1
|
Carbapenemase Producing Klebsiella pneumoniae (KPC): What Is the Best MALDI-TOF MS Detection Method. Antibiotics (Basel) 2021; 10:antibiotics10121549. [PMID: 34943761 PMCID: PMC8698427 DOI: 10.3390/antibiotics10121549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria is a group of highly dangerous antibiotic resistant Gram-negative Enterobacteriaceae. They cause infections associated with significant morbidity and mortality. Therefore, the rapid detection of KPC-producing bacteria plays a key role in clinical microbiology. Matrix assisted laser desorption/ionization time-of- flight (MALDI-TOF) is a rapidly evolving technology that finds application in various clinical, scientific, and industrial disciplines. In the present study, we demonstrated three different procedures of carbapenemase-producing K. pneumoniae (KPC) detection. The most basic model of MALDI-TOF instrument MS Microflex LT was used, operating in the linear ion-positive mode, commonly used in modern clinical laboratories. The first procedure was based on indirect monitoring of carbapenemase production with direct detection of hydrolyzed carbapenem antibiotic degradation products in the mass spectrum. The second procedure was based on direct detection of blaKPC accompanying peak with an 11,109 Da in the mass spectrum of carbapenemase-producing K. pneumoniae (KPC), which represents the cleaved protein (pKpQIL_p019) expressed by pKpQIL plasmid. In addition, several unique peaks were detected in the carbapenemase-producing K. pneumoniae (KPC) mass spectrum. The third procedure was the identification of carbapenemase-producing K. pneumoniae (KPC) based on the protein fingerprint using local database created from the whole mass spectra. By comparing detection procedures, we determined that the third procedure was very fast and relatively easy. However, it requires previous verification of carbapenemase-producing K. pneumoniae (KPC) using other methods as genetic blaKPC identification, detection of carbapenem degradation products, and accompanying peak with 11,109 Da, which represents cleaved pKpQIL_p019 protein expressed by pKpQIL plasmid. Detection of carbapenemase-producing K. pneumoniae using MALDI-TOF provides fast and accurate results that may help to reduce morbidity and mortality in hospital setting when applied in diagnostic situations.
Collapse
|
2
|
Dekio I, Sugiura Y, Hamada-Tsutsumi S, Murakami Y, Tamura H, Suematsu M. What Do We See in Spectra?: Assignment of High-Intensity Peaks of Cutibacterium and Staphylococcus Spectra of MALDI-TOF Mass Spectrometry by Interspecies Comparative Proteogenomics. Microorganisms 2021; 9:microorganisms9061243. [PMID: 34201063 PMCID: PMC8227259 DOI: 10.3390/microorganisms9061243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Matrix-assisted laser-desorption/ionization time-of-flight (MALDI–TOF) mass spectrometry is a widely used and reliable technology to identify microbial species and subspecies. The current methodology is based on spectral fingerprinting, analyzing protein peaks, most of which are yet to be characterized. In order to deepen the understanding of these peaks and to develop a more reasonable identification workflow, we applied proteogenomic approaches to assign the high-intensity peaks of MALDI–TOF spectra of two bacterial genera. First, the 3–22 kD proteomes of 5 Cutibacterium strains were profiled by UPLC–MS/MS, and the amino acid sequences were refined by referring to their genome in the public database. Then, the sequences were converted to m/z (x-axis) values based on their molecular masses. When the interspecies comparison of calculated m/z values was well-fitted to the observed peaks, the peak assignments for the five Cutibacterium species were confirmed. Second, the peak assignments for six Staphylococcus species were performed by using the above result for Cutibacterium and referring to ribosomal subunit proteins coded on the S10-spc-alpha operon (the S10-GERMS method), a previous proteomics report by Becher et al., and comprehensive genome analysis. We successfully assigned 13 out of 15 peaks for the Cutibacterium species and 11 out of 13 peaks for the Staphylococcus species. DNA-binding protein HU, the CsbD-like protein, and 50S ribosomal protein L7/L12 were observed in common. The commonality suggests they consist of high-intensity peaks in the MALDI spectra of other bacterial species. Our workflow may lead to the development of a more accurate species identification database of MALDI–TOF mass spectrometry based on genome data.
Collapse
Affiliation(s)
- Itaru Dekio
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.S.); (M.S.)
- Correspondence: ; Tel.: +81-3-3433-1111 (ext. 3341); Fax: +81-3-5401-0125
| | - Yuki Sugiura
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.S.); (M.S.)
| | - Susumu Hamada-Tsutsumi
- Department of Environmental Bioscience, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan; (S.H.-T.); (H.T.)
| | - Yoshiyuki Murakami
- Seikakai Mildix Skin Clinic, 3rd Floor, 3-98 Senju, Adachi-ku, Tokyo 120-0034, Japan;
| | - Hiroto Tamura
- Department of Environmental Bioscience, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan; (S.H.-T.); (H.T.)
| | - Makoto Suematsu
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.S.); (M.S.)
| |
Collapse
|
3
|
Effect of humidity during sample preparation on bacterial identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122780. [PMID: 34052563 DOI: 10.1016/j.jchromb.2021.122780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a highly reliable and efficient technology for the identification of microbial pathogens. We previously found that 40% humidity was the optimal condition for the preparation of samples (co-crystallization of the sample and matrix) for serum peptidomic analysis via MALDI-TOF MS profiling. This optimum temperature was applied to obtain the highest reproducibility and throughput and greatest number of peaks. We therefore hypothesized that humidity control was also essential for MALDI-TOF MS bacterial identification. In this study, we constructed a simple sample preparation device that enables humidity control and used it for co-crystallization of the sample and matrix. Identification scores for five Gram-negative bacteria and six Gram-positive bacteria were determined using the MALDI BioTyper® system at three humidity ranges (10-20%, 30-40%, and 50-60%). As a result, higher identification scores were obtained at 30-40% humidity than at 10-20% or 50-60% humidity. At 30-40% humidity, 517/550 (94.0%) isolates scored greater than 2.0, indicating the success of species-level identification. Similarly, 537/550 (97.6%) isolates scored greater than 1.7, indicating the success of genus-level identification. Thus, 30-40% humidity generated optimal MALDI-TOF MS identification scores and the highest percentage of correct identifications. These results could lead to further improvements in the accuracy of MALDI-TOF MS bacterial identification.
Collapse
|
4
|
Mayslich C, Grange PA, Dupin N. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021; 9:303. [PMID: 33540667 PMCID: PMC7913060 DOI: 10.3390/microorganisms9020303] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cutibacterium acnes is a member of the skin microbiota found predominantly in regions rich in sebaceous glands. It is involved in maintaining healthy skin and has long been considered a commensal bacterium. Its involvement in various infections has led to its emergence as an opportunist pathogen. Interactions between C. acnes and the human host, including the human skin microbiota, promote the selection of C. acnes strains capable of producing several virulence factors that increase inflammatory capability. This pathogenic property may be related to many infectious mechanisms, such as an ability to form biofilms and the expression of putative virulence factors capable of triggering host immune responses or enabling C. acnes to adapt to its environment. During the past decade, many studies have identified and characterized several putative virulence factors potentially involved in the pathogenicity of this bacterium. These virulence factors are involved in bacterial attachment to target cells, polysaccharide-based biofilm synthesis, molecular structures mediating inflammation, and the enzymatic degradation of host tissues. C. acnes, like other skin-associated bacteria, can colonize various ecological niches other than skin. It produces several proteins or glycoproteins that could be considered to be active virulence factors, enabling the bacterium to adapt to the lipophilic environment of the pilosebaceous unit of the skin, but also to the various organs it colonizes. In this review, we summarize current knowledge concerning characterized C. acnes virulence factors and their possible implication in the pathogenicity of C. acnes.
Collapse
Affiliation(s)
- Constance Mayslich
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
| | - Philippe Alain Grange
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| | - Nicolas Dupin
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| |
Collapse
|
5
|
Review on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the rapid screening of microbial species: A promising bioanalytical tool. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
GAJDÁCS MÁRIÓ, URBÁN EDIT. Relevance of anaerobic bacteremia in adult patients: A never-ending story? Eur J Microbiol Immunol (Bp) 2020; 10:64-75. [PMID: 32590337 PMCID: PMC7391379 DOI: 10.1556/1886.2020.00009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/19/2020] [Indexed: 11/30/2022] Open
Abstract
Obligate anaerobic bacteria are considered important constituents of the microbiota of humans; in addition, they are also important etiological agents in some focal or invasive infections and bacteremia with a high level of mortality. Conflicting data have accumulated over the last decades regarding the extent in which these pathogens play an intrinsic role in bloodstream infections. Clinical characteristics of anaerobic bloodstream infections do not differ from bacteremia caused by other pathogens, but due to their longer generation time and rigorous growth requirements, it usually takes longer to establish the etiological diagnosis. The introduction of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) has represented a technological revolution in microbiological diagnostics, which has allowed for the fast, accurate and reliable identification of anaerobic bacteria at a low sample cost. The purpose of this review article is to summarize the currently available literature data on the prevalence of anaerobic bacteremia in adults for physicians and clinical microbiologists and to shed some light on the complexity of this topic nowadays.
Collapse
Affiliation(s)
- MÁRIÓ GAJDÁCS
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., Szeged, 6720, Hungary
| | - EDIT URBÁN
- Department of Public Health, Faculty of Medicine, University of Szeged, Dóm tér 10., Szeged, 6720, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., Pécs, 7624, Hungary
| |
Collapse
|
7
|
Propionibacterium/Cutibacterium species-related positive samples, identification, clinical and resistance features: a 10-year survey in a French hospital. Eur J Clin Microbiol Infect Dis 2020; 39:1357-1364. [PMID: 32125556 DOI: 10.1007/s10096-020-03852-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
A 10-year retrospective study of Propionibacterium/Cutibacterium-positive samples gathered from hospitalized patients was conducted at Nantes University hospital. A total of 2728 Propionibacterium/Cutibacterium-positive samples analyzed between 2007 and 2016 were included. Due to the implementation of MALDI-TOF identification in 2013, most non-Cutibacterium acnes isolates were identified a second time using this technology. Over that period, Cutibacterium acnes remained the most predominant species accounting for 91.5% (2497/2728) of the isolates, followed by Cutibacterium avidum (4.2%, 115/2728) and Cutibacterium granulosum (2.4%, 64/2728). Regarding the origin of samples, the orthopaedic department was the main Cutibacterium sample provider representing 51.9% (1415/2728) of all samples followed by the dermatology department (11.5%, 315/2728). Samples were recovered from various tissue locations: 31.5% (858/2728) from surgery-related samples such as shoulder, spine or hip replacement devices and 19.1% (520/2728) from skin samples. MALDI-TOF method revealed misidentification before 2013. Cutibacterium avidum was falsely identified as C. granulosum (n = 33). Consequently, MALDI-TOF technology using up-to-date databases should be preferred to biochemical identification in order to avoid biased species identification. Regarding antibiotic resistance, 14.7% (20/136) of C. acnes was resistant to erythromycin. 4.1% (41/1005) of C. acnes strains, 17.9% (12/67) of C. avidum strains and 3.6% (1/28) of C. granulosum strains were found resistant to clindamycin.
Collapse
|
8
|
Tadros M, Cabrera A, Matukas LM, Muller M. Evaluation of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry and ClinPro Tools as a Rapid Tool for Typing Streptococcus pyogenes. Open Forum Infect Dis 2019; 6:ofz441. [PMID: 31700941 PMCID: PMC6825801 DOI: 10.1093/ofid/ofz441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022] Open
Abstract
Background Timely strain typing of group A Streptococci (GAS) is necessary to guide outbreak recognition and investigation. We evaluated the use of (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) combined with cluster analysis software to rapidly distinguish between related and unrelated GAS isolates in real-time. Methods We developed and validated a typing model using 177 GAS isolates with known emm types. The typing model was created using 43 isolates, which included 8 different emm types, and then validated using 134 GAS isolates of known emm types that were not included in model generation. Results Twelve spectra were generated from each isolate during validation. The overall accuracy of the model was 74% at a cutoff value of 80%. The model performed well with emm types 4, 59, and 74 but showed poor accuracy for emm types 1, 3, 12, 28, and 101. To evaluate the ability of this tool to perform typing in an outbreak situation, we evaluated a virtual outbreak model using a “virtual outbreak strain; emm74” compared with a non-outbreak group or an “outgroup “ of other emm types. External validation of this model showed an accuracy of 91.4%. Conclusions This approach has the potential to provide meaningful information that can be used in real time to identify and manage GAS outbreaks. Choosing isolates characterized by whole genome sequencing rather than emm typing for model generation should improve the accuracy of this approach in rapidly identifying related and unrelated GAS strains.
Collapse
Affiliation(s)
- Manal Tadros
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Microbiology, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ana Cabrera
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Division of Microbiology, Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Larissa M Matukas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Microbiology, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Infectious Diseases, Unity Health Toronto, Toronto, Ontario, Canada
| | - Matthew Muller
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Infectious Diseases, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Kostrzewa M, Nagy E, Schröttner P, Pranada AB. How MALDI-TOF mass spectrometry can aid the diagnosis of hard-to-identify pathogenic bacteria - the rare and the unknown. Expert Rev Mol Diagn 2019; 19:667-682. [PMID: 31303071 DOI: 10.1080/14737159.2019.1643238] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Ten years after its introduction into clinical microbiology, MALDI-TOF mass spectrometry has become the standard routine identification tool for bacteria in most laboratories. The technology has accelerated analyses and improved the quality of results. The greatest significance has been observed for bacteria that were challenging to be identified by traditional methods. Areas covered: We searched in existing literature (Pubmed) for reports how MALDI-TOF MS has contributed to identification of rare and unknown bacteria from different groups. We describe how this has improved the diagnostics in different groups of bacteria. Reference patterns for strains which yet cannot be assigned to a known species even enable the search for related bacteria in studies as well as in routine diagnostics. MALDI-TOF MS can help to discover and investigate new species and their clinical relevance. It is a powerful tool in the elucidation of the bacterial composition of complex microbiota in culturomics studies. Expert opinion: MALDI-TOF MS has improved the diagnosis of bacterial infections. It also enables knowledge generation for prospective diagnostics. The term 'hard-to-identify' might only be rarely attributed to bacteria in the future. Novel applications are being developed, e.g. subspecies differentiation, typing, and antibiotic resistance testing which may further contribute to improved microbial diagnostics.
Collapse
Affiliation(s)
- Markus Kostrzewa
- Bioanalytical Development, Bruker Daltonik GmbH , Bremen , Germany
| | - Elisabeth Nagy
- Institute of Clinical Microbiology, University of Szeged , Szeged , Hungary
| | - Percy Schröttner
- Institut für Medizinische Mikrobiologie und Hygiene, Technische Universität Dresden , Dresden , Germany
| | - Arthur B Pranada
- Department of Medical Microbiology, MVZ Dr. Eberhard & Partner Dortmund (ÜBAG) , Dortmund , Germany
| |
Collapse
|
10
|
Dekio I, McDowell A, Sakamoto M, Tomida S, Ohkuma M. Proposal of new combination, Cutibacterium acnes subsp. elongatum comb. nov., and emended descriptions of the genus Cutibacterium, Cutibacterium acnes subsp. acnes and Cutibacterium acnes subsp. defendens. Int J Syst Evol Microbiol 2019; 69:1087-1092. [DOI: 10.1099/ijsem.0.003274] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In 2016, division of the genus
Propionibacterium
into four distinct genera was proposed. As a consequence, the species
Propionibacterium acnes
was transferred to
Cutibacterium
gen. nov. as
Cutibacterium acnes
comb. nov. The three recently proposed subspecies of
P. acnes
were not, however, accommodated in this proposal. Following a very recent validation of a new combination for
C. acnes
subsp.
defendens
and an automatically created
C. acnes
subsp.
acnes
, we now propose the new combination,
C. acnes
subsp. elongatum comb. nov. The type strain of
Cutibacterium acnes
subsp. elongatum is JCM 18919T (=NCTC 13655T). On the basis of further genomic and phenotypic (haemolysis and MALDI-TOF mass spectrometry) analyses of these subspecies, we also provide emended descriptions of the genus
Cutibacterium
Scholz and Kilian 2016,
C. acnes
subsp.
acnes
(Gilchrist 1900) Nouioui et al. 2018, and
C. acnes
subsp.
defendens
(McDowell et al. 2016) Nouioui et al. 2018.
Collapse
Affiliation(s)
- Itaru Dekio
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
- Skin Microbe Laboratory, Mildix Skin Clinic, Tokyo, Japan
| | - Andrew McDowell
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Altnagelvin Area Hospital, Ulster University, Londonderry, UK
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
- PRIME, Japan Agency for Medical Research and Development (AMED), Tsukuba, Japan
| | - Shuta Tomida
- Department of Biobank, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| |
Collapse
|
11
|
MALDI Profiling and Applications in Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:27-43. [DOI: 10.1007/978-3-030-15950-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
TERAMOTO K, OKUBO T, YAMADA Y, SEKIYA S, IWAMOTO S, TANAKA K. Classification of Cutibacterium acnes at phylotype level by MALDI-MS proteotyping. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:612-623. [PMID: 31827019 PMCID: PMC6920080 DOI: 10.2183/pjab.95.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cutibacterium acnes is a major commensal human skin bacteria. It is a producer of propionic acids that maintain skin acidic pH to inhibit the growth of pathogens. On the other hand, it is also associated with diseases such as acne vulgaris and sarcoidosis. C. acnes strains have been classified into six phylotypes using DNA-based approaches. Because several characteristic features of C. acnes vary according to the phylotype, the development of a practical method to identify these phylotypes is needed. For rapid identification of phylotypes for C. acnes strains, a matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) fingerprinting technique has been applied; however, some phylotypes have not been discriminated. We developed a high-throughput protein purification method to detect biomarker proteins by ultrafiltration. MALDI-MS proteotyping using profiling of identified biomarker peaks was applied for the classification of 24 strains of C. acnes, and these were successfully classified into the correct phylotypes. This is a promising method that allows the discrimination of C. acnes phylotypes independent of a DNA-based approach.
Collapse
Affiliation(s)
- Kanae TERAMOTO
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
- Correspondence should be addressed: K. Teramoto, Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan (e-mail: )
| | - Tatsuki OKUBO
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Yoshihiro YAMADA
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Sadanori SEKIYA
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Shinichi IWAMOTO
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Koichi TANAKA
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| |
Collapse
|
13
|
Draft Genome Sequence of Propionibacterium acnes subsp. elongatum Strain Asn12. Microbiol Resour Announc 2018; 7:MRA00801-18. [PMID: 30533803 PMCID: PMC6211360 DOI: 10.1128/mra.00801-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 11/20/2022] Open
Abstract
Propionibacterium acnes, a non-spore-forming anaerobic Gram-positive bacterium, has been linked to a wide range of opportunistic human infections and conditions, most notably acne vulgaris. Here, we present the draft genome sequence of P. acnes subsp. Propionibacterium acnes, a non-spore-forming anaerobic Gram-positive bacterium, has been linked to a wide range of opportunistic human infections and conditions, most notably acne vulgaris. Here, we present the draft genome sequence of P. acnes subsp. elongatum strain Asn12, isolated from spinal disc tissue (in the United Kingdom).
Collapse
|
14
|
Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol 2018; 32 Suppl 2:5-14. [PMID: 29894579 DOI: 10.1111/jdv.15043] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
While the commensal bacterium Propionibacterium acnes (P. acnes) is involved in the maintenance of a healthy skin, it can also act as an opportunistic pathogen in acne vulgaris. The latest findings on P. acnes shed light on the critical role of a tight equilibrium between members of its phylotypes and within the skin microbiota in the development of this skin disease. Indeed, contrary to what was previously thought, proliferation of P. acnes is not the trigger of acne as patients with acne do not harbour more P. acnes in follicles than normal individuals. Instead, the loss of the skin microbial diversity together with the activation of the innate immunity might lead to this chronic inflammatory condition. This review provides results of the most recent biochemical and genomic investigations that led to the new taxonomic classification of P. acnes renamed Cutibacterium acnes (C. acnes), and to the better characterisation of its phylogenetic cluster groups. Moreover, the latest data on the role of C. acnes and its different phylotypes in acne are presented, providing an overview of the factors that could participate in the virulence and in the antimicrobial resistance of acne-associated strains. Overall, this emerging key information offers new perspectives in the treatment of acne, with future innovative strategies focusing on C. acnes biofilms and/or on its acne-associated phylotypes.
Collapse
Affiliation(s)
- B Dréno
- Department of Dermatology, CIC 1413, CRCINA Inserm 1232, CHU Nantes, Nantes, France
| | - S Pécastaings
- Laboratoire de Génie Chimique, UMR 5503, Faculty of Pharmacy, Université de Toulouse, Université Paul Sabatier, Toulouse Cedex 9, France.,CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - S Corvec
- Department of Bacteriology, CRCINA Inserm 1232, CHU Nantes, Nantes, France
| | - S Veraldi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, I.R.C.C.S. Foundation, Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Khammari
- Department of Dermatology, CIC 1413, CRCINA Inserm 1232, CHU Nantes, Nantes, France
| | - C Roques
- Laboratoire de Génie Chimique, UMR 5503, Faculty of Pharmacy, Université de Toulouse, Université Paul Sabatier, Toulouse Cedex 9, France.,CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| |
Collapse
|
15
|
Corvec S. Clinical and Biological Features of Cutibacterium (Formerly Propionibacterium) avidum, an Underrecognized Microorganism. Clin Microbiol Rev 2018; 31:e00064-17. [PMID: 29848774 PMCID: PMC6056840 DOI: 10.1128/cmr.00064-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The recent description of the genus Cutibacterium has altered the taxonomy of Propionibacterium species. These organisms still belong to the genera of the skin coryneform group, and the most-studied species remains Cutibacterium acnes. Cutibacterium avidum is also a known skin commensal. This underrecognized microorganism can, however, act as a pathogen after bacterial seeding and can be considered opportunistic, causing either superficial or deep/invasive infections. It can cause numerous infections, including but not limited to breast infections, skin abscesses, infective endocarditis, and device-related infections. The ecological niche of C. avidum is clearly different from that of other members of the genus: it is found in the axillary region or at wet sites rather than in dry, exposed areas, and the number of microorganisms increases during puberty. Historically, it has been used for its ability to modulate the immune response and for its antitumor properties. Conventional microbial culture methods and identification processes allow for its accurate identification and characterization. Thanks to the modern omics tools used for phylogenomic approaches, understanding C. avidum pathogenesis (including host-bacterium interactions and virulence factor characterization) is becoming easier, allowing for more thorough molecular characterization. These analyses have revealed that C. avidum causes diverse diseases mediated by multiple virulence factors. The recent genome approach has revealed specific genomic regions within this species that are involved in adherence and biofilm formation as well as fitness, survival, and defense functions. Numerous regions show the presence of phages and horizontal gene transfer. C. avidum remains highly sensitive to a broad spectrum of antibiotics, such as β-lactams, fluoroquinolones, macrolides, and rifampin, although erythromycin and clindamycin resistance has been described. A long-term treatment regimen with a combination of antibiotics is required to successfully eliminate the remaining adherent bacteria, particularly in the case of deep infections after debridement surgery.
Collapse
Affiliation(s)
- Stéphane Corvec
- CHU Nantes, Service de Bactériologie-Hygiène Hospitalière, Nantes, France
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
| |
Collapse
|
16
|
Pécastaings S, Roques C, Nocera T, Peraud C, Mengeaud V, Khammari A, Dréno B. Characterisation ofCutibacterium acnesphylotypes in acne andin vivoexploratory evaluation of Myrtacine®. J Eur Acad Dermatol Venereol 2018; 32 Suppl 2:15-23. [DOI: 10.1111/jdv.15042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Affiliation(s)
- S. Pécastaings
- Laboratoire de Génie Chimique; UMR 5503; Université de Toulouse, Université Paul Sabatier; CNRS; INPT; Toulouse Cedex 9 France
| | - C. Roques
- Laboratoire de Génie Chimique; UMR 5503; Université de Toulouse, Université Paul Sabatier; CNRS; INPT; Toulouse Cedex 9 France
- Fonderephar; Faculty of Pharmacy; Toulouse Cedex 9 France
- CHU Toulouse; Hôpital Purpan, Service de Bactériologie-Hygiène; Toulouse France
| | - Th. Nocera
- Clinical Skin Research Center; Pierre Fabre Dermo-Cosmetique; Toulouse France
| | - C. Peraud
- Clinical Skin Research Center; Pierre Fabre Dermo-Cosmetique; Toulouse France
| | - V. Mengeaud
- Laboratoires Dermatologiques Ducray; Pierre Fabre Dermo-Cosmétique; Cauquillous Lavaur France
| | - A. Khammari
- Department of Dermatology; CHU Nantes; CIC 1413; CRCINA; University Nantes; Nantes France
| | - B. Dréno
- Department of Dermatology; CHU Nantes; CIC 1413; CRCINA; University Nantes; Nantes France
| |
Collapse
|
17
|
Development of a rapid MALDI-TOF MS based epidemiological screening method using MRSA as a model organism. Eur J Clin Microbiol Infect Dis 2017; 37:57-68. [PMID: 28924947 PMCID: PMC5748427 DOI: 10.1007/s10096-017-3101-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022]
Abstract
In this study we present a method using whole cell MALDI-TOF MS and VITEK MS RUO/SARAMIS as a rapid epidemiological screening tool. MRSA was used as a model organism for setting up the screening strategy. A collection of well-characterised MRSA strains representing the 19 most common Pulsed-Field Gel Electrophoresis (PFGE)-types in the region of South-West Sweden for the past 20 years was analysed with MALDI-TOF MS. A total of 111 MRSA strains were used for creating 19 PFGE-specific Superspectra using VITEK MS RUO/SARAMIS. Prior to performing the final analysis, the 19 Superspectra were combined into ten groups displaying similar peak patterns, hereafter named “MALDI-types”. Two-hundred fifty-five MRSA strains were analysed to test the constructed Superspectra/MALDI-type database. Matches to the Superspectra above a threshold of 65% (corresponding to the number of matched peaks in the Superspectrum) were considered as positive assignment of a strain to a MALDI-type. The median peak matching value for correct assignment of a strain to a MALDI-type was 78% (range 65.3–100%). In total, 172 strains (67.4%) were assigned to the correct MALDI-type and only 5.5% of the strains were incorrectly assigned to another MALDI-type than the expected based on the PFGE-type of the strain. We envision this methodology as a cost-efficient step to be used as a first screening strategy in the typing scheme of MRSA isolates, to exclude epidemiological relatedness of isolates or to identify the need for further typing.
Collapse
|
18
|
Optimization of genotypic and biochemical methods to profile P. acnes isolates from a patient population. J Microbiol Methods 2017; 141:17-24. [PMID: 28732695 DOI: 10.1016/j.mimet.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022]
Abstract
Propionibacterium acnes is a key factor in the pathogenesis of acne vulgaris, although currently it is also being associated with medical-device infections. The aim of this work was to validate a safe and quick identification and typing of 24 clinical isolates of Propionibacterium acnes, applying a range of biochemical as well as genetic methods, and investigating the pathogenic potential to associate the different types with human health. RAPD-PCRs revealed the existence of two discernible clusters in correspondence with the phylogroups I and II, according to the PAtig gene polymorphism, leading them to be assigned as P. acnes subsp. acnes subsp. nov. Biotyping according to the pattern of sugar fermentation evidenced that all the isolates from acne and the majority from opportunistic infections fit the biotype I-B3. Consistent with the multiplex touchdown analysis, nearly all the isolates included in this biotype belonged to the subgroups IA1 (the exception being four strains classified as IB). The remaining ones were assigned to phylogroup II, considered to be part of the normal cutaneous microbiota. The susceptibility to three antibiotics was also investigated to explore the relations with the virulence, although no clear trend was identified.
Collapse
|
19
|
Wilson DA, Young S, Timm K, Novak-Weekley S, Marlowe EM, Madisen N, Lillie JL, Ledeboer NA, Smith R, Hyke J, Griego-Fullbright C, Jim P, Granato PA, Faron ML, Cumpio J, Buchan BW, Procop GW. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinically Important Bacteria and Yeasts. Am J Clin Pathol 2017; 147:623-631. [PMID: 28505220 DOI: 10.1093/ajcp/aqw225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES A report on the multicenter evaluation of the Bruker MALDI Biotyper CA System (MBT-CA; Bruker Daltonics, Billerica, MA) for the identification of clinically important bacteria and yeasts. METHODS In total, 4,399 isolates of medically important bacteria and yeasts were assessed in the MBT-CA. These included 2,262 aerobic gram-positive (AGP) bacteria, 792 aerobic gram-negative (AGN) bacteria 530 anaerobic (AnA) bacteria, and 815 yeasts (YSTs). Three processing methods were assesed. RESULTS Overall, 98.4% (4,329/4,399) of all bacterial and yeast isolates were correctly identified to the genus and species/species complex level, and 95.7% of isolates were identified with a high degree of confidence. The percentage correctly identified and the percentage identified correctly with a high level of confidence, respectively, were as follows: AGP bacteria (98.6%/96.5%), AGN bacteria (98.5%/96.8%), AnA bacteria (98.5%/97.4%), and YSTs (97.8%/87.6%). The extended direct transfer method was only minimally superior to the direct transfer method for bacteria (89.9% vs 86.8%, respectively) but significantly superior for yeast isolates (74.0% vs 48.9%, respectively). CONCLUSIONS The Bruker MALDI Biotyper CA System accurately identifies most clinically important bacteria and yeasts and has optional processing methods to improve isolate characterization.
Collapse
Affiliation(s)
| | - Stephen Young
- Tricore Reference Laboratories, Albuquerque, NM
- Department of Pathology, The University of New Mexico Health Sciences Center, Albuquerque
| | - Karen Timm
- Tricore Reference Laboratories, Albuquerque, NM
| | - Susan Novak-Weekley
- Kaiser Permanente Southern California Permanente Medical Group Regional Reference Laboratories, North Hollywood, CA
| | - Elizabeth M Marlowe
- Kaiser Permanente Southern California Permanente Medical Group Regional Reference Laboratories, North Hollywood, CA
| | | | | | - Nathan A Ledeboer
- Wisconsin Diagnostic Laboratory, Milwaukee
- Medical College of Wisconsin, Milwaukee
| | | | - Josh Hyke
- Wisconsin Diagnostic Laboratory, Milwaukee
| | | | | | - Paul A Granato
- Laboratory Alliance of Central New York, Fayetteville
- SUNY Upstate Medical University, Syracuse, NY
| | | | - Joven Cumpio
- Kaiser Permanente Southern California Permanente Medical Group Regional Reference Laboratories, North Hollywood, CA
| | - Blake W Buchan
- Wisconsin Diagnostic Laboratory, Milwaukee
- Medical College of Wisconsin, Milwaukee
| | | |
Collapse
|
20
|
Nowakiewicz A, Ziółkowska G, Zięba P, Gnat S, Trościańczyk A, Adaszek Ł. Characterization of Multidrug Resistant E. faecalis Strains from Pigs of Local Origin by ADSRRS-Fingerprinting and MALDI -TOF MS; Evaluation of the Compatibility of Methods Employed for Multidrug Resistance Analysis. PLoS One 2017; 12:e0171160. [PMID: 28135327 PMCID: PMC5279778 DOI: 10.1371/journal.pone.0171160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/15/2017] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to characterize multidrug resistant E. faecalis strains from pigs of local origin and to analyse the relationship between resistance and genotypic and proteomic profiles by amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI -TOF MS). From the total pool of Enterococcus spp. isolated from 90 pigs, we selected 36 multidrug resistant E. faecalis strains, which represented three different phenotypic resistance profiles. Phenotypic resistance to tetracycline, macrolides, phenicols, and lincomycin and high-level resistance to aminoglycosides were confirmed by the occurrence of at least one corresponding resistance gene in each strain. Based on the analysis of the genotypic and phenotypic resistance of the strains tested, five distinct resistance profiles were generated. As a complement of this analysis, profiles of virulence genes were determined and these profiles corresponded to the phenotypic resistance profiles. The demonstration of resistance to a wide panel of antimicrobials by the strains tested in this study indicates the need of typing to determine the spread of resistance also at the local level. It seems that in the case of E. faecalis, type and scope of resistance strongly determines the genotypic pattern obtained with the ADSRRS-fingerprinting method. The ADSRRS-fingerprinting analysis showed consistency of the genetic profiles with the resistance profiles, while analysis of data with the use of the MALDI- TOF MS method did not demonstrate direct reproduction of the clustering pattern obtained with this method. Our observations were confirmed by statistical analysis (Simpson’s index of diversity, Rand and Wallace coefficients). Even though the MALDI -TOF MS method showed slightly higher discrimination power than ADSRRS-fingerprinting, only the latter method allowed reproduction of the clustering pattern of isolates based on phenotypic resistance and analysis of resistance and virulence genes (Wallace coefficient 1.0). This feature seems to be the most useful for epidemiological purposes and short-term analysis.
Collapse
Affiliation(s)
- Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
- * E-mail:
| | - Grażyna Ziółkowska
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | | | - Sebastian Gnat
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Aleksandra Trościańczyk
- Sub-Department of Veterinary Microbiology, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| |
Collapse
|
21
|
Zhao H, Jia J, Chen Y, Tang J, Jiang Y, Wang J, Li Z, Zhao L. Strain-level characterization of cold-stressed Listeria monocytogenes
using maldi-tof mass fingerprinting. J Food Saf 2017. [DOI: 10.1111/jfs.12339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Han Zhao
- Technological Center; Shandong Entry-Exit Inspection and Quarantine Bureau; Qingdao China
| | - Juntao Jia
- Technological Center; Shandong Entry-Exit Inspection and Quarantine Bureau; Qingdao China
| | - Ying Chen
- Research Institute for Food Safety; Chinese Academy of Inspection and Quarantine; Beijing China
| | - Jing Tang
- Technological Center; Shandong Entry-Exit Inspection and Quarantine Bureau; Qingdao China
| | - Yinghui Jiang
- Technological Center; Shandong Entry-Exit Inspection and Quarantine Bureau; Qingdao China
| | - Jing Wang
- Technological Center; Shandong Entry-Exit Inspection and Quarantine Bureau; Qingdao China
| | - Zhengyi Li
- Technological Center; Shandong Entry-Exit Inspection and Quarantine Bureau; Qingdao China
| | - Liqing Zhao
- Technological Center; Shandong Entry-Exit Inspection and Quarantine Bureau; Qingdao China
| |
Collapse
|
22
|
Sandalakis V, Goniotakis I, Vranakis I, Chochlakis D, Psaroulaki A. Use of MALDI-TOF mass spectrometry in the battle against bacterial infectious diseases: recent achievements and future perspectives. Expert Rev Proteomics 2017; 14:253-267. [PMID: 28092721 DOI: 10.1080/14789450.2017.1282825] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Advancements in microbial identification occur increasingly faster as more laboratories explore, refine and extend the use of mass spectrometry in the field of microbiology. Areas covered: This review covers the latest knowledge found in the literature for quick identification of various classes of bacterial pathogens known to cause human infection by the use of MALDI-TOF MS technology. Except for identification of bacterial strains, more researchers try to 'battle time' in favor of the patient. These novel approaches to identify bacteria directly from clinical samples and even determine antibiotic resistance are extensively revised and discussed. Expert commentary: Mass spectrometry is the future of bacterial identification and creates a new era in modern microbiology. Its incorporation in routine practice seems to be not too far, providing a valuable alternative, especially in terms of time, to conventional techniques. If the technology further advances, quick bacterial identification and probable identification of common antibiotic resistance might guide patient decision-making regarding bacterial infectious diseases in the near future.
Collapse
Affiliation(s)
- Vassilios Sandalakis
- a Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine , University of Crete , Heraklion , Greece
| | - Ioannis Goniotakis
- a Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine , University of Crete , Heraklion , Greece
| | - Iosif Vranakis
- a Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine , University of Crete , Heraklion , Greece
| | - Dimosthenis Chochlakis
- a Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine , University of Crete , Heraklion , Greece
| | - Anna Psaroulaki
- a Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine , University of Crete , Heraklion , Greece
| |
Collapse
|
23
|
Kwon HH, Suh DH. Recent progress in the research aboutPropionibacterium acnesstrain diversity and acne: pathogen or bystander? Int J Dermatol 2016; 55:1196-1204. [DOI: 10.1111/ijd.13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/10/2015] [Accepted: 12/05/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Hyuck Hoon Kwon
- Department of Dermatology; Seoul National University College of Medicine and Acne & Rosacea Research Laboratory, Seoul National University Hospital; Seoul Korea
| | - Dae Hun Suh
- Department of Dermatology; Seoul National University College of Medicine and Acne & Rosacea Research Laboratory, Seoul National University Hospital; Seoul Korea
| |
Collapse
|
24
|
McDowell A, Barnard E, Liu J, Li H, Patrick S. Emendation of Propionibacterium acnes subsp. acnes (Deiko et al. 2015) and proposal of Propionibacterium acnes type II as Propionibacterium acnes subsp. defendens subsp. nov. Int J Syst Evol Microbiol 2016; 66:5358-5365. [PMID: 27670798 DOI: 10.1099/ijsem.0.001521] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, it has been proposed that strains of Propionibacterium acnes from the type III genetic division should be classified as P. acnessubsp. elongatum subsp. nov., with strains from the type I and II divisions collectively classified as P. acnessubsp. acnes subsp. nov. Under such a taxonomic re-appraisal, we believe that types I and II should also have their own separate rank of subspecies. In support of this, we describe a polyphasic taxonomic study based on the analysis of publicly available multilocus and whole-genome sequence datasets, alongside a systematic review of previously published phylogenetic, genomic, phenotypic and clinical data. Strains of types I and II form highly distinct clades on the basis of multilocus sequence analysis (MLSA) and whole-genome phylogenetic reconstructions. In silico or digital DNA-DNA similarity values also fall within the 70-80 % boundary recommended for bacterial subspecies. Furthermore, we see important differences in genome content, including the presence of an active CRISPR/Cas system in type II strains, but not type I, and evidence for increasing linkage equilibrium within the separate divisions. Key biochemical differences include positive test results for β-haemolytic, neuraminidase and sorbitol fermentation activities with type I strains, but not type II. We now propose that type I strains should be classified as P. acnessubsp. acnes subsp. nov., and type II as P. acnessubsp. defendens subsp. nov. The type strain of P. acnessubsp. acnes subsp. nov. is NCTC 737T (=ATCC 6919T=JCM 6425T=DSM 1897T=CCUG 1794T), while the type strain of P. acnessubsp. defendens subsp. nov. is ATCC 11828 (=JCM 6473=CCUG 6369).
Collapse
Affiliation(s)
- Andrew McDowell
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, C- TRIC Building, Altnagelvin Area Hospital, University of Ulster, Londonderry, UK
| | - Emma Barnard
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jared Liu
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, USA
| | - Sheila Patrick
- Centre for Infection & Immunity, School of Medicine, Dentistry & Biomedical Sciences, Queen's University, Belfast, UK
| |
Collapse
|
25
|
Kvich L, Jensen PØ, Justesen US, Bjarnsholt T. Incidence of Propionibacterium acnes in initially culture-negative thioglycollate broths-a prospective cohort study at a Danish University Hospital. Clin Microbiol Infect 2016; 22:941-945. [PMID: 27521804 DOI: 10.1016/j.cmi.2016.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/08/2016] [Accepted: 07/31/2016] [Indexed: 11/19/2022]
Abstract
The aim of this study was to prospectively investigate the incidence of Propionibacterium acnes in thioglycollate broths reported as culture-negative at the Department of Clinical Microbiology, Rigshospitalet, to evaluate whether 5 days of incubation was enough to find all relevant cases. Five hundred thioglycollate broths reported as culture-negative after 5 days were consecutively collected and incubated for at least a further 9 days (at least 14 days of incubation in total). Only tissue samples from sterile sites of the body (n = 298), bone tissue (n = 197) and foreign material (n = 5) were included in this study. Samples were divided into two groups: infected group and control group. This made it possible to compare findings between groups, thereby making it possible to estimate the level of true-positive findings and contamination. Samples from 296 participants were included in this study. After exclusion criteria were met, P. acnes was cultured from ten out of 151 patients (6.6%) in the infected group and from one out of 138 participants (0.7%) in the control group. This resulted in more findings of P. acnes in the infected group on day 14 than on day 5 (p 0.002). Furthermore, P. acnes was cultured more often from bone tissue and tissue surrounding foreign materials on day 14 than on day 5 (p 0.04). Clinical microbiology laboratories should consider incubating thioglycollate broths for at least 14 days to find all relevant cases of P. acnes, especially when it comes to bone tissue and tissue surrounding foreign materials.
Collapse
Affiliation(s)
- L Kvich
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Denmark
| | - P Ø Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Denmark
| | - U S Justesen
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Denmark
| | - T Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
26
|
Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry: A New Guide to Infectious Disease. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2016. [DOI: 10.5812/pedinfect.31816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Kostrzewa M, Nagy E. How MALDI-TOF mass spectrometry can aid diagnosis of hard-to-identify pathogenic bacteria. Expert Rev Mol Diagn 2016; 16:509-11. [DOI: 10.1586/14737159.2016.1157019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Elisabeth Nagy
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
28
|
Strain-Level Differences in Porphyrin Production and Regulation in Propionibacterium acnes Elucidate Disease Associations. mSphere 2016; 1:mSphere00023-15. [PMID: 27303708 PMCID: PMC4863617 DOI: 10.1128/msphere.00023-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022] Open
Abstract
Propionibacterium acnes is a dominant bacterium residing on skin, and it has been thought to play a causal role in several diseases including acne, a common skin disease affecting more than 80% of people worldwide. While specific strains of P. acnes have been associated with either disease or healthy skin, the mechanisms remain unclear. Recently, we showed that vitamin B12 supplementation increased porphyrin production in P. acnes, leading to acne development (D. Kang, B. Shi, M. C. Erfe, N. Craft, and H. Li, Sci. Transl. Med. 7:293ra103, 2015, doi:10.1126/scitranslmed.aab2009). Here, we reveal that the levels of porphyrin production and vitamin B12 regulation are different between acne- and health-associated strains, suggesting a potential molecular mechanism for disease-associated strains in acne pathogenesis and for health-associated strains in skin health. This study highlights the importance of understanding the strain-level differences of the human microbiota in disease pathogenesis. Our findings also suggest the porphyrin biosynthesis pathway as a candidate drug target and use of health-associated strains as potential probiotics in novel acne therapeutics. Propionibacterium acnes is an important skin commensal, but it is also considered a pathogenic factor in several diseases including acne vulgaris, the most common skin disease. While previous studies have revealed P. acnes strain-level differences in health and disease associations, the underlying molecular mechanisms remain unknown. Recently, we demonstrated that vitamin B12 supplementation increases P. acnes production of porphyrins, a group of proinflammatory metabolites important in acne development (D. Kang, B. Shi, M. C. Erfe, N. Craft, and H. Li, Sci. Transl. Med. 7:293ra103, 2015, doi:10.1126/scitranslmed.aab2009). In this study, we compared the porphyrin production and regulation of multiple P. acnes strains. We revealed that acne-associated type IA-2 strains inherently produced significantly higher levels of porphyrins, which were further enhanced by vitamin B12 supplementation. On the other hand, health-associated type II strains produced low levels of porphyrins and did not respond to vitamin B12. Using a small-molecule substrate and inhibitor, we demonstrated that porphyrin biosynthesis was modulated at the metabolic level. We identified a repressor gene (deoR) of porphyrin biosynthesis that was carried in all health-associated type II strains, but not in acne-associated type IA-2 strains. The expression of deoR suggests additional regulation of porphyrin production at the transcriptional level in health-associated strains. Our findings provide one potential molecular mechanism for the different contributions of P. acnes strains to skin health and disease and support the role of vitamin B12 in acne pathogenesis. Our study emphasizes the importance of understanding the role of the commensal microbial community in health and disease at the strain level and suggests potential utility of health-associated P. acnes strains in acne treatment. IMPORTANCEPropionibacterium acnes is a dominant bacterium residing on skin, and it has been thought to play a causal role in several diseases including acne, a common skin disease affecting more than 80% of people worldwide. While specific strains of P. acnes have been associated with either disease or healthy skin, the mechanisms remain unclear. Recently, we showed that vitamin B12 supplementation increased porphyrin production in P. acnes, leading to acne development (D. Kang, B. Shi, M. C. Erfe, N. Craft, and H. Li, Sci. Transl. Med. 7:293ra103, 2015, doi:10.1126/scitranslmed.aab2009). Here, we reveal that the levels of porphyrin production and vitamin B12 regulation are different between acne- and health-associated strains, suggesting a potential molecular mechanism for disease-associated strains in acne pathogenesis and for health-associated strains in skin health. This study highlights the importance of understanding the strain-level differences of the human microbiota in disease pathogenesis. Our findings also suggest the porphyrin biosynthesis pathway as a candidate drug target and use of health-associated strains as potential probiotics in novel acne therapeutics.
Collapse
|
29
|
Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Dekio I, Culak R, Misra R, Gaulton T, Fang M, Sakamoto M, Ohkuma M, Oshima K, Hattori M, Klenk HP, Rajendram D, Gharbia SE, Shah HN. Dissecting the taxonomic heterogeneity within Propionibacterium acnes: proposal for Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov. Int J Syst Evol Microbiol 2015; 65:4776-4787. [PMID: 26432704 DOI: 10.1099/ijsem.0.000648] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov. are described. These emanate from the three known phylotypes of P. acnes, designated types I, II and III. Electron microscopy confirmed the filamentous cell shape of type III, showing a striking difference from types I/II, which were short rods. Biochemical tests indicated that, in types I/II, either the pyruvate, l-pyrrolidonyl arylamidase or d-ribose 2 test was positive, whereas all of these were negative among type III strains. Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectra, which profile mainly their ribosomal proteins, were different between these two groups. Surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) spectra of all phylotypes revealed a specific protein biomarker that was overexpressed in type III strains compared with types I/II only when grown aerobically. Reference strains had high whole-genome similarity between types I (>91 %) and II (>75 %), but a considerably lower level of 72 % similarity with type III. recA and gyrB sequence dendrograms confirmed the distant relatedness of type III, indicating the presence of two distinct centres of variation within the species P. acnes. On the other hand, cellular fatty acid profiles and 16S rRNA gene sequence relatedness (>99.3 %) circumscribed the species. Thus, we propose two subspecies, Propionibacterium acnes subsp. acnes subsp. nov. for types I/II and Propionibacterium acnes subsp. elongatum subsp. nov. for type III. The type strain of Propionibacterium acnes subsp. acnes is NCTC 737T ( = ATCC 6919T = JCM 6425T = DSM 1897T = CCUG 1794T), while the type strain of Propionibacterium acnes subsp. elongatum is K124T ( = NCTC 13655T = JCM 18919T).
Collapse
Affiliation(s)
- Itaru Dekio
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan.,Proteomics Research Unit, Culture Collections, Public Health England, Colindale, London, UK.,Department of Dermatology, Medical Centre East, Tokyo Women's Medical University, Tokyo, Japan
| | - Renata Culak
- Proteomics Research Unit, Culture Collections, Public Health England, Colindale, London, UK
| | - Raju Misra
- Genomic Research Unit, Public Health England, Colindale, London, UK
| | - Tom Gaulton
- Proteomics Research Unit, Culture Collections, Public Health England, Colindale, London, UK
| | - Min Fang
- Proteomics Research Unit, Culture Collections, Public Health England, Colindale, London, UK
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan
| | - Kenshiro Oshima
- Hattori Lab, The University of Tokyo Kashiwa Campus, Kashiwa, Japan
| | - Masahira Hattori
- Hattori Lab, The University of Tokyo Kashiwa Campus, Kashiwa, Japan
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | | | - Saheer E Gharbia
- Genomic Research Unit, Public Health England, Colindale, London, UK
| | - Haroun N Shah
- Proteomics Research Unit, Culture Collections, Public Health England, Colindale, London, UK
| |
Collapse
|
31
|
Hauck Y, Soler C, Gérôme P, Vong R, Macnab C, Appere G, Vergnaud G, Pourcel C. A novel multiple locus variable number of tandem repeat (VNTR) analysis (MLVA) method for Propionibacterium acnes. INFECTION GENETICS AND EVOLUTION 2015; 33:233-41. [PMID: 25965840 DOI: 10.1016/j.meegid.2015.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 11/17/2022]
Abstract
Propionibacterium acnes plays a central role in the pathogenesis of acne and is responsible for severe opportunistic infections. Numerous typing schemes have been developed that allow the identification of phylotypes, but they are often insufficient to differentiate subtypes. To better understand the genetic diversity of this species and to perform epidemiological analyses, high throughput discriminant genotyping techniques are needed. Here we describe the development of a multiple locus variable number of tandem repeats (VNTR) analysis (MLVA) method. Thirteen VNTRs were identified in the genome of P. acnes and were used to genotype a collection of clinical isolates. In addition, publically available sequencing data for 102 genomes were analyzed in silico, providing an MLVA genotype. The clustering of MLVA data was in perfect congruence with whole genome based clustering. Analysis of the clustered regularly interspaced short palindromic repeat (CRISPR) element uncovered new spacers, a supplementary source of genotypic information. The present MLVA13 scheme and associated internet database represents a first line genotyping assay to investigate large number of isolates. Particular strains may then be submitted to full genome sequencing in order to better analyze their pathogenic potential.
Collapse
Affiliation(s)
- Yolande Hauck
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Charles Soler
- Laboratoire de biologie clinique, HIA Percy, Clamart, France
| | - Patrick Gérôme
- Service de biologie médicale, HIA Desgenettes, 69275 Lyon cedex 03, France
| | - Rithy Vong
- Laboratoire de biologie clinique, HIA Percy, Clamart, France
| | | | | | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, 91405 Orsay cedex, France; ENSTA ParisTech, Université Paris-Saclay, 91762 Palaiseau cedex, France
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, 91405 Orsay cedex, France.
| |
Collapse
|
32
|
Becker CAM, Thibault FM, Arcangioli MA, Tardy F. Loss of diversity within Mycoplasma bovis isolates collected in France from bovines with respiratory diseases over the last 35 years. INFECTION GENETICS AND EVOLUTION 2015; 33:118-26. [PMID: 25913158 DOI: 10.1016/j.meegid.2015.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022]
Abstract
Mycoplasma (M.) bovis has recently emerged as a major, worldwide etiological agent of bovine respiratory diseases leading to huge economic losses mainly due to high morbidity and mortality as well as poor growth rates. The spread of M. bovis infections between different animals, herds, regions or countries has been often reported to be connected to the movement of animals. However, despite recent considerable efforts, no universal subtyping method is yet available to trace M. bovis isolates circulation at an international scale. Moreover in France, the overall population diversity of M. bovis isolates has not been assessed since the early 1990s. This study was conducted to fill in these gaps. The genotypic diversity between sixty isolates collected in France over the last 35 years was assessed using two molecular subtyping methods that addressed either the long-term epidemiological relationships (Multi Locus Sequence Typing, MLST) or the genetic microvariations (Multiple Locus VNTR Analysis, MLVA) between isolates. Phenotypic diversity was also analyzed by using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) to compare the main protein patterns of isolates. All proposed subtyping approaches were optimized and led to the same pattern in the French M. bovis population that consisted of two clusters, the first one comprising isolates collected before 2000 and the second, those collected after 2000. Recent strains were further shown to be more homogeneous than older ones, which is consistent with the spread of a single clone throughout the country. Because this spread was concomitant with the emergence of multiresistant M. bovis isolates, several hypotheses are discussed to explain the homogeneity of M. bovis isolates in France, even though the M. bovis species is fully equipped to generate diversity.
Collapse
Affiliation(s)
- Claire A M Becker
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, F-69280 Marcy l'Etoile, France; Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, F-69364 Lyon Cedex 07, France.
| | - François M Thibault
- Institut de Recherche Biomédicale des Armées, HIA Desgenettes, F-69275 Lyon Cedex 03, France.
| | - Marie-Anne Arcangioli
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, F-69280 Marcy l'Etoile, France; Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, F-69364 Lyon Cedex 07, France.
| | - Florence Tardy
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, F-69364 Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, F-69280 Marcy l'Etoile, France.
| |
Collapse
|
33
|
Yu Y, Champer J, Garbán H, Kim J. Typing of Propionibacterium acnes: a review of methods and comparative analysis. Br J Dermatol 2015; 172:1204-9. [PMID: 25600912 DOI: 10.1111/bjd.13667] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 02/06/2023]
Abstract
Propionibacterium acnes is a major commensal of the human skin. However, it is also the pathogen responsible for acne vulgaris and other diseases, such as medical-device infections. Strains of Propionibacterium acnes have long been classified into several different types. Recently, typing systems for this bacterium have taken on an increased importance as different types of P. acnes have been found to be associated with different disease states, including acne. Genetic approaches based on individual or multiple genes have classified P. acnes into types, which have been supported by the sequencing of nearly 100 P. acnes genomes. These types have distinct genetic, transcriptomic and proteomic differences. Additionally, they may have different immune response profiles. Taken together, these factors may account for the different disease associations of P. acnes types.
Collapse
Affiliation(s)
- Y Yu
- Division of Dermatology and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, U.S.A.,Irvine School of Medicine, University of California, Irvine, CA, U.S.A
| | - J Champer
- Division of Dermatology and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, U.S.A
| | - H Garbán
- Division of Dermatology and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, U.S.A
| | - J Kim
- Division of Dermatology and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, U.S.A.,Department of Dermatology, Greater Los Angeles Healthcare System Veterans Affairs, Los Angeles, CA, U.S.A
| |
Collapse
|
34
|
Dhieb C, Normand AC, Al-Yasiri M, Chaker E, El Euch D, Vranckx K, Hendrickx M, Sadfi N, Piarroux R, Ranque S. MALDI-TOF typing highlights geographical and fluconazole resistance clusters in Candida glabrata. Med Mycol 2015; 53:462-9. [PMID: 25841053 DOI: 10.1093/mmy/myv013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Utilizing matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra for Candida glabrata typing would be a cost-effective and easy-to-use alternative to classical DNA-based typing methods. This study aimed to use MALDI-TOF for the typing of C. glabrata clinical isolates from various geographical origins and test its capacity to differentiate between fluconazole-sensitive and -resistant strains.Both microsatellite length polymorphism (MLP) and MALDI-TOF mass spectra of 58 C. glabrata isolates originating from Marseilles (France) and Tunis (Tunisia) as well as collection strains from diverse geographic origins were analyzed. The same analysis was conducted on a subset of C. glabrata isolates that were either susceptible (MIC ≤ 8 mg/l) or resistant (MIC ≥ 64 mg/l) to fluconazole.According to the seminal results, both MALDI-TOF and MLP classifications could highlight C. glabrata population structures associated with either geographical dispersal barriers (p < 10(-5)) or the selection of antifungal drug resistance traits (<10(-5)).In conclusion, MALDI-TOF geographical clustering was congruent with MPL genotyping and highlighted a significant population genetic structure according to fluconazole susceptibility in C. glabrata. Furthermore, although MALDI-TOF and MLP resulted in distinct classifications, MALDI-TOF also classified the isolates with respect to their fluconazole susceptibility profile. Further prospective studies are required to evaluate the capacity of MALDI-TOF typing to investigate C. glabrata infection outbreaks and predict the antifungal susceptibility profile of clinical laboratory isolates.
Collapse
Affiliation(s)
- C Dhieb
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| | - A C Normand
- Parasitolgy-Mycology, APHM, CHU Timone, Marseille, France
| | - M Al-Yasiri
- Aix Marseille Université, IP-TPT UMR MD3, 13005, Marseille, France
| | - E Chaker
- Laboratoire de Parasitologie, Hôpital La Rabta, Tunis, Tunisia
| | - D El Euch
- Service de Dermatologie et de Vénéréologie, Hôpital La Rabta, Tunis, Tunisia
| | - K Vranckx
- Applied Maths NV, 9830, Sint-Martens-Latem, Belgium
| | - M Hendrickx
- BCCM/IHEM: Scientific Institute of Public Health, Mycology and Aerobiology Section, Brussels, Belgium
| | - N Sadfi
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| | - R Piarroux
- Parasitolgy-Mycology, APHM, CHU Timone, Marseille, France Aix Marseille Université, IP-TPT UMR MD3, 13005, Marseille, France
| | - S Ranque
- Parasitolgy-Mycology, APHM, CHU Timone, Marseille, France Aix Marseille Université, IP-TPT UMR MD3, 13005, Marseille, France
| |
Collapse
|
35
|
Multiplex touchdown PCR for rapid typing of the opportunistic pathogen Propionibacterium acnes. J Clin Microbiol 2015; 53:1149-55. [PMID: 25631794 DOI: 10.1128/jcm.02460-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The opportunistic human pathogen Propionibacterium acnes is composed of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II, and III, which vary in their production of putative virulence factors, their inflammatory potential, and their biochemical, aggregative, and morphological characteristics. Although multilocus sequence typing (MLST) currently represents the gold standard for unambiguous phylogroup classification and individual strain identification, it is a labor-intensive and time-consuming technique. As a consequence, we developed a multiplex touchdown PCR assay that in a single reaction can confirm the species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA gene (all isolates), ATPase (types IA1, IA2, and IC), sodA (types IA2 and IB), atpD (type II), and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterized by MLST and representing types IA1 (n=145), IA2 (n=20), IB (n=65), IC (n=7), II (n=45), and III (n=30), the multiplex displayed 100% sensitivity and 100% specificity for detecting isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. This multiplex assay will provide researchers with a rapid, high-throughput, and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, and it will serve as a prescreening tool to maximize the number of genetically diverse isolates selected for downstream higher-resolution sequence-based analyses.
Collapse
|
36
|
Giannopoulos L, Papaparaskevas J, Refene E, Daikos G, Stavrianeas N, Tsakris A. MLST typing of antimicrobial-resistant Propionibacterium acnes isolates from patients with moderate to severe acne vulgaris. Anaerobe 2014; 31:50-4. [PMID: 25451716 DOI: 10.1016/j.anaerobe.2014.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022]
Abstract
Molecular typing data on antimicrobial-resistant Propionibacterium strains are limited in the literature. We examined antimicrobial resistance profiles and the underlying resistance mechanisms in Propionibacterium spp. isolates recovered from patients with moderate to severe acne vulgaris in Greece. The clonallity of the resistant Propionibacterium acnes isolates was also investigated. Propionibacterium spp. isolates were detected using Tryptone-Yeast Extract-Glucose (TYG) agar plates supplemented with 4% furazolidone. Erythromycin, clindamycin, vancomycin, penicillin, co-trimoxazole, doxycycline, minocycline and ciprofloxacin MICs were determined using the gradient strip method. Erythromycin, clindamycin and tetracycline mechanisms of resistance were determined using PCR and sequencing of the domain V of 23S rRNA and 16S rRNA, as well as the presence of the ermX gene. Typing was performed using the multi locus sequence typing (MLST) methodology. Seventy nine isolates from 76 patients were collected. Twenty-three isolates (29.1%) exhibited resistance to erythromycin and clindamycin, while two additional isolates (2.5%) were resistant only to erythromycin. Resistance to tetracycline was not detected. The underlying molecular mechanisms were point mutations A2059G and A2058G. MLST typing of the P. acnes resistant isolates revealed that lineage type IA1 (ST-1, 3 and 52) prevailed (12/18; 66.7%), whilst lineage type IA2 (ST-2 and 22) accounted for five more isolates (27.8%). Susceptible isolates were more evenly distributed between ST types. Propionibacterium spp. from moderate to severe acne vulgaris in Greece are frequently resistant to erythromycin/clindamycin but not to tetracyclines, mainly due to the point mutations A2059G and A2058G. P. acnes resistant isolates were more clonally related than susceptible ones and belonged to a limited number of MLST types.
Collapse
Affiliation(s)
- Lambros Giannopoulos
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; Department of Dermatology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Joseph Papaparaskevas
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece.
| | - Eirini Refene
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece
| | - Georgios Daikos
- First Department of Propaedeutic Internal Medicine, "Laikon" University Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Nikolaos Stavrianeas
- Department of Dermatology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece
| |
Collapse
|
37
|
Nagy E, Ábrók M, Bartha N, Bereczki L, Juhász E, Kardos G, Kristóf K, Miszti C, Urbán E. Special application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiological diagnostics. Orv Hetil 2014; 155:1495-503. [DOI: 10.1556/oh.2014.29985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry as a new possibility for rapid identification of bacteria and fungi revolutionized the clinical microbiological diagnostics. It has an extreme importance in the routine microbiological laboratories, as identification of the pathogenic species rapidly will influence antibiotic selection before the final determination of antibiotic resistance of the isolate. The classical methods for identification of bacteria or fungi, based on biochemical tests, are influenced by many environmental factors. The matrix-assisted laser desorption ionization time-of-flight mass spectrometry is a rapid method which is able to identify a great variety of the isolated bacteria and fungi based on the composition of conserved ribosomal proteins. Recently several other applications of the method have also been investigated such as direct identification of pathogens from the positive blood cultures. There are possibilities to identify bacteria from the urine samples in urinary tract infection or from other sterile body fluids. Using selective enrichment broth Salmonella sp from the stool samples can be identified more rapidly, too. The extended spectrum beta-lactamase or carbapenemase production of the isolated bacteria can be also detected by this method helping the antibiotic selection in some cases. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry based methods are suitable to investigate changes in deoxyribonucleic acid or ribonucleic acid, to carry out rapid antibiotic resistance determination or other proteomic analysis. The aim of this paper is to give an overview about present possibilities of using this technique in the clinical microbiological routine procedures. Orv. Hetil., 2014, 155(38), 1495–1503.
Collapse
Affiliation(s)
- Erzsébet Nagy
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Klinikai Mikrobiológiai Diagnosztikai Intézet Szeged Pf. 427 6701
| | - Marianna Ábrók
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Klinikai Mikrobiológiai Diagnosztikai Intézet Szeged Pf. 427 6701
| | - Noémi Bartha
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Klinikai Mikrobiológiai Diagnosztikai Intézet Szeged Pf. 427 6701
| | - László Bereczki
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Klinikai Mikrobiológiai Diagnosztikai Intézet Szeged Pf. 427 6701
| | - Emese Juhász
- Semmelweis Egyetem, Általános Orvostudományi Kar Laboratóriumi Medicina Intézet, Klinikai Mikrobiológiai Diagnosztikai Laboratórium Budapest
| | - Gábor Kardos
- Debreceni Egyetem, Általános Orvostudományi Kar Orvosi Mikrobiológiai Intézet Debrecen
| | - Katalin Kristóf
- Semmelweis Egyetem, Általános Orvostudományi Kar Laboratóriumi Medicina Intézet, Klinikai Mikrobiológiai Diagnosztikai Laboratórium Budapest
| | - Cecilia Miszti
- Debreceni Egyetem, Általános Orvostudományi Kar Orvosi Mikrobiológiai Intézet Debrecen
| | - Edit Urbán
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Klinikai Mikrobiológiai Diagnosztikai Intézet Szeged Pf. 427 6701
| |
Collapse
|
38
|
Romano-Bertrand S, Beretta M, Jean-Pierre H, Frapier JM, Calvet B, Parer S, Jumas-Bilak E. Propionibacterium acnes populations involved in deep pathological samples and their dynamics along the cardiac surgical pathway. Eur J Clin Microbiol Infect Dis 2014; 34:287-301. [DOI: 10.1007/s10096-014-2228-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/11/2014] [Indexed: 11/28/2022]
|
39
|
Johansson Å, Nagy E, Sóki J. Instant screening and verification of carbapenemase activity in Bacteroides fragilis in positive blood culture, using matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Med Microbiol 2014; 63:1105-1110. [DOI: 10.1099/jmm.0.075465-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
| | - Elisabeth Nagy
- Institute of Clinical Microbiology, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| | - József Sóki
- Institute of Clinical Microbiology, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
40
|
Karygianni L, Anderson AC, Tennert C, Kollmar K, Altenburger MJ, Hellwig E, Al-Ahmad A. Supplementary sampling of obturation materials enhances microbial analysis of endodontic treatment failures: a proof of principle study. Clin Oral Investig 2014; 19:319-27. [PMID: 24677170 DOI: 10.1007/s00784-014-1231-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/14/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Root canal treatment failures often correlate with persistent biomaterial-associated endodontic infections. The aim of the present study was to assess the impact of endodontic obturation material sampling from root canals with posttreatment apical periodontitis on improving standard study protocols. MATERIALS AND METHODS Samples from previously filled root canals and their corresponding endodontic filling materials were obtained from five root-filled teeth with posttreatment periradicular lesions. After cultivation, the isolated microorganisms were quantified and biochemically identified. Moreover, clone libraries were constructed after the amplification of bacterial 16S ribosomal DNA (rDNA) from the same samples. DNA from selected clones was sequenced to identify microbial species. Transmission electron microscopy (TEM) aided visualization of the detected bacteria. RESULTS Overall, 22 taxa of the phyla Firmicutes, Actinobacteria, and Bacteroidetes were detected in both obturation and root canal samples by culture-dependent and culture-independent methods. Root canal fillings sheltered 17 species (3.30-7.50 × 10(3) CFU/ml). Of these, nine were detected solely in the retrieved obturation materials. The reinfected root canals harbored 13 taxa (3.48-7.36 × 10(3) CFU/ml). Obligate and facultative anaerobic bacteria prevailed. The number of different species ranged from 1 to 5 within a single sample. Fungi were not detected. CONCLUSIONS Bacteria can colonize both root canals and endodontic fillings in vivo. CLINICAL RELEVANCE Integrating the sampling of obturation materials with standard root canal sample collection offers a clearer insight into the actual microbial flora of reinfected root canals and improves the study protocols of secondary/persistent endodontic infections.
Collapse
Affiliation(s)
- L Karygianni
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Cai HY, Caswell JL, Prescott JF. Nonculture Molecular Techniques for Diagnosis of Bacterial Disease in Animals. Vet Pathol 2014; 51:341-50. [DOI: 10.1177/0300985813511132] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The past decade has seen remarkable technical advances in infectious disease diagnosis, and the pace of innovation is likely to continue. Many of these techniques are well suited to pathogen identification directly from pathologic or clinical samples, which is the focus of this review. Polymerase chain reaction (PCR) and gene sequencing are now routinely performed on frozen or fixed tissues for diagnosis of bacterial infections of animals. These assays are most useful for pathogens that are difficult to culture or identify phenotypically, when propagation poses a biosafety hazard, or when suitable fresh tissue is not available. Multiplex PCR assays, DNA microarrays, in situ hybridization, massive parallel DNA sequencing, microbiome profiling, molecular typing of pathogens, identification of antimicrobial resistance genes, and mass spectrometry are additional emerging technologies for the diagnosis of bacterial infections from pathologic and clinical samples in animals. These technical advances come, however, with 2 caveats. First, in the age of molecular diagnosis, quality control has become more important than ever to identify and control for the presence of inhibitors, cross-contamination, inadequate templates from diagnostic specimens, and other causes of erroneous microbial identifications. Second, the attraction of these technologic advances can obscure the reality that medical diagnoses cannot be made on the basis of molecular testing alone but instead through integrated consideration of clinical, pathologic, and laboratory findings. Proper validation of the method is required. It is critical that veterinary diagnosticians understand not only the value but also the limitations of these technical advances for routine diagnosis of infectious disease.
Collapse
Affiliation(s)
- H. Y. Cai
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - J. L. Caswell
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - J. F. Prescott
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
42
|
Nagy E. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new possibility for the identification and typing of anaerobic bacteria. Future Microbiol 2014; 9:217-33. [DOI: 10.2217/fmb.13.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABSTRACT: Anaerobic bacteria predominate in the normal flora of humans and are important, often life-threatening pathogens in mixed infections originating from the indigenous microbiota. The isolation and identification of anaerobes by phenotypic and DNA-based molecular methods at a species level is time-consuming and laborious. Following the successful adaptation of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the routine laboratory identification of bacteria, the extensive development of a database has been initiated to use this method for the identification of anaerobic bacteria. Not only frequently isolated anaerobic species, but also newly recognized and taxonomically rearranged genera and species can be identified using direct smear samples or whole-cell protein extraction, and even phylogenetically closely related species can be identified correctly by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Typing of anaerobic bacteria on a subspecies level, determination of antibiotic resistance and direct identification of blood culture isolates will revolutionize anaerobe bacteriology in the near future.
Collapse
Affiliation(s)
- Elizabeth Nagy
- Institute of Clinical Microbiology, University of Szeged, 6701 Szeged, PO Box 427, Hungary
| |
Collapse
|
43
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2014; 26:547-603. [PMID: 23824373 DOI: 10.1128/cmr.00072-12] [Citation(s) in RCA: 529] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.
Collapse
|
44
|
Dudley E. MALDI Profiling and Applications in Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:33-58. [DOI: 10.1007/978-3-319-06068-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Šedo O, Vávrová A, Vad'urová M, Tvrzová L, Zdráhal Z. The influence of growth conditions on strain differentiation within the Lactobacillus acidophilus group using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2729-2736. [PMID: 24214857 DOI: 10.1002/rcm.6741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling of bacteria is often used to distinguish isolates beyond the species level, even to the level of individual strains. However, the influence of bacterial growth conditions on the discriminatory power of the method to the strain level has not yet been properly evaluated. METHODS For the purpose of this study, we used an extraction protocol recommended for clinical laboratories for MALDI-TOF MS profiling of bacteria. Seventeen closely related strains of the Lactobacillus acidophilus group were cultivated under various growth conditions (growth medium, time, and temperature) and analyzed. RESULTS Out of a total of 327 samples, 80 % were correctly assigned to the species level and 13 % only to the genus level. When using data obtained from strains cultured for lengthy periods (7 days), the identification success rate was reduced due to poor signal quality, whereas with shorter cultivation times there was no influence of growth conditions on the assignment of particular strains to their corresponding species. However, variations in certain cultivation parameters were found to influence identification and differentiation of most of the examined strains. Strain discrimination was frequently found to be dependent on the selection of culture conditions. MALDI-TOF MS data treatment (strain-specific peak detection, BioTyper scoring, subtyping, or cluster analysis) also contributed to the discriminatory power of the method. CONCLUSIONS When MALDI-TOF MS profiling of bacteria is used for strain discrimination, the cultivation conditions should be properly optimized and controlled as they significantly contribute to the discriminatory power of the method.
Collapse
Affiliation(s)
- Ondrej Šedo
- Research Group Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
46
|
Portillo ME, Corvec S, Borens O, Trampuz A. Propionibacterium acnes: an underestimated pathogen in implant-associated infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:804391. [PMID: 24308006 PMCID: PMC3838805 DOI: 10.1155/2013/804391] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 08/20/2013] [Accepted: 10/04/2013] [Indexed: 12/16/2022]
Abstract
The role of Propionibacterium acnes in acne and in a wide range of inflammatory diseases is well established. However, P. acnes is also responsible for infections involving implants. Prolonged aerobic and anaerobic agar cultures for 14 days and broth cultures increase the detection rate. In this paper, we review the pathogenic role of P. acnes in implant-associated infections such as prosthetic joints, cardiac devices, breast implants, intraocular lenses, neurosurgical devices, and spine implants. The management of severe infections caused by P. acnes involves a combination of antimicrobial and surgical treatment (often removal of the device). Intravenous penicillin G and ceftriaxone are the first choice for serious infections, with vancomycin and daptomycin as alternatives, and amoxicillin, rifampicin, clindamycin, tetracycline, and levofloxacin for oral treatment. Sonication of explanted prosthetic material improves the diagnosis of implant-associated infections. Molecular methods may further increase the sensitivity of P. acnes detection. Coating of implants with antimicrobial substances could avoid or limit colonization of the surface and thereby reduce the risk of biofilm formation during severe infections. Our understanding of the role of P. acnes in human diseases will likely continue to increase as new associations and pathogenic mechanisms are discovered.
Collapse
Affiliation(s)
| | - Stéphane Corvec
- Service de Bactériologie-Hygiène, CHU de Nantes, Institut de Biologie, Nantes Cedex, France
- Université de Nantes, EA3826, Thérapeutiques Cliniques et Expérimentales des Infections, 1 rue G. Veil, 44000 Nantes, France
| | - Olivier Borens
- Orthopedic Septic Surgical Unit, Department of Surgery and Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité-University Medicine Berlin, Free University and Humboldt University, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
47
|
Del Chierico F, Petrucca A, Vernocchi P, Bracaglia G, Fiscarelli E, Bernaschi P, Muraca M, Urbani A, Putignani L. Proteomics boosts translational and clinical microbiology. J Proteomics 2013; 97:69-87. [PMID: 24145144 DOI: 10.1016/j.jprot.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/28/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
Abstract
The application of proteomics to translational and clinical microbiology is one of the most advanced frontiers in the management and control of infectious diseases and in the understanding of complex microbial systems within human fluids and districts. This new approach aims at providing, by dedicated bioinformatic pipelines, a thorough description of pathogen proteomes and their interactions within the context of human host ecosystems, revolutionizing the vision of infectious diseases in biomedicine and approaching new viewpoints in both diagnostic and clinical management of the patient. Indeed, in the last few years, many laboratories have matured a series of advanced proteomic applications, aiming at providing individual proteome charts of pathogens, with respect to their morph and/or cell life stages, antimicrobial or antimycotic resistance profiling, epidemiological dispersion. Herein, we aim at reviewing the current state-of-the-art on proteomic protocols designed and set-up for translational and diagnostic microbiological purposes, from axenic pathogens' characterization to microbiota ecosystems' full description. The final goal is to describe applications of the most common MALDI-TOF MS platforms to advanced diagnostic issues related to emerging infections, increasing of fastidious bacteria, and generation of patient-tailored phylotypes. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- F Del Chierico
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Petrucca
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Diagnostic Science, Sant'Andrea Hospital, Via di Grottarossa 1035, 00185 Rome, Italy
| | - P Vernocchi
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - G Bracaglia
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - E Fiscarelli
- Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - P Bernaschi
- Unit of Microbiology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - M Muraca
- Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Urbani
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Rome, Italy; IRCCS-Santa Lucia Foundation, Rome, Italy
| | - L Putignani
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| |
Collapse
|
48
|
McDowell A, Nagy I, Magyari M, Barnard E, Patrick S. The opportunistic pathogen Propionibacterium acnes: insights into typing, human disease, clonal diversification and CAMP factor evolution. PLoS One 2013; 8:e70897. [PMID: 24058439 PMCID: PMC3772855 DOI: 10.1371/journal.pone.0070897] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022] Open
Abstract
We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST4) that correctly predicted the phylogroup (IA1, IA2, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http://pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST4 method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination; although the latter still plays an important role in the bacterium's evolution. The secreted/cell-associated ‘virulence’ factors tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P. acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and the effect such treatments may have on commensal lineages.
Collapse
Affiliation(s)
- Andrew McDowell
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Correlation between phylogroups and intracellular proteomes of Propionibacterium acnes and differences in the protein expression profiles between anaerobically and aerobically grown cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:151797. [PMID: 23878795 PMCID: PMC3708387 DOI: 10.1155/2013/151797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/17/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022]
Abstract
Propionibacterium acnes is one of the dominant commensals on the human skin and also an opportunistic pathogen in relation to acne, sarcoidosis, prostate cancer, and various infections. Recent investigations using housekeeping and virulence genes have revealed that the species consists of three major evolutionary clades (types I, II, and III). In order to investigate protein expression differences between these phylogroups, proteomic profiles of 21 strains of P. acnes were investigated. The proteins extracted from cells cultured under anaerobic and aerobic conditions were analysed using a SELDI-TOF mass spectrometer, high-resolution capillary gel electrophoresis, and LC-MS/ MS. The SELDI spectral profiles were visualised as a heat map and a dendrogram, which resulted in four proteomic groups. Strains belonging to type I were represented in the proteome Group A, while Group B contained type III strains. Groups C and D contained mixtures of types I and II. Each of these groups was not influenced by differences in culture conditions. Under anoxic growth conditions, a type IB strain yielded high expressions of some proteins, such as methylmalonyl-CoA epimerase and the Christie-Atkins-Munch-Petersen (CAMP) factor. The present study revealed good congruence between genomic and proteomic data suggesting that the microenvironment of each subtype may influence protein expression.
Collapse
|