1
|
Diallo K, Missa KF, Tuo JK, Amoikon TLS, Bla BK, Bonfoh B. Narrative review of application of metagenomic approaches to study the link between oropharyngeal microbiome and infectious diseases. Front Microbiol 2023; 14:1292526. [PMID: 38163063 PMCID: PMC10755466 DOI: 10.3389/fmicb.2023.1292526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Context Viral and bacterial infections are major causes of morbidity and mortality worldwide. The oropharyngeal microbiome could play an important role in preventing invasion of viral and bacterial pathogens by modulating its content and the host's innate immune response. Next Generation Sequencing (NGS) technologies now enable in-depth study of the genomes of microbial communities. The objective of this review is to highlight how metagenomics has contributed to establish links between changes in the oropharyngeal microbiome and emergence of bacterial and viral diseases. Method Two search engines, PubMed and Google scholar were used with filters to focus searches on peer-reviewed original articles published between January 2010 and September 2022. Different keywords were used and only articles with metagenomic approaches were included. Results This review shows that there were few articles studying the link between oropharyngeal microbiome and infectious diseases. Studies on viruses using metagenomic techniques have been growing exponentially in recent years due to the Covid-19 pandemic. This review shows that most studies still focus on the basic identification of microorganisms in different disease states and multiple microorganisms (Alloprevotella, Prevotella, Bacteroides, Haemophilus, Streptococcus, Klebsiella sp., Acinetobacter sp…), have been associated with development of infections such as childhood wheezing, influenza, Covid-19, pneumonia, meningitis, and tuberculosis. Conclusion The oropharyngeal microbiome, despite its importance, remains poorly studied. A limited number of articles were identified but this number has increased exponentially since 2020 due to research conducted on Covid-19. These studies have shown that metagenomic has contributed to the unbiased identification of bacteria that could be used as biomarkers of various diseases and that further research is now needed to capitalize on those findings for human health benefit.
Collapse
Affiliation(s)
- Kanny Diallo
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Kouassi Firmin Missa
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d’Ivoire
| | - Jeremie Kolotioloman Tuo
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Côte d’Ivoire
| | | | - Brice K. Bla
- Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d’Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| |
Collapse
|
2
|
Longhi G, Argentini C, Fontana F, Tarracchini C, Mancabelli L, Lugli GA, Alessandri G, Lahner E, Pivetta G, Turroni F, Ventura M, Milani C. Saponin treatment for eukaryotic DNA depletion alters the microbial DNA profiles by reducing the abundance of Gram-negative bacteria in metagenomics analyses. MICROBIOME RESEARCH REPORTS 2023; 3:4. [PMID: 38455080 PMCID: PMC10917613 DOI: 10.20517/mrr.2023.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 03/09/2024]
Abstract
Background: Recent advances in microbiome sequencing techniques have provided new insights into the role of the microbiome on human health with potential diagnostic implications. However, these developments are often hampered by the presence of a large amount of human DNA interfering with the analysis of the bacterial content. Nowadays, extensive scientific literature focuses on eukaryotic DNA depletion methods, which successfully remove host DNA in microbiome studies, even if a precise assessment of the impact on bacterial DNA is often missing. Methods: Here, we have investigated a saponin-based DNA isolation protocol commonly applied to different biological matrices to deplete the released host DNA. Results: The bacterial DNA obtained was used to assess the relative abundance of bacterial and human DNA, revealing that the inclusion of 2.5% wt/vol saponin allowed the depletion of most of the host's DNA in favor of bacterial DNA enrichment. However, shotgun metagenomic sequencing showed inaccurate microbial profiles of the DNA samples, highlighting an erroneous increase in Gram-positive DNA. Even the application of 0.0125% wt/vol saponin altered the bacterial profile by depleting Gram-negative bacteria, resulting in an overall increase of Gram-positive bacterial DNA. Conclusion: The application of the saponin-based protocol drastically changes the detection of the microbial composition of human-related biological specimens. In this context, we revealed that saponin targets not only host cells but also specific bacterial cells, thus inducing a drastic reduction in the profiling of Gram-negative bacterial DNA.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- GenProbio Srl, Parma 43124, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- GenProbio Srl, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Edith Lahner
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant’Andrea Hospital, School of Medicine, University Sapienza, Rome 00185, Italy
| | - Giulia Pivetta
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant’Andrea Hospital, School of Medicine, University Sapienza, Rome 00185, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| |
Collapse
|
3
|
Rajar P, Dhariwal A, Salvadori G, Junges R, Åmdal HA, Berild D, Fugelseth D, Saugstad OD, Lausten-Thomsen U, Greisen G, Haaland K, Petersen FC. Microbial DNA extraction of high-host content and low biomass samples: Optimized protocol for nasopharynx metagenomic studies. Front Microbiol 2022; 13:1038120. [PMID: 36620054 PMCID: PMC9811202 DOI: 10.3389/fmicb.2022.1038120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Low microbial biomass and high human DNA content in nasopharyngeal aspirate samples hinder comprehensive characterization of microbiota and resistome. We obtained samples from premature infants, a group with increased risk of developing respiratory disorders and infections, and consequently frequent exposure to antibiotics. Our aim was to devise an optimal protocol for handling nasopharyngeal aspirate samples from premature infants, focusing on host DNA depletion and microbiome and resistome characterization. Methods Three depletion and three DNA extraction protocols were compared, using RT-PCR and whole metagenome sequencing to determine the efficiency of human DNA removal, taxonomic profiling and assignment of antibiotic resistance genes. Protocols were tested using mock communities, as well as pooled and individual patient samples. Results The only extraction protocol to retrieve the expected DNA yield from mock community samples was based on a lytic method to improve Gram positive recovery (MasterPure™). Host DNA content in non-depleted aliquots from pooled patient samples was 99%. Only samples depleted with MolYsis™ showed satisfactory, but varied reduction in host DNA content, in both pooled and individual patient samples, allowing for microbiome and resistome characterisation (host DNA content from 15% to 98%). Other depletion protocols either retrieved too low total DNA yields, preventing further analysis, or failed to reduce host DNA content. By using Mol_MasterPure protocol on aliquots from pooled patient samples, we increased the number of bacterial reads by 7.6 to 1,725.8-fold compared to non-depleted reference samples. PCR results were indicative of achieved microbial enrichment. Individual patient samples processed with Mol_MasterPure protocol varied greatly in total DNA yield, host DNA content (from 40% to 98%), species and antibiotic resistance gene richness. Discussion Despite high human DNA and low microbial biomass content in nasopharynx aspirates of preterm infants, we were able to reduce host DNA content to levels compatible with downstream shotgun metagenomic analysis, including bacterial species identification and coverage of antibiotic resistance genes. Whole metagenomic sequencing of microbes colonizing the nasopharynx may contribute to explaining the possible role of airway microbiota in respiratory conditions and reveal carriage of antibiotic resistance genes.
Collapse
Affiliation(s)
- Polona Rajar
- Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Ullevål, Oslo, Norway,Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Achal Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gabriela Salvadori
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Roger Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Heidi Aarø Åmdal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Dag Berild
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, Oslo University, Oslo, Norway
| | - Drude Fugelseth
- Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Ullevål, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, Oslo University, Oslo, Norway
| | | | - Ulrik Lausten-Thomsen
- Department of Neonatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gorm Greisen
- Department of Neonatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kirsti Haaland
- Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Fernanda Cristina Petersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway,*Correspondence: Fernanda Cristina Petersen,
| |
Collapse
|
4
|
Optimization of Low-Biomass Sample Collection and Quantitative PCR-Based Titration Impact 16S rRNA Microbiome Resolution. Microbiol Spectr 2022; 10:e0225522. [PMID: 36377933 PMCID: PMC9769501 DOI: 10.1128/spectrum.02255-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The major aquatic interface between host and environment in teleost finfish species is the gill. The diversity of this infraclass, high complexity of the organ, and its direct exposure to the surrounding environment make it an ideal candidate for furthering our understanding of the intertwined relationships between host and microbiome. Capturing the structure and diversity of bacterial communities from this low-biomass, inhibitor-rich tissue can, however, prove challenging. Lessons learned in doing so are directly applicable to similar sample types in other areas of microbiology. Through the development of a quantitative PCR assay for both host material and 16S rRNA genes, we tested and developed a robust method for low-biomass sample collection which minimized host DNA contamination. Quantification of 16S rRNA facilitated not only the screening of samples prior to costly library construction and sequencing but also the production of equicopy libraries based on 16S rRNA gene copies. A significant increase in diversity of bacteria captured was achieved, providing greater information on the true structure of the microbial community. Such findings offer important information for determining functional processes. Results were confirmed across fresh, brackish, and marine environs with four different fish species, with results showing broad homology between samples, demonstrating the robustness of the approach. Evidence presented is widely applicable to samples similar in composition, such as sputum or mucus, or those that are challenging due to the inherent inclusion of inhibitors. IMPORTANCE The interaction between the fish gill and surrounding bacteria-rich water provides an intriguing model for examining the interaction between the fish, free-floating bacteria, and the bacterial microbiome on the gill surface. Samples that are inherently low in bacteria, or that have components that inhibit the ability to produce libraries that identify the components of microbial communities, present significant challenges. Gill samples present both of these types of challenges. We developed methods for quantifying both the bacterial and host DNA material and established a sampling method which both reduced inhibitor content and maximized bacterial diversity. By quantifying and normalizing bacteria prior to library construction, we showed significant improvements with regards to the fidelity of the final data. Our results support wide-ranging applications for analyzing samples of similar composition, such as mucus and sputum, in other microbiological spheres.
Collapse
|
5
|
Klosinska K, Reece E, Kenny E, Renwick J. Reducing human DNA bias in cystic fibrosis airway specimens for microbiome analysis. J Microbiol Methods 2022; 200:106540. [PMID: 35853495 DOI: 10.1016/j.mimet.2022.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022]
Abstract
Next generation sequencing (NGS) has transformed our understanding of airway microbiology, however there are methodology limitations that require consideration. The presence of high concentrations of human DNA in clinical specimens can significantly impact sequencing of the microbiome, especially in low biomass samples. Here we compared three different methods (0.025% saponin, NEBNext Microbiome DNA enrichment kit, QIAamp DNA microbiome kit) for the reduction of human DNA from six CF sputum samples and determined the impact on the microbiome detected using 16S rRNA gene sequencing. Human DNA in undepleted CF sputum accounted for 94.3% of the total DNA. Saponin, the NEBNext kit and the QIAamp kit reduced human DNA levels by an average of 38.7%, 61.8% and 94.8%, respectively. None of the depletion methods reduced total bacterial DNA concentrations. QIAamp depletion did not influence taxa richness or alpha diversity however alterations to the core genera were noted following depletion. While all methods reduced human DNA in the CF sputum samples, the QIAamp DNA microbiome kit reduced Human DNA levels significantly while leaving bacterial DNA levels unchanged. Human DNA depletion in low biomass, human DNA-dense CF sputum samples is vital for improving bacterial resolution in the CF airway microbiome.
Collapse
Affiliation(s)
- Karolina Klosinska
- Clinical Microbiology Department, Trinity College Dublin, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland
| | - Emma Reece
- Clinical Microbiology Department, Trinity College Dublin, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland
| | - Elaine Kenny
- ELDA Biotech, Naas, Kildare, Ireland; TrinSeq, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Julie Renwick
- Clinical Microbiology Department, Trinity College Dublin, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
6
|
Evaluation of Host Depletion and Extraction Methods for Shotgun Metagenomic Analysis of Bovine Vaginal Samples. Microbiol Spectr 2022; 10:e0041221. [PMID: 35404108 PMCID: PMC9045270 DOI: 10.1128/spectrum.00412-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The reproductive tract metagenome plays a significant role in the various reproductive system functions, including reproductive cycles, health, and fertility. One of the major challenges in bovine vaginal metagenome studies is host DNA contamination, which limits the sequencing capacity for metagenomic content and reduces the accuracy of untargeted shotgun metagenomic profiling. This is the first study comparing the effectiveness of different host depletion and DNA extraction methods for bovine vaginal metagenomic samples. The host depletion methods evaluated were slow centrifugation (Soft-spin), NEBNext Microbiome DNA Enrichment kit (NEBNext), and propidium monoazide (PMA) treatment, while the extraction methods were DNeasy Blood and Tissue extraction (DNeasy) and QIAamp DNA Microbiome extraction (QIAamp). Soft-spin and QIAamp were the most effective host depletion method and extraction methods, respectively, in reducing the number of cattle genomic content in bovine vaginal samples. The reduced host-to-microbe ratio in the extracted DNA increased the sequencing depth for microbial reads in untargeted shotgun sequencing. Bovine vaginal samples extracted with QIAamp presented taxonomical profiles which closely resembled the mock microbial composition, especially for the recovery of Gram-positive bacteria. Additionally, samples extracted with QIAamp presented extensive functional profiles with deep coverage. Overall, a combination of Soft-spin and QIAamp provided the most robust representation of the vaginal microbial community in cattle while minimizing host DNA contamination. IMPORTANCE In addition to the host tissue collected during the sampling process, bovine vaginal samples are saturated with large amounts of extracellular DNA and secreted proteins that are essential for physiological purposes, including the reproductive cycle and immune defense. Due to the high host-to-microbe genome ratio, which hampers the sequencing efficacy for metagenome samples and the recovery of the actual metagenomic profiles, bovine vaginal samples cannot benefit from the full potential of shotgun sequencing. This is the first investigation on the most effective host depletion and extraction methods for bovine vaginal metagenomic samples. This study demonstrated an effective combination of host depletion and extraction methods, which harvested higher percentages of 16S rRNA genes and microbial reads, which subsequently led to a taxonomical profile that resembled the actual community and a functional profile with deeper coverage. A representative metagenomic profile is essential for investigating the role of the bovine vaginal metagenome for both reproductive function and susceptibility to infections.
Collapse
|
7
|
Shi Y, Wang G, Lau HCH, Yu J. Metagenomic Sequencing for Microbial DNA in Human Samples: Emerging Technological Advances. Int J Mol Sci 2022; 23:ijms23042181. [PMID: 35216302 PMCID: PMC8877284 DOI: 10.3390/ijms23042181] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Whole genome metagenomic sequencing is a powerful platform enabling the simultaneous identification of all genes from entirely different kingdoms of organisms in a complex sample. This technology has revolutionised multiple areas from microbiome research to clinical diagnoses. However, one of the major challenges of a metagenomic study is the overwhelming non-microbial DNA present in most of the host-derived specimens, which can inundate the microbial signals and reduce the sensitivity of microorganism detection. Various host DNA depletion methods to facilitate metagenomic sequencing have been developed and have received considerable attention in this context. In this review, we present an overview of current host DNA depletion approaches along with explanations of their underlying principles, advantages and disadvantages. We also discuss their applications in laboratory microbiome research and clinical diagnoses and, finally, we envisage the direction of the further perfection of metagenomic sequencing in samples with overabundant host DNA.
Collapse
Affiliation(s)
| | | | | | - Jun Yu
- Correspondence: ; Tel.: +852-37636099; Fax:+852-21445330
| |
Collapse
|
8
|
DNA Enrichment Methods for Microbial Symbionts in Marine Bivalves. Microorganisms 2022; 10:microorganisms10020393. [PMID: 35208848 PMCID: PMC8878965 DOI: 10.3390/microorganisms10020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
High-throughput sequencing is a powerful tool used for bivalve symbiosis research, but the largest barrier is the contamination of host DNA. In this work, we assessed the host DNA reduction efficiency, microbial community structure, and microbial diversity of four different sample pre-treatment and DNA extraction methods employed in bivalve gill tissue samples. Metagenomic sequencing showed the average proportions of reads belonging to microorganisms retrieved using PowerSoil DNA extraction kit, pre-treatment with differential centrifugation, pre-treatment with filtration, and HostZERO Microbial DNA kit samples were 2.3 ± 0.6%, 2.5 ± 0.2%, 4.7 ± 1.6%, and 42.6 ± 6.8%, respectively. The microbial DNA was effectively enriched with HostZERO Microbial DNA kit. The microbial communities revealed by amplicon sequencing of the 16S rRNA gene showed the taxonomic biases by using four different pre-treatment and DNA extraction methods. The species diversities of DNA samples extracted with the PowerSoil DNA extraction kit were similar, while lower than DNA samples extracted with HostZERO Microbial DNA kit. The results of this study emphasized the bias of these common methods in bivalve symbionts research and will be helpful to choose a fit-for-purpose microbial enrichment strategy in future research on bivalves or other microbe–invertebrate symbioses.
Collapse
|
9
|
Characterizing Microbiomes via Sequencing of Marker Loci: Techniques To Improve Throughput, Account for Cross-Contamination, and Reduce Cost. mSystems 2021; 6:e0029421. [PMID: 34254828 PMCID: PMC8409480 DOI: 10.1128/msystems.00294-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
New approaches to characterizing microbiomes via high-throughput sequencing provide impressive gains in efficiency and cost reduction compared to approaches that were standard just a few years ago. However, the speed of method development has been such that staying abreast of the latest technological advances is challenging. Moreover, shifting laboratory protocols to include new methods can be expensive and time consuming. To facilitate adoption of new techniques, we provide a guide and review of recent advances that are relevant for single-locus sequence-based study of microbiomes—from extraction to library preparation—including a primer regarding the use of liquid-handling automation in small-scale academic settings. Additionally, we describe several amendments to published techniques to improve throughput, track contamination, and reduce cost. Notably, we suggest adding synthetic DNA molecules to each sample during nucleic acid extraction, thus providing a method of documenting incidences of cross-contamination. We also describe a dual-indexing scheme for Illumina sequencers that allows multiplexing of many thousands of samples with minimal PhiX input. Collectively, the techniques that we describe demonstrate that laboratory technology need not impose strict limitations on the scale of molecular microbial ecology studies. IMPORTANCE New methods to characterize microbiomes reduce technology-imposed limitations to study design, but many new approaches have not been widely adopted. Here, we present techniques to increase throughput and reduce contamination alongside a thorough review of current best practices.
Collapse
|
10
|
Bruggeling CE, Garza DR, Achouiti S, Mes W, Dutilh BE, Boleij A. Optimized bacterial DNA isolation method for microbiome analysis of human tissues. Microbiologyopen 2021; 10:e1191. [PMID: 34180607 PMCID: PMC8208965 DOI: 10.1002/mbo3.1191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in microbiome sequencing have rendered new insights into the role of the microbiome in human health with potential clinical implications. Unfortunately, the presence of host DNA in tissue isolates has hampered the analysis of host‐associated bacteria. Here, we present a DNA isolation protocol for tissue, optimized on biopsies from resected human colons (~2–5 mm in size), which includes reduction of human DNA without distortion of relative bacterial abundance at the phylum level. We evaluated which concentrations of Triton and saponin lyse human cells and leave bacterial cells intact, in combination with DNAse treatment to deplete released human DNA. Saponin at a concentration of 0.0125% in PBS lysed host cells, resulting in a 4.5‐fold enrichment of bacterial DNA while preserving the relative abundance of Firmicutes, Bacteroidetes, γ‐Proteobacteria, and Actinobacteria assessed by qPCR. Our optimized protocol was validated in the setting of two large clinical studies on 521 in vivo acquired colon biopsies of 226 patients using shotgun metagenomics. The resulting bacterial profiles exhibited alpha and beta diversities that are similar to the diversities found by 16S rRNA amplicon sequencing. A direct comparison between shotgun metagenomics and 16S rRNA amplicon sequencing of 15 forceps tissue biopsies showed similar bacterial profiles and a similar Shannon diversity index between the sequencing methods. Hereby, we present the first protocol for enriching bacterial DNA from tissue biopsies that allows efficient isolation of all bacteria. Our protocol facilitates analysis of a wide spectrum of bacteria of clinical tissue samples improving their applicability for microbiome research.
Collapse
Affiliation(s)
- Carlijn E Bruggeling
- Department of Pathology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Daniel R Garza
- Radboud Institute for Molecular Life Sciences (RIMLS), Center for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Bacteriology, Rega Institute, Leuven, Belgium
| | - Soumia Achouiti
- Department of Pathology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Wouter Mes
- Department of Animal Ecology & Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, The Netherlands.,Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, The Netherlands
| | - Bas E Dutilh
- Radboud Institute for Molecular Life Sciences (RIMLS), Center for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| |
Collapse
|
11
|
Amar Y, Lagkouvardos I, Silva RL, Ishola OA, Foesel BU, Kublik S, Schöler A, Niedermeier S, Bleuel R, Zink A, Neuhaus K, Schloter M, Biedermann T, Köberle M. Pre-digest of unprotected DNA by Benzonase improves the representation of living skin bacteria and efficiently depletes host DNA. MICROBIOME 2021; 9:123. [PMID: 34039428 PMCID: PMC8157445 DOI: 10.1186/s40168-021-01067-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/01/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND The identification of microbiota based on next-generation sequencing (NGS) of extracted DNA has drastically improved our understanding of the role of microbial communities in health and disease. However, DNA-based microbiome analysis cannot per se differentiate between living and dead microorganisms. In environments such as the skin, host defense mechanisms including antimicrobial peptides and low cutaneous pH result in a high microbial turnover, likely resulting in high numbers of dead cells present and releasing substantial amounts of microbial DNA. NGS analyses may thus lead to inaccurate estimations of microbiome structures and consequently functional capacities. RESULTS We investigated in this study the feasibility of a Benzonase-based approach (BDA) to pre-digest unprotected DNA, i.e., of dead microbial cells, as a method to overcome these limitations, thus offering a more accurate assessment of the living microbiome. A skin mock community as well as skin microbiome samples were analyzed using 16S rRNA gene sequencing and metagenomics sequencing after DNA extraction with and without a Benzonase digest to assess bacterial diversity patterns. The BDA method resulted in less reads from dead bacteria both in the skin mock community and skin swabs spiked with either heat-inactivated bacteria or bacterial-free DNA. This approach also efficiently depleted host DNA reads in samples with high human-to-microbial DNA ratios, with no obvious impact on the microbiome profile. We further observed that low biomass samples generate an α-diversity bias when the bacterial load is lower than 105 CFU and that Benzonase digest is not sufficient to overcome this bias. CONCLUSIONS The BDA approach enables both a better assessment of the living microbiota and depletion of host DNA reads. Video abstract.
Collapse
Affiliation(s)
- Yacine Amar
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
- Clinical Unit Allergology Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Ilias Lagkouvardos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), HCMR, Heraklion, Greece
- Core Facility Microbiome, Technische Universität München, 85354, Freising, Germany
| | - Rafaela L Silva
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
- Clinical Unit Allergology Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Oluwaseun Ayodeji Ishola
- Research Unit Comparative Microbiome Analysis, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Bärbel U Foesel
- Research Unit Comparative Microbiome Analysis, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Anne Schöler
- Research Unit Comparative Microbiome Analysis, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- DKFZ German Cancer Research Center, Berlin, Germany
| | - Sebastian Niedermeier
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Rachela Bleuel
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
- Clinical Unit Allergology Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Alexander Zink
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
- Clinical Unit Allergology Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, Technische Universität München, 85354, Freising, Germany
- ZIEL - Institute for Food & Health, Technische Universität München, 85354, Freising, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- ZIEL - Institute for Food & Health, Technische Universität München, 85354, Freising, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany.
- Clinical Unit Allergology Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| | - Martin Köberle
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
12
|
Evaluation of a commercial microbial enrichment kit used prior DNA extraction to improve the molecular detection of vector-borne pathogens from naturally infected dogs. J Microbiol Methods 2021; 188:106163. [PMID: 33581169 DOI: 10.1016/j.mimet.2021.106163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/28/2023]
Abstract
Accurate detection of vector-borne pathogens (VBPs) is extremely important as the number of reported cases in humans and animals continues to rise in the US and abroad. Validated PCR assays are currently the cornerstone of molecular diagnostics and can achieve excellent analytical sensitivity and specificity. However, the detection of pathogens at low parasitemia still presents a challenge for VBP diagnosis, especially given the very low volume of specimens tested by molecular methods. The objective of this study is to determine if a commercially available microbial enrichment kit, used prior DNA extraction, is capable of expanding the overall microbial community and increasing detectable levels of VBPs in canine blood samples through host DNA depletion. This study used EDTA-whole blood samples from dogs naturally infected with varying parasitemia levels of either Anaplasma phagocytophilum, Babesia gibsoni, or Ehrlichia ewingii. For two VBPs, EDTA-blood samples were diluted to determine the effect of microbial concentration at low parasitemia. Paired EDTA-blood samples from each dog were subjected to traditional, automated DNA extraction with or without the microbial concentrating kit (MolYsis®) prior to DNA extraction. Relative amounts of pathogen DNA in paired samples were determined by real-time PCR and Next-Generation Sequencing targeting conserved regions of 16S rRNA (for bacteria) and 18S rRNA (for protozoa). Results from the three molecular methods suggest that the microbial concentrating kit did not improve the detection of VBPs, although significantly reduced the presence of host DNA. Alternative methods for VBP enrichment in clinical samples prior to molecular testing should continue to be investigated, as it may significantly improve clinical sensitivity and reduce the number of false-negative results.
Collapse
|
13
|
Rubiola S, Chiesa F, Dalmasso A, Di Ciccio P, Civera T. Detection of Antimicrobial Resistance Genes in the Milk Production Environment: Impact of Host DNA and Sequencing Depth. Front Microbiol 2020; 11:1983. [PMID: 32983010 PMCID: PMC7479305 DOI: 10.3389/fmicb.2020.01983] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Over the past decades, antimicrobial resistance (AMR) has been recognized as one of the most serious threats to public health. Although originally considered a problem to human health, the emerging crisis of AMR requires a "One Health" approach, considering human, animal, and environmental reservoirs. In this regard, the extensive use of antibiotics in the livestock production systems to treat mastitis and other bacterial diseases can lead to the presence of AMR genes in bacteria that contaminate or naturally occur in milk and dairy products, thereby introducing them into the food chain. The recent development of high-throughput next-generation sequencing (NGS) technologies is improving the fast characterization of microbial communities and their functional capabilities. In this context, whole metagenome sequencing (WMS), also called shotgun metagenomic sequencing, allows the generation of a vast amount of data which can be interrogated to generate the desired evidence, including the resistome. However, the amount of host DNA poses a major challenge to metagenome analysis. Given the current absence of literature concerning the application of WMS on milk to detect the presence of AMR genes, in the present study, we evaluated the effect of different sequencing depths, host DNA depletion methods and matrices to characterize the resistome of a milk production environment. WMS was conducted on three aliquots of bulk tank milk and three aliquots of the in-line milk filter collected from a single dairy farm; a fourth aliquot of milk and milk filter was bioinformatically subsampled. Two commercially available host DNA depletion methods were applied, and metagenomic DNA was sequenced to two different sequencing depth. Milk filters proved to be the most suitable matrices to evaluate the presence of AMR genes; besides, the pre-extraction host DNA depletion method was the most efficient approach to remove host reads. To our knowledge, this is the first study to evaluate the limitations posed by the host DNA in investigating the milk resistome with a WMS approach, confirming the circulation of AMR genes in the milk production environment.
Collapse
Affiliation(s)
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | | | | |
Collapse
|
14
|
Sanabria A, Hjerde E, Johannessen M, Sollid JE, Simonsen GS, Hanssen AM. Shotgun-Metagenomics on Positive Blood Culture Bottles Inoculated With Prosthetic Joint Tissue: A Proof of Concept Study. Front Microbiol 2020; 11:1687. [PMID: 32765476 PMCID: PMC7380264 DOI: 10.3389/fmicb.2020.01687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Clinical metagenomics is actively moving from research to clinical laboratories. It has the potential to change the microbial diagnosis of infectious diseases, especially when detection and identification of pathogens can be challenging, such as in prosthetic joint infection (PJI). The application of metagenomic sequencing to periprosthetic joint tissue (PJT) specimens is often challenged by low bacterial load in addition to high level of inhibitor and contaminant host DNA, limiting pathogen recovery. Shotgun-metagenomics (SMg) performed directly on positive blood culture bottles (BCBs) inoculated with PJT may be a convenient approach to overcome these obstacles. The aim was to test if it is possible to perform SMg on PJT inoculated into BCBs for pathogen identification in PJI diagnosis. Our study was conducted as a laboratory method development. For this purpose, spiked samples (positive controls), negative control and clinical tissue samples (positive BCBs) were included to get a comprehensive overview. We developed a method for preparation of bacterial DNA directly from PJT inoculated in BCBs. Samples were processed using MolYsis5 kit for removal of human DNA and DNA extracted with BiOstic kit. High DNA quantity/quality was obtained, and no inhibition was observed during the library preparation, allowing further sequencing process. DNA sequencing reads obtained from the BCBs, presented a low proportion of human reads (<1%) improving the sensitivity of bacterial detection. We detected a 19-fold increase in the number of reads mapping to human in a sample untreated with MolYsis5. Taxonomic classification of clinical samples identified a median of 96.08% (IQR, 93.85-97.07%; range 85.7-98.6%) bacterial reads. Shotgun-metagenomics results were consistent with the results from a conventional BCB culture method, validating our approach. Overall, we demonstrated a proof of concept that it is possible to perform SMg directly on BCBs inoculated with PJT, with potential of pathogen identification in PJI diagnosis. We consider this a first step in research efforts needed to face the challenges presented in PJI diagnoses.
Collapse
Affiliation(s)
- Adriana Sanabria
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, Centre for Bioinformatics, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Johanna Ericson Sollid
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Gunnar Skov Simonsen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anne-Merethe Hanssen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Nelson MT, Pope CE, Marsh RL, Wolter DJ, Weiss EJ, Hager KR, Vo AT, Brittnacher MJ, Radey MC, Hayden HS, Eng A, Miller SI, Borenstein E, Hoffman LR. Human and Extracellular DNA Depletion for Metagenomic Analysis of Complex Clinical Infection Samples Yields Optimized Viable Microbiome Profiles. Cell Rep 2020; 26:2227-2240.e5. [PMID: 30784601 PMCID: PMC6435281 DOI: 10.1016/j.celrep.2019.01.091] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/20/2018] [Accepted: 01/25/2019] [Indexed: 01/27/2023] Open
Abstract
Metagenomic sequencing is a promising approach for identifying and characterizing organisms and their functional characteristics in complex, polymicrobial infections, such as airway infections in people with cystic fibrosis. These analyses are often hampered, however, by overwhelming quantities of human DNA, yielding only a small proportion of microbial reads for analysis. In addition, many abundant microbes in respiratory samples can produce large quantities of extracellular bacterial DNA originating either from biofilms or dead cells. We describe a method for simultaneously depleting DNA from intact human cells and extracellular DNA (human and bacterial) in sputum, using selective lysis of eukaryotic cells and endonuclease digestion. We show that this method increases microbial sequencing depth and, consequently, both the number of taxa detected and coverage of individual genes such as those involved in antibiotic resistance. This finding underscores the substantial impact of DNA from sources other than live bacteria in micro-biological analyses of complex, chronic infection specimens. Nelson et al. describe a method for reducing both human cellular DNA and extracellular DNA (human and bacterial) in a complex respiratory sample using hypotonic lysis and endonuclease digestion. This method increases effective microbial sequencing depth and minimizes bias introduced into subsequent phylogenetic analysis by bacterial extracellular DNA.
Collapse
Affiliation(s)
- Maria T Nelson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Christopher E Pope
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Robyn L Marsh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Casuarina, NT 0811, Australia
| | - Daniel J Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Eli J Weiss
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Kyle R Hager
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Anh T Vo
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Mitchell J Brittnacher
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Hillary S Hayden
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Alexander Eng
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Samuel I Miller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Computer Science and Engineering, University of Washington School of Medicine, Seattle, WA 98105, USA; Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Lucas R Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA.
| |
Collapse
|
16
|
Sune D, Rydberg H, Augustinsson ÅN, Serrander L, Jungeström MB. Optimization of 16S rRNA gene analysis for use in the diagnostic clinical microbiology service. J Microbiol Methods 2020; 170:105854. [PMID: 31982454 DOI: 10.1016/j.mimet.2020.105854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/01/2022]
Abstract
Broad-range amplification and sequencing of the 16S rRNA gene, directly from clinical samples, is a method that potentially allows detection of any cultivable or non-cultivable bacteria. However, the method is prone to false positive results due to PCR contamination. Another concern is the human DNA abundance compared to bacterial DNA in samples from sterile sites. Those factors may decrease the sensitivity and specificity of the assay and can complicate the analysis and interpretation of the results. The objective of this prospective study was to try to avoid the most common pitfalls, mentioned above, and develop a molecular 16S assay with a high clinical sensitivity and specificity. Fifty-six consecutive tissue samples from patients with suspected deep infections were extracted by 3 different DNA-extraction methods; two based on a principle of bacterial DNA enrichment, and one conventional DNA extraction method. We compared three primer pairs, including both conventional and DPO principle, targeting different variable regions of the 16S rRNA gene. Results from routine tissue culture were used as reference. Clinical data was recorded from patient charts and analyzed in parallel. Of a total of 56 samples, collected from 39 patients, 70% (39 samples) were assessed as true infections by analysis of clinical data. Bacterial enrichment extraction increased sensitivity from 54% to 72%. The 2 sets of primer pairs defining region V1-V3 and V3-V4, showed similar sensitivity, but DPO-primers resulted in better specificity, i.e. less contaminations. The primer pairs covering V1-V8 show significantly lower sensitivity (p < .001) than V1-V3 and V3-V4. Optimizing extraction protocols and choice of primers can increase the sensitivity and specificity of a molecular 16S-analysis, rendering a valuable complement to tissue culture.
Collapse
Affiliation(s)
- Dan Sune
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, Linköping University, Sweden.
| | - Helene Rydberg
- Division of Clinical Microbiology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Åsa Nilsdotter Augustinsson
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, Linköping University, Sweden.
| | - Lena Serrander
- Division of Clinical Microbiology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Malin Bergman Jungeström
- Division of Clinical Microbiology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
17
|
Kolb M, Lazarevic V, Emonet S, Calmy A, Girard M, Gaïa N, Charretier Y, Cherkaoui A, Keller P, Huber C, Schrenzel J. Next-Generation Sequencing for the Diagnosis of Challenging Culture-Negative Endocarditis. Front Med (Lausanne) 2019; 6:203. [PMID: 31616669 PMCID: PMC6763761 DOI: 10.3389/fmed.2019.00203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
Diagnosis of culture-negative infective endocarditis usually implies indirect pathogen identification by serologic or molecular techniques. Clinical metagenomics, relying on next-generation sequencing (NGS) is an emerging approach that allows pathogen identification in challenging situations, as evidenced by a clinical case. We sequenced the DNA extracted from the surgically-removed frozen valve tissue from a patient with suspected infective endocarditis with negative blood and valve cultures. Mapping of the sequence reads against reference genomic sequences, a 16S rRNA gene database and clade-specific marker genes suggested an infection caused by Cardiobacterium hominis.
Collapse
Affiliation(s)
- Manon Kolb
- Service of General Internal Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Stéphane Emonet
- Bacteriology Laboratory, Service of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland.,Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Alexandra Calmy
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Myriam Girard
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Yannick Charretier
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Abdessalam Cherkaoui
- Bacteriology Laboratory, Service of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Peter Keller
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Christoph Huber
- Service of Cardiovascular Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.,Bacteriology Laboratory, Service of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland.,Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
18
|
Pathirana E, McPherson A, Whittington R, Hick P. The role of tissue type, sampling and nucleic acid purification methodology on the inferred composition of Pacific oyster (Crassostrea gigas) microbiome. J Appl Microbiol 2019; 127:429-444. [PMID: 31102430 DOI: 10.1111/jam.14326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
Abstract
AIMS This study evaluated methods to sample and extract nucleic acids from Pacific oysters to accurately determine the microbiome associated with different tissues. METHODS AND RESULTS Samples were collected from haemolymph, gill, gut and adductor muscle, using swabs and homogenates of solid tissues. Nucleic acids were extracted from fresh and frozen samples using three different commercial kits. The bacterial DNA yield varied between methods (P < 0·05) and each tissue harboured a unique microbiota, except for gill and muscle. Higher bacterial DNA yields were obtained by swabbing compared to tissue homogenates and from fresh tissues compared to frozen tissues, without impacting the bacterial community composition estimated by 16S rRNA gene (V1-V3 region) sequencing. Despite the higher bacterial DNA yields with QIAamp® DNA Microbiome Kit, the E.Z.N.A.® Mollusc DNA Kit identified twice as many operational taxonomic units (OTUs) and eliminated PCR inhibition from gut tissues. CONCLUSIONS Sampling and nucleic acid purification substantially affected the quantity and diversity of bacteria identified in Pacific oyster microbiome studies and a fit-for-purpose strategy is recommended. SIGNIFICANCE AND IMPACT OF THE STUDY Accurate identification of Pacific oyster microbial diversity is instrumental for understanding the polymicrobial aetiology of Pacific oyster mortality diseases which greatly impact oyster production.
Collapse
Affiliation(s)
- E Pathirana
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - A McPherson
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - R Whittington
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - P Hick
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| |
Collapse
|
19
|
Hadfield J, Bénard A, Domman D, Thomson N. The Hidden Genomics of Chlamydia trachomatis. Curr Top Microbiol Immunol 2019; 412:107-131. [PMID: 29071471 DOI: 10.1007/82_2017_39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of whole-genome sequencing has moved us on from sequencing single genomes to defining unravelling population structures in different niches, and at the -species, -serotype or even -genus level, and in local, national and global settings. This has been instrumental in cataloguing and revealing a huge a range of diversity in this bacterium, when at first we thought there was little. Genomics has challenged assumptions, added insight, as well as confusion and glimpses of truths. What is clear is that at a time when we start to realise the extent and nature of the diversity contained within a genus or a species like this, the huge depth of knowledge communities have developed, through cell biology, as well as the new found molecular approaches will be more precious than ever to link genotype to phenotype. Here we detail the technological developments and insights we have seen during the relatively short time since we began to see the hidden genome of Chlamydia trachomatis.
Collapse
Affiliation(s)
- James Hadfield
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Angèle Bénard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Daryl Domman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
20
|
Shi X, Shao C, Luo C, Chu Y, Wang J, Meng Q, Yu J, Gao Z, Kang Y. Microfluidics-Based Enrichment and Whole-Genome Amplification Enable Strain-Level Resolution for Airway Metagenomics. mSystems 2019; 4:e00198-19. [PMID: 31117025 PMCID: PMC6589435 DOI: 10.1128/msystems.00198-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/04/2019] [Indexed: 01/13/2023] Open
Abstract
Dysbiosis of airway microbiomes has been found in various respiratory diseases, but its molecular details in terms of taxonomic profile, metabolic characteristics, defensive function, and inhabit adaption are far from clear. Shotgun metagenome sequencing provides detailed information for microbes, whereas its application is rather limited in airways due to host DNA contaminants that overwhelm a minute amount of microbial content. Here, we describe a microfluidics-based enrichment device and an emulsion-based whole-genome amplification procedure (MEEA) for the preparation of DNA from sputa for shotgun sequencing in a metagenomics study. The two protocols coupled in MEEA are first separately assayed with mock samples and are both promising in efficiency and bias. The efficiency and consistency of MEEA are further evaluated in six clinical sputum samples against direct sequencing without enrichment, and MEEA enables 2 to 14 times enrichment for microbial reads, which take 14.68% to 33.52% of total reads. The dominant pathogens detected in MEEA are in excellent agreement with those from clinical etiological tests. Meanwhile, MEEA presents much more microbiome complexity and genome information at a strain level than direct sequencing, exhibiting high sensitivity for identifying prophages and DNA viruses. MEEA provides better microbiome profiling than direct sequencing without a preference for specific microorganisms. The more detailed functional and taxonomic characterization of their species constituents, including both bacterium and virus, facilitates metagenomics studies on the pathogenesis of respiratory microbiomes.IMPORTANCE The airway microbial community, which takes important pathogenic roles for respiratory diseases, is far from clear in terms of taxonomy and gene functions. One of the critical reasons is the heavy contamination of host cell/DNA in airway samples, which hinders the subsequent sequencing of the whole genomic contents of the microbial community-the metagenome. Here, we describe a protocol for airway sample preparation which couples a microbe enrichment microfluidic device and a DNA amplification method performed in numerous droplets. When evaluated with mock and clinical sputum samples, the microfluidics-based enrichment device and emulsion-based whole-genome amplification (MEEA) procedure efficiently removes host cells, amplifies the microbial genome, and shows no obvious bias among microbes. The efficiency of MEEA makes it a promising method in research of respiratory microbial communities and their roles in diseases.
Collapse
Affiliation(s)
- Xing Shi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, People's Republic of China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qingren Meng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
21
|
Pendleton KM, Erb-Downward JR, Bao Y, Branton WR, Falkowski NR, Newton DW, Huffnagle GB, Dickson RP. Reply: Clinical Metagenomics for the Diagnosis of Hospital-acquired Infections: Promises and Hurdles. Am J Respir Crit Care Med 2019; 196:1618-1619. [PMID: 28679063 DOI: 10.1164/rccm.201706-1144le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
| | | | - Yuwei Bao
- 1 University of Michigan Medical School Ann Arbor, Michigan
| | | | | | - Duane W Newton
- 1 University of Michigan Medical School Ann Arbor, Michigan
| | - Gary B Huffnagle
- 1 University of Michigan Medical School Ann Arbor, Michigan.,2 University of Michigan Ann Arbor, Michigan and
| | - Robert P Dickson
- 1 University of Michigan Medical School Ann Arbor, Michigan.,3 Michigan Center for Integrative Research in Critical Care Ann Arbor, Michigan
| |
Collapse
|
22
|
Suss PH, Ribeiro VST, Cieslinski J, Kraft L, Tuon FF. Experimental procedures for decontamination and microbiological testing in cardiovascular tissue banks. Exp Biol Med (Maywood) 2019; 243:1286-1301. [PMID: 30614255 DOI: 10.1177/1535370218820515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Sterility testing is a critical issue in the recovery, processing, and release of tissue allografts. Contaminated allografts are often discarded, increasing costs, and reducing tissue stocks. Given these concerns, it is important to determine the most effective methodology for sterility testing. This work provides an overview of microbiological methods for sampling and culturing donor grafts for cardiovascular tissue banking.
Collapse
Affiliation(s)
- Paula Hansen Suss
- 1 Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Victoria Stadler Tasca Ribeiro
- 1 Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Juliette Cieslinski
- 1 Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Letícia Kraft
- 1 Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Felipe Francisco Tuon
- 1 Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil.,2 Human Tissue Bank, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| |
Collapse
|
23
|
Sinha M, Jupe J, Mack H, Coleman TP, Lawrence SM, Fraley SI. Emerging Technologies for Molecular Diagnosis of Sepsis. Clin Microbiol Rev 2018; 31:e00089-17. [PMID: 29490932 PMCID: PMC5967692 DOI: 10.1128/cmr.00089-17] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid and accurate profiling of infection-causing pathogens remains a significant challenge in modern health care. Despite advances in molecular diagnostic techniques, blood culture analysis remains the gold standard for diagnosing sepsis. However, this method is too slow and cumbersome to significantly influence the initial management of patients. The swift initiation of precise and targeted antibiotic therapies depends on the ability of a sepsis diagnostic test to capture clinically relevant organisms along with antimicrobial resistance within 1 to 3 h. The administration of appropriate, narrow-spectrum antibiotics demands that such a test be extremely sensitive with a high negative predictive value. In addition, it should utilize small sample volumes and detect polymicrobial infections and contaminants. All of this must be accomplished with a platform that is easily integrated into the clinical workflow. In this review, we outline the limitations of routine blood culture testing and discuss how emerging sepsis technologies are converging on the characteristics of the ideal sepsis diagnostic test. We include seven molecular technologies that have been validated on clinical blood specimens or mock samples using human blood. In addition, we discuss advances in machine learning technologies that use electronic medical record data to provide contextual evaluation support for clinical decision-making.
Collapse
Affiliation(s)
- Mridu Sinha
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
| | - Julietta Jupe
- Donald Danforth Plant Science Center, Saint Louis, Missouri, USA
| | - Hannah Mack
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
| | - Todd P Coleman
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, San Diego, California, USA
| | - Shelley M Lawrence
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of California, San Diego, San Diego, California, USA
- Rady Children's Hospital of San Diego, San Diego, California, USA
- Clinical Translational Research Institute, University of California, San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, San Diego, California, USA
| | - Stephanie I Fraley
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
- Clinical Translational Research Institute, University of California, San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
24
|
Abstract
The expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny. For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application, advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed also have broad application to other obligate intracellular bacteria or clinical and environmental samples.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Danielle Madden
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
25
|
Abstract
INTRODUCTION Current laboratory testing of Lyme borreliosis mostly relies on serological methods with known limitations. Diagnostic modalities enabling direct detection of pathogen at the onset of the clinical signs could overcome some of the limitations. Molecular methods detecting borrelial DNA seem to be the ideal solution, although there are some aspects that need to be considered. Areas covered: This review represent summary and discussion of the published data obtained from literature searches from PubMed and The National Library of Medicine (USA) together with our own experience on molecular diagnosis of Lyme disease. Expert commentary: Molecular methods are promising and currently serve as supporting diagnostic testing in Lyme borreliosis. Since the field of molecular diagnostics is under rapid development, molecular testing could become an important diagnostic modality.
Collapse
Affiliation(s)
- Eva Ružić-Sabljić
- a Institute of Microbiology ansd Immunology, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Tjaša Cerar
- a Institute of Microbiology ansd Immunology, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
26
|
Lee CT, Teles R, Kantarci A, Chen T, McCafferty J, Starr JR, Brito LCN, Paster BJ, Van Dyke TE. Resolvin E1 Reverses Experimental Periodontitis and Dysbiosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:2796-806. [PMID: 27543615 DOI: 10.4049/jimmunol.1600859] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/23/2016] [Indexed: 12/14/2022]
Abstract
Periodontitis is a biofilm-induced inflammatory disease characterized by dysbiosis of the commensal periodontal microbiota. It is unclear how natural regulation of inflammation affects the periodontal biofilm. Promoters of active resolution of inflammation, including resolvin E1 (RvE1), effectively treat inflammatory periodontitis in animal models. The goals of this study were 1) to compare periodontal tissue gene expression in different clinical conditions, 2) to determine the impact of local inflammation on the composition of subgingival bacteria, and 3) to understand how inflammation impacts these changes. Two clinically relevant experiments were performed in rats: prevention and treatment of ligature-induced periodontitis with RvE1 topical treatment. The gingival transcriptome was evaluated by RNA sequencing of mRNA. The composition of the subgingival microbiota was characterized by 16S rDNA sequencing. Periodontitis was assessed by bone morphometric measurements and histomorphometry of block sections. H&E and tartrate-resistant acid phosphatase staining were used to characterize and quantify inflammatory changes. RvE1 treatment prevented bone loss in ligature-induced periodontitis. Osteoclast density and inflammatory cell infiltration in the RvE1 groups were lower than those in the placebo group. RvE1 treatment reduced expression of inflammation-related genes, returning the expression profile to one more similar to health. Treatment of established periodontitis with RvE1 reversed bone loss, reversed inflammatory gene expression, and reduced osteoclast density. Assessment of the rat subgingival microbiota after RvE1 treatment revealed marked changes in both prevention and treatment experiments. The data suggest that modulation of local inflammation has a major role in shaping the composition of the subgingival microbiota.
Collapse
Affiliation(s)
- Chun-Teh Lee
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142; and
| | - Ricardo Teles
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142; and
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142; and
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
| | - Jon McCafferty
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
| | - Jacqueline R Starr
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142; and
| | | | - Bruce J Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142; and
| |
Collapse
|
27
|
Yigit E, Feehery GR, Langhorst BW, Stewart FJ, Dimalanta ET, Pradhan S, Slatko B, Gardner AF, McFarland J, Sumner C, Davis TB. A Microbiome DNA Enrichment Method for Next-Generation Sequencing Sample Preparation. ACTA ACUST UNITED AC 2016; 115:7.26.1-7.26.14. [PMID: 27366894 DOI: 10.1002/cpmb.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
"Microbiome" is used to describe the communities of microorganisms and their genes in a particular environment, including communities in association with a eukaryotic host or part of a host. One challenge in microbiome analysis concerns the presence of host DNA in samples. Removal of host DNA before sequencing results in greater sequence depth of the intended microbiome target population. This unit describes a novel method of microbial DNA enrichment in which methylated host DNA such as human genomic DNA is selectively bound and separated from microbial DNA before next-generation sequencing (NGS) library construction. This microbiome enrichment technique yields a higher fraction of microbial sequencing reads and improved read quality resulting in a reduced cost of downstream data generation and analysis. © 2016 by John Wiley & Sons, Inc.
Collapse
|
28
|
Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, Yao JZ, Chia N, Hanssen AD, Abdel MP, Patel R. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. J Microbiol Methods 2016; 127:141-145. [PMID: 27237775 DOI: 10.1016/j.mimet.2016.05.022] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
Abstract
Metagenomic whole genome sequencing for detection of pathogens in clinical samples is an exciting new area for discovery and clinical testing. A major barrier to this approach is the overwhelming ratio of human to pathogen DNA in samples with low pathogen abundance, which is typical of most clinical specimens. Microbial DNA enrichment methods offer the potential to relieve this limitation by improving this ratio. Two commercially available enrichment kits, the NEBNext Microbiome DNA Enrichment Kit and the Molzym MolYsis Basic kit, were tested for their ability to enrich for microbial DNA from resected arthroplasty component sonicate fluids from prosthetic joint infections or uninfected sonicate fluids spiked with Staphylococcus aureus. Using spiked uninfected sonicate fluid there was a 6-fold enrichment of bacterial DNA with the NEBNext kit and 76-fold enrichment with the MolYsis kit. Metagenomic whole genome sequencing of sonicate fluid revealed 13- to 85-fold enrichment of bacterial DNA using the NEBNext enrichment kit. The MolYsis approach achieved 481- to 9580-fold enrichment, resulting in 7 to 59% of sequencing reads being from the pathogens known to be present in the samples. These results demonstrate the usefulness of these tools when testing clinical samples with low microbial burden using next generation sequencing.
Collapse
Affiliation(s)
- Matthew Thoendel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patricio R Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Janet Z Yao
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Arlen D Hanssen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA; Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
29
|
Comparison of independent and dependent culture methods for the detection of transient bacteremia in diabetic subjects with chronic periodontitis. BIOMEDICA 2016; 36:156-61. [PMID: 27622449 DOI: 10.7705/biomedica.v36i1.2674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/17/2015] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Oral-derived bacteremia may occur after several dental procedures and routine daily activities. Some conditions of the oral cavity may favor episodes of bacteremia. This would be the case of patients with diabetes mellitus and periodontitis, who exhibit exacerbated gingival inflammation and may be more prone to developing oral-derived bacteremia. OBJECTIVE To compare the effectiveness of an independent culture method (quantitative real-time PCR- qCR) and the most commonly used method (BacT-ALERT 3D®) for the diagnosis of bacteremia. MATERIALS AND METHODS Blood samples were drawn from subjects with type 2 diabetes mellitus and chronic periodontitis before and after apple chewing. Samples were processed by an automated blood culture system (BacT-ALERT 3D®) monitored for 15 days with suitable subculture of positive cultures. In parallel, whole DNA from blood samples was purified using a commercial kit and screened by qPCR using a universal primer set of16S rDNA for bacteria detection. RESULTS Blood cultures taken before apple chewing were shown to be negative by the two diagnostic methods. After chewing, two samples (11%) showed bacterial growth by BacT-ALERT 3D® whereas qPCR did not detect the presence of bacteria in any sample. CONCLUSIONS qPCR did not show greater effectiveness than the BacT-ALERT 3D® in the detection of bacteremia of oral origin.
Collapse
|
30
|
Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing. J Clin Microbiol 2016; 54:919-27. [PMID: 26763966 DOI: 10.1128/jcm.03050-15] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) technology has shown promise for the detection of human pathogens from clinical samples. However, one of the major obstacles to the use of NGS in diagnostic microbiology is the low ratio of pathogen DNA to human DNA in most clinical specimens. In this study, we aimed to develop a specimen-processing protocol to remove human DNA and enrich specimens for bacterial and viral DNA for shotgun metagenomic sequencing. Cerebrospinal fluid (CSF) and nasopharyngeal aspirate (NPA) specimens, spiked with control bacterial and viral pathogens, were processed using either a commercially available kit (MolYsis) or various detergents followed by DNase prior to the extraction of DNA. Relative quantities of human DNA and pathogen DNA were determined by real-time PCR. The MolYsis kit did not improve the pathogen-to-human DNA ratio, but significant reductions (>95%;P< 0.001) in human DNA with minimal effect on pathogen DNA were achieved in samples that were treated with 0.025% saponin, a nonionic surfactant. Specimen preprocessing significantly decreased NGS reads mapped to the human genome (P< 0.05) and improved the sensitivity of pathogen detection (P< 0.01), with a 20- to 650-fold increase in the ratio of microbial reads to human reads. Preprocessing also permitted the detection of pathogens that were undetectable in the unprocessed samples. Our results demonstrate a simple method for the reduction of background human DNA for metagenomic detection for a broad range of pathogens in clinical samples.
Collapse
|
31
|
Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Changes in 16s RNA Gene Microbial Community Profiling by Concentration of Prokaryotic DNA. J Microbiol Methods 2015; 119:239-42. [PMID: 26569458 DOI: 10.1016/j.mimet.2015.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 12/30/2022]
Abstract
Microbial metagenomics are hindered in clinical tissue samples as a result of the large relative amount of human DNA in relation to microbial DNA acting as competitive inhibitors of downstream applications. We evaluated the LOOXSTER® Enrichment Kit to separate eukaryotic and prokaryotic DNA in submucosal intestinal tissue samples having a low microbial biomass and to determine the effects of enrichment on 16s rRNA microbiota sequencing. The enrichment kit reduced the amount of human DNA in the samples 40-70% resulting in a 3.5-fold increase in the number of 16s bacterial gene sequences detected on the Illumina MiSeq platform. This increase was accompanied by the detection of 41 additional bacterial genera and 94 tentative species. The additional bacterial taxa detected accounted for as much as 25% of the total bacterial population that significantly altered the relative prevalence and composition of the intestinal microbiota. The ability to reduce the competitive inhibition created by human DNA and the concentration of bacterial DNA may allow metagenomics to be performed on complex tissues containing a low bacterial biomass.
Collapse
|
33
|
Foitzik M, Stumpp SN, Grischke J, Eberhard J, Stiesch M. Evaluation of FTA ® paper for storage of oral meta-genomic DNA. Biopreserv Biobank 2015; 12:337-42. [PMID: 25340943 DOI: 10.1089/bio.2014.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM The purpose of the present study was to evaluate the short-term storage of meta-genomic DNA from native oral biofilms on FTA(®) paper. MATERIALS AND METHODS Thirteen volunteers of both sexes received an acrylic splint for intraoral biofilm formation over a period of 48 hours. The biofilms were collected, resuspended in phosphate-buffered saline, and either stored on FTA(®) paper or directly processed by standard laboratory DNA extraction. The nucleic acid extraction efficiencies were evaluated by 16S rDNA targeted SSCP fingerprinting. The acquired banding pattern of FTA-derived meta-genomic DNA was compared to a standard DNA preparation protocol. Sensitivity and positive predictive values were calculated. RESULTS The volunteers showed inter-individual differences in their bacterial species composition. A total of 200 bands were found for both methods and 85% of the banding patterns were equal, representing a sensitivity of 0.941 and a false-negative predictive value of 0.059. CONCLUSION Meta-genomic DNA sampling, extraction, and adhesion using FTA(®) paper is a reliable method for storage of microbial DNA for a short period of time.
Collapse
Affiliation(s)
- Magdalena Foitzik
- Department of Prosthetic Denstiry and Biomedical Materials Science, Hannover Medical School , Hannover, Germany
| | | | | | | | | |
Collapse
|
34
|
Opota O, Jaton K, Greub G. Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin Microbiol Infect 2015; 21:323-31. [PMID: 25686695 DOI: 10.1016/j.cmi.2015.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/01/2015] [Accepted: 02/04/2015] [Indexed: 11/19/2022]
Abstract
When a bloodstream infection (BSI) is suspected, most of the laboratory results-biochemical and haematologic-are available within the first hours after hospital admission of the patient. This is not the case for diagnostic microbiology, which generally takes a longer time because blood culture, which is to date the reference standard for the documentation of the BSI microbial agents, relies on bacterial or fungal growth. The microbial diagnosis of BSI directly from blood has been proposed to speed the determination of the etiological agent but was limited by the very low number of circulating microbes during these paucibacterial infections. Thanks to recent advances in molecular biology, including the improvement of nucleic acid extraction and amplification, several PCR-based methods for the diagnosis of BSI directly from whole blood have emerged. In the present review, we discuss the advantages and limitations of these new molecular approaches, which at best complement the culture-based diagnosis of BSI.
Collapse
Affiliation(s)
- O Opota
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - K Jaton
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - G Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland; Infectious Diseases Service, University of Lausanne and University Hospital Center, Lausanne, Switzerland.
| |
Collapse
|
35
|
Song Y, Giske CG, Gille-Johnson P, Emanuelsson O, Lundeberg J, Gyarmati P. Nuclease-assisted suppression of human DNA background in sepsis. PLoS One 2014; 9:e103610. [PMID: 25076135 PMCID: PMC4116218 DOI: 10.1371/journal.pone.0103610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/29/2014] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a severe medical condition characterized by a systemic inflammatory response of the body caused by pathogenic microorganisms in the bloodstream. Blood or plasma is typically used for diagnosis, both containing large amount of human DNA, greatly exceeding the DNA of microbial origin. In order to enrich bacterial DNA, we applied the C0t effect to reduce human DNA background: a model system was set up with human and Escherichia coli (E. coli) DNA to mimic the conditions of bloodstream infections; and this system was adapted to plasma and blood samples from septic patients. As a consequence of the C0t effect, abundant DNA hybridizes faster than rare DNA. Following denaturation and re-hybridization, the amount of abundant DNA can be decreased with the application of double strand specific nucleases, leaving the non-hybridized rare DNA intact. Our experiments show that human DNA concentration can be reduced approximately 100,000-fold without affecting the E. coli DNA concentration in a model system with similarly sized amplicons. With clinical samples, the human DNA background was decreased 100-fold, as bacterial genomes are approximately 1,000-fold smaller compared to the human genome. According to our results, background suppression can be a valuable tool to enrich rare DNA in clinical samples where a high amount of background DNA can be found.
Collapse
Affiliation(s)
- Yajing Song
- Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Christian G. Giske
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Karolinska University Hospital, Department of Clinical Microbiology, Stockholm, Sweden
| | - Patrik Gille-Johnson
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olof Emanuelsson
- Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Joakim Lundeberg
- Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Peter Gyarmati
- Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Karolinska University Hospital, Department of Clinical Microbiology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
36
|
Loonen AJM, Wolffs PFG, Bruggeman CA, van den Brule AJC. Developments for improved diagnosis of bacterial bloodstream infections. Eur J Clin Microbiol Infect Dis 2014; 33:1687-702. [PMID: 24848132 DOI: 10.1007/s10096-014-2153-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/30/2014] [Indexed: 12/26/2022]
Abstract
Bloodstream infections (BSIs) are associated with high mortality and increased healthcare costs. Optimal management of BSI depends on several factors including recognition of the disease, laboratory tests and treatment. Rapid and accurate identification of the etiologic agent is crucial to be able to initiate pathogen specific antibiotic therapy and decrease mortality rates. Furthermore, appropriate treatment might slow down the emergence of antibiotic resistant strains. Culture-based methods are still considered to be the "gold standard" for the detection and identification of pathogens causing BSI. Positive blood cultures are used for Gram-staining. Subsequently, positive blood culture material is subcultured on solid media, and (semi-automated) biochemical testing is performed for species identification. Finally, a complete antibiotic susceptibility profile can be provided based on cultured colonies, which allows the start of pathogen-tailored antibiotic therapy. This conventional workflow is extremely time-consuming and can take up to several days. Furthermore, fastidious and slow-growing microorganisms, as well as antibiotic pre-treated samples can lead to false-negative results. The main aim of this review is to present different strategies to improve the conventional laboratory diagnostic steps for BSI. These approaches include protein-based (MALDI-TOF mass spectrometry) and nucleic acid-based (polymerase chain reaction [PCR]) identification from subculture, blood cultures, and whole blood to decrease time to results. Pathogen enrichment and DNA isolation methods, to enable optimal pathogen DNA recovery from whole blood, are described. In addition, the use of biomarkers as patient pre-selection tools for molecular assays are discussed.
Collapse
Affiliation(s)
- A J M Loonen
- Laboratory for Molecular Diagnostics, Department of Medical Microbiology and Pathology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | | | | | | |
Collapse
|
37
|
Feehery GR, Yigit E, Oyola SO, Langhorst BW, Schmidt VT, Stewart FJ, Dimalanta ET, Amaral-Zettler LA, Davis T, Quail MA, Pradhan S. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS One 2013; 8:e76096. [PMID: 24204593 PMCID: PMC3810253 DOI: 10.1371/journal.pone.0076096] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/20/2013] [Indexed: 12/05/2022] Open
Abstract
DNA samples derived from vertebrate skin, bodily cavities and body fluids contain both host and microbial DNA; the latter often present as a minor component. Consequently, DNA sequencing of a microbiome sample frequently yields reads originating from the microbe(s) of interest, but with a vast excess of host genome-derived reads. In this study, we used a methyl-CpG binding domain (MBD) to separate methylated host DNA from microbial DNA based on differences in CpG methylation density. MBD fused to the Fc region of a human antibody (MBD-Fc) binds strongly to protein A paramagnetic beads, forming an effective one-step enrichment complex that was used to remove human or fish host DNA from bacterial and protistan DNA for subsequent sequencing and analysis. We report enrichment of DNA samples from human saliva, human blood, a mock malaria-infected blood sample and a black molly fish. When reads were mapped to reference genomes, sequence reads aligning to host genomes decreased 50-fold, while bacterial and Plasmodium DNA sequences reads increased 8-11.5-fold. The Shannon-Wiener diversity index was calculated for 149 bacterial species in saliva before and after enrichment. Unenriched saliva had an index of 4.72, while the enriched sample had an index of 4.80. The similarity of these indices demonstrates that bacterial species diversity and relative phylotype abundance remain conserved in enriched samples. Enrichment using the MBD-Fc method holds promise for targeted microbiome sequence analysis across a broad range of sample types.
Collapse
Affiliation(s)
- George R. Feehery
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Erbay Yigit
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | | | | | - Victor T. Schmidt
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Fiona J. Stewart
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | | | - Linda A. Amaral-Zettler
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Department of Geological Sciences, Brown University, Providence, Rhode Island, United States of America
| | - Theodore Davis
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | | | - Sriharsa Pradhan
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| |
Collapse
|
38
|
Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, Kurosawa S, Stepien D, Valentine C, Remick DG. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev 2013; 93:1247-88. [PMID: 23899564 DOI: 10.1152/physrev.00037.2012] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sepsis represents the host's systemic inflammatory response to a severe infection. It causes substantial human morbidity resulting in hundreds of thousands of deaths each year. Despite decades of intense research, the basic mechanisms still remain elusive. In either experimental animal models of sepsis or human patients, there are substantial physiological changes, many of which may result in subsequent organ injury. Variations in age, gender, and medical comorbidities including diabetes and renal failure create additional complexity that influence the outcomes in septic patients. Specific system-based alterations, such as the coagulopathy observed in sepsis, offer both potential insight and possible therapeutic targets. Intracellular stress induces changes in the endoplasmic reticulum yielding misfolded proteins that contribute to the underlying pathophysiological changes. With these multiple changes it is difficult to precisely classify an individual's response in sepsis as proinflammatory or immunosuppressed. This heterogeneity also may explain why most therapeutic interventions have not improved survival. Given the complexity of sepsis, biomarkers and mathematical models offer potential guidance once they have been carefully validated. This review discusses each of these important factors to provide a framework for understanding the complex and current challenges of managing the septic patient. Clinical trial failures and the therapeutic interventions that have proven successful are also discussed.
Collapse
Affiliation(s)
- Kendra N Iskander
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Laakso S, Mäki M. Assessment of a semi-automated protocol for multiplex analysis of sepsis-causing bacteria with spiked whole blood samples. Microbiologyopen 2013; 2:284-92. [PMID: 23417871 PMCID: PMC3633352 DOI: 10.1002/mbo3.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/01/2013] [Accepted: 01/07/2013] [Indexed: 11/28/2022] Open
Abstract
Sepsis is associated with high morbidity and mortality rates worldwide. Rapid and reliable diagnostic methods are needed for efficient and evidence-based treatment of septic patients. Recently, new molecular tools have emerged to complement the conventional culture-based diagnostic methods. In this study, we used spiked whole blood samples to evaluate together two ready-to-use molecular solutions for the detection of sepsis-causing bacteria. We spiked whole blood with bacterial species relevant in sepsis and extracted bacterial DNA with the NorDiag Arrow device, using the SelectNA Blood pathogen DNA isolation kit. DNA extracts were analyzed by the polymerase chain reaction (PCR)- and microarray-based Prove-it™ Bone and Joint assay, resulting in correctly identified bacterial species with detection limits of 11-600 colony-forming unit/mL (CFU/mL). To understand the recovery losses of bacterial DNA during the sample preparation step and the capability of the PCR- and microarray-based platform to respond to the sensitivity requirements, we also determined the analytical sensitivity of the PCR and microarray platform to be 1-21 genome equivalents for the tested bacterial species. In addition, the inclusivity of the Prove-it™ Bone and Joint assay was demonstrated with methicillin-resistant Staphylococcus aureus (MRSA) clones carrying SCCmec types I, II, IV, or V and a nontypable SCCmec type. The proof-of-concept for accurate multiplex pathogen and antibacterial resistance marker detection from spiked whole blood samples was demonstrated by the selective bacterial DNA extraction method combined with the high-throughput PCR- and microarray-based platform. Further investigations are needed to study the promising potential of the concept for sensitive, semi-automated identification of sepsis-causing pathogens directly from whole blood.
Collapse
|
40
|
Culture-dependent and -independent investigations of microbial diversity on urinary catheters. J Clin Microbiol 2012; 50:3901-8. [PMID: 23015674 DOI: 10.1128/jcm.01237-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Catheter-associated urinary tract infection is caused by bacteria, which ascend the catheter along its external or internal surface to the bladder and subsequently develop into biofilms on the catheter and uroepithelium. Antibiotic-treated bacteria and bacteria residing in biofilm can be difficult to culture. In this study we used culture-based and 16S rRNA gene-based culture-independent methods (fingerprinting, cloning, and pyrosequencing) to determine the microbial diversity of biofilms on 24 urinary catheters. Most of the patients were catheterized for <30 days and had undergone recent antibiotic treatment. In addition, the corresponding urine samples for 16 patients were cultured. We found that gene analyses of the catheters were consistent with cultures of the corresponding urine samples for the presence of bacteria but sometimes discordant for the identity of the species. Cultures of catheter tips detected bacteria more frequently than urine cultures and gene analyses; coagulase-negative staphylococci were, in particular, cultured much more often from catheter tips, indicating potential contamination of the catheter tips during sampling. The external and internal surfaces of 19 catheters were separately analyzed by molecular methods, and discordant results were found in six catheters, suggesting that bacterial colonization intra- and extraluminally may be different. Molecular analyses showed that most of the species identified in this study were known uropathogens, and infected catheters were generally colonized by one to two species, probably due to antibiotic usage and short-term catheterization. In conclusion, our data showed that culture-independent molecular methods did not detect bacteria from urinary catheters more frequently than culture-based methods.
Collapse
|
41
|
Zhou L, Pollard AJ. A novel method of selective removal of human DNA improves PCR sensitivity for detection of Salmonella Typhi in blood samples. BMC Infect Dis 2012; 12:164. [PMID: 22839649 PMCID: PMC3482578 DOI: 10.1186/1471-2334-12-164] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/11/2012] [Indexed: 11/21/2022] Open
Abstract
Background Enteric fever is a major public health problem, causing an estimated 21million new cases and 216,000 or more deaths every year. Current diagnosis of the disease is inadequate. Blood culture only identifies 45 to 70% of the cases and is time-consuming. Serological tests have very low sensitivity and specificity. Clinical samples obtained for diagnosis of enteric fever in the field generally have <1 organism/ml of blood, so that even PCR-based methods, widely used for detection of other infectious diseases, are not a straightforward option in typhoid diagnosis. We developed a novel method to enrich target bacterial DNA by selective removal of human DNA from blood samples, enhancing the sensitivity of PCR tests. This method offers the possibility of improving PCR assays directly using clinical specimens for diagnosis of this globally important infectious disease. Methods Blood samples were mixed with ox bile for selective lysis of human blood cells and the released human DNA was then digested with addition of bile resistant micrococcal nuclease. The intact Salmonella Typhi bacteria were collected from the specimen by centrifugation and the DNA extracted with QIAamp DNA mini kit. The presence of Salmonella Typhi bacteria in blood samples was detected by PCR with the fliC-d gene of Salmonella Typhi as the target. Results Micrococcal nuclease retained activity against human blood DNA in the presence of up to 9% ox bile. Background human DNA was dramatically removed from blood samples through the use of ox bile lysis and micrococcal nuclease for removal of mammalian DNA. Consequently target Salmonella Typhi DNA was enriched in DNA preparations and the PCR sensitivity for detection of Salmonella Typhi in spiked blood samples was enhanced by 1,000 fold. Conclusions Use of a combination of selective ox-bile blood cell lysis and removal of human DNA with micrococcal nuclease significantly improves PCR sensitivity and offers a better option for improved typhoid PCR assays directly using clinical specimens in diagnosis of this globally important infection disease which we believe could be of importance in improving clinical care and providing effective evaluation of novel vaccines.
Collapse
Affiliation(s)
- Liqing Zhou
- Oxford Vaccine Centre, Department of Paediatrics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
42
|
Combined molecular gram typing and high-resolution melting analysis for rapid identification of a syndromic panel of bacteria responsible for sepsis-associated bloodstream infection. J Mol Diagn 2012; 14:176-84. [PMID: 22269179 DOI: 10.1016/j.jmoldx.2011.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/15/2011] [Accepted: 12/23/2011] [Indexed: 11/23/2022] Open
Abstract
Effective diagnosis and treatment of bloodstream infections are often hampered by a lack of time-critical information from blood cultures. Molecular techniques aimed at the detection of circulating pathogen DNA have the potential to dramatically improve the timeliness of infection diagnosis. Our aim in this study was to establish a rapid, low-cost PCR approach using high-resolution melting analysis to identify a syndromic panel of 21 pathogens responsible for most bloodstream bacterial infections encountered in critical care environments. A broad-range, real-time PCR technique that combines primers for molecular Gram classification and high-resolution melting analysis in a single run was established. The differentiation of bacterial species was achieved using a multiparameter, decision-tree approach that was based on Gram type, grouping according to melting temperature, and sequential comparisons of melting profiles against multiple reference organisms. A preliminary validation study was undertaken by blinded analysis of 53 consecutive bloodstream isolates from a clinical microbiology laboratory. Fifty isolates contained organisms that were present in the panel, and 96% of these were identified correctly at the genus or species level. A correct Gram classification was reported for all 53 isolates. This technique shows promise as a cost-effective tool for the timely identification of bloodstream pathogens, allowing clinicians to make informed decisions on appropriate antibiotic therapies at an earlier stage.
Collapse
|
43
|
Smith M, Campino S, Gu Y, Clark TG, Otto TD, Maslen G, Manske M, Imwong M, Dondorp AM, Kwiatkowski DP, Quail MA, Swerdlow H. An In-Solution Hybridisation Method for the Isolation of Pathogen DNA from Human DNA-rich Clinical Samples for Analysis by NGS. THE OPEN GENOMICS JOURNAL 2012; 5:10.2174/1875693X01205010018. [PMID: 24273626 PMCID: PMC3837216 DOI: 10.2174/1875693x01205010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies on DNA from pathogenic organisms, within clinical samples, are often complicated by the presence of large amounts of host, e.g., human DNA. Isolation of pathogen DNA from these samples would improve the efficiency of next-generation sequencing (NGS) and pathogen identification. Here we describe a solution-based hybridisation method for isolation of pathogen DNA from a mixed population. This straightforward and inexpensive technique uses probes made from whole-genome DNA and off-the-shelf reagents. In this study, Escherichia coli DNA was successfully enriched from a mixture of E.coli and human DNA. After enrichment, genome coverage following NGS was significantly higher and the evenness of coverage and GC content were unaffected. This technique was also applied to samples containing a mixture of human and Plasmodium falciparum DNA. The P.falciparum genome is particularly difficult to sequence due to its high AT content (80.6%) and repetitive nature. Post enrichment, a bias in the recovered DNA was observed, with a poorer representation of the AT-rich non-coding regions. This uneven coverage was also observed in pre-enrichment samples, but to a lesser degree. Despite the coverage bias in enriched samples, SNP (single-nucleotide polymorphism) calling in coding regions was unaffected and the majority of samples had over 90% of their coding region covered at 5× depth. This technique shows significant promise as an effective method to enrich pathogen DNA from samples with heavy human contamination, particularly when applied to GC-neutral genomes.
Collapse
Affiliation(s)
- Miriam Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Susana Campino
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Yong Gu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Taane G. Clark
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gareth Maslen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Magnus Manske
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M. Dondorp
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Dominic P. Kwiatkowski
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
- Wellcome Trust Centre of Human Genetics, University of Oxford, Oxford, UK
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Harold Swerdlow
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| |
Collapse
|
44
|
Baharum SN, Nurdalila AA. Application of 16s rDNA and cytochrome b ribosomal markers in studies of lineage and fish populations structure of aquatic species. Mol Biol Rep 2011; 39:5225-32. [PMID: 22167328 DOI: 10.1007/s11033-011-1320-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 12/03/2011] [Indexed: 12/13/2022]
Abstract
The most economically important form of aquaculture is fish farming, which is an industry that accounts for an ever increasing share of world fishery production. Molecular markers can be used to enhance the productivity of the aquaculture and fish industries to meet the increasing demand. Molecular markers can be identified via a DNA test regardless of the developmental stage, age or environmental challenges experienced by the organism. The application of 16s and cytochrome b markers has enabled rapid progress in investigations of genetic variability and inbreeding, parentage assignments, species and strain identification and the construction of high resolution genetic linkage maps for aquaculture fisheries. In this review, the advantages of principles and potential power tools of 16s and cytochrome b markers are discussed. Main findings in term of trend, aspects and debates on the reviewed issue made from the model of aquatic species for the benefit of aquaculture genomics and aquaculture genetics research are discussed. The concepts in this review are illustrated with various research examples and results that relate theory to reality and provide a strong review of the current status of these biotechnology topics.
Collapse
Affiliation(s)
- Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | | |
Collapse
|
45
|
Bretagne S. Advances and prospects for molecular diagnostics of fungal infections. Curr Infect Dis Rep 2011; 12:430-6. [PMID: 21308551 DOI: 10.1007/s11908-010-0139-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The polymerase chain reaction (PCR) methods published for the diagnosis of invasive fungal infections are still not included in the revised European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group definitions of IA. This could be achieved with consensual PCR procedures. A checklist of items has been proposed to improve the reliability of the results and clinicians' confidence in them, with emphasis on limiting false-positive results from contamination with either previously amplified products or environmental commensals. Internal amplification controls are mandatory to expose false-negative results. However, our ignorance of the origin and the kinetics of fungal DNA during an infection hamper the choice of the best specimen and DNA extraction protocol. Evidence is increasing that serum could be a good compromise between sensitivity and ease of DNA extraction. Once a technical consensus is achieved, clinical studies should be initiated to integrate quantitative PCR in the diagnostic armamentarium.
Collapse
Affiliation(s)
- Stéphane Bretagne
- Groupe hospitalier Chenevier-Mondor, APHP, Laboratoire de Parasitologie-Mycologie, Créteil, France,
| |
Collapse
|