1
|
Ferrarese A, Cazzagon N, Burra P. Liver transplantation for Wilson disease: Current knowledge and future perspectives. Liver Transpl 2024; 30:1289-1303. [PMID: 38899966 DOI: 10.1097/lvt.0000000000000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Liver transplantation currently represents a therapeutic option for patients with Wilson disease presenting with end-stage liver disease or acute liver failure. Indeed, it has been associated with excellent postoperative survival curves in view of young age at transplant and absence of recurrence. Attention has shifted over the past decades to a wise expansion of indications for liver transplantation. Evidence has emerged supporting the transplantation of carefully selected patients with primarily neuropsychiatric symptoms and compensated cirrhosis. The rationale behind this approach is the potential for surgery to improve copper homeostasis and consequently ameliorate neuropsychiatric symptoms. However, several questions remain unanswered, such as how to establish thresholds for assessing pretransplant neuropsychiatric impairment, how to standardize preoperative neurological assessments, and how to define postoperative outcomes for patients meeting these specific criteria. Furthermore, a disease-specific approach will be proposed both for the liver transplant evaluation of candidates with Wilson disease and for patient care during the transplant waiting period, highlighting the peculiarities of this systemic disease.
Collapse
Affiliation(s)
- Alberto Ferrarese
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Nora Cazzagon
- Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
- Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| |
Collapse
|
2
|
Fernández-Gallego N, Castillo-González R, Moreno-Serna L, García-Cívico AJ, Sánchez-Martínez E, López-Sanz C, Fontes AL, Pimentel LL, Gradillas A, Obeso D, Neuhaus R, Ramírez-Huesca M, Ruiz-Fernández I, Nuñez-Borque E, Carrasco YR, Ibáñez B, Martín P, Blanco C, Barbas C, Barber D, Rodríguez-Alcalá LM, Villaseñor A, Esteban V, Sánchez-Madrid F, Jiménez-Saiz R. Allergic inflammation triggers dyslipidemia via IgG signalling. Allergy 2024; 79:2680-2699. [PMID: 38864116 DOI: 10.1111/all.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Allergic diseases begin early in life and are often chronic, thus creating an inflammatory environment that may precede or exacerbate other pathologies. In this regard, allergy has been associated to metabolic disorders and with a higher risk of cardiovascular disease, but the underlying mechanisms remain incompletely understood. METHODS We used a murine model of allergy and atherosclerosis, different diets and sensitization methods, and cell-depleting strategies to ascertain the contribution of acute and late phase inflammation to dyslipidemia. Untargeted lipidomic analyses were applied to define the lipid fingerprint of allergic inflammation at different phases of allergic pathology. Expression of genes related to lipid metabolism was assessed in liver and adipose tissue at different times post-allergen challenge. Also, changes in serum triglycerides (TGs) were evaluated in a group of 59 patients ≥14 days after the onset of an allergic reaction. RESULTS We found that allergic inflammation induces a unique lipid signature that is characterized by increased serum TGs and changes in the expression of genes related to lipid metabolism in liver and adipose tissue. Alterations in blood TGs following an allergic reaction are independent of T-cell-driven late phase inflammation. On the contrary, the IgG-mediated alternative pathway of anaphylaxis is sufficient to induce a TG increase and a unique lipid profile. Lastly, we demonstrated an increase in serum TGs in 59 patients after undergoing an allergic reaction. CONCLUSION Overall, this study reveals that IgG-mediated allergic inflammation regulates lipid metabolism.
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía Moreno-Serna
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Antonio J García-Cívico
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Elisa Sánchez-Martínez
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Luiza Fontes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Lígia L Pimentel
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - René Neuhaus
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | | | - Emilio Nuñez-Borque
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Luis M Rodríguez-Alcalá
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), Schroeder Allergy and Immunology Research Institute (SAIRI), McMaster University, Hamilton, Ontario, Canada
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| |
Collapse
|
3
|
Choi W, Cha S, Kim K. Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson's Disease. Cells 2024; 13:1214. [PMID: 39056796 PMCID: PMC11274827 DOI: 10.3390/cells13141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson's disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome.
Collapse
Affiliation(s)
- Woong Choi
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Zeng X, Zhou L, Zeng Q, Zhu H, Luo J. High serum copper as a risk factor of all-cause and cause-specific mortality among US adults, NHANES 2011-2014. Front Cardiovasc Med 2024; 11:1340968. [PMID: 38707892 PMCID: PMC11066204 DOI: 10.3389/fcvm.2024.1340968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background Several studies have shown that serum copper levels are related to coronary heart disease, diabetes, and cancer. However, the association of serum copper levels with all-cause, cause-specific [including cardiovascular disease (CVD) and cancer] mortality remains unclear. Objectives This study aimed to prospectively examine the association of copper exposure with all-cause, CVD, and cancer mortality among US adults. Methods The data for this analysis was obtained from the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2014. Mortality from all-causes, CVD, and cancer mortality was linked to US National Death Index mortality data. Cox regression models were used to estimate the association between serum copper levels and all-cause, CVD, and cancer mortality. Results A total of 2,863 adults were included in the main study. During the mean follow-up time of 81.2 months, 236 deaths were documented, including 68 deaths from cardiovascular disease and 57 deaths from cancer. The weighted mean overall serum copper levels was 117.2 ug/L. After adjusting for all of the covariates, compared with participants with low (1st tertile, <103 μg/L)/medium (2st tertile, 103-124 μg/L) serum copper levels, participants with high serum copper levels (3rd tertile, ≥124 μg/L) had a 1.75-fold (95% CI, 1.05-2.92)/1.78-fold (1.19,2.69) increase in all-cause mortality, a 2.35-fold (95% CI, 1.04-5.31)/3.84-fold (2.09,7.05) increase in CVD mortality and a 0.97-fold (95% CI, 0.28-3.29)/0.86-fold (0.34,2.13) increase in cancer mortality. In addition, there was a linear dose-response association between serum copper concentration with all-cause and CVD mortality (P for nonlinear > 0.05). Conclusions This prospective study found that serum copper concentrations were linearly associated with all-cause and CVD mortality in US adults. High serum copper levels is a risk factor for all-cause and CVD mortality.
Collapse
Affiliation(s)
- Xianghui Zeng
- Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingfeng Zeng
- Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi, China
- Emergency Department, The Second Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hengqing Zhu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Jianping Luo
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Dang J, Chevalier K, Letavernier E, Tissandier C, Mouawad S, Debray D, Obadia M, Poujois A. Kidney involvement in Wilson's disease: a review of the literature. Clin Kidney J 2024; 17:sfae058. [PMID: 38660122 PMCID: PMC11040517 DOI: 10.1093/ckj/sfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/26/2024] Open
Abstract
Wilson's disease (WD) is a rare inherited disease due to the mutation of the ATP7B gene, resulting in impaired hepatic copper excretion and its pathological accumulation in various organs such as the liver, the nervous system, or the kidneys. Whereas liver failure and neuropsychiatric disorders are the most common features, less is known about the renal complications. We conducted a review of the literature to define the characteristics and pathophysiology of kidney involvement during WD. This review shed light on strong evidence for direct copper toxicity to renal tubular cells. Excessive tubular copper accumulation might present with various degrees of tubular dysfunction, ranging from mild hydroelectrolytic and acid-base disorders to complete Fanconi syndrome. Proximal and distal renal tubular acidosis also favors development of nephrolithiasis, nephrocalcinosis, and bone metabolism abnormalities. Indirect complications might involve renal hypoperfusion as occurs in hepatorenal or cardiorenal syndrome, but also tubular casts' formation during acute hemolysis, rhabdomyolysis, or bile cast nephropathy. Acute kidney failure is not uncommon in severe WD patients, and independently increases mortality. Finally, specific and long-term therapy by D-penicillamin, one of the most efficient drugs in WD, can cause glomerular injuries, such as membranous nephropathy, minimal-change disease, and, rarely, severe glomerulonephritis. Altogether, our study supports the need for interdisciplinary evaluation of WD patients involving nephrologists, with regular monitoring of tubular and glomerular functions, to provide adequate prevention of renal and bone involvement.
Collapse
Affiliation(s)
- Julien Dang
- Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital de Bicêtre, Service de Néphrologie et Transplantation, Le Kremlin-Bicêtre, France
- Centre de Compétence Maladies Rares «Syndrome Néphrotique Idiopathique», Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Kevin Chevalier
- Hôpital Fondation Rothschild, Service de Neurologie, Paris, France
- Centre de Référence de la Maladie de Wilson et autres Maladies Rares Liées au Cuivre, Paris, France
| | - Emmanuel Letavernier
- AP-HP, Hôpital Tenon, Service des Explorations Fonctionnelles Multidisciplinaires, Paris, France
| | - Come Tissandier
- Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital de Bicêtre, Service de Néphrologie et Transplantation, Le Kremlin-Bicêtre, France
- Centre de Compétence Maladies Rares «Syndrome Néphrotique Idiopathique», Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Sarah Mouawad
- Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital de Bicêtre, Service de Néphrologie et Transplantation, Le Kremlin-Bicêtre, France
- Centre de Compétence Maladies Rares «Syndrome Néphrotique Idiopathique», Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Dominique Debray
- Hôpital Fondation Rothschild, Service de Neurologie, Paris, France
- Centre de Référence de la Maladie de Wilson et autres Maladies Rares Liées au Cuivre, Paris, France
| | - Mickaël Obadia
- Hôpital Fondation Rothschild, Service de Neurologie, Paris, France
- Centre de Référence de la Maladie de Wilson et autres Maladies Rares Liées au Cuivre, Paris, France
| | - Aurélia Poujois
- Hôpital Fondation Rothschild, Service de Neurologie, Paris, France
- Centre de Référence de la Maladie de Wilson et autres Maladies Rares Liées au Cuivre, Paris, France
| |
Collapse
|
6
|
Ghalibaf AM, Soflaei SS, Ferns GA, Saberi-Karimian M, Ghayour-Mobarhan M. Association between dietary copper and cardiovascular disease: A narrative review. J Trace Elem Med Biol 2023; 80:127255. [PMID: 37586165 DOI: 10.1016/j.jtemb.2023.127255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023]
Abstract
Cardiovascular disease (CVD) is a major cause of mortality and morbidity. Several studies have investigated the relationship between trace element status, including copper status, and CVDs in population studies; however, there are controversies about the role of dietary copper and CVD. We aimed to review the association between dietary copper intake with CVD and this association's related factors by reviewing both animal models and human studies. Some animal model studies have reported a strong relationship between dietary copper intake and atherogenesis based on the possible molecular pathways, whilst other studies have not confirmed this relationship. Human studies have not revealed a relationship between CVDs and dietary copper intake, but there is uncertainty about the optimal amount of dietary copper intake in relation reducing the risk of CVDs. These associations may be influenced by ethnicity, gender, underlying co-morbidities and the methods used for its measurement.
Collapse
Affiliation(s)
- AmirAli Moodi Ghalibaf
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Saffar Soflaei
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Maryam Saberi-Karimian
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Ng JY, Zarook E, Nicholson L, Khanji MY, Chahal CAA. Eyes and the heart: what a clinician should know. Heart 2023; 109:1670-1676. [PMID: 37507215 PMCID: PMC10646879 DOI: 10.1136/heartjnl-2022-322081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/27/2023] [Indexed: 07/30/2023] Open
Abstract
The eye is prone to various forms of afflictions, either as a manifestation of primary ocular disease or part of systemic disease, including the cardiovascular system. A thorough cardiovascular examination should include a brief ocular assessment. Hypertension and diabetes, for example, would present with retinopathy and dyslipidaemia would present with corneal arcus. Multisystem autoimmune diseases, such as Graves' disease, rheumatoid arthritis and sarcoidosis, would present with proptosis, episcleritis and scleritis, respectively. Myasthenia gravis, while primarily a neuromuscular disease, presents with fatigable ptosis and is associated with Takotsubo cardiomyopathy and giant cell myocarditis. Connective tissue diseases such as Marfan syndrome, which commonly presents with aortic root dilatation, would be associated with ectopia lentis and myopia. Wilson's disease, which is associated with arrhythmias and cardiomyopathies, would present usually with the characteristic Kayser-Fleischer rings. Rarer diseases, such as Fabry disease, would be accompanied by ocular signs such as cornea verticillata and such cardiac manifestations include cardiac hypertrophy as well as arrhythmias. This review examines the interplay between the eye and the cardiovascular system and emphasises the use of conventional and emerging tools to improve diagnosis, management and prognostication of patients.
Collapse
Affiliation(s)
- Jing Yong Ng
- Medical Education Department, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - Essa Zarook
- Medical Education Department, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - Luke Nicholson
- NIHR Moorfields Biomedical Research Centre, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mohammed Yunus Khanji
- Department of Cardiology, University Hospital, Barts Health NHS Trust, London, UK
- Department of Cardiology, Barts Heart Centre, London, UK
- NIHR Barts Biomedical Research Centre, London, UK
| | - Choudhary Anwar Ahmed Chahal
- Department of Cardiology, Barts Heart Centre, London, UK
- Center for Inherited Cardiovascular Diseases, WellSpan Health, York, Pennsylvania, USA
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Affiliation(s)
- Eve A Roberts
- From the Departments of Paediatrics, Medicine, and Pharmacology and Toxicology, University of Toronto, and the Hospital for Sick Children Research Institute - both in Toronto; and the History of Science and Technology Programme, University of King's College, Halifax, NS, Canada (E.A.R.); and the Departments of Medicine and Surgery, Yale University School of Medicine, New Haven, CT (M.L.S.)
| | - Michael L Schilsky
- From the Departments of Paediatrics, Medicine, and Pharmacology and Toxicology, University of Toronto, and the Hospital for Sick Children Research Institute - both in Toronto; and the History of Science and Technology Programme, University of King's College, Halifax, NS, Canada (E.A.R.); and the Departments of Medicine and Surgery, Yale University School of Medicine, New Haven, CT (M.L.S.)
| |
Collapse
|
9
|
Wang Y, Wang Q, Liu P, Jin L, Qin X, Zheng Q. Construction and validation of a cuproptosis-related diagnostic gene signature for atrial fibrillation based on ensemble learning. Hereditas 2023; 160:34. [PMID: 37620966 PMCID: PMC10464108 DOI: 10.1186/s41065-023-00297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Nonetheless, the accurate diagnosis of this condition continues to pose a challenge when relying on conventional diagnostic techniques. Cell death is a key factor in the pathogenesis of AF. Existing investigations suggest that cuproptosis may also contribute to AF. This investigation aimed to identify a novel diagnostic gene signature associated with cuproptosis for AF using ensemble learning methods and discover the connection between AF and cuproptosis. RESULTS Two genes connected to cuproptosis, including solute carrier family 31 member 1 (SLC31A1) and lipoic acid synthetase (LIAS), were selected by integration of random forests and eXtreme Gradient Boosting algorithms. Subsequently, a diagnostic model was constructed that includes the two genes for AF using the Light Gradient Boosting Machine (LightGBM) algorithm with good performance (the area under the curve value > 0.75). The microRNA-transcription factor-messenger RNA network revealed that homeobox A9 (HOXA9) and Tet methylcytosine dioxygenase 1 (TET1) could target SLC31A1 and LIAS in AF. Functional enrichment analysis indicated that cuproptosis might be connected to immunocyte activities. Immunocyte infiltration analysis using the CIBERSORT algorithm suggested a greater level of neutrophils in the AF group. According to the outcomes of Spearman's rank correlation analysis, there was a negative relation between SLC31A1 and resting dendritic cells and eosinophils. The study found a positive relationship between LIAS and eosinophils along with resting memory CD4+ T cells. Conversely, a negative correlation was detected between LIAS and CD8+ T cells and regulatory T cells. CONCLUSIONS This study successfully constructed a cuproptosis-related diagnostic model for AF based on the LightGBM algorithm and validated its diagnostic efficacy. Cuproptosis may be regulated by HOXA9 and TET1 in AF. Cuproptosis might interact with infiltrating immunocytes in AF.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaozhu Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingyan Jin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinghua Qin
- Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Alkhouri N, Gonzalez-Peralta RP, Medici V. Wilson disease: a summary of the updated AASLD Practice Guidance. Hepatol Commun 2023; 7:02009842-202306010-00006. [PMID: 37184530 DOI: 10.1097/hc9.0000000000000150] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
Wilson disease (WD) is caused by autosomal variants affecting the ATP7B gene on chromosome 13, resulting in alterations in physiological copper homeostasis and copper accumulation. Excess copper clinically manifests in many organs, most often in the central nervous system and liver, ultimately causing cirrhosis and death. Often considered a pediatric or young adult disease, WD actually affects patients of all ages, and aging patients need to be regularly managed with long-term follow-up. Despite over a century of advances in diagnosis and treatment, WD is still associated with diagnostic challenges and considerable disability and death, in part due to delays in diagnosis and limitations in treatment. Standard-of-care treatments are considered generally effective when the diagnosis is timely but are also limited by efficacy, safety concerns, multiple daily dosing, and adherence. This expert perspective review seeks to facilitate improvements in the awareness, understanding, diagnosis, and management of WD. The objectives are to provide a full overview of WD and streamline updated diagnosis and treatment guidance, as recently published by the American Association for the Study of Liver Diseases, in a practical way for clinical use.
Collapse
Affiliation(s)
| | | | - Valentina Medici
- Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, California, USA
| |
Collapse
|
11
|
Bajpai AK, Gu Q, Orgil BO, Xu F, Torres-Rojas C, Zhao W, Chen C, Starlard-Davenport A, Jones B, Lebeche D, Towbin JA, Purevjav E, Lu L, Zhang W. Cardiac copper content and its relationship with heart physiology: Insights based on quantitative genetic and functional analyses using BXD family mice. Front Cardiovasc Med 2023; 10:1089963. [PMID: 36818345 PMCID: PMC9931904 DOI: 10.3389/fcvm.2023.1089963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background Copper (Cu) is essential for the functioning of various enzymes involved in important cellular and physiological processes. Although critical for normal cardiac function, excessive accumulation, or deficiency of Cu in the myocardium is detrimental to the heart. Fluctuations in cardiac Cu content have been shown to cause cardiac pathologies and imbalance in systemic Cu metabolism. However, the genetic basis underlying cardiac Cu levels and their effects on heart traits remain to be understood. Representing the largest murine genetic reference population, BXD strains have been widely used to explore genotype-phenotype associations and identify quantitative trait loci (QTL) and candidate genes. Methods Cardiac Cu concentration and heart function in BXD strains were measured, followed by QTL mapping. The candidate genes modulating Cu homeostasis in mice hearts were identified using a multi-criteria scoring/filtering approach. Results Significant correlations were identified between cardiac Cu concentration and left ventricular (LV) internal diameter and volumes at end-diastole and end-systole, demonstrating that the BXDs with higher cardiac Cu levels have larger LV chamber. Conversely, cardiac Cu levels negatively correlated with LV posterior wall thickness, suggesting that lower Cu concentration in the heart is associated with LV hypertrophy. Genetic mapping identified six QTLs containing a total of 217 genes, which were further narrowed down to 21 genes that showed a significant association with cardiac Cu content in mice. Among those, Prex1 and Irx3 are the strongest candidates involved in cardiac Cu modulation. Conclusion Cardiac Cu level is significantly correlated with heart chamber size and hypertrophy phenotypes in BXD mice, while being regulated by multiple genes in several QTLs. Prex1 and Irx3 may be involved in modulating Cu metabolism and its downstream effects and warrant further experimental and functional validations.
Collapse
Affiliation(s)
- Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States,Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Buyan-Ochir Orgil
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States,Le Bonheur Children’s Hospital, Children’s Foundation Research Institute, Memphis, TN, United States
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States,School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Carolina Torres-Rojas
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chen Chen
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Byron Jones
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jeffrey A. Towbin
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States,Le Bonheur Children’s Hospital, Children’s Foundation Research Institute, Memphis, TN, United States,Pediatric Cardiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States,Le Bonheur Children’s Hospital, Children’s Foundation Research Institute, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Lu Lu,
| | - Wenjing Zhang
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States,Wenjing Zhang,
| |
Collapse
|
12
|
Escobedo-Monge MF, Barrado E, Parodi-Román J, Escobedo-Monge MA, Torres-Hinojal MC, Marugán-Miguelsanz JM. Copper/Zinc Ratio in Childhood and Adolescence: A Review. Metabolites 2023; 13:metabo13010082. [PMID: 36677007 PMCID: PMC9862945 DOI: 10.3390/metabo13010082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Both copper (Cu) and zinc (Zn) are crucial micronutrients for human growth and development. This literature review covered the last five years of available evidence on the Cu/Zn ratio in children and adolescents. We searched PubMed, Web of Science, Google Scholar, Cochrane Library, and Science Direct for publications between 2017 and 2022, especially in English, although publications in other languages with abstracts in English were included. The main terms used were "copper", "zinc", "copper-zinc", and "zinc-copper" ratios. Cu and Zn determinations made in blood, plasma, or serum were included. This review comprises several cross-sectional and case-control studies with substantial results. The bibliographic search generated a compilation of 19 articles, in which 63.2% of the studies mostly reported a significantly higher Cu/Zn ratio, and 57.9% of them informed significantly lower levels of Zn. We conclude that children and adolescents with acute and chronic conditions are at greater risk of developing elevated Cu/Zn ratios, related to altered nutritional, infectious, and inflammatory status.
Collapse
Affiliation(s)
- Marlene Fabiola Escobedo-Monge
- Faculty of Medicine, University of Valladolid, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain
- Correspondence: ; Tel.: +34-639-590-467
| | - Enrique Barrado
- Department of Analytical Chemistry, Science Faculty, Campus Miguel Delibes, University of Valladolid, Calle Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Joaquín Parodi-Román
- Science Faculty, University of Cadiz, Paseo de Carlos III, 28, 11003 Cádiz, Spain
| | | | | | - José Manuel Marugán-Miguelsanz
- Department of Pediatrics, Faculty of Medicine, University of Valladolid, Section of Gastroenterology and Pediatric Nutrition, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain
| |
Collapse
|
13
|
Schilsky ML, Roberts EA, Bronstein JM, Dhawan A, Hamilton JP, Rivard AM, Washington MK, Weiss KH, Zimbrean PC. A multidisciplinary approach to the diagnosis and management of Wilson disease: 2022 Practice Guidance on Wilson disease from the American Association for the Study of Liver Diseases. Hepatology 2022:01515467-990000000-00207. [PMID: 36151586 DOI: 10.1002/hep.32801] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Michael L Schilsky
- Medicine and Surgery , Yale University School of Medicine , New Haven , Connecticut , USA
| | - Eve A Roberts
- Paediatrics, Medicine, Pharmacology and Toxicology , University of Toronto , Toronto , Ontario , Canada
| | - Jeff M Bronstein
- Neurology , University of California Los Angeles , Los Angeles , California , USA
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre and MowatLabs , King's College Hospital , London , UK
| | - James P Hamilton
- Medicine , Johns Hopkins University School of Medicine , Baltimore , Maryland , USA
| | - Anne Marie Rivard
- Food and Nutrition Services , Yale New Haven Hospital , New Haven , Connecticut , USA
| | - Mary Kay Washington
- Pathology, Immunology and Microbiology , Vanderbilt University Medical Center , Nashville , Tennessee , USA
| | | | - Paula C Zimbrean
- Psychiatry , Yale University School of Medicine , New Haven , Connecticut , USA
| |
Collapse
|
14
|
Cardiac involvement in Wilson's disease: a retrospective cohort study. Eur J Gastroenterol Hepatol 2022; 34:1147-1150. [PMID: 36170683 DOI: 10.1097/meg.0000000000002432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Wilson's disease (WD) is an inherited disorder with perturbations in copper metabolism and can cause multiorgan damage. This study aims to explore cardiac findings mainly based on electrocardiography (ECG) in WD patients. METHODS We retrospectively enrolled adult patients who were diagnosed with WD between January 2011 and December 2020. Demographic and clinical data were collected and reevaluated. RESULTS A total of 126 patients were included. There were 71 men and 55 women. The mean age was 27.2 years. Ninety-nine had hepatic presentation as the initial symptom and 27 had neuropsychiatric presentation as the initial symptom. Thirty-seven patients (29.4%) had cardiac manifestations. Of these patients, nine presented apparent cardiac symptoms (three with discontinuous chest tightness, three with dizziness, two with palpitation and one with atypical chest pain) and 28 had asymptomatic electrocardiography (ECG) abnormalities. Among the nine patients, four had second- or third-degree atrioventricular block, three had ST-segment change and two had ventricular tachycardia. ECG abnormalities in the 28 patients included increase in the width of the QRS complex in 8, atrial premature beats in 8, T-wave inversion in 5, P-wave inversion in 2, sinus bradycardia in 2, ST-segment change in 2, and coexistence of sinus bradycardia and T-wave inversion in 1. No statistical difference (P = 0.32) existed in the occurrence of ECG abnormalities between patients with hepatic presentation (27/99) and those with neuropsychiatric presentation (10/27). CONCLUSION Cardiac involvement is not rare in adult WD patients. We suggest that cardiac evaluation should be routinely performed in the population.
Collapse
|
15
|
Wilson's Disease: An Update on the Diagnostic Workup and Management. J Clin Med 2021; 10:jcm10215097. [PMID: 34768617 PMCID: PMC8584493 DOI: 10.3390/jcm10215097] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
Wilson's disease (WD) is a rare autosomal recessive disorder of hepatocellular copper deposition. The diagnostic approach to patients with WD may be challenging and is based on a complex set of clinical findings that derive from patient history, physical examination, as well as laboratory and imaging testing. No single examination can unequivocally confirm or exclude the disease. Timely identification of signs and symptoms using novel biomarkers and modern diagnostic tools may help to reduce treatment delays and improve patient prognosis. The proper way of approaching WD management includes, firstly, early diagnosis and prompt treatment introduction; secondly, careful and lifelong monitoring of patient compliance and strict adherence to the treatment; and, last but not least, screening for adverse effects and evaluation of treatment efficacy. Liver transplantation is performed in about 5% of WD patients who present with acute liver failure at first disease presentation or with signs of decompensation in the course of liver cirrhosis. Increasing awareness of this rare inherited disease among health professionals, emphasizing their training to consider early signs and symptoms of the illness, and strict monitoring are vital strategies for the patient safety and efficacy of WD therapy.
Collapse
|
16
|
Kirk FT, Munk DE, Laursen TL, Vilstrup H, Ott P, Grønbæk H, Lauridsen MM, Sandahl TD. Cognitive impairment in stable Wilson disease across phenotype. Metab Brain Dis 2021; 36:2173-2177. [PMID: 34342812 DOI: 10.1007/s11011-021-00804-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
In Wilson disease (WD), mutations in the gene encoding the ATP7B copper transport protein causes accumulation of copper especially in liver and brain. WD typically presents with hepatic and/or neuropsychiatric symptoms. Impaired cognition is a well-described feature in patients with neurological WD, while the reports on cognition in hepatic WD patients are fewer and less conclusive. We examined cognition in a cohort of WD patients with both phenotypes. In this cross-sectional pilot study, we investigated cognition in 28 stable Danish WD patients by the PortoSystemic Encephalopathy (PSE) and the Continuous Reaction Time (CRT) tests. Half of the patients were female, and their median age was 35.5 years (IQR 24.5). Their phenotype was hepatic in 14 (50%), neurologic in 10 (36%) and mixed in 4 (14%). The duration of treatment was > 2 year in all patients, and their condition was stable as judged by urinary copper excretion, liver enzymes, and clinical assessment. The hepatic patients did not show signs of liver failure. In total, 16 (57%) patients performed worse than normal in the PSE and/or the CRT tests. The two tests were correlated (rho = 0.60, p = 0.0007), but neither correlated with phenotype, MELD-, Child-Pugh score, 24 h-U-Cu, or treatment type. Measurable cognitive impairment was present in more than half of the stable WD patients independent of phenotype. Thus, our data questions the existence of a purely hepatic phenotype.
Collapse
Affiliation(s)
- Frederik Teicher Kirk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark.
| | - Ditte Emilie Munk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Mette Munk Lauridsen
- Department of Hepatology and Gastroenterology, University Hospital of South Denmark, Esbjerg, Denmark
| | - Thomas Damgaard Sandahl
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| |
Collapse
|
17
|
Chevalier K, Benyounes N, Obadia MA, Van Der Vynckt C, Morvan E, Tibi T, Poujois A. Cardiac involvement in Wilson disease: Review of the literature and description of three cases of sudden death. J Inherit Metab Dis 2021; 44:1099-1112. [PMID: 34286869 DOI: 10.1002/jimd.12418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/07/2022]
Abstract
Wilson disease (WD) is a rare genetic condition that results from a build-up of copper in the body. It requires life-long treatment and is mainly characterized by hepatic and neurological features. Copper accumulation has been reported to be related to the occurrence of heart disease, although little is known regarding this association. We have conducted a systematic review of the literature to document the association between WD and cardiac involvement. Thirty-two articles were retained. We also described three cases of sudden death. Cardiac manifestations in WD include cardiomyopathy (mainly left ventricular (LV) remodeling, hypertrophy, and LV diastolic dysfunction, and less frequently LV systolic dysfunction), increased levels of troponin, and/or brain natriuretic peptide, electrocardiogram (ECG) abnormalities, and rhythm or conduction abnormalities, which can be life-threatening. Dysautonomia has also been reported. The mechanism of cardiac damage in WD has not been elucidated. It may be the result of copper accumulation in the heart, and/or it could be due to a toxic effect of copper, resulting in the release of free oxygen radicals. Patients with signs and/or symptoms of cardiac involvement or who have cardiovascular risk factors should be examined by a cardiologist in addition to being assessed by their interdisciplinary treating team. Furthermore, ECG, cardiac biomarkers, echocardiography, and 24-hours or more of Holter monitoring at the diagnosis and/or during the follow-up of patients with WD need to be evaluated. Cardiac magnetic resonance imaging, although not always available, could also be a useful diagnostic tool, allowing assessment of the risk of ventricular arrhythmias and further guidance of the cardiac workup.
Collapse
Affiliation(s)
- Kevin Chevalier
- Department of Neurology, Rothschild Foundation Hospital, Paris, France
- National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Rothschild Foundation Hospital, Paris, France
| | - Nadia Benyounes
- Department of Cardiology, Rothschild Foundation Hospital, Paris, France
| | - Michaël Alexandre Obadia
- Department of Neurology, Rothschild Foundation Hospital, Paris, France
- National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Rothschild Foundation Hospital, Paris, France
| | | | - Erwan Morvan
- Department of Neurology, Rothschild Foundation Hospital, Paris, France
- National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Rothschild Foundation Hospital, Paris, France
| | - Thierry Tibi
- Department of Cardiology, Rothschild Foundation Hospital, Paris, France
| | - Aurélia Poujois
- Department of Neurology, Rothschild Foundation Hospital, Paris, France
- National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Rothschild Foundation Hospital, Paris, France
| |
Collapse
|
18
|
Sánchez-Monteagudo A, Ripollés E, Berenguer M, Espinós C. Wilson's Disease: Facing the Challenge of Diagnosing a Rare Disease. Biomedicines 2021; 9:1100. [PMID: 34572285 PMCID: PMC8471362 DOI: 10.3390/biomedicines9091100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Wilson disease (WD) is a rare disorder caused by mutations in ATP7B, which leads to the defective biliary excretion of copper. The subsequent gradual accumulation of copper in different organs produces an extremely variable clinical picture, which comprises hepatic, neurological psychiatric, ophthalmological, and other disturbances. WD has a specific treatment, so that early diagnosis is crucial to avoid disease progression and its devastating consequences. The clinical diagnosis is based on the Leipzig score, which considers clinical, histological, biochemical, and genetic data. However, even patients with an initial WD diagnosis based on a high Leipzig score may harbor other conditions that mimic the WD's phenotype (Wilson-like). Many patients are diagnosed using current available methods, but others remain in an uncertain area because of bordering ceruloplasmin levels, inconclusive genetic findings and unclear phenotypes. Currently, the available biomarkers for WD are ceruloplasmin and copper in the liver or in 24 h urine, but they are not solid enough. Therefore, the characterization of biomarkers that allow us to anticipate the evolution of the disease and the monitoring of new drugs is essential to improve its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ana Sánchez-Monteagudo
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| | - Edna Ripollés
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| | - Marina Berenguer
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
- Hepatology-Liver Transplantation Unit, Digestive Medicine Service, IIS La Fe and CIBER-EHD, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| |
Collapse
|
19
|
Salatzki J, Mohr I, Heins J, Cerci MH, Ochs A, Paul O, Riffel J, André F, Hirschberg K, Müller-Hennessen M, Giannitsis E, Friedrich MG, Merle U, Weiss KH, Katus HA, Ochs M. The impact of Wilson disease on myocardial tissue and function: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2021; 23:84. [PMID: 34162411 PMCID: PMC8223377 DOI: 10.1186/s12968-021-00760-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 04/27/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Systemic effects of altered serum copper processing in Wilson Disease (WD) might induce myocardial copper deposition and consequently myocardial dysfunction and structural remodeling. This study sought to investigate the prevalence, manifestation and predictors of myocardial tissue abnormalities in WD patients. METHODS We prospectively enrolled WD patients and an age-matched group of healthy individuals. We applied cardiovascular magnetic resonance (CMR) to analyze myocardial function, strain, and tissue characteristics. A subgroup analysis of WD patients with predominant neurological (WD-neuro+) or hepatic manifestation only (WD-neuro-) was performed. RESULTS Seventy-six patients (37 years (27-49), 47% women) with known WD and 76 age-matched healthy control subjects were studied. The prevalence of atrial fibrillation in WD patients was 5% and the prevalence of symptomatic heart failure was 2.6%. Compared to healthy controls, patients with WD had a reduced left ventricular global circumferential strain (LV-GCS), and also showed abnormalities consistent with global and regional myocardial fibrosis. WD-neuro+ patients presented with more severe structural remodeling and functional impairment when compared to WD-neuro- patients. CONCLUSIONS In a large cohort, WD was not linked to a distinct cardiac phenotype except CMR indexes of myocardial fibrosis. More research is warranted to assess the prognostic implications of these findings. TRIAL REGISTRATION This trial is registered at the local institutional ethics committee (S-188/2018).
Collapse
Affiliation(s)
- Janek Salatzki
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg, Heidelberg, Germany.
| | - Isabelle Mohr
- Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jannick Heins
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mert H Cerci
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Ochs
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg, Heidelberg, Germany
| | - Oliver Paul
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Riffel
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg, Heidelberg, Germany
| | - Florian André
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg, Heidelberg, Germany
| | | | - Matthias Müller-Hennessen
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg, Heidelberg, Germany
| | - Evangelos Giannitsis
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
| | - Matthias G Friedrich
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
- Division of Cardiology, Departments of Medicine and Diagnostic Radiology, Mc-Gill University Health Centre, Montreal, Canada
| | - Uta Merle
- Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
| | - Karl Heinz Weiss
- Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine, Salem Medical Center, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg, Heidelberg, Germany
| | - Marco Ochs
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Concurrent Heavy Metal Exposures and Idiopathic Dilated Cardiomyopathy: A Case-Control Study from the Katanga Mining Area of the Democratic Republic of Congo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094956. [PMID: 34066615 PMCID: PMC8124897 DOI: 10.3390/ijerph18094956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Blood and/or urine levels of 27 heavy metals were determined by ICPMS in 41 patients with dilated cardiomyopathy (DCM) and 29 presumably healthy subjects from the Katanga Copperbelt (KC), in the Democratic Republic of Congo (DRC). After adjusting for age, gender, education level, and renal function, DCM probability was almost maximal for blood concentrations above 0.75 and 150 µg/dL for arsenic and copper, respectively. Urinary concentrations above 1 for chromium, 20 for copper, 600 for zinc, 30 for selenium, 2 for cadmium, 0.2 for antimony, 0.5 for thallium, and 0.05 for uranium, all in μg/g of creatinine, were also associated with increased DCM probability. Concurrent and multiple exposures to heavy metals, well beyond permissible levels, are associated with increased probability for DCM. Study findings warrant screening for metal toxicity in case of DCM and prompt public health measures to reduce exposures in the KC, DRC.
Collapse
|
21
|
Rossi M, Wainsztein N, Merello M. Cardiac Involvement in Movement Disorders. Mov Disord Clin Pract 2021; 8:651-668. [PMID: 34307738 DOI: 10.1002/mdc3.13188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background Several conditions represented mainly by movement disorders are associated with cardiac disease, which can be overlooked in clinical practice in the context of a prominent primary neurological disorder. Objectives To review neurological conditions that combine movement disorders and primary cardiac involvement. Methods A comprehensive and structured literature search following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria was conducted to identify disorders combining movement disorders and cardiac disease. Results Some movement disorders are commonly or prominently associated with cardiac disease. Neurological and cardiac symptoms may share underlying physiopathological mechanisms in diseases, such as Friedreich's ataxia and Wilson's disease, and in certain metabolic disorders, including Refsum disease, Gaucher disease, a congenital disorder of glycosylation, or cerebrotendinous xanthomatosis. In certain conditions, such as Sydenham's chorea or dilated cardiomyopathy with ataxia syndrome (ATX-DNAJC19), heart involvement can present early in the course of disease, whereas in others such as Friedreich's ataxia or Refsum disease, cardiac symptoms tend to present in later stages. In another 68 acquired or inherited conditions, cardiac involvement or movement disorders are seldom reported. Conclusions As cardiac disease is part of the phenotypic spectrum of several movement disorders, heart involvement should be carefully investigated and increased awareness of this association encouraged as it may represent a leading cause of morbidity and mortality.
Collapse
Affiliation(s)
- Malco Rossi
- Sección Movimientos Anormales, Departamento de Neurociencias Instituto de Investigaciones Neurológicas Raúl Carrea, Fleni Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council Buenos Aires Argentina
| | - Nestor Wainsztein
- Departamento de Medicina Interna Unidad de Cuidados Críticos, Fleni Buenos Aires Argentina
| | - Marcelo Merello
- Sección Movimientos Anormales, Departamento de Neurociencias Instituto de Investigaciones Neurológicas Raúl Carrea, Fleni Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council Buenos Aires Argentina.,Pontificia Universidad Católica Argentina Buenos Aires Argentina
| |
Collapse
|
22
|
Evaluation of Myocardial Strain Using Cardiac Magnetic Resonance in Patients with Wilson's Disease. J Clin Med 2021; 10:jcm10020335. [PMID: 33477453 PMCID: PMC7830163 DOI: 10.3390/jcm10020335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Wilson’s disease (WD) is an inherited autosomal recessive disorder with the excessive deposition of copper into different organs, including the heart. Previous studies showed structural cardiac changes even in patients with no signs of heart failure. The aim of this study was to perform cardiac magnetic resonance-based strain analysis in WD patients, as it is a powerful independent predictor of mortality. (2) Methods: We conducted a prospective cardiac magnetic resonance study that included 61 patients and 61 age and sex-matched controls, and performed strain analysis of the left and right ventricle. (3) Results: Left ventricular global longitudinal strain (GLS) as a prognostic marker of increased mortality was not altered (control −22.8 (4.8) % vs. WD patients −21.8 (5.1) %, p = 0.124). However, 4 of the 61 patients had a markedly reduced GLS. Global circumferential strain did not significantly differ between the groups either (p = 0.534). WD patients had significantly reduced global radial strain (p = 0.002). Right ventricular GLS was also significantly reduced in WD patients (p = 0.01). (4) Conclusions: Strain analysis revealed functional impairment of the left and right ventricle in a small number of patients as a potential early sign of cardiac manifestation in asymptomatic WD patients.
Collapse
|
23
|
Yuan XZ, Yang RM, Wang XP. Management Perspective of Wilson's Disease: Early Diagnosis and Individualized Therapy. Curr Neuropharmacol 2021; 19:465-485. [PMID: 32351182 PMCID: PMC8206458 DOI: 10.2174/1570159x18666200429233517] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
Wilson's disease (WD) is an inherited disease caused by mutations in ATP7B and is characterized by the pathological accumulation of copper in the liver and brain. Common clinical manifestations of WD include a wide range of liver disease and neurological symptoms. In some patients, psychiatric symptoms may be the only manifestation at the time of diagnosis. The clinical features of WD are highly variable and can mimic any disease of internal medicine. Therefore, for unexplained medical diseases, the possibility of WD should not be ignored. Early diagnosis and treatment can improve the prognosis of WD patients and reduce disability and early death. Gene sequencing is becoming a valuable method to diagnose WD, and if possible, all WD patients and their siblings should be genetically sequenced. Copper chelators including D-penicillamine, trientine, and dimercaptosuccinic acid can significantly improve the liver injury and symptoms of WD patients but may have a limited effect on neurological symptoms. Zinc salts may be more appropriate for the treatment of asymptomatic patients or for the maintenance treatment of symptomatic patients. High-quality clinical trials for the drug treatment of WD are still lacking, therefore, individualized treatment options for patients are recommended. Individualized treatment can be determined based on the clinical features of the WD patients, efficacy and adverse effects of the drugs, and the experience of the physician. Liver transplantation is the only effective method to save patients with acute liver failure or with severe liver disease who fail drug treatment.
Collapse
Affiliation(s)
| | | | - Xiao-Ping Wang
- Address correspondence to this author at the Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, No.1111 Xianxia Road, 200336, Shanghai, China; Tel: +86-021-52039999-72223; Fax: +86-021-52039999-72223; E-mail:
| |
Collapse
|
24
|
Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 2020; 40:3297-3317. [PMID: 31504452 DOI: 10.1093/eurheartj/ehz641] [Citation(s) in RCA: 852] [Impact Index Per Article: 213.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/30/2018] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Making a firm diagnosis of chronic heart failure with preserved ejection fraction (HFpEF) remains a challenge. We recommend a new stepwise diagnostic process, the 'HFA-PEFF diagnostic algorithm'. Step 1 (P=Pre-test assessment) is typically performed in the ambulatory setting and includes assessment for HF symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes mellitus, elderly, atrial fibrillation), and diagnostic laboratory tests, electrocardiogram, and echocardiography. In the absence of overt non-cardiac causes of breathlessness, HFpEF can be suspected if there is a normal left ventricular ejection fraction, no significant heart valve disease or cardiac ischaemia, and at least one typical risk factor. Elevated natriuretic peptides support, but normal levels do not exclude a diagnosis of HFpEF. The second step (E: Echocardiography and Natriuretic Peptide Score) requires comprehensive echocardiography and is typically performed by a cardiologist. Measures include mitral annular early diastolic velocity (e'), left ventricular (LV) filling pressure estimated using E/e', left atrial volume index, LV mass index, LV relative wall thickness, tricuspid regurgitation velocity, LV global longitudinal systolic strain, and serum natriuretic peptide levels. Major (2 points) and Minor (1 point) criteria were defined from these measures. A score ≥5 points implies definite HFpEF; ≤1 point makes HFpEF unlikely. An intermediate score (2-4 points) implies diagnostic uncertainty, in which case Step 3 (F1: Functional testing) is recommended with echocardiographic or invasive haemodynamic exercise stress tests. Step 4 (F2: Final aetiology) is recommended to establish a possible specific cause of HFpEF or alternative explanations. Further research is needed for a better classification of HFpEF.
Collapse
Affiliation(s)
- Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Department of Internal Medicine and Cardiology, German Heart Institute, Berlin, Germany.,Berlin Institute of Health (BIH), Germany
| | - Carsten Tschöpe
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charite, Berlin, Germany
| | - Rudolf A de Boer
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | | | - Stefan D Anker
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charite, Berlin, Germany.,Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), Germany
| | - Erwan Donal
- Cardiology and CIC, IT1414, CHU de Rennes LTSI, Université Rennes-1, INSERM 1099, Rennes, France
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany
| | - Michael Fu
- Section of Cardiology, Department of Medicine, Sahlgrenska University Hosptal/Ostra, Göteborg, Sweden
| | - Marco Guazzi
- Department of Biomedical Sciences for Health, University of Milan, IRCCS, Milan, Italy.,Department of Cardiology, IRCCS Policlinico, San Donato Milanese, Milan, Italy
| | - Carolyn S P Lam
- National Heart Centre, Singapore & Duke-National University of Singapore.,University Medical Centre Groningen, The Netherlands
| | - Patrizio Lancellotti
- Department of Cardiology, Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Vojtech Melenovsky
- Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Daniel A Morris
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt.,German Centre for Cardiovascular Research (DZHK), Partner Site Frankfurt, Germany
| | - Elisabeth Pieske-Kraigher
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum
| | | | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Frans H Rutten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adriaan A Voors
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Switzerland
| | - Walter J Paulus
- Department of Physiology and Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, The Netherlands
| | - Petar Seferovic
- University of Belgrade School of Medicine, Belgrade University Medical Center, Serbia
| | - Gerasimos Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens Medical School; University Hospital "Attikon", Athens, Greece.,University of Cyprus, School of Medicine, Nicosia, Cyprus
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The aim of this article is to review recent developments in the areas of the disease features and treatment of Wilson disease, and survey disorders that share its pathophysiology or clinical symptoms. RECENT FINDINGS Knowledge of the clinical spectrum of Wilson disease has expanded with recognition of patients who present in atypical age groups - patients with very early onset (<5 years) and those in whom symptoms present in mid-to-late adulthood. A disease phenotype with dominant psychiatric features and increased risk of cardiac problems and various sleep disorders have been identified.In addition to a better understanding of the phenotype of Wilson disease itself, features of some related disorders ('Wilson disease-mimics') have been described leading to a better understanding of copper homeostasis in humans. These disorders include diseases of copper disposition, such as mental retardation, enteropathy, deafness, neuropathy, ichthyosis, keratoderma syndrome, Niemann-Pick type C, and certain congenital disorders of glycosylation, as well as analogous disorders of iron and manganese metabolism.Outcomes for existing treatments, including in certain patient subpopulations of interest, are better known. Novel treatment strategies being studied include testing of bis-choline tetrathiomolybdate in phase 2 clinical trial as well as various preclinical explorations of new copper chelators and ways to restore ATP7B function or repair the causative gene. SUMMARY Recent studies have expanded the phenotype of Wilson disease, identified rare inherited metal-related disorders that resemble Wilson disease, and studied long-term outcomes of existing treatments. These developments can be expected to have an immediate as well as a long-term impact on the clinical management of the disease, and point to promising avenues for future research.
Collapse
Affiliation(s)
- Annu Aggarwal
- Wilson Disease Clinic, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute (KDAH)
- Memory Clinic, KDAH
| | - Mohit Bhatt
- Wilson Disease Clinic, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute (KDAH)
- Movement Disorder Clinic, KDAH, Mumbai, Maharashtra, India
| |
Collapse
|
26
|
Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 2020; 22:391-412. [PMID: 32133741 DOI: 10.1002/ejhf.1741] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/30/2018] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
Making a firm diagnosis of chronic heart failure with preserved ejection fraction (HFpEF) remains a challenge. We recommend a new stepwise diagnostic process, the 'HFA-PEFF diagnostic algorithm'. Step 1 (P=Pre-test assessment) is typically performed in the ambulatory setting and includes assessment for heart failure symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes mellitus, elderly, atrial fibrillation), and diagnostic laboratory tests, electrocardiogram, and echocardiography. In the absence of overt non-cardiac causes of breathlessness, HFpEF can be suspected if there is a normal left ventricular (LV) ejection fraction, no significant heart valve disease or cardiac ischaemia, and at least one typical risk factor. Elevated natriuretic peptides support, but normal levels do not exclude a diagnosis of HFpEF. The second step (E: Echocardiography and Natriuretic Peptide Score) requires comprehensive echocardiography and is typically performed by a cardiologist. Measures include mitral annular early diastolic velocity (e'), LV filling pressure estimated using E/e', left atrial volume index, LV mass index, LV relative wall thickness, tricuspid regurgitation velocity, LV global longitudinal systolic strain, and serum natriuretic peptide levels. Major (2 points) and Minor (1 point) criteria were defined from these measures. A score ≥5 points implies definite HFpEF; ≤1 point makes HFpEF unlikely. An intermediate score (2-4 points) implies diagnostic uncertainty, in which case Step 3 (F1 : Functional testing) is recommended with echocardiographic or invasive haemodynamic exercise stress tests. Step 4 (F2 : Final aetiology) is recommended to establish a possible specific cause of HFpEF or alternative explanations. Further research is needed for a better classification of HFpEF.
Collapse
Affiliation(s)
- Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Department of Internal Medicine and Cardiology, German Heart Institute, Berlin, Germany.,Berlin Institute of Health (BIH), Germany
| | - Carsten Tschöpe
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charite, Berlin, Germany
| | - Rudolf A de Boer
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | | | - Stefan D Anker
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charite, Berlin, Germany.,Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), Germany
| | - Erwan Donal
- Cardiology and CIC, IT1414, CHU de Rennes LTSI, Université Rennes-1, INSERM 1099, Rennes, France
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany
| | - Michael Fu
- Section of Cardiology, Department of Medicine, Sahlgrenska University Hosptal/Ostra, Göteborg, Sweden
| | - Marco Guazzi
- Department of Biomedical Sciences for Health, University of Milan, IRCCS, Milan, Italy.,Department of Cardiology, IRCCS Policlinico, San Donato Milanese, Milan, Italy
| | - Carolyn S P Lam
- National Heart Centre, Singapore & Duke-National University of Singapore.,University Medical Centre Groningen, The Netherlands
| | - Patrizio Lancellotti
- Department of Cardiology, Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Vojtech Melenovsky
- Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Daniel A Morris
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt.,German Centre for Cardiovascular Research (DZHK), Partner Site Frankfurt, Germany
| | - Elisabeth Pieske-Kraigher
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum
| | | | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Frans H Rutten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adriaan A Voors
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Switzerland
| | - Walter J Paulus
- Department of Physiology and Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, The Netherlands
| | - Petar Seferovic
- University of Belgrade School of Medicine, Belgrade University Medical Center, Serbia
| | - Gerasimos Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens Medical School; University Hospital "Attikon", Athens, Greece.,University of Cyprus, School of Medicine, Nicosia, Cyprus
| |
Collapse
|
27
|
Abstract
Copper accumulation and deficiency are reciprocally connected to lipid metabolism. In Wilson disease (WD), which is caused by a genetic loss of function of the copper-transporting P-type ATPase beta, copper accumulates mainly in the liver and lipid metabolism is dysregulated. The underlying mechanisms linking copper and lipid metabolism in WD are not clear. Copper may impair metabolic machinery by direct binding to protein and lipid structures or by generating reactive oxygen species with consequent damage to cellular organelles vital to energy metabolism. In the liver, copper overload results in mitochondrial impairment, down-regulation of lipid metabolism, and the development of steatosis with an etiology not fully elucidated. Little is known regarding the effect of copper overload on extrahepatic energy homeostasis. This review aims to discuss alterations in hepatic energy metabolism associated with WD, highlights potential mechanisms involved in the development of hepatic and systemic dysregulation of lipid metabolism, and reviews current knowledge on the effects of copper overload on extrahepatic energy metabolism.
Collapse
Affiliation(s)
- Tagreed A. Mazi
- Department of Nutrition, University of California Davis, Davis, CA, USA,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, USA,Corresponding author. (V. Medici)
| |
Collapse
|
28
|
Ruth ND, Drury NE, Bennett J, Kelly DA. Cardiac and Liver Disease in Children: Implications for Management Before and After Liver Transplantation. Liver Transpl 2020; 26:437-449. [PMID: 31872564 DOI: 10.1002/lt.25666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
There is close interaction between the functions of the liver and heart affecting the presentation, diagnosis, and outcome of acute and chronic cardiac and liver disease. Conditions affecting both organ systems should be considered when proposing transplantation because the interaction between cardiac disease and liver disease has implications for diagnosis, management, selection for transplantation, and, ultimately, for longterm outcomes after liver transplantation (LT). The combination of cardiac and liver disease is well recognized in adults but is less appreciated in pediatric patients. The focus of this review is to describe conditions affecting both the liver and heart and how they affect selection and management of LT in the pediatric population.
Collapse
Affiliation(s)
- Nicola D Ruth
- Liver Unit, Birmingham Women's & Children's Hospital, Birmingham, United Kingdom.,Institute of Infection and Immunity, University of Birmingham, Birmingham, United Kingdom
| | - Nigel E Drury
- Department of Paediatric Cardiac Surgery, Birmingham Women's & Children's Hospital, Birmingham, United Kingdom.,Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James Bennett
- Department of Anaesthesia, Birmingham Women's & Children's Hospital, Birmingham, United Kingdom.,Department of Anaesthesia, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Deirdre A Kelly
- Liver Unit, Birmingham Women's & Children's Hospital, Birmingham, United Kingdom.,Institute of Infection and Immunity, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
29
|
Correale M, Tricarico L, Leopizzi A, Mallardi A, Mazzeo P, Tucci S, Grazioli D, Di Biase M, Brunetti ND. Liver disease and heart failure. Panminerva Med 2019; 62:26-37. [PMID: 31670498 DOI: 10.23736/s0031-0808.19.03768-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Several systemic conditions, inflammatory disease, infections and alcoholism, may affect both the heart and the liver. Common conditions, such as the non-alcoholic fatty liver disease (NAFLD), may increase the risk of cardiac dysfunction. Patients with acute decompensated HF (ADHF) may develop acute ischemic hepatitis and, chronic HF patients may develop congestive hepatopathy (CH). EVIDENCE ACQUISITION Laboratory anomalies of hepatic function may predict the outcome of patients with advanced HF and the evaluation of both cardiac and hepatic function is very important in the management of these patients. In clinically apparent ischemic hepatitis more than 90% of patients have some right-sided HF. There are systemic disorders characterized by the accumulation of metals or by metabolism defects that may affect primarily the liver but also the heart leading to symptomatic hypertrophic cardiomyopathy (HCM). EVIDENCE SYNTHESIS Abnormal LFTs indicate the mechanism of liver injury: liver congestion or liver ischemia. In AHF, it's important an adequate evaluation of heart and liver function in order to choose the treatment in order to ensure stable hemodynamic as well as optimal liver function. CONCLUSIONS Measurements of LFTs should be recommended in the early phase of ADHF management. Physicians with interest in HF should be trained in the evaluation of LFTs. It's very important for cardiologists to know the systemic diseases affecting both heart and liver and the first imaging or laboratory findings useful for a diagnosis. it is very important for internists, nephrologists, cardiologists, primary physicians and any physicians with interest in treating HF to recognize such signs and symptoms belong to rare diseases and liver diseases that could be mistaken for HF.
Collapse
Affiliation(s)
- Michele Correale
- Unit of Cardiology, Ospedali Riuniti University Hospital of Foggia, Foggia, Italy -
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Alessandra Leopizzi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Adriana Mallardi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Salvatore Tucci
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | | | - Natale D Brunetti
- Unit of Cardiology, Ospedali Riuniti University Hospital of Foggia, Foggia, Italy.,Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
30
|
Abstract
BACKGROUND This study evaluated cardiac function using tissue Doppler echocardiography and assessed electrocardiographic findings in children diagnosed with Wilson's disease. METHOD Asymptomatic patients with a diagnosis of Wilson's disease (n = 43) were compared to healthy controls (n = 37) that were age and gender matched. RESULTS The standard electrocardiographic and conventional echocardiographic examinations were similar in both groups. The left ventricular ejection fraction, shortening fraction, and diastolic function were not significantly different between the two groups. The Tei index for mitral lateral, mitral septal, tricuspid lateral, tricuspid septal, and inter-ventricular septum on tissue Doppler echocardiography was higher in the patient group, yet it did not reach statistical significance. Mitral lateral and septal systolic annular velocity values were significantly lower in the patient group when compared to the control group (p = 0.02 and 0.04, respectively). Also, mitral lateral and septal isovolumetric contraction time values were higher in the patient group (p = 0.04). Although the left ventricular values were not significantly different, relative left ventricular wall thickness was higher in the patient group when compared to the control group, and concentric remodelling in the left ventricle was found in 7 (16%) of 42 patients. QT interval (p = 0.02) and P-wave dispersion values (p = 0.04) were significantly higher in the patient group compared to the control group, and these tend to predict arrhythmias. CONCLUSION Our study based on the tissue Doppler echocardiography assessment indicated a subclinical systolic, rather than diastolic, dysfunction in the myocardium with increased QT interval and P-wave dispersion, despite the young age of the patients and short disease duration.
Collapse
|
31
|
Li F, Hu Y, Li Z, Liu J, Guo L, He J. Three-dimensional microfluidic paper-based device for multiplexed colorimetric detection of six metal ions combined with use of a smartphone. Anal Bioanal Chem 2019; 411:6497-6508. [PMID: 31350590 DOI: 10.1007/s00216-019-02032-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
A simple double-layered three-dimensional (3D) microfluidic paper-based analytical device (μPAD) was designed for the simultaneous determination of six metal ions-Fe(III), Ni(II), Cr(VI), Cu(II), Al(III), and Zn(II)-for the first time. The 3D μPAD was composed of two paper layers: a top pretreatment layer and a bottom colorimetric detection layer. The sample solution added to the central sample reservoir of the 3D μPAD could be automatically divided into eight flow pathways and be automatically pretreated while flowing through the pretreatment zones located in the microfluidic channels, and automatically carried out the chromogenic reactions after reaching the detection zones. Random diffusion of the chromogenic reagents was effectively prevented by transport of the pretreated sample solution to the detection zones through 3D microfluidic channels with an L-type circuitous flow route design, resulting in highly increased color uniformity and reproducibility. Combined with use of a flat LED lamp as an upward lighting source and a smartphone as a convenient detector, improved color perception, highly enhanced sensitivity, and an extended detection range were obtained. Finally, the double-layered 3D μPAD was applied to the multiplexed determination of the six metal ions in mixtures and environmental samples with satisfactory results. Detection limits as low as 0.2, 0.3, 0.1, 0.03, 0.08, and 0.04 mg/L for Fe(III), Ni(II), Cr(VI), Cu(II), Al(III), and Zn(II) detection, respectively, were achieved, which are about one order of magnitude lower than obtained with previously reported μPADs for the detection of metal ions. The present 3D μPAD is simple, fast, selective, sensitive, and user-friendly, and holds great application potential for multiplexed on-site analysis.
Collapse
Affiliation(s)
- Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Yuting Hu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zimu Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jiachang Liu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lei Guo
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jianbo He
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| |
Collapse
|
32
|
Yeoh C, Teng H, Jackson J, Hingula L, Irie T, Legler A, Levine C, Chu I, Chai C, Tollinche L. Metabolic Disorders and Anesthesia. CURRENT ANESTHESIOLOGY REPORTS 2019; 9:340-359. [PMID: 31406490 DOI: 10.1007/s40140-019-00345-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review Metabolic disorders encompass a group of inherited inborn errors of metabolism that are uncommonly encountered but can pose challenges when encountered during the perioperative period. Hence, it is paramount that anesthesiologists are experienced and familiar with management of these conditions. Recent Findings Hundreds of inborn errors of metabolism have already been identified, yet new metabolic disorders continue to be discovered with advancements in genomic science. Summary In our general review, we define the more common metabolic disorders encountered in perioperative medicine and discuss the perioperative anesthetic considerations and challenges associated with each disorder. The following disorders are covered in our review: disorders of carbohydrate metabolism, disorders of amino acid metabolism, disorders of branched-chain amino acid metabolism, organic acidemias, mitochondrial disorders, lysosomal storage disorders, metal metabolism disorders, and urea cycle disorders.
Collapse
Affiliation(s)
- Cindy Yeoh
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Howard Teng
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jacob Jackson
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Lee Hingula
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Takeshi Irie
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Aron Legler
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Corrine Levine
- Department of Anesthesiology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY, USA
| | - Iris Chu
- Department of Anesthesiology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY, USA
| | - Casey Chai
- Department of Anesthesiology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY, USA
| | - Luis Tollinche
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
33
|
Dzieżyc-Jaworska K, Litwin T, Członkowska A. Clinical manifestations of Wilson disease in organs other than the liver and brain. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S62. [PMID: 31179299 PMCID: PMC6531658 DOI: 10.21037/atm.2019.03.30] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/12/2019] [Indexed: 01/01/2023]
Abstract
Wilson disease (WD) is an inherited genetic disorder that is caused by copper metabolism disturbances with main hepatic, neurological, and psychiatric presentation. Deposits of copper accumulate in different organs and may cause a broad range of clinical manifestations. Patients with WD may present with ophthalmological symptoms, or renal, cardiac and osteoarticular involvement. The most common ophthalmological sign as a result of copper accumulation is the Kayser-Fleischer corneal ring, whereas sunflower cataracts are observed rarely. Retinal degeneration, present in WD patients, may serve as a marker of neurodegeneration. Osteoarticular involvement is quite common and includes osteopenia, osteoporosis and arthropathy, which may lead to bone fractures and joint problems mainly affecting knees and wrists. Renal disturbances include tubular dysfunction and renal calculi. A recent cardiac study has shown a higher risk of atrial fibrillation and heart failure in WD patients than in non-WD patients. Autonomic system dysfunction is also observed, but involvement is subclinical in most cases. Another manifestation of WD concerns endocrine system disturbances, which can lead to recurrent abortions, infertility, growth disruption, and parathyroid failure. However, it is possible to become pregnant for females with mild WD symptoms and for those who are compliant with therapy. Hematologic disturbances are frequent and may include acute hemolytic anemia, leucopenia, anemia and low platelet count. Other observed symptoms include lipomas and characteristic of WD skin changes like hyperpigmentation of the legs, xerosis or azure lunulae of the nails. In this paper, we present some of the less common, but nevertheless, important manifestations of WD.
Collapse
Affiliation(s)
| | - Tomasz Litwin
- Second Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- Second Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
34
|
Cardiac and autonomic function in patients with Wilson's disease. Orphanet J Rare Dis 2019; 14:22. [PMID: 30691535 PMCID: PMC6348666 DOI: 10.1186/s13023-019-1007-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/21/2019] [Indexed: 01/08/2023] Open
Abstract
Background The clinical effect of copper accumulation on the heart of patients suffering from Wilson’s disease (WD) is not completely understood. We aimed to determine if patients with WD show signs of cardiac involvement, structural heart disease or autonomic dysfunction. In this prospective trial, we studied 61 patients (mean age 44.3 ± 15.2 years, 51% males) with WD and compared them to 61 age- and gender-matched healthy controls. All subjects underwent clinical examination, blood tests, echocardiography and 24 h electrocardiographic (ECG) recording. Results Left- and right ventricular systolic function did not differ significantly between WD patients and controls. However, 5 of the 61 patients had a reduced left ventricular ejection fraction (LVEF). Furthermore, diastolic dysfunction was more prevalent in WD patients (9 of 61 vs. 0 of 61, p = 0.001). The severity of WD based on the Unified Wilson’s Disease Rating Scale was significantly correlated to NT-pro BNP (r = 0.34, P = 0.013). Patients with an exacerbation of WD in medical history had higher troponin levels compared to those without (11.3 ± 4.7 vs 4.6 ± 1.2). The autonomic function assessed by triangular index (TI) and SDNN-index was significantly reduced in WD patients compared to controls in most in almost every age category (p-value TI and SDNN: age 20–29, p < 0.001 and 0.05; age 30–39, p < 0.01 and not significant (ns); age 40–49, p < 0,01 and 0.001; age 50–59, p = ns and < 0.001, age 60–70, p < 0.05 and ns). Conclusion Our data demonstrate that cardiac involvement and autonomic dysfunction in WD is possible, however the underlying cause is still not known. We suggest that patients with signs and symptoms of structural heart disease should be examined by a cardiologist in addition to the interdisciplinary treatment team of WD. Electronic supplementary material The online version of this article (10.1186/s13023-019-1007-7) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Bobbio E, Forsgard N, Oldfors A, Szamlewski P, Bollano E, Andersson B, Lingbrant M, Bergh N, Karason K, Polte CL. Cardiac arrest in Wilson's disease after curative liver transplantation: a life-threatening complication of myocardial copper excess? ESC Heart Fail 2019; 6:228-231. [PMID: 30618165 PMCID: PMC6351892 DOI: 10.1002/ehf2.12395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/15/2018] [Indexed: 11/14/2022] Open
Abstract
We report the case of a 38‐year‐old man who presented with cardiac arrest 1 year after curative liver transplantation for Wilson's disease. Clinical work‐up proofed myocardial copper and iron accumulation using mass spectrometry, which led most likely to myocardial fibrosis as visualized by cardiovascular magnetic resonance (unprecedented delayed enhancement pattern) and endomyocardial biopsy. Consequently, cardiac arrest due to ventricular fibrillation and subsequent episodes of sustained ventricular tachycardia were considered as primary cardiac manifestation of Wilson's disease. This can, as illustrated by our case, occur even late after curative liver transplantation, which is an important fact that treating physicians should be aware of during clinical follow‐up of these patients.
Collapse
Affiliation(s)
- Emanuele Bobbio
- Department of Transplantation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Forsgard
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Piotr Szamlewski
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Entela Bollano
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bert Andersson
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie Lingbrant
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Bergh
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristjan Karason
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christian L Polte
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Quick S, Weidauer M, Heidrich FM, Sveric K, Reichmann H, Ibrahim K, Strasser RH, Linke A, Speiser U, Reuner U. Cardiac Manifestation of Wilson’s Disease. J Am Coll Cardiol 2018; 72:2808-2809. [DOI: 10.1016/j.jacc.2018.08.2197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 11/25/2022]
|
37
|
Zang X, Huang H, Zhuang Z, Chen R, Xie Z, Xu C, Mo X. The association between serum copper concentrations and cardiovascular disease risk factors in children and adolescents in NHANES. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16951-16958. [PMID: 29623647 DOI: 10.1007/s11356-018-1816-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Copper is an essential element in human beings, alterations in serum copper levels could potentially have effect on human health. To date, no data are available regarding how serum copper affects cardiovascular disease (CVD) risk factors in children and adolescents. We examined the association between serum copper levels and CVD risk factors in children and adolescents. We analyzed data consisting of 1427 subjects from a nationally representative sample of the US population in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. The CVD risk factors included total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, fasting glucose, glycohemoglobin, fasting insulin, and blood pressure. Multivariate and generalized linear regressions were performed to investigate associations adjusted for age, gender, ethnicity, poverty:income ratio (PIR), BMI, energy intake, and physical activity. We found significant associations between serum copper and total cholesterol (coefficient = 0.132; 95% CI 0.081, 0.182; P for trend < 0.001), glycohemoglobin (coefficient = 0.044; 95% CI 0.020, 0.069; P < 0.001), and fasting insulin (coefficient = 0.730; 95% CI 0.410, 1.050; P < 0.001) among the included participants. Moreover, in the generalized linear models, subjects with the highest copper levels demonstrated a 0.83% (95% CI 0.44%, 1.24%) greater increase in serum total cholesterol (p for trend < 0.001) when compared to participants with the lowest copper concentrations. Our results provide the first epidemiological evidence that serum copper concentrations are associated with total cholesterol concentrations in children and adolescents. However, the underlying mechanisms still need further exploration.
Collapse
Affiliation(s)
- Xiaodong Zang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Hesuyuan Huang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Zhulun Zhuang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Runsen Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Zongyun Xie
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Cheng Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|