1
|
Liu S, Kong Z, Guo H, Zhang Y, Han X, Gao Y, Daigger GT, Zhang G, Li R, Liu Y, Zhang P, Song G. Performance, mechanism regulation and resource recycling of bacteria-algae symbiosis system for wastewater treatment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125019. [PMID: 39326826 DOI: 10.1016/j.envpol.2024.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer. Additionally, the efficacy of the system in removing nitrogen, phosphorus, and heavy metals, as well as its role in CO2 reduction and bioresource recycling, is thoroughly elaborated. Potential future research of bacteria-algae cell factory producing bioenergy production, feed or fertilizers are summarized. This paper clearly presents effective strategies for efficiently removing pollutants, reducing carbon emissions, and promoting resource recycling in the field of wastewater treatment. It also provides recommendations for further research on utilizing microbial-algal symbiotic systems to remove novel pollutants from wastewater and extract value-added products from the resulting biomass.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Tian X, Lin X, Xie Q, Liu J, Luo L. Effects of Temperature and Light on Microalgal Growth and Nutrient Removal in Turtle Aquaculture Wastewater. BIOLOGY 2024; 13:901. [PMID: 39596856 PMCID: PMC11592134 DOI: 10.3390/biology13110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
The aim of this study was to explore the effects of temperature and light on microalgal growth and nutrient removal in turtle aquaculture wastewater using a single-factor experiment method. Results showed that the growth process of Desmodesmus sp. CHX1 in turtle aquaculture wastewater exhibited three stages, namely adaptation, logarithmic, and stable periods. Temperature and light significantly influenced the growth and protein and lipid accumulation of Desmodesmus sp. CHX1. The optimal conditions for the growth and biomass accumulation of Desmodesmus sp. CHX1 included a temperature of 30 °C, a photoperiod of 24L:0D, and a light intensity of 180 μmol photon/(m2·s). Increased temperature, photoperiod, and light intensity enhanced nutrient removal efficiency. Maximum nitrogen removal was achieved at a temperature of 30 °C, a photoperiod of 24L:0D, and a light intensity of 180 μmol photon/(m2·s), with the removal efficiency of 86.53%, 97.94%, 99.57%, and 99.15% for ammonia, nitrate, nitrite, and total phosphorus (TP), respectively. Temperature did not significantly affect TP removal, but increased photoperiod and light intensity improved the removal efficiency of TP. The development of microalgae biomass as a feed rich in protein and lipids could address feed shortages and meet the nutritional needs of turtles, offering a feasible solution for large-scale production.
Collapse
Affiliation(s)
- Xiaosong Tian
- Chongqing Vocational Institute of Engineering, College of Resources and Safety, Chongqing 402260, China; (X.T.); (Q.X.)
| | - Xiaoai Lin
- School of Chemistry and Environmental Science, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (X.L.); (J.L.)
| | - Qing Xie
- Chongqing Vocational Institute of Engineering, College of Resources and Safety, Chongqing 402260, China; (X.T.); (Q.X.)
| | - Jinping Liu
- School of Chemistry and Environmental Science, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (X.L.); (J.L.)
| | - Longzao Luo
- School of Chemistry and Environmental Science, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (X.L.); (J.L.)
| |
Collapse
|
3
|
Woo S, Han YH, Lee HK, Baek D, Noh MH, Han S, Lim HG, Jung GY, Seo SW. Generation of a Vibrio-based platform for efficient conversion of raffinose through Adaptive Laboratory Evolution on a solid medium. Metab Eng 2024; 86:300-307. [PMID: 39489215 DOI: 10.1016/j.ymben.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Raffinose, a trisaccharide abundantly found in soybeans, is a potential alternative carbon source for biorefineries. Nevertheless, residual intermediate di- or monosaccharides and low catabolic efficiency limit raffinose use through conventional microbial hosts. This study presents a Vibrio-based platform to convert raffinose efficiently. Vibrio sp. dhg was selected as the starting strain for the Adaptive Laboratory Evolution (ALE) strategy to leverage its significantly higher metabolic efficiency. We conducted ALE on a solid minimal medium supplemented with raffinose to prevent the enrichment of undesired phenotypes due to the shared effect of extracellular raffinose hydrolysis among multiple strains. As a result, we generated the VRA10 strain that efficiently utilizes raffinose without leaving behind degraded di- or monosaccharides, achieving a notable growth rate (0.40 h-1) and raffinose consumption rate (1.2 g/gdcw/h). Whole genome sequencing and reverse engineering identified that a missense mutation in the melB gene (encoding a melibiose/raffinose:sodium symporter) and the deletion of the two galR genes (encoding transcriptional repressors for galactose catabolism) facilitated rapid raffinose utilization. The further engineered strain produced 6.2 g/L of citramalate from 20 g/L of raffinose. This study will pave the way for the efficient utilization of diverse raffinose-rich byproducts and the expansion of alternative carbon streams in biorefinery applications.
Collapse
Affiliation(s)
- Sunghwa Woo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju, 61186, South Korea
| | - Hye Kyung Lee
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Dongyeop Baek
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Myung Hyun Noh
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jonggaro, Junggu, Ulsan, 44429, South Korea
| | - Sukjae Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyun Gyu Lim
- Department of Biological Sciences and Bioengineering, Inha University, Inha-ro 100, Michuhol-gu, Incheon, 22212, South Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea; Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Chemical and Biological Engineering, South Korea; Institute of Chemical Processes, South Korea; Bio-MAX Institute, South Korea; Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
4
|
Hu Z, Li J, Qian J, Liu J, Zhou W. Efficacy and mechanisms of rotating algal biofilm system in remediation of soy sauce wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131047. [PMID: 38942212 DOI: 10.1016/j.biortech.2024.131047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This study investigated the efficacy of the rotating algal biofilm (RAB) for treating soy sauce wastewater (SW) and its related treatment mechanisms. The RAB system demonstrated superior nutrient removal (chemical oxygen demand, ammonium nitrogen, total nitrogen, and phosphorus for 92 %, 94 %, 91 %, and 82 %, respectively) and biofilm productivity (14 g m-2 d-1) at optimized 5-day harvest time and 2-day hydraulic retention time. This was mainly attributed to the synergistic interactions within the algae-fungi (Apiotrichum)-bacteria (Acinetobacter and Rhizobia) consortium, which effectively assimilated certain extracellular polymeric substances into biomass to enhance algal biofilm growth. Increased algal productivity notably improved protein and essential amino acid contents in the biomass, suggesting a potential for animal feed applications. This study not only demonstrates a sustainable approach for managing SW but also provides insight into the nutrient removal and biomass conversion, offering a viable strategy for large-scale applications in nutrient recovery and wastewater treatment.
Collapse
Affiliation(s)
- Zimin Hu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China.
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
5
|
Park S, Lee SJ, Noh W, Kim YJ, Kim JH, Back SM, Ryu BG, Nam SW, Park SH, Kim J. Production of safe cyanobacterial biomass for animal feed using wastewater and drinking water treatment residuals. Heliyon 2024; 10:e25136. [PMID: 38322884 PMCID: PMC10844260 DOI: 10.1016/j.heliyon.2024.e25136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
The growing interest in microalgae and cyanobacteria biomass as an alternative to traditional animal feed is hindered by high production costs. Using wastewater (WW) as a cultivation medium could offer a solution, but this approach risks introducing harmful substances into the biomass, leading to significant safety concerns. In this study, we addressed these challenges by selectively extracting nitrates and phosphates from WW using drinking water treatment residuals (DWTR) and chitosan. This method achieved peak adsorption capacities of 4.4 mg/g for nitrate and 6.1 mg/g for phosphate with a 2.5 wt% chitosan blend combined with DWTR-nitrogen. Subsequently, these extracted nutrients were employed to cultivate Spirulina platensis, yielding a biomass productivity rate of 0.15 g/L/d, which is comparable to rates achieved with commercial nutrients. By substituting commercial nutrients with nitrate and phosphate from WW, we can achieve a 18 % reduction in the culture medium cost. While the cultivated biomass was initially nitrogen-deficient due to low nitrate levels, it proved to be protein-rich, accounting for 50 % of its dry weight, and contained a high concentration of free amino acids (1260 mg/g), encompassing all essential amino acids. Both in vitro and in vivo toxicity tests affirmed the biomass's safety for use as an animal feed component. Future research should aim to enhance the economic feasibility of this alternative feed source by developing efficient adsorbents, utilizing cost-effective reagents, and implementing nutrient reuse strategies in spent mediums.
Collapse
Affiliation(s)
- Seonghwan Park
- Biomass Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
- Environmental Safety-Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Sang-Jun Lee
- Biomass Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
- Environmental Safety-Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Won Noh
- Biomass Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
- Environmental Safety-Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Yeong Jin Kim
- Environmental Safety-Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Je-Hein Kim
- Human Risk Assessment Center, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea
| | - Seng-Min Back
- Genetic & Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Byung-Gon Ryu
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Seung Won Nam
- Bioresources Collection & Bioinformation Department, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Seong-Hoon Park
- Genetic & Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jungmin Kim
- Biomass Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
- Environmental Exposure & Toxicology Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| |
Collapse
|
6
|
Yu M, Wang L, Feng P, Wang Z, Zhu S. Treatment of mixed wastewater by vertical rotating microalgae-bacteria symbiotic biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 393:130057. [PMID: 37984669 DOI: 10.1016/j.biortech.2023.130057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A novel vertical rotating microalgae-bacteria symbiotic biofilm reactor was built to treat the mixed wastewater containing municipal and soybean soaking wastewater. The reactor was operated in both sequential batch and semi-continuous modes. Under the sequential batch operation mode, the maximum removal rates for Chemical Oxygen Demand (COD), Total Nitrogen (TN), Total Phosphorus (TP), and Ammonia Nitrogen (NH4+-N) of the mixed wastewater were 95.6 %, 96.1 %, 97.6 %, and 100 %, respectively. During the semi-continuous operation, the water discharge indices decreased gradually and eventually stabilized. At stabilization, the removal rates of COD, TN, and NH4+-N achieved 98 %, 95 %, and 99.9 %, respectively. The maximum biomass productivity of the biofilm was 2.69 g·m-2·d-1. Additionally, the carbohydrate, protein and lipid comprised approximately 22 %, 51 % and 10 % of the dry weight of Chlorella. This study demonstrates the great potential of the microalgae-bacteria symbiotic biofilm system to treat food and domestic wastewater while harvesting microalgal biomass.
Collapse
Affiliation(s)
- Mingran Yu
- School of Energy Science and Engineering, University of Science and Technology of China, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Li Wang
- School of Energy Science and Engineering, University of Science and Technology of China, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
7
|
Acosta-Santoyo G, Treviño-Reséndez J, Robles I, Godínez LA, García-Espinoza JD. A review on recent environmental electrochemistry approaches for the consolidation of a circular economy model. CHEMOSPHERE 2024; 346:140573. [PMID: 38303389 DOI: 10.1016/j.chemosphere.2023.140573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Availability of raw materials in the chemical industry is related to the selection of the chemical processes in which they are used as well as to the efficiency, cost, and eventual evolution to more competitive dynamics of transformation technologies. In general terms however, any chemically transforming technology starts with the extraction, purification, design, manufacture, use, and disposal of materials. It is important to create a new paradigm towards green chemistry, sustainability, and circular economy in the chemical sciences that help to better employ, reuse, and recycle the materials used in every aspect of modern life. Electrochemistry is a growing field of knowledge that can help with these issues to reduce solid waste and the impact of chemical processes on the environment. Several electrochemical studies in the last decades have benefited the recovery of important chemical compounds and elements through electrodeposition, electrowinning, electrocoagulation, electrodialysis, and other processes. The use of living organisms and microorganisms using an electrochemical perspective (known as bioelectrochemistry), is also calling attention to "mining", through plants and microorganisms, essential chemical elements. New process design or the optimization of the current technologies is a major necessity to enhance production and minimize the use of raw materials along with less generation of wastes and secondary by-products. In this context, this contribution aims to show an up-to-date scenario of both environmental electrochemical and bioelectrochemical processes for the extraction, use, recovery and recycling of materials in a circular economy model.
Collapse
Affiliation(s)
- Gustavo Acosta-Santoyo
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - José Treviño-Reséndez
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Querétaro, Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Luis A Godínez
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - Josué D García-Espinoza
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico.
| |
Collapse
|
8
|
Kim M, Lee SA, Yun JH, Ko SR, Cho DH, Kim HS, Oh HM, Kim HS, Ahn CY. Cultivation of Chlorella sp. HS2 using wastewater from soy sauce factory. CHEMOSPHERE 2023; 342:140162. [PMID: 37709062 DOI: 10.1016/j.chemosphere.2023.140162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Incorporation of wastewater from industrial sectors into the design of microalgal biorefineries has significant potential for advancing the practical application of this emerging industry. This study tested various food industrial wastewaters to assess their suitability for microalgal cultivation. Among these wastewaters, defective soy sauce (DSS) and soy sauce wastewater (SWW) were chosen but DSS exhibited the highest nutrient content with 13,500 ppm total nitrogen and 3051 ppm total phosphorus. After diluting DSS by a factor of 50, small-scale cultivation of microalgae was conducted to optimize culture conditions. SWW exhibited optimal growth at 25-30 °C and 300-500 μE m-2 s-1, while DSS showed optimal growth at 30-35 °C. Based on a 100-mL lab-scale and 3-L outdoor cultivation with an extended cultivation period, DSS outperformed SWW, exhibiting higher final biomass productivity. Additionally, nutrient-concentrated nature of DSS is advantageous for transportation at an industrial scale, leading us to select it as the most promising feedstock for microalgal cultivation. With further optimization, DSS has the potential to serve as an effective microalgal cultivation feedstock for large-scale biomass production.
Collapse
Affiliation(s)
- Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Dept. of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Sang-Ah Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hee Su Kim
- FarmHannong, Nonsan, Chungcheongnam-do, 33010, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Jwa E, Na OS, Jeung YC, Jeong N, Nam JY, Lee S. Recycling of nutrient medium to improve productivity in large-scale microalgal culture using a hybrid electrochemical water treatment system. WATER RESEARCH 2023; 246:120683. [PMID: 37801985 DOI: 10.1016/j.watres.2023.120683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/21/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Recycling and reusing of nutrient media in microalgal cultivation are important strategies to reduce water consumption and nutrient costs. However, these approaches have limitations, e.g., a decrease in biomass production, (because as reused media can inhibit biomass growth). To address these limitations, we applied a novel membrane filtration‒electrolysis‒ultraviolet hybrid water treatment method capable of laboratory-to-large-scale operation to increase biomass productivity and enable nutrient medium disinfection and recycling. In laboratory-scale experiments, electrolysis effectively remove the biological contaminants from the spent nutrient medium, resulting in a high on-site removal efficiency of dissolved organic carbon (DOC; 80.3 ± 5 %) and disinfection (99.5 ± 0.2 %). Compared to the results for the recycling of nutrient medium without water treatment, electrolysis resulted in a 1.5-fold increase in biomass production, which was attributable to the removal of biological inhibitors from electrochemically produced oxidants (mainly OCl-). In scaled-up applications, the hybrid system improved the quality of the recycled nutrient medium, with 85 ± 2 % turbidity removal, 75 ± 3 % DOC removal, and 99.5 ± 2 % disinfection efficiency, which was beneficial for biomass growth by removing biological inhibitors. After applying the hybrid water treatment method, we achieved a Spirulina biomass production of 0.47 ± 0.03 g L-1, similar to that obtained using a fresh medium (0.53 ± 0.02 g L-1). The on-site disinfection process described herein is practical and offers a cost-saving and environmental friendly alternative for nutrient medium recycling and reusing water in mass and sustainable cultivation of microalgae.
Collapse
Affiliation(s)
- Eunjin Jwa
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63359, Republic of Korea.
| | - Oh Soo Na
- B.ROOT.LAB Limited Company, 10 Sancheondandong-gil, Jeju 63243, Republic of Korea
| | - Yoon-Cheul Jeung
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63359, Republic of Korea
| | - Namjo Jeong
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63359, Republic of Korea
| | - Joo-Youn Nam
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63359, Republic of Korea
| | - Sekyung Lee
- B.ROOT.LAB Limited Company, 10 Sancheondandong-gil, Jeju 63243, Republic of Korea
| |
Collapse
|
10
|
Singh V, Srivastava P, Mishra A. Design and modelling of photobioreactor for the treatment of carpet and textile effluent using Diplosphaera mucosa VSPA. 3 Biotech 2023; 13:235. [PMID: 37323856 PMCID: PMC10264336 DOI: 10.1007/s13205-023-03655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The current study investigated the potential of one less explored microalgae species, Diplosphaera mucosa VSPA, for treating carpet and textile effluent in a conventionally designed 10 L bubble column photobioreactor. To the best of our knowledge, this is the first study to evaluate COD (chemical oxygen demand) removal efficiency by microalgae in carpet effluent. To evaluate D. mucosa VSPA's potential, its growth and bioremediation efficacy were compared to those of a well-known strain, Chlorella pyrenoidosa. D. mucosa VSPA outperformed C. pyrenoidosa in both effluents, with the highest biomass concentration reaching 4.26 and 3.98 g/L in carpet and textile effluent, respectively. D. mucosa VSPA also remediated 94.0% of ammonium nitrogen, 71.6% of phosphate phosphorus, and 91.9% of chemical oxygen demand in carpet effluent, approximately 10% greater than that of C. pyrenoidosa. Both species also removed more than 65% of colour from both effluents, meeting the standard set by governing bodies. Microalgae growth and substrate removal patterns in the photobioreactor were simulated using photobiotreatment and the Gompertz model. Simulation results revealed that photobiotreatment was the better-fit model, concluded based on the coefficient of regression value and the second-order Akaike information criterion test. Modelling studies can assist in increasing the performance and scale-up of the photobioreactor. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03655-3.
Collapse
Affiliation(s)
- Virendra Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | | | - Abha Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| |
Collapse
|
11
|
Lee SY, Lee JS, Sim SJ. Enhancement of microalgal biomass productivity through mixotrophic culture process utilizing waste soy sauce and industrial flue gas. BIORESOURCE TECHNOLOGY 2023; 373:128719. [PMID: 36773814 DOI: 10.1016/j.biortech.2023.128719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Wastewater treatment plants are indispensable facilities, which emit a massive amount of greenhouse gases. To boost CO2 mitigation and wastewater treatment performance, mixotrophic microalgae cultivation using wastewater has recently been proposed. In this study, food industry wastewater (waste soy sauce) was applied to Chlorella sorokiniana UTEX 2714 cultivation. By using a medium with 20% (v/v) of 10-fold diluted soy sauce, the biomass and fatty acid methyl ester (FAME) productivity enhanced by 1.93 and 1.76 times, respectively. Biomass productivity increased up to 5.2 times when using medium with high soy sauce content under high-intensity light that inhibits cell growth in photoautotrophic environments. Furthermore, industrial flue gas treatment with wastewater was demonstrated by outdoor semi-continuous cultivation with 42% improved biomass production. Consequently, these results suggest that mixotrophic microalgal cultivation has great potential to address both climate change and water pollution while producing valuable products and can contribute to building a sustainable society.
Collapse
Affiliation(s)
- So Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Seop Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Chen F, Qian J, He Y, Leng Y, Zhou W. Could Chlorella pyrenoidosa be exploited as an alternative nutrition source in aquaculture feed? A study on the nutritional values and anti-nutritional factors. Front Nutr 2022; 9:1069760. [PMID: 36570144 PMCID: PMC9768438 DOI: 10.3389/fnut.2022.1069760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
This work attempted to identify if microalgal biomass can be utilized as an alternative nutrition source in aquaculture feed by analyzing its nutritional value and the anti-nutritional factors (ANFs). The results showed that Chlorella pyrenoidosa contained high-value nutrients, including essential amino acids and unsaturated fatty acids. The protein content in C. pyrenoidosa reached 52.4%, suggesting that microalgal biomass can be a good protein source for aquatic animals. We also discovered that C. pyrenoidosa contained some ANFs, including saponin, phytic acid, and tannins, which may negatively impact fish productivity. The high-molecular-weight proteins in microalgae may not be effectively digested by aquatic animals. Therefore, based on the findings of this study, proper measures should be taken to pretreat microalgal biomass to improve the nutritional value of a microalgae-based fish diet.
Collapse
Affiliation(s)
- Fufeng Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, China
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, China,*Correspondence: Jun Qian
| | - Yu He
- Xinjiang Rao River Hydrological and Water Resources Monitoring Center, Shangrao, China
| | - Yunyue Leng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, China,Wenguang Zhou
| |
Collapse
|
13
|
Simultaneous nutrients removal and bio-compounds production by cultivating Chlorella sorokiniana SU-1 with unsterilized anaerobic digestate of dairy wastewater. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Enhancing biomass yield, nutrient removal, and decolorization from soy sauce wastewater using an algae-fungus consortium. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Blanco-Vieites M, Suárez-Montes D, Hernández Battez A, Rodríguez E. Enhancement of Arthrospira sp. culturing for sulfate removal and mining wastewater bioremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1116-1126. [PMID: 36263990 DOI: 10.1080/15226514.2022.2135680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfate content in mining wastewater can reach concentrations over 2,000 mg·L-1, which is considered as a pollutant of concern. In this article, two cyanobacteria species were cultured using highly sulfated wastewater (3,000 mg·L-1) as the culture medium. This investigation aimed to analyze the sulfate bioremediation potential of microalgae while enhancing the uptaking of this pollutant through the design of a novel nutritional medium. The results obtained show the suitability of Arthrospira maxima as a bioremediation organism of sulfated wastewater. The appropriateness of this organism is based on its great growth performance when cultured in this residue, 2.16 times higher than the initial value. Moreover, the initially obtained sulfate reduction, 23.3%, was significantly enhanced to a final removal of 73% (2,247 mg·L-1). In addition, scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to evaluate sulfur crystallization. To the best of our knowledge, there are no previous works focused on microalgal sulfate removal that have reached such an uptaking rate. Accordingly, this study presents the highest performance on sulfate microalgal bioremediation published to date. Our findings suggest that A. maxima can be cultured for sulfated wastewater bioremediation while showing a removal yield that is theoretically sufficient for industrial applications.
Collapse
Affiliation(s)
- M Blanco-Vieites
- Neoalgae Micro Seaweeds Products, Calle Carmen Leal Mata, Gijon, Spain
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| | - D Suárez-Montes
- Neoalgae Micro Seaweeds Products, Calle Carmen Leal Mata, Gijon, Spain
| | - A Hernández Battez
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| | - E Rodríguez
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| |
Collapse
|
16
|
Ghalhari MA, Mafigholami R, Takdastan A, Khoshmaneshzadeh B. Optimization of the biological salt removal process from artificial industrial wastewater with high TDS by Spirulina microalga using the response surface method. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1168-1180. [PMID: 36358053 DOI: 10.2166/wst.2022.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study aimed to examine the direct applicability of Spirulina maxima as a new conceptual method for removing total dissolved solids (TDS) from artificial industrial wastewater (AIW). In this study, live microalgal cells were used in a photobioreactor for TDS removal. The effects of TDS levels, pH, light intensity, and light retention time on microalgal growth and TDS removal were investigated, and optimal conditions were determined using the response surface method and Box-Behnken Design (RSM-BBD). The calculated values of coefficient of determination (R2), adjusted R2, and predicted R2 were 0.9754, 0.9508, and 0.636, respectively, which are close to the R2 values and validated the proposed statistical model. A second-order model could optimally determine the interactions between the studied variables according to the one-way analysis of variance (ANOVA). The results showed that increasing TDS levels reduced microalgal growth and TDS removal efficiency in AIW. S. maxima reduced TDS by 76% and 47% at TDS concentrations of 2,000-4,000 mg/L, respectively, when used in AIW. Maximum biomass efficiency (1.8 g/L) was obtained at a TDS concentration of 2,000 mg/L with other parameters optimized.
Collapse
Affiliation(s)
- Maryam Asadi Ghalhari
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:
| | - Roya Mafigholami
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:
| | - Afshin Takdastan
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Behnoosh Khoshmaneshzadeh
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:
| |
Collapse
|
17
|
Kim S, Ishizawa H, Inoue D, Toyama T, Yu J, Mori K, Ike M, Lee T. Microalgal transformation of food processing byproducts into functional food ingredients. BIORESOURCE TECHNOLOGY 2022; 344:126324. [PMID: 34785335 DOI: 10.1016/j.biortech.2021.126324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of food processing byproducts (FPBs) are generated from food manufacturing industries, the second-largest portion of food waste generation. FPBs may require additional cost for post-treatment otherwise cause environmental contamination. Valorization of FPBs into food ingredients by microalgae cultivation can save a high cost for organic carbon sources and nutrients from medium cost. This study reviews FPBs generation categorized by industry and traditional disposal. In contrast with the low-value production, FPBs utilization as the nutrient-abundant medium for microalgae can lead to high-value production. Due to the complex composition in FPBs, various pretreatment methods have been applied to extract the desired compounds and medium preparation. Using the FPB-based medium resulted in cost reduction and a productivity enhancement in previous literature. Although there are still challenges to overcome to achieve economic viability and environmental sustainability, the microalgal transformation of FPBs is attractive for functional food ingredients production.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hidehiro Ishizawa
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
18
|
Zapata D, Arroyave C, Cardona L, Aristizábal A, Poschenrieder C, Llugany M. Phytohormone production and morphology of Spirulina platensis grown in dairy wastewaters. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|