanthophyll pigment fucoxanthin and the omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) have fostered increasing interests in terms of sustainably refining them from natural sources, such as microalgae. Together with the suitability of individual species to industrial cultivation, a key challenge resides in optimizing the yields of these compounds within the microalgal biomass they are retrieved from. The marine diatom Stauroneis sp. LACW24 was batch cultivated into its stationary phase of growth prior to being subjected at high cell density (1 × 106 cells mL-1 ) to seven different regimes of light exposure in replenished medium and under nutritional limitation (silica and nitrate) for 12 days. The highest EPA proportions and yields were obtained under blue LED in f/2 medium (16.5% and 4.8 mg g-1 , respectively), double the values obtained under red LED illumination. The fucoxanthin yield was the highest when cells were subjected to blue LEDs (5.9 mg g-1 ), a fourfold increase compared to the nitrogen-limited treatment under white LEDs. These results indicate that a two-stage approach to the batch cultivation of this diatom can be used for enhancing the production of the high-value metabolites fucoxanthin and EPA post-stationary phase.
Collapse
Affiliation(s)
- Rachel Parkes
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Institute of Technology Sligo, Sligo, Ireland
| | - Lorraine Archer
- Algal Innovation Centre, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Thomas J Smyth
- School of Science, Department of Health and Nutritional Sciences, Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Sligo, Ireland
| | - Eoin Gillespie
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Institute of Technology Sligo, Sligo, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Institute of Technology Sligo, Sligo, Ireland
| |
Collapse
|
12
|
Archer L, McGee D, Parkes R, Paskuliakova A, McCoy GR, Adamo G, Cusimano A, Bongiovanni A, Gillespie E, Touzet N. Antioxidant Bioprospecting in Microalgae: Characterisation of the Potential of Two Marine Heterokonts from Irish Waters. Appl Biochem Biotechnol 2020; 193:981-997. [PMID: 33215392 DOI: 10.1007/s12010-020-03467-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022]
Abstract
Microalgae constitute a heterogeneous and diverse range of organisms capable of accumulating bioactive metabolites, making them promising feedstock for applications in the nutraceutical, functional food, animal feed, biofertilisation or biofuel sectors. There has been renewed interest in recent times in natural sources of antioxidants, particularly as health products and preserving agents. Microalgae strains isolated from aquatic habitats in Ireland were successfully brought into culture. The 91 strains were grown phototrophically in nutrient-enriched media to generate biomass, which was harvested and assessed for antioxidant potential. Extracts were screened for antioxidant activity using a modified volumetric Trolox-ABTS assay and the Folin-Ciocalteu method. Two heterokont marine strains of interest were further studied to ascertain variations in antioxidant capacity across different stages of batch culture growth. The antioxidant activity of extracts of bacillariophyte cf. Stauroneis sp. LACW24 and ocrophyte cf. Phaeothamnion sp. LACW34 increased during growth with a maximum being observed during the late stationary or early death phase (2.5- to 8-fold increases between days 20 and 27). Strains LACW24 and LACW34 contained 5.9 and 3.0 mg g-1 (DW) of the xanthophyll fucoxanthin, respectively. Extracts of strains also showed no cytotoxicity towards mouse cell lines. These results highlight the potential of these strains for biomass valorisation and cultivation upscaling and to be further considered as part of ongoing bioprospecting efforts towards identifying novel species to join the relatively narrow range of commercially exploited marine microalgae species.
Collapse
Affiliation(s)
- Lorraine Archer
- School of Science, Department of Environmental Science, Centre for Environmental Research Innovation and Sustainability (CERIS), Institute of Technology Sligo, Sligo, Ireland.
| | - Dónal McGee
- School of Science, Department of Environmental Science, Centre for Environmental Research Innovation and Sustainability (CERIS), Institute of Technology Sligo, Sligo, Ireland
| | - Rachel Parkes
- School of Science, Department of Environmental Science, Centre for Environmental Research Innovation and Sustainability (CERIS), Institute of Technology Sligo, Sligo, Ireland
| | - Andrea Paskuliakova
- School of Science, Department of Environmental Science, Centre for Environmental Research Innovation and Sustainability (CERIS), Institute of Technology Sligo, Sligo, Ireland
| | - Gary R McCoy
- Bord Iascaigh Mhara, Crofton Road, Dún Laoghaire, Co, Dublin, A96 E5A0, Ireland
| | - Giorgia Adamo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR) of Italy, Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR) of Italy, Palermo, Italy
| | - Antonella Bongiovanni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR) of Italy, Palermo, Italy
| | - Eoin Gillespie
- School of Science, Department of Environmental Science, Centre for Environmental Research Innovation and Sustainability (CERIS), Institute of Technology Sligo, Sligo, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Centre for Environmental Research Innovation and Sustainability (CERIS), Institute of Technology Sligo, Sligo, Ireland
| |
Collapse
|