1
|
Hernandez LE, Ruiz JM, Espinosa F, Alvarez-Fernandez A, Carvajal M. Plant nutrition challenges for a sustainable agriculture of the future. PHYSIOLOGIA PLANTARUM 2024; 176:e70018. [PMID: 39691080 DOI: 10.1111/ppl.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
This article offers a comprehensive review of sustainable plant nutrition concepts, examining a multitude of cutting-edge techniques that are revolutionizing the modern area. The review copes with the crucial role of biostimulants as products that stimulate plant nutrition processes, including their potential for biofertilization, followed by an exploration of the significance of micronutrients in plant health and growth. We then delve into strategies for enhancing plants' tolerance to mineral nutrient contaminants and the promising realm of biofortification to increase the essential nutrients necessary for human health. Furthermore, this work also provides a concise overview of the burgeoning field of nanotechnologies in fertilization, while the integration of circular economy principles underscores the importance of sustainable resource management. Then, with examined the interrelation between micronutrients. We conclude with the future challenges and opportunities that lie ahead in the pursuit of more sustainable and resilient plant systems.
Collapse
Affiliation(s)
- Luis E Hernandez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Madrid, Spain
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco Espinosa
- Plant Biology, Ecology and Earth Sciences Department, Extremadura University, Badajoz, Spain
| | | | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
2
|
Bajpai S, Shukla PS, Prithiviraj B, Critchley AT, Nivetha N. Editorial: Development of next generation bio stimulants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2024; 15:1383749. [PMID: 38650704 PMCID: PMC11034610 DOI: 10.3389/fpls.2024.1383749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Sruti Bajpai
- Marine Bio-Products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Pushp Sheel Shukla
- Marine Bio-Products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, India
| | - Balakrishnan Prithiviraj
- Marine Bio-Products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Alan T. Critchley
- Verschuren Centre for Sustainability in Energy and Environment, Cape Breton, NS, Canada
| | - Nagarajan Nivetha
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
3
|
Nivetha N, Shukla PS, Nori SS, Kumar S, Suryanarayan S. A red seaweed Kappaphycus alvarezii-based biostimulant (AgroGain ®) improves the growth of Zea mays and impacts agricultural sustainability by beneficially priming rhizosphere soil microbial community. Front Microbiol 2024; 15:1330237. [PMID: 38646629 PMCID: PMC11027899 DOI: 10.3389/fmicb.2024.1330237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
The overuse of chemical-based agricultural inputs has led to the degradation of soil with associated adverse effects on soil attributes and microbial population. This scenario leads to poor soil health and is reportedly on the rise globally. Additionally, chemical fertilizers pose serious risks to the ecosystem and human health. In this study, foliar sprays of biostimulant (AgroGain/LBS6) prepared from the cultivated, tropical red seaweed Kappaphycus alvarezii increased the phenotypic growth of Zea mays in terms of greater leaf area, total plant height, and shoot fresh and dry weights. In addition, LBS6 improved the accumulation of chlorophyll a and b, total carotenoids, total soluble sugars, amino acids, flavonoids, and phenolics in the treated plants. LBS6 applications also improved the total bacterial and fungal count in rhizospheric soil. The V3-V4 region of 16S rRNA gene from the soil metagenome was analyzed to study the abundance of bacterial communities which were increased in the rhizosphere of LBS6-treated plants. Treatments were found to enrich beneficial soil bacteria, i.e., Proteobacteria, especially the classes Alphaproteobacteria, Cyanobacteria, Firmicutes, Actinobacteriota, Verrucomicrobiota, Chloroflexi, and Acidobacteriota and several other phyla related to plant growth promotion. A metagenomic study of those soil samples from LBS6-sprayed plants was correlated with functional potential of soil microbiota. Enrichment of metabolisms such as nitrogen, sulfur, phosphorous, plant defense, amino acid, co-factors, and vitamins was observed in soils grown with LBS6-sprayed plants. These results were further confirmed by a significant increase in the activity of soil enzymes such as urease, acid phosphatase, FDAse, dehydrogenase, catalase, and biological index of fertility in the rhizosphere of LBS6-treated corn plant. These findings conclude that the foliar application of LBS6 on Z. mays improves and recruits beneficial microbes and alters soil ecology in a sustainable manner.
Collapse
Affiliation(s)
| | - Pushp Sheel Shukla
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, NCBS-TIFR Campus, Bengaluru, India
| | | | | | | |
Collapse
|
4
|
Cotas J, Lomartire S, Gonçalves AMM, Pereira L. From Ocean to Medicine: Harnessing Seaweed's Potential for Drug Development. Int J Mol Sci 2024; 25:797. [PMID: 38255871 PMCID: PMC10815561 DOI: 10.3390/ijms25020797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| |
Collapse
|
5
|
Vaghela P, Gandhi G, Trivedi K, Anand KGV, Chavda D, Manna M, Seth T, Seth A, Shanmugam M, Ghosh A. Underpinning beneficial maize response to application of minimally processed homogenates of red and brown seaweeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1273355. [PMID: 38107012 PMCID: PMC10723902 DOI: 10.3389/fpls.2023.1273355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
Sap from the fresh seaweed Kappaphycus alvarezii (KA) has been reported to improve crop growth, quality, and stress alleviation. However, limited studies are reported for the minimally processed aqueous homogenates (MPHs) derived from dry seaweeds. The present investigation was envisaged to characterize the MPHs from the red seaweed KA and a brown seaweed Sargassum wightii (SW) and also assess the effect of foliar application on maize (Zea mays) crop performance when applied alone or in proportions ranging from 0% to 100%. Two doses (0.35% and 0.7%) were compared with control. Both the MPHs contained several compounds like retronecine, tyrosyl-glycine, hexyl 2-furoate, 1-phosphatidyl-1D-myo-inositol, 12-(2,3-dihydroxycyclopentyl)-2-dodecanone, and trihomomethionine and many others that have known bioactivity for enhancing plant growth and providing stress tolerance. Both doses of MPHs enhanced crop growth and yield; however, the best response was in general observed at a lower dose. The MPH of SW at 100% gave the highest seed yield at a lower dose, which was also on par with that obtained under a lower dose of 100% KA. Other combinations, 80:20 and 40:60 KA : SW, were also found to give comparable yields. The highest dose of 100% MPH of SW was found on par with control, a phenomenon that was investigated in detail with respect to metabolites and antioxidant profile in leaves as well as membrane modeling. Higher ROS and certain sugar and organic acids were observed in 100% MPH of SW at a higher dose, although none of the antioxidant enzymes were significantly affected, nor was there any change in membrane characteristics of the leaf with respect to control as well as lower dose. Improvements in the seed yield were attributed to improved photosynthate production on account of higher dry matter accumulation in the MPH-treated plants, which may also be attributed to the presence of bioactive compounds in the biostimulants. In the future, it is imperative to direct scientific investigations towards the quantification and identification of the most effective concentrations of these compounds within MPHs to optimize plant responses. The study indicated the beneficial use of the MPHs towards increasing crop production by employing optimum dose as foliar spray to crops.
Collapse
Affiliation(s)
- Pradipkumar Vaghela
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Council of Scientific & Industrial Research (CSIR) - Central Salt and Marine Chemicals Research Institute, GB Marg, Bhavnagar, Gujarat, India
- Aquagri Processing Private Limited, Delhi, India
| | - Grishma Gandhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Council of Scientific & Industrial Research (CSIR) - Central Salt and Marine Chemicals Research Institute, GB Marg, Bhavnagar, Gujarat, India
| | - Khanjan Trivedi
- Council of Scientific & Industrial Research (CSIR) - Central Salt and Marine Chemicals Research Institute, GB Marg, Bhavnagar, Gujarat, India
| | - K. G. Vijay Anand
- Council of Scientific & Industrial Research (CSIR) - Central Salt and Marine Chemicals Research Institute, GB Marg, Bhavnagar, Gujarat, India
| | - Dhruvil Chavda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Council of Scientific & Industrial Research (CSIR) - Central Salt and Marine Chemicals Research Institute, GB Marg, Bhavnagar, Gujarat, India
| | - Moutusi Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Council of Scientific & Industrial Research (CSIR) - Central Salt and Marine Chemicals Research Institute, GB Marg, Bhavnagar, Gujarat, India
| | - Tanmaye Seth
- Aquagri Processing Private Limited, Delhi, India
| | - Abhiram Seth
- Aquagri Processing Private Limited, Delhi, India
| | | | - Arup Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Council of Scientific & Industrial Research (CSIR) - Central Salt and Marine Chemicals Research Institute, GB Marg, Bhavnagar, Gujarat, India
| |
Collapse
|
6
|
Hans N, Gupta S, Pattnaik F, Patel AK, Naik S, Malik A. Valorization of Kappaphycus alvarezii through extraction of high-value compounds employing green approaches and assessment of the therapeutic potential of κ-carrageenan. Int J Biol Macromol 2023; 250:126230. [PMID: 37558033 DOI: 10.1016/j.ijbiomac.2023.126230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
This study utilizes different emerging green extraction technologies to recover maximum value-added products from Kappaphycus alvarezii and evaluate their bio-functional properties. Using the supercritical fluid extraction (SFE) method, the total lipid yield of 0.21 ± 0.2 % was obtained from the biomass. Linoleic acid, eicosapentaenoic acid, arachidonic acid, γ-linolenic acid, and docosahexaenoic acid were present in higher concentrations (9.12 %) in the lipid extracted with SFE as compared to hexane (5.5 %). Using an ultrasonication assisted approach, ~56 % of κ-carrageenan was recovered from SFE residual biomass, which contains 28.5 ± 1.9 % sulfate content. It exhibited a monosaccharide content of 3,6-anhydrogalactose (~24 %) and galactose (~53 %), as well as rheological properties within FAO limitations that can be explored for food-grade applications. ~58 % of the total protein (12.5 %) from SFE residual biomass was recovered using subcritical water hydrolysis method. The effectiveness of κ-carrageenan in suppressing the 3CLpro of SARS-CoV-2 using in vitro and in silico approaches was investigated. κ-Carrageenan effectively inhibited the main protease by up to 93 % at 1.6 mg mL-1. In silico results revealed that κ-carrageenan successfully binds to the active site of the main protease while retaining the structural integrity and stability of protein-ligand complexes.
Collapse
Affiliation(s)
- Nidhi Hans
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India
| | - Shreya Gupta
- Kausma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India
| | - Falguni Pattnaik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India
| | - Ashok Kumar Patel
- Kausma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India.
| | - Satyanarayan Naik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India.
| |
Collapse
|
7
|
Das D, Arulkumar A, Paramasivam S, Lopez-Santamarina A, Del Carmen Mondragon A, Miranda Lopez JM. Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed ( Kappaphycus alvarezii) and Seagrass ( Cymodocea serrulata). Foods 2023; 12:2811. [PMID: 37509902 PMCID: PMC10379174 DOI: 10.3390/foods12142811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The present work was performed to evaluate the levels of phytochemical constituents and the antioxidant and antibacterial properties of marine red seaweed (Kappaphycus alvarezii) and seagrass (Cymodocea serrulata). Quantitative phytochemical analysis, antioxidant activity and antimicrobial activity against five potential pathogenic bacteria was investigated. In each case, we found the presence of flavonoids, tannins, phenolic compounds, glycosides, steroids, carbohydrates and ashes. Alkaloids were only found in K. alvarezii, though they were not found in C. serrulata. The antimicrobial properties of both K. alvarezii and C. serrulata chloroform extracts were found to be antagonistically effective against the Gram-positive bacteria Bacillus subtilis and the Gram-negative bacteria Vibrio parahaemolyticus, Vibrio alginolyticus, Vibrio harveyi and Klebsiella pneumoniae. GC-MS analysis revealed the presence of 94 bioactive compounds in K. alvarezii and 104 bioactive compounds in C. serrulata, including phenol, decane, dodecane, hexadecane, vanillin, heptadecane, diphenylamine, benzophenone, octadecanoic acid, dotriaconate, benzene, phytol, butanoic acid and 2-hydroxyl-ethyl ether, which all played important roles in antioxidant and antibacterial activities. Thus, in view of the results, both K. alvarezii and C. serrulata could be considered to be sources of ingredients with appreciable nutritional and medicinal value.
Collapse
Affiliation(s)
- Deep Das
- Department of Oceanography and Coastal Area Studies, School of Marine Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Abimannan Arulkumar
- Department of Biotechnology, Achariya Arts and Science College (Affiliated to Pondicherry University), Villiabur, Puducherry 605 110, Tamil Nadu, India
| | - Sadayan Paramasivam
- Department of Oceanography and Coastal Area Studies, School of Marine Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Alicia Del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Jose Manuel Miranda Lopez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
8
|
Organic fragments of k-carrageenan, lipids and peptides plus K-rich inorganic fraction in Kappaphycus alvarezii biomass are responsible for growth stimulus in rice plant when applied both foliar and root pathway. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
9
|
Chaudhary N, Kothari D, Walia S, Ghosh A, Vaghela P, Kumar R. Biostimulant enhances growth and corm production of saffron ( Crocus sativus L.) in non-traditional areas of North western Himalayas. FRONTIERS IN PLANT SCIENCE 2023; 14:1097682. [PMID: 36875593 PMCID: PMC9975171 DOI: 10.3389/fpls.2023.1097682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The usage of seaweed extracts in cropping systems is gaining attention nowadays due to their distinct bioactive properties. This study aims to assess how saffron (Crocus sativus L.) corm production was affected by seaweed extract through different application modes. The study was conducted at the CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India, during the autumn-winter agricultural cycle. Five treatments using a combination of Kappaphycus and Sargassum seaweed extracts were replicated five times in a randomized block design. Treatments that were examined include T1: Control, T2: Corm dipping @ 5% seaweed extract, T3: Foliar spray @ 5% seaweed extract, T4: Drenching @ 5% seaweed extract, and T5: Corm dipping + foliar spray @ 5% seaweed extract. Seaweed extract, when applied to saffron plants (T5: Corm dipping + foliar spray @ 5% seaweed extract) resulted in significantly higher growth parameters along with the higher dry weight of stem, leaves, corms, and total roots per corm. Corm production, viz., the number of daughter corms and corm weight per m2 was significantly affected by seaweed extract application, with the maximum value recorded with treatment T5. Biochemical parameters chlorophyll, carotenoids, and photosynthetic rate were higher in T5, while nutrient concentration was lowest in this treatment. Seaweed extracts improved corm production, making it a feasible alternative to limiting the application of conventional fertilizers, attenuating the effects on the environment, and enhancing corm number and weight.
Collapse
Affiliation(s)
- Neha Chaudhary
- Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Deepak Kothari
- Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Walia
- Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Arup Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR- Central Salt and Marine Research Institute, Bhavnagar, Gujarat, India
| | - Pradipkumar Vaghela
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR- Central Salt and Marine Research Institute, Bhavnagar, Gujarat, India
| | - Rakesh Kumar
- Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Scientific basis for the use of minimally processed homogenates of Kappaphycus alvarezii (red) and Sargassum wightii (brown) seaweeds as crop biostimulants. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Shukla PS, Nivetha N, Nori SS, Bose D, Kumar S, Khandelwal S, Critchley A, Suryanarayan S. Understanding the mode of action of AgroGain ®, a biostimulant derived from the red seaweed Kappaphycus alvarezii in the stimulation of cotyledon expansion and growth of Cucumis sativa (cucumber). FRONTIERS IN PLANT SCIENCE 2023; 14:1136563. [PMID: 37089639 PMCID: PMC10118050 DOI: 10.3389/fpls.2023.1136563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Seaweed-based biostimulants are sustainable agriculture inputs that are known to have a multitude of beneficial effects on plant growth and productivity. This study demonstrates that Agrogain® (Product code: LBS6), a Kappaphycus alvarezii-derived biostimulant induced the expansion of cucumber cotyledons. Seven days treatment of LBS6-supplementation showed a 29.2% increase in area of expanded cotyledons, as compared to the control. LBS6-treated cotyledons also showed higher amylase activity, suggesting starch to sucrose conversion was used efficiently as an energy source during expansion. To understand the mechanisms of LBS6-induced expansion, real time gene expression analysis was carried out. This revealed that LBS6-treated cotyledons differentially modulated the expression of genes involved in cell division, cell number, cell expansion and cell size. LBS6 treatment also differentially regulated the expression of those genes involved in auxin and cytokinin metabolism. Further, foliar application of LBS6 on cucumber plants being grown under hydroponic conditions showed improved plant growth as compared to the control. The total leaf area of LBS6-sprayed plants increased by 19.1%, as compared to control. LBS6-sprayed plants efficiently regulated photosynthetic quenching by reducing loss via non-photochemical and non-regulatory quenching. LBS6 applications also modulated changes in the steady-state photosynthetic parameters of the cucumber leaves. It was demonstrated that LBS6 treatment modulated the electron and proton transport related pathways which help plants to efficiently utilize the photosynthetic radiation for optimal growth. These results provide clear evidence that bioactive compounds present in LBS6 improved the growth of cucumber plants by regulating the physiological as well as developmental pathways.
Collapse
Affiliation(s)
- Pushp Sheel Shukla
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- *Correspondence: Pushp Sheel Shukla, ; Sri Sailaja Nori,
| | - Nagarajan Nivetha
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sri Sailaja Nori
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- *Correspondence: Pushp Sheel Shukla, ; Sri Sailaja Nori,
| | - Debayan Bose
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sawan Kumar
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sachin Khandelwal
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Alan Critchley
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, NS, Canada
| | - Shrikumar Suryanarayan
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| |
Collapse
|
12
|
Raj Y, Ali N, Pati AM, Kumar R. Cleaner production technologies for the amelioration of soil health, biomass and secondary metabolites in Ocimum basilicum L. under Indian Western Himalaya. FRONTIERS IN PLANT SCIENCE 2022; 13:976295. [PMID: 36438106 PMCID: PMC9682627 DOI: 10.3389/fpls.2022.976295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Ocimum basilicum L. and its derived products are primarily consumed by humans; hence, agrochemical use seems inappropriate for its cultivation. However, farmers are accustomed to using rampant inorganic fertilizers to augment crop productivity, which has unintendedly engendered severe environmental perturbations. Concomitantly, farmers will soon have to confront the challenges of growing crops under suboptimal conditions driven by global climate change. Consequently, to develop a clean, sustainable, and resilient production technology, field experiments spanning over two years (2020 and 2021) were conducted, comprising three biostimulants, viz., vermicompost (0, 4, and 8 Mg ha-1), biofertilizer (uninoculated and inoculated), and liquid seaweed extract (without and at 7 ml L-1) in the Indian western Himalaya for the first time. Soil health indicators, leaf photosynthetic pigments, gaseous exchange, mineral contents, essential oil (EO) quantity, and composition were evaluated. Soil microbial respiration (SMR), microbial biomass carbon (MBC), organic carbon (OC), dehydrogenase (DHA), alkaline phosphatase (ALP), and β-glucosidase activities were increased by 36.23, 83.98, 30.61, 42.69, 34.00, and 40.57%, respectively, when compared with the initial soil status. The net photosynthetic rate (Pn) was significantly increased with the highest (8 Mg ha-1) and moderate (4 Mg ha-1) vermicompost dosages by 13.96% and 4.56%, respectively, as compared with the unfertilized control (0 Mg ha-1). Likewise, the biofertilizer and seaweed extract also enhanced Pn by 15.09% and 10.09%, respectively. The crop's key EO constituents, viz., methyl chavicol and linalool, were significantly improved with the highest and moderate vermicompost rates of 2.71, 9.85%, and 1.18, 5.03%, respectively. Similarly, biofertilization and seaweed application also boosted methyl chavicol and linalool by 3.29, 8.67%, and 1.93, 3.66%, respectively. In both years, significantly higher herbage (8.86 and 11.25 Mg ha-1) and EO yield (113.78 and 154.87 kg ha-1) were recorded with a congregate treatment of the highest vermicompost dose, biofertilizer, and liquid seaweed extract. In conclusion, the integrated use of biostimulants having complementary properties can sustainably maximize the quantity and quality of O. basilicum and concomitantly ameliorate soil health. This study can inspire scientific communities and industries to develop second-generation biostimulant products, delivering better sustainability and resilience for a renaissance in agriculture.
Collapse
Affiliation(s)
- Yog Raj
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nilofer Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Bhupenchandra I, Chongtham SK, Devi EL, R. R, Choudhary AK, Salam MD, Sahoo MR, Bhutia TL, Devi SH, Thounaojam AS, Behera C, M. N. H, Kumar A, Dasgupta M, Devi YP, Singh D, Bhagowati S, Devi CP, Singh HR, Khaba CI. Role of biostimulants in mitigating the effects of climate change on crop performance. FRONTIERS IN PLANT SCIENCE 2022; 13:967665. [PMID: 36340395 PMCID: PMC9634556 DOI: 10.3389/fpls.2022.967665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 05/13/2023]
Abstract
Climate change is a critical yield-limiting factor that has threatened the entire global crop production system in the present scenario. The use of biostimulants in agriculture has shown tremendous potential in combating climate change-induced stresses such as drought, salinity, temperature stress, etc. Biostimulants are organic compounds, microbes, or amalgamation of both that could regulate plant growth behavior through molecular alteration and physiological, biochemical, and anatomical modulations. Their nature is diverse due to the varying composition of bioactive compounds, and they function through various modes of action. To generate a successful biostimulatory action on crops under different parameters, a multi-omics approach would be beneficial to identify or predict its outcome comprehensively. The 'omics' approach has greatly helped us to understand the mode of action of biostimulants on plants at cellular levels. Biostimulants acting as a messenger in signal transduction resembling phytohormones and other chemical compounds and their cross-talk in various abiotic stresses help us design future crop management under changing climate, thus, sustaining food security with finite natural resources. This review article elucidates the strategic potential and prospects of biostimulants in mitigating the adverse impacts of harsh environmental conditions on plants.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- Indian Council of Agricultural Research (ICAR)–Krishi Vigyan Kendra Tamenglong, Indian Council of Agricultural Research (ICAR) Research Complex for NorthEastern Hill (NEH) Region, Manipur Centre, Imphal, Manipur, India
- *Correspondence: Anil Kumar Choudhary, ; Harish. M. N., ; Ingudam Bhupenchandra,
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Agricultural Engineering and Post Harvest Technology (CAEPHT), Central Agricultural University (CAU), Ranipool, Sikkim, India
| | - Elangbam Lamalakshmi Devi
- Indian Council of Agricultural Research (ICAR)-Research Complex (RC) for North Eastern Hill (NEH) Region, Sikkim Centre, Tadong, Sikkim, India
| | - Ramesh R.
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)–Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Choudhary
- Division of Agronomy, Indian Council of Agricultural Research - Indian Agricultural Research Institute, New Delhi, India
- Division of Crop Production, Indian Council of Agricultural Research - Central Potato Research Institute, Shimla, India
- *Correspondence: Anil Kumar Choudhary, ; Harish. M. N., ; Ingudam Bhupenchandra,
| | | | - Manas Ranjan Sahoo
- Central Horticultural Experiment Station, Indian Council of Agricultural Research (ICAR)–Indian Institute of Horticultural Research, Bhubaneswar, Odisha, India
| | - Tshering Lhamu Bhutia
- Indian Council of Agricultural Research (ICAR)-Research Complex (RC) for North Eastern Hill (NEH) Region, Sikkim Centre, Tadong, Sikkim, India
| | - Soibam Helena Devi
- Department of Crop Physiology, Assam Agricultural University, Jorhat, Assam, India
| | - Amarjit Singh Thounaojam
- Medicinal and Aromatic Plants Research Station, Anand Agricultural University, Anand, Gujarat, India
| | - Chandana Behera
- Department of Plant Breeding and Genetics, College of Agriculture, OUAT, Bhawanipatna, India
| | - Harish. M. N.
- Indian Council of Agricultural Research (ICAR)–Indian Institute of Horticultural Research, Farm Science Centre, Gonikoppal, Karnataka, India
- *Correspondence: Anil Kumar Choudhary, ; Harish. M. N., ; Ingudam Bhupenchandra,
| | - Adarsh Kumar
- Indian Council of Agricultural Research: National Bureau of Agriculturally Important Microorganism, Mau, India
| | - Madhumita Dasgupta
- Indian Council of Agricultural Research (ICAR)–Research Complex for NorthEastern Hill (NEH) Region, Manipur Centre, Imphal, Manipur, India
| | - Yumnam Prabhabati Devi
- Indian Council of Agricultural Research (ICAR)-Krishi Vigyan Kendra, Chandel, Indian Council of Agricultural Research (ICAR) Research Complex for NorthEastern Hill (NEH) Region, Manipur Centre, Imphal, Manipur, India
| | - Deepak Singh
- Krishi Vigyan Kendra Bhopal, Indian Council of Agricultural Research (ICAR) Central Institute of Agricultural Engineering, Bhopal, Madhya Pradesh, India
| | - Seema Bhagowati
- Department of Soil Science, Assam Agricultural University, Jorhat, Assam, India
| | - Chingakham Premabati Devi
- Indian Council of Agricultural Research (ICAR)–Research Complex for NorthEastern Hill (NEH) Region, Manipur Centre, Imphal, Manipur, India
| | | | | |
Collapse
|