1
|
Mariam I, Krikigianni E, Rantzos C, Bettiga M, Christakopoulos P, Rova U, Matsakas L, Patel A. Transcriptomics aids in uncovering the metabolic shifts and molecular machinery of Schizochytrium limacinum during biotransformation of hydrophobic substrates to docosahexaenoic acid. Microb Cell Fact 2024; 23:97. [PMID: 38561811 PMCID: PMC10983653 DOI: 10.1186/s12934-024-02381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Biotransformation of waste oil into value-added nutraceuticals provides a sustainable strategy. Thraustochytrids are heterotrophic marine protists and promising producers of omega (ω) fatty acids. Although the metabolic routes for the assimilation of hydrophilic carbon substrates such as glucose are known for these microbes, the mechanisms employed for the conversion of hydrophobic substrates are not well established. Here, thraustochytrid Schizochytrium limacinum SR21 was investigated for its ability to convert oils (commercial oils with varying fatty acid composition and waste cooking oil) into ω-3 fatty acid; docosahexaenoic acid (DHA). RESULTS Within 72 h SR21 consumed ~ 90% of the oils resulting in enhanced biomass (7.5 g L- 1) which was 2-fold higher as compared to glucose. Statistical analysis highlights C16 fatty acids as important precursors of DHA biosynthesis. Transcriptomic data indicated the upregulation of multiple lipases, predicted to possess signal peptides for secretory, membrane-anchored and cytoplasmic localization. Additionally, transcripts encoding for mitochondrial and peroxisomal β-oxidation along with acyl-carnitine transporters were abundant for oil substrates that allowed complete degradation of fatty acids to acetyl CoA. Further, low levels of oxidative biomarkers (H2O2, malondialdehyde) and antioxidants were determined for hydrophobic substrates, suggesting that SR21 efficiently mitigates the metabolic load and diverts the acetyl CoA towards energy generation and DHA accumulation. CONCLUSIONS The findings of this study contribute to uncovering the route of assimilation of oil substrates by SR21. The thraustochytrid employs an intricate crosstalk among the extracellular and intracellular molecular machinery favoring energy generation. The conversion of hydrophobic substrates to DHA can be further improved using synthetic biology tools, thereby providing a unique platform for the sustainable recycling of waste oil substrates.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Eleni Krikigianni
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Chloe Rantzos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
- Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden.
| |
Collapse
|
2
|
Zhang ZX, Xu LW, Xu YS, Li J, Ma W, Sun XM, Huang H. Integration of genetic engineering and multi-factor fermentation optimization for co-production of carotenoid and DHA in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2024; 394:130250. [PMID: 38154734 DOI: 10.1016/j.biortech.2023.130250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Schizochytrium sp., a microalga with high lipid content, holds the potential for co-producing docosahexaenoic acid (DHA) and carotenoids. In this study, the ability of Schizochytrium sp. to naturally produce carotenoids was systematically explored. Further, by enhancing the precursor supply of geranylgeranyl diphosphate, regulating carbon source through sugar limitation fermentation and employing a combination of response surface methodology and artificial neural networks to precisely optimize nitrogen sources, a new record of 43-fold increase in β-carotene titer was achieved in the 5L bioreactor (653.2 mg/L). Meanwhile, a high DHA content was maintained (13.4 g/L). Furthermore, the use of corn stover hydrolysate has effectively lowered the production costs of carotenoid and DHA while sustaining elevated production levels (with total carotenoid titer and DHA titer reached 502.0 mg/L and 13.2 g/L, respectively). This study offers an efficient and cost-effective method for the co-production of carotenoid and DHA in Schizochytrium sp..
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| | - Lu-Wei Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Qixia District, Nanjing, China
| |
Collapse
|
3
|
Ma W, Li X, Zhang F, Zhang ZY, Yang WQ, Huang PW, Gu Y, Sun XM. Enhancing the biomass and docosahexaenoic acid-rich lipid accumulation of Schizochytrium sp. in propionate wastewater. Biotechnol J 2023; 18:e2300052. [PMID: 37128672 DOI: 10.1002/biot.202300052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
In order to find a more effective way to obtain docosahexaenoic acid (DHA) rich lipid from Schizochytrium sp., a widespread propionate wastewater (PW) is used. PW is a common industrial and domestic wastewater, and transforming it into valuable products is a potential treatment method. Schizochytrium sp. is a rapidly growing oleaginous organism, which has been used commercially for DHA production. Herein, PW is completely used for DHA production by Schizochytrium sp. by genetic engineering and fermentation optimization, which can alleviate the increasingly tense demand for water resources and environmental pollution caused by industrial wastewater. Firstly, the methylmalonyl-CoA mutase (MCM) was overexpressed in Schizochytrium sp. to enhance the metabolism of propionate, then the engineered strain of overexpressed MCM (OMCM) can effectively use propionate. Then, the effects of PW with different concentration of propionate were investigated, and results showed that OMCM can completely replace clean water with PW containing 5 g L-1 propionate. Furthermore, in the fed-batch fermentation, the OMCM obtained the highest biomass of 113.4 g L-1 and lipid yield of 64.4 g L-1 in PW condition, which is 26.8% and 51.7% higher than that of wild type (WT) in PW condition. Moreover, to verify why overexpression of MCM can promote DHA and lipid accumulation, the comparative metabolomics, ATP production level, the antioxidant system, and the transcription of key genes were investigated. Results showed that ATP induced by PW condition could drive the synthesis of DHA, and remarkably improve the antioxidant capacity of cells by enhancing the carotenoids production. Therefore, PW can be used as an effective and economical substrate and water source for Schizochytrium sp. to accumulate biomass and DHA.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
- College of Life Sciences, Nanjing Normal University, Qixia District, Nanjing, China
| | - Xin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Feng Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Zi-Yi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
- College of Life Sciences, Nanjing Normal University, Qixia District, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| |
Collapse
|
4
|
Shu L, Zheng X, Qi S, Lin S, Lu Y, Yao C, Ling X. Transesterification of phosphatidylcholine with DHA-rich algal oil using immobilized Candida antarctica lipase B to produce DHA-phosphatidylcholine. Enzyme Microb Technol 2023; 169:110266. [PMID: 37311283 DOI: 10.1016/j.enzmictec.2023.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Docosahexaenoic acid (DHA) enriched with phospholipids (PLs) (DHA-PLs) is a type of structured PL with good physicochemical and nutritional properties. Compared to PLs and DHA, DHA-PLs has higher bioavailability and structural stability and many nutritional benefits. To improve the enzymatic synthesis of DHA-PLs, this study investigated the preparation of phosphatidylcholine (PC) enriched with DHA (DHA-PC) via enzymatic transesterification of algal oil, which is rich in DHA-triglycerides, using immobilized Candida antarctica lipase B (CALB). The optimized reaction system incorporated 31.2% DHA into the acyl chain of PC and converted 43.6% PC to DHA-PC within 72 h at 50 °C, 1:8 PC: algal oil mass ratio, 25% enzyme load (based on total substrate mass), and 0.02 g/mL molecular sieve concentration. Consequently, the side reactions of PC hydrolysis were effectively suppressed and products with high PC content (74.8%) were produced. Molecular structure analysis showed that exogenous DHA was specifically incorporated into the sn-1 site of the PC by immobilized CALB. Furthermore, the evaluation of reusability with eight cycles showed that the immobilized CALB had good operational stability in the present reaction system. Collectively, this study demonstrated the applicability of immobilized CALB as a biocatalyst for synthesizing DHA-PC and provided an improved enzyme-catalyzed method for future DHA-PL synthesis.
Collapse
Affiliation(s)
- Liwen Shu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Xin Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Shuhua Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Shuizhi Lin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China; Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, PR China; The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, PR China.
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China; Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, PR China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China; Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, PR China.
| |
Collapse
|
5
|
Metabolism balance regulation for squalene production by disturbing triglyceride (TAG) synthesis in Schizochytrium sp. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Li YW, Guo Q, Peng QQ, Shen Q, Nie ZK, Ye C, Shi TQ. Recent Development of Advanced Biotechnology in the Oleaginous Fungi for Arachidonic Acid Production. ACS Synth Biol 2022; 11:3163-3173. [PMID: 36221956 DOI: 10.1021/acssynbio.2c00483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Arachidonic acid is an essential ω-6 polyunsaturated fatty acid, which plays a significant role in cardiovascular health and neurological development, leading to its wide use in the food and pharmaceutical industries. Traditionally, ARA is obtained from deep-sea fish oil. However, this source is limited by season and is depleting the already threatened global fish stocks. With the rapid development of synthetic biology in recent years, oleaginous fungi have gradually attracted increasing attention as promising microbial sources for large-scale ARA production. Numerous advanced technologies including metabolic engineering, dynamic regulation of fermentation conditions, and multiomics analysis were successfully adapted to increase ARA synthesis. This review summarizes recent advances in the bioengineering of oleaginous fungi for ARA production. Finally, perspectives for future engineering approaches are proposed to further improve the titer yield and productivity of ARA.
Collapse
Affiliation(s)
- Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China.,College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Zhi-Kui Nie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China.,Jiangxi New Reyphon Biochemical Co., Ltd, Salt & Chemical Industry, Xingan, Jiangxi 331399, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China.,College of Food Science and Technology, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, People's Republic of China
| |
Collapse
|
7
|
Yang H, Huang Y, Li Z, Guo Y, Li S, Huang H, Yang X, Li G, Chen H. Effects of Dietary Supplementation with Aurantiochytrium sp. on Zebrafish Growth as Determined by Transcriptomics. Animals (Basel) 2022; 12:ani12202794. [PMID: 36290180 PMCID: PMC9597791 DOI: 10.3390/ani12202794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
The marine protist Aurantiochytrium produces several bioactive chemicals, including EPA (eicosapentaenoic acid), DHA (docosahexaenoic acid), and other critical fish fatty acids. It has the potential to improve growth and fatty acid profiles in aquatic taxa. This study evaluated zebrafish growth performance in response to diets containing 1% to 3% Aurantiochytrium sp. crude extract (TE) and single extract for 56 days. Growth performance was best in the 1% TE group, and therefore, this concentration was used for further analyses of the influence of Aurantiochytrium sp. Levels of hepatic lipase, glucose-6-phosphate dehydrogenase, acetyl-CoA oxidase, glutathione peroxidase, and superoxide dismutase increased significantly in response to 1% TE, while malic enzyme activity, carnitine lipid acylase, acetyl-CoA carboxylase, fatty acid synthase, and malondialdehyde levels decreased. These findings suggest that Aurantiochytrium sp. extract can modulate lipase activity, improve lipid synthesis, and decrease oxidative damage caused by lipid peroxidation. Transcriptome analysis revealed 310 genes that were differentially expressed between the 1% TE group and the control group, including 185 up-regulated genes and 125 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses of the differentially expressed genes revealed that Aurantiochytrium sp. extracts may influence liver metabolism, cell proliferation, motility, and signal transduction in zebrafish.
Collapse
Affiliation(s)
- Hao Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yanlin Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyuan Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuwen Guo
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- Correspondence: (H.H.); (H.C.); Tel.: +86-18876860068 (H.H.); +86-18820706692 (H.C.); Fax: +86-898-88651861 (H.H.); +86-759-2382459 (H.C.)
| | - Xuewei Yang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- Correspondence: (H.H.); (H.C.); Tel.: +86-18876860068 (H.H.); +86-18820706692 (H.C.); Fax: +86-898-88651861 (H.H.); +86-759-2382459 (H.C.)
| |
Collapse
|