1
|
Ransirini AM, Elżbieta MS, Joanna G, Bartosz K, Wojciech T, Agnieszka B, Magdalena U. Fertilizing drug resistance: Dissemination of antibiotic resistance genes in soil and plant bacteria under bovine and swine slurry fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174476. [PMID: 38969119 DOI: 10.1016/j.scitotenv.2024.174476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The increasing global demand for food production emphasizes the use of organic animal fertilizers, such as manure and slurry, to support sustainable agricultural practices. However, recent studies highlight concerns about antibiotic resistance determinants in animal excrements, posing a potential risk of spreading antibiotic resistance genes (ARGs) in agricultural soil and, consequently, in food products. This study examines the dissemination of ARGs within the soil and plant-associated microbiomes in cherry radish following the application of swine and bovine slurry. In a 45-day pot experiment, slurry-amended soil, rhizospheric bacteria, and endophytic bacteria in radish roots and leaves were sampled and analyzed for 21 ARGs belonging to 7 Antibiotic Resistance Phenotypes (ARPs). The study also assessed slurry's impact on soil microbiome functional diversity, enzymatic activity, physicochemical soil parameters, and the concentration of 22 selected antimicrobials in soil and plant tissues. Tetracyclines and β-lactams were the most frequently identified ARGs in bovine and swine slurry, aligning with similar studies worldwide. Swine slurry showed a higher prevalence of ARGs in soil and plant-associated bacteria, particularly TET genes, reflecting pig antibiotic treatments. The persistent dominance of TET genes across slurry, soil, and plant microbiomes highlights significant influence of slurry application on gene occurrence in plant bacteria. The presence of ARGs in edible plant parts underscores health risks associated with raw vegetable consumption. Time-dependent dynamics of ARG occurrence highlighted their persistent presence throughout the experiment duration, influenced by the environmental factors and antibiotic residuals. Notably, ciprofloxacin, which was the only one antimicrobial detected in fertilized soil, significantly impacted bovine-amended variants. Soil salinity modifications induced by slurry application correlated with changes in ARG occurrence. Overall, the research underscores the complex relationships between agricultural practices, microbial activity, and antibiotic resistance dissemination, emphasizing the need for a more sustainable and health-conscious farming approaches.
Collapse
Affiliation(s)
- Attanayake Mudiyanselage Ransirini
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Mierzejewska-Sinner Elżbieta
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Giebułtowicz Joanna
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Kózka Bartosz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Tołoczko Wojciech
- Department of Physical Geography, Faculty of Geography, University of Lodz, Prez. Gabriela Narutowicza 88, 90-139, Lodz, Poland
| | - Bednarek Agnieszka
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Urbaniak Magdalena
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
2
|
Demir M, Soki J, Tanrıverdi ES, Özkul C, Mahmood B, Otlu B, Hazırolan G. Molecular characterization and antibiotic resistance of clinical Bacteroides and related genera from a tertiary care center in Türkiye. Anaerobe 2024; 90:102912. [PMID: 39326493 DOI: 10.1016/j.anaerobe.2024.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES This study was conducted to measure the prevalence of antibiotic resistance, and corresponding resistance genes among Bacteroides and related genera in a tertiary hospital. METHODS We examined 138 clinical strains of Bacteroides, Phocaeicola and Parabacteroides species isolated between July 2018 and June 2022. Antibiotic susceptibility tests were conducted using agar dilution. The bft gene and antibiotic resistance genes were targeted by real-time PCR. RESULTS Resistance rates of all strains against ampicillin, cefoxitin, piperacillin-tazobactam, meropenem, imipenem, clindamycin, metronidazole, and tigecycline were 97.8 %, 28.3 %, 11.6 %, 7.9 %, 5.1 %, 47.8 %, 0 % and 4.3 %, respectively. Non-fragilis Bacteroidales spp. (NFB) exhibited lower susceptibility rates compared to B. fragilis for cefoxitin, clindamycin, and piperacillin-tazobactam. The prevalence of meropenem resistance was higher in B. fragilis (15.5 %) than in NFB (0 %). Among all strains, the rates of cepA, cfxA, cfiA, ermF, ermG, ermB, nim, linA, mefA, msrSA, tetQ, tetX, tetX1 and bft genes were 42.8 %, 44.9 %, 8.7 %, 44.2 %, 10.9 %, 2.2 %, 0.7 %, 29.0 %, 17.4 %, 7.2 %, 76.1 %, 8.0 %, 37.7 % and 16.7 %, respectively. In five B. fragilis strains, insertion sequences [IS1187(n = 3), ISBf6(n = 1), IS612B(n = 1)] were detected in the upstream region of cfiA. NimE with ISBf6 on plasmid pBFM29b was detected in one B. fragilis strain, intermediate to metronidazole (MIC = 16 μg/mL). ErmF was the most abundant gene responsible for clindamycin resistance. TetQ and tetX1 genes exhibited a higher frequency in strains that were not susceptible to tigecycline (MIC ≥8 μg/ml). CONCLUSIONS Monitoring the resistance trends of Bacteroides and related genera is crucial given the observed resistance to all classes of antibiotics and the presence of various resistance mechanisms.
Collapse
Affiliation(s)
- Mervenur Demir
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye; ESCMID Study Group for Anaerobic Infections (ESGAI), Basel, Switzerland.
| | - Jozsef Soki
- ESCMID Study Group for Anaerobic Infections (ESGAI), Basel, Switzerland; Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary.
| | - Elif Seren Tanrıverdi
- ESCMID Study Group for Anaerobic Infections (ESGAI), Basel, Switzerland; Department of Medical Microbiology, Faculty of Medicine, Inonu University, Malatya, Turkiye.
| | - Ceren Özkul
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye.
| | - Bakhtiyar Mahmood
- ESCMID Study Group for Anaerobic Infections (ESGAI), Basel, Switzerland; Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary; Department of Biology, University of Garmian, Kalar, Kurdistan Region, Iraq.
| | - Barış Otlu
- Department of Medical Microbiology, Faculty of Medicine, Inonu University, Malatya, Turkiye.
| | - Gülşen Hazırolan
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkiye; ESCMID Study Group for Anaerobic Infections (ESGAI), Basel, Switzerland.
| |
Collapse
|
3
|
Saila R, Zakaria BS, Mirsoleimani Azizi SM, Mostafa A, Dhar BR. Impact of polystyrene nanoplastics on primary sludge fermentation under acidic and alkaline conditions: Significance of antibiotic resistance genes. CHEMOSPHERE 2024; 364:142777. [PMID: 38971444 DOI: 10.1016/j.chemosphere.2024.142777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
As a part of industrial or commercial discharge, the influx of nanoplastics (NPs) to the wastewater treatment plants is inevitable. Consequently, it has become a must to understand the effects of these NPs on different unit processes. This study aimed to investigate the impact of three different concentrations of polystyrene nanoplastics (PsNPs) on the fermentation of primary sludge (PrS), implemented in batch anaerobic bioreactors, at pH 5 and 10, considering the pH-dependent nature of the fermentation process. The results showed that PsNPs stimulated hydrogen gas production at a lower dose (50 μg/L), while a significant gas suppression was denoted at higher concentrations (150 μg/L, 250 μg/L). In both acidic and alkaline conditions, propionic and acetic acid predominated, respectively, followed by n-butyric acid. Under both acidic and alkaline conditions, exposure to PsNPs boosted the propagation of various antibiotic resistance genes (ARGs), including tetracycline, macrolide, β-lactam and sulfonamide resistance genes, and integrons. Notably, under alkaline condition, the abundance of sul2 gene in the 250 μg PsNPs/L batch exhibited a 2.4-fold decrease compared to the control batch. The response of the microbial community to PsNPs exposure exhibited variations at different pH values. Bacteroidetes prevailed at both pH conditions, with their relative abundance increasing after PsNPs exposure, indicating a positive impact of PsNPs on PrS solubilization. Adverse impacts, however, were detected in Firmicutes, Chloroflexi and Actinobacteria. The observed variations in the survival rates of various microbes stipulate that they do not have the same tolerance levels under different pH conditions.
Collapse
Affiliation(s)
- Romana Saila
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada, T6G 1H9
| | - Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada, T6G 1H9; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| | - Seyed Mohammad Mirsoleimani Azizi
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada, T6G 1H9; Stantec, 10220 103 Ave NW #300, Edmonton, AB, T5J 0K4, Canada
| | - Alsayed Mostafa
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada, T6G 1H9
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada, T6G 1H9.
| |
Collapse
|
4
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
5
|
Sóki J, Wybo I, Baaity Z, Stefán G, Jeverica S, Ulger N, Stingu CS, Mahmood B, Burián K, Nagy E. Detection of the antibiotic resistance genes content of intestinal Bacteroides, Parabacteroides and Phocaeicola isolates from healthy and carbapenem-treated patients from European countries. BMC Microbiol 2024; 24:202. [PMID: 38851699 PMCID: PMC11162026 DOI: 10.1186/s12866-024-03354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Bacteroides fragilis group (BFG) species are the most significant anaerobic pathogens and are also the most antibiotic-resistant anaerobic species. Therefore, surveying their antimicrobial resistance levels and investigating their antibiotic resistance mechanisms is recommended. Since their infections are endogenous and they are important constituents of the intestinal microbiota, the properties of the intestinal strains are also important to follow. The aim of this study was to investigate the main antibiotic gene content of microbiota isolates from healthy people and compare them with the gene carriage of strains isolated from infections. RESULTS We detected 13, mainly antibiotic resistance determinants of 184 intestinal BFG strains that were isolated in 5 European countries (Belgium, Germany, Hungary, Slovenia and Turkey) and compared these with values obtained earlier for European clinical strains. Differences were found between the values of this study and an earlier one for antibiotic resistance genes that are considered to be mobile, with higher degrees for cfxA, erm(F) and tet(Q) and with lower degrees for msrSA, erm(B) and erm(G). In addition, a different gene prevalence was found depending on the taxonomical groups, e.g., B. fragilis and NBFB. Some strains with both the cepA and cfiA β-lactamase genes were also detected, which is thought to be exceptional since until now, the B. fragilis genetic divisions were defined by the mutual exclusion of these two genes. CONCLUSIONS Our study detected the prevalences of a series of antibiotic resistance genes in intestinal Bacteroides strains which is a novelty. In addition, based on the current and some previous data we hypothesized that prevalence of some antibiotic resistance genes detected in the clinical and intestinal BFG strains were different, which could be accounted with the differential composition of the Bacteroides microbiota and/or the MGE mobilities at the luminal vs. mucosal sites of the intestine.
Collapse
Affiliation(s)
- József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary.
| | - Ingrid Wybo
- Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Zain Baaity
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - Glória Stefán
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
- Department of Public Health, Government Office of the Capital City, Budapest, Hungary
| | - Samo Jeverica
- National Laboratory of Health, Environment and Food, Maribor, Slovenia
| | - Nurver Ulger
- Department of Microbiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Catalina-Suzana Stingu
- Institute for Medical Microbiology and Virology, University Hospital of Leipzig, Leipzig, Germany
| | - Bakhtiyar Mahmood
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
- Department of Biology, University of Garmian, Kalar, Kurdistan Region, Iraq
| | - Katalin Burián
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Mahmood B, Sárvári KP, Orosz L, Nagy E, Sóki J. Novel and rare β-lactamase genes of Bacteroides fragilis group species: Detection of the genes and characterization of their genetic backgrounds. Anaerobe 2024; 86:102832. [PMID: 38360202 DOI: 10.1016/j.anaerobe.2024.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVES This study screened the prevalence of rare β-lactamase genes in Bacteroides fragilis group strains from clinical specimens and normal microbiota and examined the genetic properties of the strains carrying these genes. METHODS blaHGD1, blaOXA347, cblA, crxA, and pbbA were detected by real-time polymerase chain reaction in collections of Bacteroides strains from clinical (n = 406) and fecal (n = 184) samples. To examine the genetic backgrounds of the samples, end-point PCR, FT-IR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used. RESULTS All B. uniformis isolates were positive for cblA in both collections. Although crxA was B. xylanisolvens-specific and associated with carbapenem resistance, it was only found in six fecal and three clinical B. xylanisolvens strains. Moreover, the crxA-positive strains were not clonal among B. xylanisolvens (contrary to cfiA in B. fragilis), implicating a rate of mobility or emergence by independent evolutionary events. The Phocaeicola (B.) vulgatus/P. dorei-specific gene blaHGD1 was detected among all P. vulgatus/P. dorei isolates from fecal (n = 36) and clinical (n = 26) samples. No blaOXA347-carrying isolate was found from European collections, but all US samples (n = 6) were positive. For three clinical isolates belonging to B. thetaiotaomicron (n = 2) and B. ovatus (n = 1), pbbA was detected on mobile genetic elements, and pbbA-positive strains displayed non-susceptibility to piperacillin or piperacillin/tazobactam phenotypically. CONCLUSIONS Based on these observations, β-lactamases produced by rare β-lactamase genes in B. fragilis group strains should not be overlooked because they could encode important resistance phenotypes.
Collapse
Affiliation(s)
- Bakhtiyar Mahmood
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary; Department of Biology, University of Garmian, Kalar, Kurdistan Region, Iraq.
| | - Károly Péter Sárvári
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - Laszló Orosz
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Vishwakarma A, Verma D. 16S rDNA-Based Amplicon Analysis Unveiled a Correlation Between the Bacterial Diversity and Antibiotic Resistance Genes of Bacteriome of Commercial Smokeless Tobacco Products. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04857-y. [PMID: 38407781 DOI: 10.1007/s12010-024-04857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
The distribution of bacterial-derived antibiotic resistance genes (ARGs) in smokeless tobacco products is less explored and encourages understanding of the ARG profile of Indian smokeless tobacco products. Therefore, in the present investigation, ten commercial smokeless tobacco products were assessed for their bacterial diversity to understand the correlation between the inhabitant bacteria and predicted ARGs using a 16S rDNA-based metagenome analysis. Overall analysis showed the dominance of two phyla, i.e., Firmicutes (43.07%) and Proteobacteria (8.13%) among the samples, where Bacillus (9.76%), Terribacillus (8.06%), Lysinibacillus (5.8%), Alkalibacterium (5.6%), Oceanobacillus (3.52%), and Dickeya (3.1%) like genera were prevalent among these phyla. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt)-based analysis revealed 217 ARGs which were categorized into nine groups. Cationic antimicrobial polypeptides (CAMP, 33.8%), vancomycin (23.4%), penicillin-binding protein (13.8%), multidrug resistance MDR (10%), and β-lactam (9.3%) were among the top five contributors to ARGs. Staphylococcus, Dickeya, Bacillus, Aerococcus, and Alkalibacterium showed their strong and significant correlation (p value < 0.05) with various antibiotic resistance mechanisms. ARGs of different classes (blaTEM, blaSHV, blaCTX, tetX, vanA, aac3-II, mcr-1, intI-1, and intI2) were also successfully amplified in the metagenomes of SMT samples using their specific primers. The prevalence of ARGs in inhabitant bacteria of smokeless tobacco products suggests making steady policies to regulate the hygiene of commercial smokeless tobacco products.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India, 226025
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India, 226025.
| |
Collapse
|
8
|
Czatzkowska M, Rolbiecki D, Zaborowska M, Bernat K, Korzeniewska E, Harnisz M. The influence of combined treatment of municipal wastewater and landfill leachate on the spread of antibiotic resistance in the environment - A preliminary case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119053. [PMID: 37748295 DOI: 10.1016/j.jenvman.2023.119053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Environmentally-friendly management of landfill leachate (LL) poses a challenge, and LL is usually co-treated with municipal wastewater in wastewater treatment plants (WWTPs). The extent to which the co-treatment of LL and municipal wastewater influences the spread of antibiotic resistance (AR) in the environment has not been examined to date. Two WWTPs with similar wastewater composition and technology were studied. Landfill leachate was co-treated with wastewater in one of the studied WWTPs. Landfill leachate, untreated and treated wastewater from both WWTPs, and river water sampled upstream and downstream from the wastewater discharge point were analyzed. Physicochemical parameters, microbial diversity, and antibiotic resistance genes (ARGs) abundance were investigated to determine the impact of LL co-treatment on chemical and microbiological contamination in the environment. Landfill leachate increased pollutant concentrations in untreated wastewater and river water. Cotreatment of LL and wastewater could affect the abundance and diversity of microbial communities and the interactions between microbial species. Co-treatment also decreased the stability of microbial co-occurrence networks in the examined samples. The mexF gene was identified as a potential marker of environmental pollution with LL. This is the first study to explore the impact of LL on the occurrence of AR determinants in wastewater and rivers receiving effluents.
Collapse
Affiliation(s)
- Małgorzata Czatzkowska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720, Olsztyn, Poland.
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720, Olsztyn, Poland
| | - Magdalena Zaborowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-709, Olsztyn, Poland
| | - Katarzyna Bernat
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-709, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720, Olsztyn, Poland.
| |
Collapse
|
9
|
Campos-Madueno EI, Aldeia C, Perreten V, Sendi P, Moser AI, Endimiani A. Detection of blaCTX-M and blaDHA genes in stool samples of healthy people: comparison of culture- and shotgun metagenomic-based approaches. Front Microbiol 2023; 14:1236208. [PMID: 37720151 PMCID: PMC10501143 DOI: 10.3389/fmicb.2023.1236208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
We implemented culture- and shotgun metagenomic sequencing (SMS)-based methods to assess the gut colonization with extended-spectrum cephalosporin-resistant Enterobacterales (ESC-R-Ent) in 42 volunteers. Both methods were performed using native and pre-enriched (broth supplemented with cefuroxime) stools. Native culture screening on CHROMID® ESBL plates resulted in 17 positive samples, whereas the pre-enriched culture (gold-standard) identified 23 carriers. Overall, 26 ESC-R-Ent strains (24 Escherichia coli) were identified: 25 CTX-M and 3 DHA-1 producers (2 co-producing CTX-Ms). Using the SMS on native stool ("native SMS") with thresholds ≥60% for both identity and coverage, only 7 of the 23 pre-enriched culture-positive samples resulted positive for blaCTX-M/blaDHA genes (native SMS reads mapping to blaCTX-M/blaDHAs identified in gold-standard: sensitivity, 59.0%; specificity 100%). Moreover, an average of 31.5 and 24.6 antimicrobial resistance genes (ARGs) were detected in the 23 pre-enriched culture-positive and the 19 negative samples, respectively. When the pre-enriched SMS was implemented, more blaCTX-M/blaDHA genes were detected than in the native assay, including in stools that were pre-enriched culture-negative (pre-enriched SMS reads mapping to blaCTX-M/blaDHAs identified in gold-standard: sensitivity, 78.3%; specificity 75.0%). In addition, the pre-enriched SMS identified on average 38.6 ARGs/sample, whereas for the corresponding native SMS it was 29.4 ARGs/sample. Notably, stools resulting false-negative by using the native SMS had lower concentrations of ESC-R-Ent (average: ~105 vs. ~107 CFU/g) and E. coli classified reads (average: 193,959 vs. 1.45 million) than those of native SMS positive samples. Finally, the detection of blaCTX-M/blaDHA genes was compared with two well-established bioinformatic tools. In conclusion, only the pre-enriched SMS assured detection of most carriers of ESC-R-Ent. However, its performance was not comparable to the pre-enriched culture-based approach.
Collapse
Affiliation(s)
- Edgar I. Campos-Madueno
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Claudia Aldeia
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Aline I. Moser
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Singh A, Banerjee T, Shukla SK, Upadhyay S, Verma A. Creep in nitroimidazole inhibitory concentration among the Entamoeba histolytica isolates causing amoebic liver abscess and screening of andrographolide as a repurposing drug. Sci Rep 2023; 13:12192. [PMID: 37500681 PMCID: PMC10374660 DOI: 10.1038/s41598-023-39382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Infections by Entamoeba histolytica (E. histolytica) lead to considerable morbidity and mortality worldwide and treatment is reliant on a single class of drugs, nitroimidazoles. Treatment failures and intermittent reports of relapse from different parts of world indicate towards development of clinical drug resistance. In the present study, susceptibility testing of clinical isolates of E. histolytica was carried against metronidazole and tinidazole. Additionally, anti-amoebic property of active compounds of Andrographis paniculata was also evaluated. Prevalence of metronidazole resistance gene (nim) in patients attending hospital was also done to get comprehensive insight of present situation of drug resistance in E. histolytica. Mean inhibitory concentration 50 (IC50) value of E. histolytica isolates against metronidazole and tinidazole was 20.01 and 16.1 µM respectively. Andrographolide showed minimum mean IC50 value (3.06 µM). Significant percentage inhibition of E. histolytica isolates by andrographolide was seen as compared to metronidazole (p = 0.0495). None of E. histolytica isolates showed presence of nim gene. However, in stool samples from hospital attending population, prevalence of nimE gene was found to be 76.6% (69/90) and 62.2% (56/90) in diarrheal and non-diarrheal samples respectively. Inhibitory concentration of commonly used nitroimidazoles against clinical isolates of E. histolytica are on rise. Percentage inhibition of E. histolytica isolates by andrographolide was significantly higher than control drug metronidazole.
Collapse
Affiliation(s)
- Aradhana Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sunit Kumar Shukla
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Soumya Upadhyay
- Department of Life Sciences, Banasthali Vidyapeeth, Jaipur, 302001, India
| | - Ashish Verma
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
11
|
Reissier S, Penven M, Guérin F, Cattoir V. Recent Trends in Antimicrobial Resistance among Anaerobic Clinical Isolates. Microorganisms 2023; 11:1474. [PMID: 37374976 DOI: 10.3390/microorganisms11061474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Anaerobic bacteria are normal inhabitants of the human commensal microbiota and play an important role in various human infections. Tedious and time-consuming, antibiotic susceptibility testing is not routinely performed in all clinical microbiology laboratories, despite the increase in antibiotic resistance among clinically relevant anaerobes since the 1990s. β-lactam and metronidazole are the key molecules in the management of anaerobic infections, to the detriment of clindamycin. β-lactam resistance is usually mediated by the production of β-lactamases. Metronidazole resistance remains uncommon, complex, and not fully elucidated, while metronidazole inactivation appears to be a key mechanism. The use of clindamycin, a broad-spectrum anti-anaerobic agent, is becoming problematic due to the increase in resistance rate in all anaerobic bacteria, mainly mediated by Erm-type rRNA methylases. Second-line anti-anaerobes are fluoroquinolones, tetracyclines, chloramphenicol, and linezolid. This review aims to describe the up-to-date evolution of antibiotic resistance, give an overview, and understand the main mechanisms of resistance in a wide range of anaerobes.
Collapse
Affiliation(s)
- Sophie Reissier
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - Malo Penven
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - François Guérin
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - Vincent Cattoir
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, 2 Rue Henri Le Guilloux, CEDEX 9, F-35033 Rennes, France
| |
Collapse
|
12
|
Jha L, Y BL, Ragupathi NKD, Veeraraghavan B, Prakash JAJ. Phenotypic and Genotypic Correlation of Antimicrobial Susceptibility of Bacteroides fragilis: Lessons Learnt. Cureus 2023; 15:e36268. [PMID: 37073211 PMCID: PMC10105825 DOI: 10.7759/cureus.36268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Background Bacteroides fragilis is an opportunistic pathogen causing severe infections, including bacteremia. There have been increased reports of antimicrobial resistance in B. fragilis. However, phenotypic testing of susceptibility is time consuming and not cost effective for anaerobes. The present study investigates the correlation of phenotypic susceptibility with genotypic markers; to determine if these could be considered for deciding empirical therapy for B. fragilis. Material and methods Bacteroides fragilis isolates from various clinical samples including exudates, tissue, and body fluids were collected between November 2018 and January 2020 in the Department of Clinical Microbiology, Christian Medical College (CMC) Vellore. Species identification was done by Matrix Assisted Laser Desorption Ionization time of flight mass spectrometry (MALDI TOF) according to the manufacturer's instructions. A total number of 51 B. fragilis isolates were tested against metronidazole, clindamycin, piperacillin/tazobactam, and meropenem phenotypically by agar dilution method using Clinical & Laboratory Standards Institute (CLSI) 2019 guidelines and minimum inhibitory concentrations (MIC) were interpretated. The genotypic markers for antimicrobial resistance genes (nim, emrF, and cfiA) were studied by polymerase chain reaction (PCR) assay as per the standard protocol on all isolates to detect resistance genes. Results B. fragilis isolates in this study expressed 45%, 41%, and 16% phenotypic resistance to clindamycin, metronidazole, and meropenem, respectively, with least resistance to piperacillin/tazobactam (6%). Among the metronidazole resistant isolates, 52% harbored nim gene. Nim gene was also present in 76% (23/30) of the metronidazole susceptible isolates. Similarly, cfiA was present in all eight meropenem resistant isolates in addition to 22% (9/41) of the susceptible isolates. All cfiA negative isolates were phenotypically susceptible. Interestingly, 74% (17/23) of the clindamycin resistant isolates were positive for ermF. Conclusions Detection of a limited set of genes does not always correlate with phenotypic resistance to metronidazole and clindamycin due to the reported influence of insertion sequence (IS) elements, efflux, and other genetic determinants. Certainly, the absence of the cfiA gene can be employed to rule out meropenem resistance. However, redundant use of antibiotics such as meropenem along with metronidazole could be avoided for B. fragilis, which might otherwise elevate meropenem resistance. Recommendation of metronidazole requires prior phenotypic testing due to the reported 41% resistance.
Collapse
|
13
|
Hashimoto T, Hashinaga K, Komiya K, Hiramatsu K. Prevalence of antimicrobial resistant genes in Bacteroides spp. isolated in Oita Prefecture, Japan. J Infect Chemother 2023; 29:284-288. [PMID: 36473684 DOI: 10.1016/j.jiac.2022.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Bacteroides spp. are the most common anaerobic bacteria isolated from the human gastrointestinal tract. Several resistant genes are present in Bacteroides spp. However, most studies have focused on the prevalence of the cfiA gene in Bacteroides fragilis alone. We assessed the susceptibility to antimicrobial agents and the prevalence of cepA, cfiA, cfxA, ermF, nim, and tetQ genes in Bacteroides strains isolated from clinical specimens in our hospital. METHODS We isolated 86 B. fragilis and 58 non-fragilis Bacteroides strains from human clinical specimens collected from January 2011 to November 2021. Resistance against piperacillin (PIPC), cefotaxime (CTX), cefepime (CFPM), meropenem (MEPM), clindamycin, and minocycline was determined. RESULTS The resistant rates of penicillins and cephalosporins in non-fragilis isolates were significantly higher than those in B. fragilis isolates. In B. fragilis isolates, the resistant rates of PIPC, CTX, and CFPM in cfxA-positive isolates were significantly higher than those in cfxA-negative isolates (71% vs. 16%, 77% vs. 19%, and 77% vs. 30%, respectively). Thirteen B. fragilis isolates harbored the cfiA gene, two of which were resistant to MEPM. Six of the 13 cfiA-positive B. fragilis isolates were heterogeneously resistant to MEPM. CONCLUSION It is important to evaluate the use of MEPM as empirical therapy for Bacteroides spp. infections, considering the emergence of carbapenem resistance during treatment, existence of MEPM-resistant strains, and heterogeneous resistance.
Collapse
Affiliation(s)
| | | | - Kosaku Komiya
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Japan
| | | |
Collapse
|
14
|
Wolak I, Bajkacz S, Harnisz M, Stando K, Męcik M, Korzeniewska E. Digestate from Agricultural Biogas Plants as a Reservoir of Antimicrobials and Antibiotic Resistance Genes-Implications for the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2672. [PMID: 36768038 PMCID: PMC9915926 DOI: 10.3390/ijerph20032672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobials and antibiotic resistance genes (ARGs) in substrates processed during anaerobic digestion in agricultural biogas plants (BPs) can reach the digestate (D), which is used as fertilizer. Antimicrobials and ARGs can be transferred to agricultural land, which increases their concentrations in the environment. The concentrations of 13 antibiotics in digestate samples from biogas plants (BPs) were investigated in this study. The abundance of ARGs encoding resistance to beta-lactams, tetracyclines, sulfonamides, fluoroquinolones, macrolide-lincosamide-streptogramin antibiotics, and the integrase genes were determined in the analyzed samples. The presence of cadmium, lead, nickel, chromium, zinc, and mercury was also examined. Antimicrobials were not eliminated during anaerobic digestion. Their concentrations differed in digestates obtained from different substrates and in liquid and solid fractions (ranging from 62.8 ng/g clarithromycin in the solid fraction of sewage sludge digestate to 1555.9 ng/L doxycycline in the liquid fraction of cattle manure digestate). Digestates obtained from plant-based substrates were characterized by high concentrations of ARGs (ranging from 5.73 × 102 copies/gDcfxA to 2.98 × 109 copies/gDsul1). The samples also contained mercury (0.5 mg/kg dry mass (dm)) and zinc (830 mg/kg dm). The results confirmed that digestate is a reservoir of ARGs (5.73 × 102 to 8.89 × 1010 copies/gD) and heavy metals (HMs). In addition, high concentrations of integrase genes (105 to 107 copies/gD) in the samples indicate that mobile genetic elements may be involved in the spread of antibiotic resistance. The study suggested that the risk of soil contamination with antibiotics, HMs, and ARGs is high in farms where digestate is used as fertilizer.
Collapse
Affiliation(s)
- Izabela Wolak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Sylwia Bajkacz
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Klaudia Stando
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
| | - Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| |
Collapse
|
15
|
Shekhawat SS, Kulshreshtha NM, Saini P, Upadhyay A, Gupta AB, Jenifer M H, Subramanian V, Kumari A, Pareek N, Vivekanand V. Antibiotic resistance genes and bacterial diversity: A comparative molecular study of treated sewage from different origins and their impact on irrigated soils. CHEMOSPHERE 2022; 307:136175. [PMID: 36030942 DOI: 10.1016/j.chemosphere.2022.136175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Present study aims to investigate how is soil affected following irrigation with treated effluents of different origins by analysing the bacterial diversity, metabolic diversity and antibiotic resistance genes (ARGs). Comparative analysis with previously reported ARGs in effluents was performed to understand the mobility of ARGs from treated wastewater to the irrigated soil with respect to the control soil regimen. Acinetobacter, Burkholderia and Pseudomonas were observed as the most abundant genera in all the samples. The metabolic gene abundance of all the samples suggests a prominent contribution to natural mineral recycling. Most abundant ARGs observed encode resistance for clindamycin, kanamycin A, macrolides, paromomycin, spectinomycin and tetracycline. Treated effluent reuse did not appear to enhance the ARG levels in soils in most cases except for institutional treatment site (M), where the ARGs for aminoglycosides, β-lactams and sulfonamides were found to be abundantly present in both treated effluent and the irrigated soil. This study finds the importance of wastewater treatment from different origins and the impact of treated wastewater reuse in irrigation. This study also emphasises on the better understanding of ARGs mobility from water to soil.
Collapse
Affiliation(s)
- Sandeep Singh Shekhawat
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India; Jaipur National University Jaipur-Agra Bypass, Near New RTO Office, Jagatpura, Jaipur, 302017, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India
| | - Pankaj Saini
- Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India
| | - Aparna Upadhyay
- Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India
| | | | | | - Ankita Kumari
- Biokart India Private Limited, Bengaluru, 560043, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Ajmer, Kishangarh, Rajasthan, 305801, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India.
| |
Collapse
|
16
|
Parisio EM, Camarlinghi G, Antonelli A, Coppi M, Mosconi L, Rossolini GM. Epidemiology and antibiotic susceptibility profiles of obligate anaerobes in a hospital of central Italy during a one-year (2019) survey. Anaerobe 2022; 78:102666. [DOI: 10.1016/j.anaerobe.2022.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022]
|
17
|
Li XY, Yu R, Xu C, Shang Y, Li D, Du XD. A Small Multihost Plasmid Carrying erm(T) Identified in Enterococcus faecalis. Front Vet Sci 2022; 9:850466. [PMID: 35711812 PMCID: PMC9197182 DOI: 10.3389/fvets.2022.850466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to determine the mobile genetic elements involved in the horizontal transfer of erm(T) in Enterococcus faecalis, and its transmission ability in heterologous hosts. A total of 159 erythromycin-resistant enterococci isolates were screened for the presence of macrolide resistance genes by PCR. Whole genome sequencing for erm(T)-carrying E. faecalis E165 was performed. The transmission ability in heterologous hosts was explored by conjugation, transformation, and fitness cost. The erm(T) gene was detected only in an E. faecalis isolate E165 (1/159), which was located on a 4,244-bp small plasmid, designed pE165. Using E. faecalis OG1RF as the recipient strain, pE165 is transferable. Natural transformation experiments using Streptococcus suis P1/7 and Streptococcus mutans UA159 as the recipients indicated it is transmissible, which was also observed by electrotransformation using Staphylococcus aureus RN4220 as a recipient. The erm(T)-carrying pE165 can replicate in the heterologous host including E. faecalis OG1RF, S. suis P1/7, S. mutans UA159, and S. aureus RN4220 and conferred resistance to erythromycin and clindamycin to all hosts. Although there is no disadvantage of pE165 in the recipient strains in growth curve experiments, all the pE165-carrying recipients had a fitness cost compared to the corresponding original recipients in growth competition experiments. In brief, an erm(T)-carrying plasmid was for the first time described in E. faecalis and as transmissible to heterologous hosts.
Collapse
|
18
|
Lin X, Xu Y, Han R, Luo W, Zheng L. Migration of antibiotic resistance genes and evolution of flora structure in the Xenopus tropicalis intestinal tract with combined exposure to roxithromycin and oxytetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153176. [PMID: 35063519 DOI: 10.1016/j.scitotenv.2022.153176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The intestinal flora is one of the most important environments for antibiotic resistance development, owing to its diverse mix of bacteria. An excellent medicine model organism, Xenopus tropicalis, was selected to investigate the spread of antibiotic resistance genes (ARGs) in the intestinal bacterial community with single or combined exposure to roxithromycin (ROX) and oxytetracycline (OTC). Seventeen resistance genes (tetA, tetB, tetE, tetM, tetO, tetS, tetX, ermF, msrA, mefA, ereA, ereB, mphA, mphB, intI1, intI2, intI3) were detected in the intestines of Xenopus tropicalis living in three testing tanks (ROX tanks, OTC tanks, ROX + OTC tanks) and a blank tank for 20 days. The results showed that the relative abundance of total ARGs increased obviously in the tank with single stress but decreased in the tank with combined stress, and the genes encoding the macrolide antibiotic efflux pump (msrA), phosphatase (mphB) and integron (intI2, intI3) were the most sensitive. With the aid of AFM scanning, DNA was found to be scattered short chain in the blank, became extended or curled and then compacted with the stress from a single antibiotic, and was compacted and then fragmented with combined stress, which might be the reason for the variation of the abundance of ARGs with stress. The ratio of Firmicutes/Bacteroides related to diseases was increased by ROX and OTC. The very significant correlation between intI2 and intI3 with tetS (p ≤ 0.001) hinted at a high risk of ARG transmission in the intestines. Collectively, our results suggested that the relative abundance of intestinal ARGs could be changed depending on the intestinal microbiome and DNA structures upon exposure to antibiotics at environmental concentrations.
Collapse
Affiliation(s)
- Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ruiqi Han
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wenshi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
19
|
Metagenomic Analysis of the Long-Term Synergistic Effects of Antibiotics on the Anaerobic Digestion of Cattle Manure. ENERGIES 2022. [DOI: 10.3390/en15051920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The conversion of cattle manure into biogas in anaerobic digestion (AD) processes has been gaining attention in recent years. However, antibiotic consumption continues to increase worldwide, which is why antimicrobial concentrations can be expected to rise in cattle manure and in digestate. This study examined the long-term synergistic effects of antimicrobials on the anaerobic digestion of cattle manure. The prevalence of antibiotic resistance genes (ARGs) and changes in microbial biodiversity under exposure to the tested drugs was investigated using a metagenomic approach. Methane production was analyzed in lab-scale anaerobic bioreactors. Bacteroidetes, Firmicutes, and Actinobacteria were the most abundant bacteria in the samples. The domain Archaea was represented mainly by methanogenic genera Methanothrix and Methanosarcina and the order Methanomassiliicoccales. Exposure to antibiotics inhibited the growth and development of methanogenic microorganisms in the substrate. Antibiotics also influenced the abundance and prevalence of ARGs in samples. Seventeen types of ARGs were identified and classified. Genes encoding resistance to tetracyclines, macrolide–lincosamide–streptogramin antibiotics, and aminoglycosides, as well as multi-drug resistance genes, were most abundant. Antibiotics affected homoacetogenic bacteria and methanogens, and decreased the production of CH4. However, the antibiotic-induced decrease in CH4 production was minimized in the presence of highly drug-resistant microorganisms in AD bioreactors.
Collapse
|
20
|
Yan W, Hall AB, Jiang X. Bacteroidales species in the human gut are a reservoir of antibiotic resistance genes regulated by invertible promoters. NPJ Biofilms Microbiomes 2022; 8:1. [PMID: 35013297 PMCID: PMC8748976 DOI: 10.1038/s41522-021-00260-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Antibiotic-resistance genes (ARGs) regulated by invertible promoters can mitigate the fitness cost of maintaining ARGs in the absence of antibiotics and could potentially prolong the persistence of ARGs in bacterial populations. However, the origin, prevalence, and distribution of these ARGs regulated by invertible promoters remains poorly understood. Here, we sought to assess the threat posed by ARGs regulated by invertible promoters by systematically searching for ARGs regulated by invertible promoters in the human gut microbiome and examining their origin, prevalence, and distribution. Through metagenomic assembly of 2227 human gut metagenomes and genomic analysis of the Unified Human Gastrointestinal Genome (UHGG) collection, we identified ARGs regulated by invertible promoters and categorized them into three classes based on the invertase-regulating phase variation. In the human gut microbiome, ARGs regulated by invertible promoters are exclusively found in Bacteroidales species. Through genomic analysis, we observed that ARGs regulated by invertible promoters have convergently originated from ARG insertions into glycan-synthesis loci that were regulated by invertible promoters at least three times. Moreover, all three classes of invertible promoters regulating ARGs are located within integrative conjugative elements (ICEs). Therefore, horizontal transfer via ICEs could explain the wide taxonomic distribution of ARGs regulated by invertible promoters. Overall, these findings reveal that glycan-synthesis loci regulated by invertible promoters in Bacteroidales species are an important hotspot for the emergence of clinically-relevant ARGs regulated by invertible promoters.
Collapse
Affiliation(s)
- Wei Yan
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - A Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
21
|
Vu H, Hayashi M, Nguyen TN, Khong DT, Tran HT, Yamamoto Y, Tanaka K. Comparison of Phenotypic and Genotypic Patterns of Antimicrobial-Resistant Bacteroides fragilis Group Isolated from Healthy Individuals in Vietnam and Japan. Infect Drug Resist 2021; 14:5313-5323. [PMID: 34924764 PMCID: PMC8674666 DOI: 10.2147/idr.s341571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Normal non-pathogenic flora can harm the host by acting as a reservoir of resistance determinants that are potentially transferable to human pathogens. This study aimed to assess the phenotypic and genotypic antimicrobial susceptibility patterns of the Bacteroides fragilis group (BFG) isolated from healthy individuals in Vietnam and Japan in order to elucidate the prevalence of antimicrobial resistance in human flora in the two economically and geographically different countries. Materials and Methods BFG was isolated from fecal samples of 80 healthy individuals in Vietnam (n=51) and Japan (n=29). Isolated strains were identified using MALDI-TOF MS, and the minimum inhibitory concentration (MIC) of 18 antibiotics was determined using the agar dilution method. Additionally, 20 antimicrobial resistance genes were detected using standard PCR. Results A total of 139 BFG strains belonging to 11 BFG species were isolated from the two countries, with diversity in the prevalence of each species. B. fragilis was not the predominant species. Isolations from Vietnam and Japan showed some similarities in terms of MIC50 values, MIC90 values, and the percentage of resistant strains. However, isolations from Vietnam showed significantly higher resistance to piperacillin, cefmetazole, clindamycin, tetracycline, and minocycline. ErmB, tet36, tetM, nim, catA, and qnrA were not found in either country. CepA was more common in B. fragilis than in non-fragilis Bacteroides. In contrast, cfiA, ermG, mefA, msrSA, tetX, tetX1, bexA, qnrB, and qnrS were found only in non-fragilis Bacteroides. There were differences in the prevalence of ermG, linA, mefA, msrSA, and qnrS between isolates from Vietnam and Japan. Conclusion This study is the first report on the antimicrobial susceptibility patterns in the BFG isolated from healthy individuals in Vietnam and Japan. Compared to isolations from Japan, isolations from Vietnam showed significantly higher resistance to antimicrobial agents. The distribution of various antibiotic resistance genes also differed between the two countries.
Collapse
Affiliation(s)
- Hanh Vu
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Masahiro Hayashi
- Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu City, Gifu, Japan
| | - Thang Nam Nguyen
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Diep Thi Khong
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Hoa Thi Tran
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Yoshimasa Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Kaori Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan.,Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu City, Gifu, Japan
| |
Collapse
|
22
|
Yang Y, Zhang Q, Hu H, Zhang W, Lu T. Bloodstream infection caused by Bacteroides caccae in a patient with renal hypertension: a case report. J Int Med Res 2021; 49:3000605211047277. [PMID: 34704482 PMCID: PMC8554563 DOI: 10.1177/03000605211047277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacteroides caccae is an anaerobic bacterium with a reportedly high isolation rate; however, it rarely causes bloodstream infections. Patients with hypertension are at increased risk of developing anaerobic bacterial infection. In this study, we report a case of bacteremia caused by B. caccae in a patient with renal hypertension and gastrointestinal hemorrhage. This study describes the clinical manifestations of bloodstream infection involving B. caccae to provide guidance for laboratory technicians and clinicians. A 42-year-old Chinese man was admitted for gastrointestinal hemorrhage and subsequently diagnosed with anaerobic blood infection. The pathogenic bacteria isolated from anaerobic blood culture bottles were identified as B. caccae by using an automatic bacterial identification instrument and mass spectrometry (MS). B. caccae is an intestinal opportunistic pathogen that can invade the intestinal mucosa and cause anaerobic bloodstream infection. Two or more sets of blood cultures and MS identification can greatly improve the positive detection rate of blood cultures of anaerobic bacteria. Furthermore, the increased drug resistance of anaerobic bacteria necessitates drug sensitivity tests for anaerobic bacteria in many hospitals. Thus, the early prevention and control of primary diseases with appropriate diagnoses and timely anti-infection therapies are necessary to reduce B. caccae bloodstream infection.
Collapse
Affiliation(s)
- Yang Yang
- Clinical Laboratory Center, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, P. R. China
| | - Qingfang Zhang
- Clinical Laboratory Center, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, P. R. China
| | - Haitao Hu
- Clinical Laboratory Center, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, P. R. China
| | - Wenyun Zhang
- Clinical Laboratory Center, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, P. R. China
| | - Taohong Lu
- Clinical Laboratory Center, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, P. R. China
| |
Collapse
|
23
|
Manoharan RK, Srinivasan S, Shanmugam G, Ahn YH. Shotgun metagenomic analysis reveals the prevalence of antibiotic resistance genes and mobile genetic elements in full scale hospital wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113270. [PMID: 34271348 DOI: 10.1016/j.jenvman.2021.113270] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/15/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants are considered as hotspots of emerging antimicrobial genes and mobile genetic elements. We used a shotgun metagenomic approach to examine the wide-spectrum profiles of ARGs (antibiotic resistance genes) and MGEs (mobile genetic elements) in activated sludge samples from two different hospital trains at the wastewater treatment plants (WWTPs) in Daegu, South Korea. The influent activated sludge and effluent of two trains (six samples in total) at WWTPs receiving domestic sewage wastewater (SWW) and hospital wastewater (HWW) samples collected at multiple periods were subjected to high throughput 16S rRNA metagenome sequencing for microbial community diversity. Cloacibacterium caeni and Lewinella nigricans were predominant in SWW effluents, while Bacillus subtilis and Staphylococcus epidermidis were predominant in HWW effluents based on the Miseq platform. Totally, 20,011 reads and 28,545 metagenomic sequence reads were assigned to 25 known ARG types in the SWW2 and HWW5 samples, respectively. The higher abundance of ARGs, including multidrug resistance (>53%, MDR), macrolide-lincosamide-streptogramin (>9%, MLS), beta-lactam (>3.3%), bacitracin (>4.4%), and tetracycline (>3.4%), confirmed the use of these antibiotics in human medicine. In total, 190 subtypes belonging to 23 antibiotic classes were detected in both SWW2 and HWW5 samples. RpoB2, MacB, and multidrug (MDR) ABC transporter shared the maximum matched genes in both activated sludge samples. The high abundance of MGEs, such as a gene transfer agent (GTA) (four times higher), transposable elements (1.6 times higher), plasmid related functions (3.8 times higher), and phages (two times higher) in HWW5 than in SWW2, revealed a risk of horizontal gene transfer in HWW. Domestic wastewater from hospital patients also influenced the abundance of ARGs and MGEs in the activated sludge process.
Collapse
Affiliation(s)
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, 623 Hwarangno, Nowon-gu, Seoul, 01797, South Korea
| | - Gnanendra Shanmugam
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
24
|
An Outbreak of tet(X6)-Carrying Tigecycline-Resistant Acinetobacter baumannii Isolates with a New Capsular Type at a Hospital in Taiwan. Antibiotics (Basel) 2021; 10:antibiotics10101239. [PMID: 34680819 PMCID: PMC8532604 DOI: 10.3390/antibiotics10101239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Dissemination of multidrug-resistant, particularly tigecycline-resistant, Acinetobacter baumannii is of critical importance, as tigecycline is considered a last-line antibiotic. Acquisition of tet(X), a tigecycline-inactivating enzyme mostly found in strains of animal origin, imparts tigecycline resistance to A. baumannii. Herein, we investigated the presence of tet(X) variants among 228 tigecycline-non-susceptible A. baumannii isolates from patients at a Taiwanese hospital via polymerase chain reaction using a newly designed universal primer pair. Seven strains (3%) carrying tet(X)-like genes were subjected to whole genome sequencing, revealing high DNA identity. Phylogenetic analysis based on the PFGE profile clustered the seven strains in a clade, which were thus considered outbreak strains. These strains, which were found to co-harbor the chromosome-encoded tet(X6) and the plasmid-encoded blaOXA-72 genes, showed a distinct genotype with an uncommon sequence type (Oxford ST793/Pasteur ST723) and a new capsular type (KL129). In conclusion, we identified an outbreak clone co-carrying tet(X6) and blaOXA-72 among a group of clinical A. baumannii isolates in Taiwan. To the best of our knowledge, this is the first description of tet(X6) in humans and the first report of a tet(X)-like gene in Taiwan. These findings identify the risk for the spread of tet(X6)-carrying tigecycline- and carbapenem-resistant A. baumannii in human healthcare settings.
Collapse
|
25
|
Sárvári KP, Rácz NB, Burián K. Epidemiology and antibiotic susceptibility in anaerobic bacteraemia: a 15-year retrospective study in South-Eastern Hungary. Infect Dis (Lond) 2021; 54:16-25. [PMID: 34559030 DOI: 10.1080/23744235.2021.1963469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Bloodstream infections are considered as important factors of morbidity and represent a remarkable number of death, especially in developed countries. METHODS In a 15-year retrospective study in the South-Eastern region of Hungary, the microbiological results of anaerobic blood culture (BC) bottles were analysed. The incubation of BCs was performed in the automated incubation system, and the isolates were cultured in an anaerobic chamber. The identification of the isolates was based on their biochemical profile (2004-2012) and mass spectrometry analyses (2013-2018). Antibiotic susceptibility testing was performed with minimal inhibitory concentration gradient diffusion method. RESULTS The majority of the samples were submitted by the Department of Internal Medicine (37.7%), Intensive Care Unit (31.6%) and the Emergency Department (16.4%), and the number of strict anaerobic isolates per year showed an increasing tendency throughout the study. More than half of the isolates were Cutibacterium acnes (54.4%), but this bacterium was considered as a contaminant. The most frequent species upon Cutibacterium acnes were Bacteroides fragilis (9.2%), Clostridium perfringens (6.4%), other Clostridium species (4.8%), other Cutibacterium species (3.5%) and other Bacteroides species (2.5%). Penicillin, amoxicillin/clavulanic acid, imipenem, clindamycin, metronidazole and tigecyclin were very effective against Bacteroides fragilis, Clostridium perfringens, Fusobacterium nucleatum, Gemella morbillorum, Parvimonas micra and Eggerthella lenta strains. CONCLUSION We performed a 15-year period, retrospective investigation in South-Eastern Hungary with the participation of more than 1000 patients. The results of antibiotic susceptibility tests are in line with previous reports in the literature, and the results from the different geographical regions of the world suggest similar resistance mechanisms.
Collapse
Affiliation(s)
| | | | - Katalin Burián
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
26
|
Copsey-Mawer S, Hughes H, Scotford S, Anderson B, Davis C, Perry MD, Morris TE. UK Bacteroides species surveillance survey: Change in antimicrobial resistance over 16 years (2000-2016). Anaerobe 2021; 72:102447. [PMID: 34560274 DOI: 10.1016/j.anaerobe.2021.102447] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To assess the differences in antimicrobial susceptibility of UK Bacteroides species across two distinct cohorts from 2000 to 2016. METHODS Strain identification was performed using matrix-assisted laser-desorption ionisation time of flight mass spectrometry (MALDI-TOF MS) or by partial 16S rRNA sequencing. Minimum inhibitory concentrations (MICs) were determined using agar dilution, following CLSI guidelines (CLSI, 2012; 2017). RESULTS 224 isolates were included from 2000 to 168 from 2016. Bacteroides fragilis was the most common species, comprising 68% of the 2000 cohort, and 77% in 2016. For all antimicrobials tested, there was an overall increase in the rates of non-susceptible isolates between the cohorts. CONCLUSIONS The antibiogram of Bacteroides species in the UK is no longer predictable. Multi-drug resistant isolates although rare, are on the rise, and require testing to guide therapy. The monitoring and surveillance of resistance trends is imperative, as is the development of standardised, robust and accessible antimicrobial susceptibility testing methodology for clinical laboratories.
Collapse
Affiliation(s)
- Sarah Copsey-Mawer
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Harriet Hughes
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Selina Scotford
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Bethan Anderson
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Carol Davis
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Michael D Perry
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Trefor E Morris
- Public Health Wales Microbiology, University Hospital of Wales, Heath Park, Cardiff, UK.
| |
Collapse
|
27
|
Czatzkowska M, Harnisz M, Korzeniewska E, Rusanowska P, Bajkacz S, Felis E, Jastrzębski JP, Paukszto Ł, Koniuszewska I. The impact of antimicrobials on the efficiency of methane fermentation of sewage sludge, changes in microbial biodiversity and the spread of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125773. [PMID: 33831706 DOI: 10.1016/j.jhazmat.2021.125773] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 05/23/2023]
Abstract
The study was designed to simultaneously evaluate the influence of high doses (512-1024 µg/g) the most commonly prescribed antimicrobials on the efficiency of anaerobic digestion of sewage sludge, qualitative and quantitative changes in microbial consortia responsible for the fermentation process, the presence of methanogenic microorganisms, and the fate of antibiotic resistance genes (ARGs). The efficiency of antibiotic degradation during anaerobic treatment was also determined. Metronidazole, amoxicillin and ciprofloxacin exerted the greatest effect on methane fermentation by decreasing its efficiency. Metronidazole, amoxicillin, cefuroxime and sulfamethoxazole were degraded in 100%, whereas ciprofloxacin and nalidixic acid were least susceptible to degradation. The most extensive changes in the structure of digestate microbiota were observed in sewage sludge exposed to metronidazole, where a decrease in the percentage of bacteria of the phylum Bacteroidetes led to an increase in the proportions of bacteria of the phyla Firmicutes and Proteobacteria. The results of the analysis examining changes in the concentration of the functional methanogen gene (mcrA) did not reflect the actual efficiency of methane fermentation. In sewage sludge exposed to antimicrobials, a significant increase was noted in the concentrations of β-lactam, tetracycline and fluoroquinolone ARGs and integrase genes, but selective pressure was not specific to the corresponding ARGs.
Collapse
Affiliation(s)
- Małgorzata Czatzkowska
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Paulina Rusanowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117a, 10-720 Olsztyn, Poland
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland; Centre for Biotechnology, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Felis
- Department of Environmental Biotechnology, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland; Centre for Biotechnology, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Jan P Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Izabela Koniuszewska
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| |
Collapse
|
28
|
Pan Y, Awan F, Zhenbao M, Zhang X, Zeng J, Zeng Z, Xiong W. Preliminary view of the global distribution and spread of the tet(X) family of tigecycline resistance genes. J Antimicrob Chemother 2021; 75:2797-2803. [PMID: 32766786 DOI: 10.1093/jac/dkaa284] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The emergence of plasmid-mediated tet(X3)/tet(X4) genes is threatening the role of tigecycline as a last-resort antibiotic to treat clinical infections caused by XDR bacteria. Considering the possible public health threat posed by tet(X) and its variants [which we collectively call 'tet(X) genes' in this study], global monitoring and surveillance are urgently required. OBJECTIVES Here we conducted a worldwide survey of the global distribution and spread of tet(X) genes. METHODS We analysed a comprehensive dataset of bacterial genomes in conjunction with surveillance data from our laboratory and the NCBI database, as well as sufficient metadata to characterize the results. RESULTS The global distribution features of tet(X) genes were revealed. We clustered three types of genetic backbones of tet(X) genes embedded or transferred in bacterial genomes. Our pan-genome analyses revealed a large genetic pool composed of tet(X)-carrying sequences. Moreover, phylogenetic trees of tet(X) genes and tet(X)-like proteins were built. CONCLUSIONS To the best of our knowledge, our results provide the first view of the global distribution of tet(X) genes, demonstrate the features of tet(X)-carrying fragments and highlight the possible evolution of tigecycline-inactivation enzymes in diverse bacterial species and habitats.
Collapse
Affiliation(s)
- Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Furqan Awan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Ma Zhenbao
- National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
| | - Xiufeng Zhang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Jiaxiong Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Fu Y, Chen Y, Liu D, Yang D, Liu Z, Wang Y, Wang J, Wang X, Xu X, Li X, He J, Jiang J, Zhai W, Huang L, He T, Xia X, Cai C, Wang Y, Jiang H. Abundance of tigecycline resistance genes and association with antibiotic residues in Chinese livestock farms. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124921. [PMID: 33421874 DOI: 10.1016/j.jhazmat.2020.124921] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The discovery of plasmid-mediated tet(X) variants and efflux pump gene tmexCD1-toprJ1 conferring bacteria resistance to tigecycline has compromised glycylcycline as the last line of defense against infection, which poses serious threat to public health. Herein, real-time quantitative PCR was used to detect the abundance of seven tigecycline resistance genes (TRGs), including six tet(X) variants and tmexCD1-toprJ1, and insertion sequences ISCR2 and IS26. Then, the concentrations of nine antibiotics were quantified in fecal samples collected from 157 livestock farms in four Chinese provinces. TRGs, especially tet(X4), tmexCD1-toprJ1, and insertion sequences ISCR2 and IS26, were more abundant in chicken feces than in pig and cattle feces, suggesting the greater risk for the propagation of TRGs in chicken feces. Positive correlations (ρ = 0.3741-0.8275, P < 0.0001) between ISCR2/IS26 and TRGs (except tet(X1)) further demonstrated that ISCR2 mediates the transfer of tet(X3), tet(X4), and tet(X5) and that IS26 plays a certain role for the mobilization of tet(X4) and tmexCD1-toprJ1. Tetracyclines had no positive correlation with the abundance of TRGs (except tet(X1)), meanwhile florfenicol and tiamulin were positively correlated with TRGs. However, further research is needed to confirm whether or not florfenicol and tiamulin are potential driving factors of TRG accumulation.
Collapse
Affiliation(s)
- Yulin Fu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dawei Yang
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhihai Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingyu Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiayi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xueyang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiangyue Xu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xing Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junjia He
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junyao Jiang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weishuai Zhai
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lingli Huang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Tao He
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xi Xia
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chang Cai
- Research and Innovation Office, Murdoch University, Murdoch 6150, Australia; China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Haiyang Jiang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Jasemi S, Emaneini M, Ahmadinejad Z, Fazeli MS, Sechi LA, Sadeghpour Heravi F, Feizabadi MM. Antibiotic resistance pattern of Bacteroides fragilis isolated from clinical and colorectal specimens. Ann Clin Microbiol Antimicrob 2021; 20:27. [PMID: 33892721 PMCID: PMC8066845 DOI: 10.1186/s12941-021-00435-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Bacteroides fragilis is a part of the normal gastrointestinal flora, but it is also the most common anaerobic bacteria causing the infection. It is highly resistant to antibiotics and contains abundant antibiotic resistance mechanisms. METHODS The antibiotic resistance pattern of 78 isolates of B. fragilis (22 strains from clinical samples and 56 strains from the colorectal tissue) was investigated using agar dilution method. The gene encoding Bacteroides fargilis toxin bft, and antibiotic resistance genes were targeted by PCR assay. RESULTS The highest rate of resistance was observed for penicillin G (100%) followed by tetracycline (74.4%), clindamycin (41%) and cefoxitin (38.5%). Only a single isolate showed resistance to imipenem which contained cfiA and IS1186 genes. All isolates were susceptible to metronidazole. Accordingly, tetQ (87.2%), cepA (73.1%) and ermF (64.1%) were the most abundant antibiotic-resistant genes identified in this study. MIC values for penicillin, cefoxitin and clindamycin were significantly different among isolates with the cepA, cfxA and ermF in compare with those lacking such genes. In addition, 22.7 and 17.8% of clinical and GIT isolates had the bft gene, respectively. CONCLUSIONS The finding of this study shows that metronidazole is highly in vitro active agent against all of B. fragilis isolates and remain the first-line antimicrobial for empirical therapy.
Collapse
Affiliation(s)
- Seyedesomaye Jasemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Engelab-e-Eslami Avenue, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Engelab-e-Eslami Avenue, Tehran, Iran
| | - Zahra Ahmadinejad
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Fazeli
- Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Fatemah Sadeghpour Heravi
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Engelab-e-Eslami Avenue, Tehran, Iran. .,Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
31
|
Pavone S, Rinoldo R, Albini E, Fiorucci A, Caponi B, Fratto A, Manuali E, Papa P, Magistrali CF. First report of urinary tract infection caused by Comamonas kerstersii in a goat. BMC Vet Res 2021; 17:133. [PMID: 33766029 PMCID: PMC7992354 DOI: 10.1186/s12917-021-02840-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Comamonas kerstersii is rarely associated with infections in humans and has never been reported in animals until now. Case presentation Herein, we describe a case of urinary tract infection caused by C. kerstersii in a young goat. A seven-month-old male goat showed lethargy, generalised weakness and anorexia and in the last hours before its death, severe depression, slight abdominal distention, ruminal stasis, and sternal recumbency. Grossly, multifocal haemorrhages in different organs and tissues, subcutaneous oedema and hydrocele, serous fluid with scattered fibrin deposition on the serosa of the abdominal organs and severe pyelonephritis with multifocal renal infarction were detected. Histopathological examination confirmed severe chronic active pyelonephritis with renal infarcts, multi-organ vasculitis and thrombosis suggestive of an infectious diseases of bacterial origin. The bacterium was identified using routine methods, matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), and sequencing of the gyrB gene. Conclusions To the best of our knowledge, this is the first report of C. kerstersii infection in animals (goat). Our findings support the possibility of C. kerstersii isolation from extraintestinal sites and suggest this organism as a possible cause of urinary tract infection.
Collapse
Affiliation(s)
- Silvia Pavone
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy.
| | - Roberto Rinoldo
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Elisa Albini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Alessandro Fiorucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Biagio Caponi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Anna Fratto
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Elisabetta Manuali
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Paola Papa
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Via G. Salvemini, 1, 06126, Perugia, Italy
| |
Collapse
|
32
|
Kim J, Kim JY, Song HS, Kim YB, Whon TW, Ahn SW, Lee SH, Yoo S, Kim YJ, Myoung J, Choi YE, Son HS, Roh SW. Anaerocolumna sedimenticola sp. nov., isolated from fresh water sediment. Antonie van Leeuwenhoek 2021; 114:507-513. [PMID: 33730291 DOI: 10.1007/s10482-021-01536-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
Strain CBA3638T was isolated from the Geum River sediment, Republic of Korea. The cells of strain CBA3638T were Gram-stain-positive, strictly anaerobic, rod-shaped, and 0.5-1.0 μm wide, and 4.0-4.5 μm long. Optimal growth occurred at 37 °C, pH 7.0, and 1.0% (w/v) NaCl. Based on the 16S rRNA gene sequence, the phylogenetic analysis showed that strain CBA3638T belongs to the genus Anaerocolumna in the family Lachnospiraceae, and is most closely related to Anaerocolumna cellulosilytica (94.6-95.0%). The DDH value with A. cellulosilytica SN021T showed 15.0% relatedness. The genome of strain CBA3638T consisted of one circular chromosome that is 5,500,435 bp long with a 36.7 mol% G + C content. The genome contained seven 16S-5S-23S rRNA operons and one antibiotic resistance-related transporter gene (mefA). Quinones were not detected. The predominant cellular fatty acids were C16:0 and C14:0 and the polar lipids were diphosphatidylglycerol, phosphatidylcholine, and uncharacterised polar lipids. Based on the polyphasic taxonomic analysis, we propose strain CBA3638T as a novel species in the genus Anaerocolumna, with the name Anaerocolumna sedimenticola sp. nov. The type strain is CBA3638T (= KACC 21652T = DSM 110663T).
Collapse
Affiliation(s)
- Juseok Kim
- Microbiology and Functionality Research Group and Industrial Technology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.,Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joon Yong Kim
- Microbiology and Functionality Research Group and Industrial Technology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Hye Seon Song
- Microbiology and Functionality Research Group and Industrial Technology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Yeon Bee Kim
- Microbiology and Functionality Research Group and Industrial Technology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Tae Woong Whon
- Microbiology and Functionality Research Group and Industrial Technology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Seung Woo Ahn
- Microbiology and Functionality Research Group and Industrial Technology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.,Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Se Hee Lee
- Microbiology and Functionality Research Group and Industrial Technology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - SeungRan Yoo
- Microbiology and Functionality Research Group and Industrial Technology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Yu Jin Kim
- Microbiology and Functionality Research Group and Industrial Technology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Chonbuk National University, Jeollabuk-do, 54531, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Seok Son
- Department of Food Biosciences and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Seong Woon Roh
- Microbiology and Functionality Research Group and Industrial Technology Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
| |
Collapse
|
33
|
Valdezate S, Cobo F, Monzón S, Medina-Pascual MJ, Zaballos Á, Cuesta I, Pino-Rosa S, Villalón P. Genomic Background and Phylogeny of cfiA-Positive Bacteroides fragilis Strains Resistant to Meropenem-EDTA. Antibiotics (Basel) 2021; 10:antibiotics10030304. [PMID: 33809460 PMCID: PMC8001070 DOI: 10.3390/antibiotics10030304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Bacteroides fragilis shows high antimicrobial resistance (AMR) rates and possesses numerous AMR mechanisms. Its carbapenem-resistant strains (metallo-β-lactamase cfiA-positive) appear as an emergent, evolving clade. Methods: This work examines the genomes, taxonomy, and phylogenetic relationships with respect to other B. fragilis genomes of two B. fragilis strains (CNM20180471 and CNM20200206) resistant to meropenem+EDTA and other antimicrobial agents. Results: Both strains possessed cfiA genes (cfiA14b and the new cfiA28), along with other AMR mechanisms. The presence of other efflux-pump genes, mexAB/mexJK/mexXY-oprM, acrEF/mdtEF-tolC, and especially cusR, which reduces the entry of carbapenem via the repression of porin OprD, may be related to meropenem–EDTA resistance. None of the detected insertion sequences were located upstream of cfiA. The genomes of these and other B. fragilis strains that clustered together in phylogenetic analyses did not meet the condition of >95% average nucleotide/amino acid identity, or >70% in silico genome-to-genome hybridization similarity, to be deemed members of the same species, although <1% difference in the genomic G+C content was seen with respect to the reference genome B. fragilis NCTC 9343T. Conclusions: Carbapenem-resistant strains may be considered a distinct clonal entity, and their surveillance is recommended given the ease with which they appear to acquire AMR.
Collapse
Affiliation(s)
- Sylvia Valdezate
- National Centre of Microbiology, Reference and Research Laboratory for Taxonomy, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain; (M.J.M.-P.); (S.P.-R.); (P.V.)
- Correspondence: ; Tel.: +34-91-822-3734; Fax: +34-91-509-7966
| | - Fernando Cobo
- Department of Microbiology, Instituto Biosanitario de Granada, University Hospital of Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain; (F.C.); (S.M.); (I.C.)
| | - Sara Monzón
- Department of Microbiology, Instituto Biosanitario de Granada, University Hospital of Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain; (F.C.); (S.M.); (I.C.)
| | - María J. Medina-Pascual
- National Centre of Microbiology, Reference and Research Laboratory for Taxonomy, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain; (M.J.M.-P.); (S.P.-R.); (P.V.)
| | - Ángel Zaballos
- Bionformatics Unit, Applied Services, Training and Research, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain;
- Genomics Unit, Applied Services, Training and Research, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain
| | - Isabel Cuesta
- Department of Microbiology, Instituto Biosanitario de Granada, University Hospital of Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain; (F.C.); (S.M.); (I.C.)
| | - Silvia Pino-Rosa
- National Centre of Microbiology, Reference and Research Laboratory for Taxonomy, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain; (M.J.M.-P.); (S.P.-R.); (P.V.)
| | - Pilar Villalón
- National Centre of Microbiology, Reference and Research Laboratory for Taxonomy, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain; (M.J.M.-P.); (S.P.-R.); (P.V.)
| |
Collapse
|
34
|
Kozhakhmetova S, Zholdybayeva E, Tarlykov P, Atavliyeva S, Syzdykov T, Daniyarov A, Mukhtarova K, Ramankulov Y. Determinants of resistance in Bacteroides fragilis strain BFR_KZ01 isolated from a patient with peritonitis in Kazakhstan. J Glob Antimicrob Resist 2021; 25:1-4. [PMID: 33667704 DOI: 10.1016/j.jgar.2021.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/28/2021] [Accepted: 02/19/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Bacteroides fragilis is one of the most important human anaerobic pathogens often found in various clinical infections. The purpose of this study was to determine the susceptibility of a B. fragilis clinical strain (BFR_KZ01) from Kazakhstan to the most commonly used anti-anaerobic drugs at the local level and to detect genes associated with resistance to these antibiotics. METHODS Species identification of the bacterial isolate was performed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) and 16S rRNA gene sequencing. Susceptibility to broad-spectrum antibiotics (metronidazole, meropenem, ciprofloxacin, clindamycin and tetracycline) most commonly used for the treatment of intra-abdominal infections (IAIs) was determined. Mass spectra groups essential for identifying cfiA-positive strains among clinical isolates were studied using ClinProTools 3.0.22 software. An Ion Torrent PGM™ platform was used for whole-genome sequencing (WGS) of the studied isolate. RESULTS The resulting WGS data of strain BFR_KZ01 was submitted to GenBank. In total, 5300 coding sequences (CDSs) and 69 RNA genes were determined. Analysis of the whole-genome data revealed that the studied strain harbours cfiA, nimB, tetQ and gyrA genes conferring resistance to key drugs used in treatment of the IAIs. MALDI-TOF/MS analysis assigned strain BFR_KZ01 to Group II (cfiA-positive); however, BFR_KZ01 was phenotypically sensitive to meropenem (mean MIC, 1.3 mg/L). CONCLUSION Determinants of drug resistance in strain BFR_KZ01 were identified. It was revealed that B. fragilis strain BFR_KZ01 from Kazakhstan is multidrug-resistant since it carries nimB, tetQ and gyrA genes conferring resistance to metronidazole, tetracycline and ciprofloxacin.
Collapse
Affiliation(s)
| | | | - Pavel Tarlykov
- RSE National Center for Biotechnology, Nur-Sultan, Z05K8D5, Kazakhstan
| | - Sabina Atavliyeva
- RSE National Center for Biotechnology, Nur-Sultan, Z05K8D5, Kazakhstan
| | | | - Asset Daniyarov
- RSE National Center for Biotechnology, Nur-Sultan, Z05K8D5, Kazakhstan; Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan, 010000, Kazakhstan
| | - Kymbat Mukhtarova
- RSE National Center for Biotechnology, Nur-Sultan, Z05K8D5, Kazakhstan
| | - Yerlan Ramankulov
- RSE National Center for Biotechnology, Nur-Sultan, Z05K8D5, Kazakhstan; School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
35
|
The Effect of Antibiotics on Mesophilic Anaerobic Digestion Process of Cattle Manure. ENERGIES 2021. [DOI: 10.3390/en14041125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study explored the effect of eight antimicrobials on the efficiency of biogas production in the anaerobic digestion (AD) process of cattle manure. The microbiome involved in AD, presence and number of genes mcrA, MSC and MST specific for Archaea, and antibiotic resistance genes (ARGs) concentration in digestate (D) were examined. Supplementation of antibiotics to substrate significantly lowered biogas production. Amoxicillin caused a 75% decrease in CH4 production in comparison with the control samples. Enrofloxacin, tetracycline, oxytetracycline, and chlortetracycline reduced the amount of biogas produced by 36, 39, 45 and 53%, respectively. High-throughput sequencing of 16S rRNA results revealed that bacteria dominated the Archaea microorganisms in all samples. Moreover, antibiotics led to a decrease in the abundance of the genes mcrA, MSC, MST, and induced an increase in the number of tetracyclines resistance genes. Antibiotics decreased the efficiency of the AD process and lowered the quantity of CH4 obtained, while stimulating an increase in the number of ARGs in D. This work reveals how antimicrobials affect the cattle manure AD process and changes in microbial biodiversity, number of functional genes and ARGs in the digestate due to drugs exposure. It also, provides useful, practical information about the AD process.
Collapse
|
36
|
He T, Wei RC, Zhang L, Gong L, Zhu L, Gu J, Fu YL, Wang Y, Liu DJ, Wang R. Dissemination of the tet(X)-Variant Genes from Layer Farms to Manure-Receiving Soil and Corresponding Lettuce. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1604-1614. [PMID: 33427447 DOI: 10.1021/acs.est.0c05042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The occurrence of high-level tigecycline resistance tet(X) variant genes represents a new transferable resistance crisis to food safety and human health. Here, we investigated the abundance of tet(X)-variant genes [tet(X), tet(X1) to tet(X6)] in 33 samples collected from layer manures, manured/un-manured soils, and corresponding lettuce from three provinces in China. The results showed the occurrence of tet(X)/(X2), tet(X3), and tet(X4) in 24 samples. The detection rate of tet(X)/(X2) (23/24) is higher than that of tet(X3) (7/24) and tet(X4) (2/24), and tet(X)/tet(X2) and tet(X3) were found to be enriched and more abundant in most manured soil and several lettuce samples from manured soils than that from manure samples. Twenty six tigecycline-resistant bacteria were isolated, and tet(X)-variant genes were found to be disseminated not only by bacterial clone spreading but also via multidrug resistance plasmids. The total concentrations of tet(X)-variant genes showed significantly positive correlations (R = 0.683, p < 0.001) with ISCR2. Two veterinary tetracyclines (tetracycline and oxytetracycline) and other classes of antimicrobials (enrofloxacin, azithromycin, thiamphenicol, and florfenicol) showed significant correlations with the total concentrations of tet(X)-variant genes (R = 0.35-0.516, p < 0.05). The findings indicate the transmission of tet(X)-variant genes from layer manures to their receiving environmental soils and lettuce and highlight the contribution of veterinary antimicrobials to the spread of tet(X)-variant genes.
Collapse
Affiliation(s)
- Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rui-Cheng Wei
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lili Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lan Gong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jili Gu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu-Lin Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - De-Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
37
|
Rong SMM, Rodloff AC, Stingu CS. Diversity of antimicrobial resistance genes in Bacteroides and Parabacteroides strains isolated in Germany. J Glob Antimicrob Resist 2021; 24:328-334. [PMID: 33508481 DOI: 10.1016/j.jgar.2021.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Bacteroides spp. are normal constituents of the human intestinal microflora, but they are also able to cause severe diseases. The aim of this study was to determine the diversity of antibiotic resistance genes found in phenotypically resistant Bacteroides and Parabacteroides strains. METHODS A total of 71 phenotypically resistant Bacteroides spp. from human clinical specimens were screened for the antibiotic resistance genes cfiA, tetQ, tetM, tet36, cepA, cfxA, nim, ermG, ermF, bexA, blaVIM, blaNDM, blaKPC, blaOXA-48 and blaGES. The presence of these genes was compared with phenotypic resistance to ampicillin/sulbactam, cefoxitin, ceftolozane/tazobactam, piperacillin/tazobactam, imipenem, meropenem, meropenem/vaborbactam, clindamycin, moxifloxacin, tigecycline, eravacycline and metronidazole. RESULTS tetQ was the most frequently detected gene, followed by cfiA, ermF, cfxA, ermG, cepA, nim and bexA. None of the strains were positive for tetM, tet36, blaVIM, blaNDM, blaKPC, blaOXA-48 or blaGES. Resistance to the tested β-lactams was mainly linked to the presence of the cfiA gene. Clindamycin resistance correlated with the presence of the genes ermG and ermF. The bexA gene was found in six strains, but only two of them were resistant to moxifloxacin. Tigecycline and eravacycline showed good activities despite the frequent occurrence of tetQ. The nim gene was detected in six isolates, five of which were resistant to metronidazole. CONCLUSION The findings of our study support the general belief that antimicrobial resistance within Bacteroides should be taken into consideration. This underlines the necessity of reliable routine antimicrobial susceptibility test methods for anaerobic bacteria and the implementation of antimicrobial surveillance programmes worldwide.
Collapse
Affiliation(s)
- Sebastian Martin Michael Rong
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany.
| | - Arne Christian Rodloff
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Catalina-Suzana Stingu
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| |
Collapse
|
38
|
Zeng Y, Lu J, Liu C, Ling Z, Sun Q, Wang H, Zhou H, Hu Y, Chen G, Zhang R. A method for screening tigecycline-resistant gene tet(X) from human gut. J Glob Antimicrob Resist 2020; 24:29-31. [PMID: 33249252 DOI: 10.1016/j.jgar.2020.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/24/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES To develop an effective enrichment method for tet(X) detection, we performed PCR and Sanger sequencing to screen and confirm the presence of tet(X) gene. METHODS Species were identified by MALDI-TOF MS analysis. The minimum inhibitory concentrations (MICs) of common antibiotics were determined by broth microdilution and interpreted according to the CLSI guidelines and EUCAST breakpoints. RESULTS We obtained 29 (2.26%, 29/1284) tet(X4)-positive Escherichia coli, and 96.6% of those (28 isolates) exhibited resistance to tigecycline. CONCLUSION This specific screening strategy for functional tet(X) mediating tigecycline resistance will be useful to facilitate development and advancement of our knowledge of tet(X).
Collapse
Affiliation(s)
- Yu Zeng
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhuoren Ling
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hanyu Wang
- Liberal Art and Science, University of Connecticut, CT, USA
| | - Hongwei Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yanyan Hu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
39
|
Pricop GR, Gheorghe I, Pircalabioru GG, Cristea V, Popa M, Marutescu L, Chifiriuc MC, Mihaescu G, Bezirtzoglou E. Resistance and Virulence Features of Bacteroides spp. Isolated from Abdominal Infections in Romanian Patients. Pathogens 2020; 9:pathogens9110940. [PMID: 33198093 PMCID: PMC7696418 DOI: 10.3390/pathogens9110940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Anaerobic bacteria are predominant residents of the normal microbiota of the skin and mucous membranes but are also known to be associated with a number of human infections including peritonitis, appendicitis, abscesses, ulcers and wound infections. Herein, we investigate the antibiotic resistance profiles as well as the genetic support of antibiotic resistance and virulence determinants of anaerobic bacteria isolated from intra-abdominal infections. The study was performed on 198 Romanian patients from which different clinical samples were taken intra-operatory and sent for microbiological analyses. From the total number of isolated strains, a subset of 75 Bacteroides spp. were selected and further investigated for antibiotic resistance and virulence features, at phenotypic and genetic level. Our results obtained through the analysis of a significant number of Bacteroides strains could shed light on the virulence potential and mechanisms by which anaerobic bacteria can cause endogenous infections.
Collapse
Affiliation(s)
- Gabriela Roxana Pricop
- Faculty of Biology, Department of Microbiology and Immunology, University of Bucharest, 060101 Bucharest, Romania; (G.R.P.); (V.C.); (L.M.); (M.C.C.); (G.M.)
| | - Irina Gheorghe
- Faculty of Biology, Department of Microbiology and Immunology, University of Bucharest, 060101 Bucharest, Romania; (G.R.P.); (V.C.); (L.M.); (M.C.C.); (G.M.)
- Department of Earth, Environment and Life Sciences, The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania;
- Correspondence: (I.G.); (G.G.P.)
| | - Gratiela Gradisteanu Pircalabioru
- Department of Earth, Environment and Life Sciences, The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania;
- Correspondence: (I.G.); (G.G.P.)
| | - Violeta Cristea
- Faculty of Biology, Department of Microbiology and Immunology, University of Bucharest, 060101 Bucharest, Romania; (G.R.P.); (V.C.); (L.M.); (M.C.C.); (G.M.)
| | - Marcela Popa
- Department of Earth, Environment and Life Sciences, The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania;
| | - Luminita Marutescu
- Faculty of Biology, Department of Microbiology and Immunology, University of Bucharest, 060101 Bucharest, Romania; (G.R.P.); (V.C.); (L.M.); (M.C.C.); (G.M.)
- Department of Earth, Environment and Life Sciences, The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, Department of Microbiology and Immunology, University of Bucharest, 060101 Bucharest, Romania; (G.R.P.); (V.C.); (L.M.); (M.C.C.); (G.M.)
- Department of Earth, Environment and Life Sciences, The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania;
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Grigore Mihaescu
- Faculty of Biology, Department of Microbiology and Immunology, University of Bucharest, 060101 Bucharest, Romania; (G.R.P.); (V.C.); (L.M.); (M.C.C.); (G.M.)
| | - Eugenia Bezirtzoglou
- Laboratory of Microbiology, Biotechnology and Hygiene, Department of Food Science and Technology, Faculty of Agricultural Development, Democritus University of Thrace, 67100 Orestiada, Greece;
| |
Collapse
|
40
|
Genotyping of multi drug resistant Bacteroides fragilis group of clinical isolates from mangalore, south India. Indian J Med Microbiol 2020; 39:19-23. [PMID: 33610251 DOI: 10.1016/j.ijmmb.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Bacteroides fragilis group, the most encountered anaerobic bacterium is emerging with resistance to antibiotics. This study explores the antibiogram and occurrence of resistance genes in isolates of B fragilis group from clinical samples. METHOD In this study the antimicrobial susceptibility test was done using commercially available E strip test and the results were recorded according to CLSI guidelines. Genotypic investigations were performed by conventional PCR to detect the target resistant genes. RESULTS Ceftriaxone, cefoxitin, clindamycin and imipenem were found to be the most resistant antimicrobials in E test method. Metronidazole has shown resistance in 7 strains in vitro while resistance nim genes were detected in 12 strains from 62 randomly selected isolates. Other resistance genes (cfiA, ermF and cepA) were expressed at 58%, 62.9% and 48.3% respectively, among these strains. CONCLUSION B fragilis group harbouring the resistant genes may not be fully expressed phenotypically. Hence, detection of these genes by PCR might be necessary for a pertinent conclusion.
Collapse
|
41
|
Harnisz M, Kiedrzyńska E, Kiedrzyński M, Korzeniewska E, Czatzkowska M, Koniuszewska I, Jóźwik A, Szklarek S, Niestępski S, Zalewski M. The impact of WWTP size and sampling season on the prevalence of antibiotic resistance genes in wastewater and the river system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140466. [PMID: 32886993 DOI: 10.1016/j.scitotenv.2020.140466] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 05/21/2023]
Abstract
There is a growing concern about the fate of antibiotic resistance genes (ARGs) during wastewater treatment and their potential impacts on the receiving water bodies. We hypothesised that the quantity of ARGs in effluents may be related to the size of wastewater treatment plants (WWTPs) and sampling season. To date, only several attempts have been made to investigate the impact of the above factors at the catchment scale. Therefore, the goal of the present study was to explore possible differences in the quantity of ARGs in treated wastewater from small, medium-sized and large WWTPs in the catchment of the Pilica River (9258 km2). The impact of treated wastewater on the concentration of ARGs was also determined along the river continuum from upland to lowland segments to the point of confluence with the Vistula (342 km). Treated effluent was sampled in 17 WWTPs, and river water was sampled in 7 sampling sites in four seasons. The concentrations of blaTEM, tet(A), ermF, sul1 and aac(6')-Ib-cr genes, the integrase gene intI1 and the 16S rRNA gene were analysed by quantitative PCR. The physical and chemical parameters and nutrient concentrations (23 various parameters) in the analysed samples were determined. The highest absolute concentrations of the studied genes were noted in effluent samples from small WWTPs (p < 0.01). The concentration of ARGs (gene copies/mL) peaked in winter and spring samples (p < 0.04). The results of statistical analyses indicate that in small WWTPs, the absolute concentration of ARGs can be predicted based on the biochemical oxygen demand, in routine water analyses. However, none of the studied parameters supported predictions of ARG abundance in medium-sized and large WWTPs or in river water.
Collapse
Affiliation(s)
- Monika Harnisz
- University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1, 10-719 Olsztyn, Poland.
| | - Edyta Kiedrzyńska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland; University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Marcin Kiedrzyński
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Geobotany and Plant Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Ewa Korzeniewska
- University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Małgorzata Czatzkowska
- University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Izabela Koniuszewska
- University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Adam Jóźwik
- University of Lodz, Faculty of Physics and Applied Informatics, Department of Computer Science, Pomorska 149/153, 90-236 Lodz, Poland
| | - Sebastian Szklarek
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland
| | - Sebastian Niestępski
- University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Maciej Zalewski
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland; University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
42
|
Niestępski S, Harnisz M, Korzeniewska E, Osińska A. Markers Specific to Bacteroides fragilis Group Bacteria as Indicators of Anthropogenic Pollution of Surface Waters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197137. [PMID: 33003501 PMCID: PMC7579016 DOI: 10.3390/ijerph17197137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/29/2022]
Abstract
The aim of this study was to evaluate the applicability of markers specific to Bacteroides fragilis group (BFG) bacteria as indicators of anthropogenic pollution of surface waters. In addition, the impact of wastewater treatment plants (WWTPs) on the spread of genes specific to fecal indicator bacteria and genes encoding antimicrobial resistance in water bodies was also determined. Samples of hospital wastewater (HWW), untreated wastewater (UWW), and treated wastewater (TWW) evacuated from a WWTP were collected, and samples of river water were taken upstream (URW) and downstream (DRW) from the wastewater discharge point to determine, by qPCR, the presence of genes specific to BFG, Escherichia coli and Enterococcus faecalis, and the abundance of 11 antibiotic resistance genes (ARGs) and two integrase genes. The total number of bacterial cells (TCN) in the examined samples was determined by fluorescence in situ hybridization (FISH). Genes specific to BFG predominated among the analyzed indicator microorganisms in HWW, and their copy numbers were similar to those of genes specific to E. coli and E. faecalis in the remaining samples. The abundance of genes specific to BFG was highly correlated with the abundance of genes characteristic of E. coli and E. faecalis, all analyzed ARGs and intI genes. The results of this study indicate that genes specific to BFG can be used in analyses of human fecal pollution, and as indicators of environmental contamination with ARGs. A significant increase in the copy numbers of genes specific to BFG, E. coli, and seven out of the 11 analyzed ARGs was noted in samples of river water collected downstream from the wastewater discharge point, which suggests that WWTPs are an important source of these genes in riparian environments.
Collapse
|
43
|
Wambui J, Cernela N, Corti S, Stephan R. Comparative Genome Analysis and Phenotypic Characterization of Clostridium gasigenes CGAS001 Isolated From Chilled Vacuum-Packed Lamb Meat. Front Microbiol 2020; 11:2048. [PMID: 32983035 PMCID: PMC7476324 DOI: 10.3389/fmicb.2020.02048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic data for psychrophilic bacteria causing blown pack spoilage (BPS) are limited. This study characterizes the genome of a novel Clostridium gasigenes strain CGAS001 isolated from meat juice sample (MJS) of vacuum-packed lamb meat by comparing it with the type strain C. gasigenes DSM 12272 and five strains representing four other BPS-causing Clostridium sensu stricto species. Phenotypic characteristics of the strain, which include biochemical characteristics, antimicrobial resistance and production of putative polyketide, have been determined. The size of its draft genome is 4.1 Mb with 3,845 coding sequences, 28.7% GC content and 95 RNA genes that include 75 tRNAs, 17 rRNAs, and 3 ncRNAs. Average Nucleotide Identity (ANI) and digital DNA-DNA Hybridization (dDDH) predict that C. gasigenes CGAS001 and DSM 12272 constitute a single species (ANI and dDDH = 98.3% for speciation) but two distinct subspecies (dDDH = 73.3% for subspeciation). The genome is characterized by saccharolytic, lipolytic and proteolytic genes as well as hemolysins and phospholipases, which are consistent with its phenotype. The genome also reveals the ability of C. gasigenes to synthesize polyketides which is demonstrated by the antimicrobial activity of a crude polyketide extract against Listeria monocytogenes and Enterococcus devriesei. The strain is resistant to polymyxin B and streptomycin. The genetic and phenotypic analyses suggest that CGAS001 constitutes a novel subspecies of C. gasigenes adapted to a saprophytic lifestyle and can synthesize narrow spectrum antimicrobial compounds.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sabrina Corti
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Yekani M, Baghi HB, Naghili B, Vahed SZ, Sóki J, Memar MY. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb Pathog 2020; 149:104506. [PMID: 32950639 DOI: 10.1016/j.micpath.2020.104506] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Bacteroides fragilis is a most frequent anaerobic pathogen isolated from human infections, particularly found in the abdominal cavity. Different factors contribute to the pathogenesis and persistence of B. fragilis at infection sites. The knowledge of the virulence factors can provide applicable information for finding alternative options for the antibiotic therapy and treatment of B. fragilis caused infections. Herein, a comprehensive review of the important B. fragilis virulence factors was prepared. In addition to B. fragilis toxin (BFT) and its potential role in the diarrhea and cancer development, some other important virulence factors and characteristics of B. fragilis are described including capsular polysaccharides, iron acquisition, resistance to antimicrobial agents, and survival during the prolonged oxidative stress, quorum sensing, and secretion systems.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee,Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Anaerobic bacteria are implicated in a broad range of infections and can cause significant morbidity and mortality. As such, development of antimicrobial resistance (AMR) increases the risk of worse clinical outcomes and death. RECENT FINDINGS Anaerobe AMR is highly variable according to region and species included in the survey. The overall trend is to increasing resistance, particularly in Europe and Asia, and in the Bacteroides fragilis group and Clostridium sp. Conversely, with the decline in RT027, resistance in Clostridiodes difficile is decreasing. Resistance to moxifloxacin and clindamycin has reached 30-50%, whereas prevalence of metronidazole and carbapenem resistance is generally low. Infections due to multidrug anaerobes have been increasingly reported, with clinical studies demonstrating adverse clinical outcomes, including higher mortality, with anaerobic resistance or inappropriate therapy. The role of antimicrobial stewardship in the setting of increasing anaerobe resistance is yet to be fully elucidated. SUMMARY These findings highlight the importance of continuous surveillance in monitoring emerging trends in anaerobe AMR. Mean inhibitory concentrations should be reported due to variable susceptibility breakpoints and for detection of isolates with reduced susceptibility. At a local level, the clinical microbiology laboratory has a key role in identifying and undertaking susceptibility testing to inform individual patient management, develop local antibiograms and liaise with antimicrobial stewardship teams. A greater understanding of the clinical impact of anaerobic resistance and the role of antimicrobial stewardship in preventing resistance is required.
Collapse
|
46
|
Niestępski S, Harnisz M, Ciesielski S, Korzeniewska E, Osińska A. Environmental fate of Bacteroidetes, with particular emphasis on Bacteroides fragilis group bacteria and their specific antibiotic resistance genes, in activated sludge wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122544. [PMID: 32224375 DOI: 10.1016/j.jhazmat.2020.122544] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine the effect of the activated sludge process on the abundance of anaerobic bacteria of the phylum Bacteroidetes, with special emphasis on Bacteroides fragilis group (BFG) bacteria, in twelve full-scale wastewater treatment plants. The composition of bacterial phyla and classes in wastewater samples were analyzed by next-generation sequencing. The presence of specific to BFG bacteria genes and the abundance of ARGs and genes encoding class 1 integrase in wastewater samples were determined by qPCR. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were dominant bacterial phyla in wastewater samples. Next-generation sequencing revealed similar proportions of Bacteroidia (<1.0-8.2 % of all bacteria) in wastewater influents and effluents, which suggest that these microorganisms are not completely eliminated in the activated sludge process. The average copy numbers of specific to BFG bacteria gene, were 106, and 104 copies in 1 mL of wastewater influents and effluents, respectively. The results revealed a correlation between the abundance of BFG bacteria and BFG-specific genes encoding resistance to antibiotics. The observed changes in the prevalence of BFG-specific genes and ARGs in untreated and treated wastewater indicate that the activated sludge process decreases the number of gene copies in the effluent evacuated to the environment.
Collapse
Affiliation(s)
- Sebastian Niestępski
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Adriana Osińska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
47
|
Fang LX, Chen C, Cui CY, Li XP, Zhang Y, Liao XP, Sun J, Liu YH. Emerging High-Level Tigecycline Resistance: Novel Tetracycline Destructases Spread via the Mobile Tet(X). Bioessays 2020; 42:e2000014. [PMID: 32567703 DOI: 10.1002/bies.202000014] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Antibiotic resistance in bacteria has become a great threat to global public health. Tigecycline is a next-generation tetracycline that is the final line of defense against severe infections by pan-drug-resistant bacterial pathogens. Unfortunately, this last-resort antibiotic has been challenged by the recent emergence of the mobile Tet(X) orthologs that can confer high-level tigecycline resistance. As it is reviewed here, these novel tetracycline destructases represent a growing threat to the next-generation tetracyclines, and a basic framework for understanding the molecular epidemiology and resistance mechanisms of them is presented. However, further large-scale epidemiological and functional studies are urgently needed to better understand the prevalence and dissemination of these newly discovered Tet(X) orthologs among Gram-negative bacteria in both human and veterinary medicine.
Collapse
Affiliation(s)
- Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Chong Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Xing-Ping Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
48
|
Antimicrobial susceptibility and prevalence of resistance genes in Bacteroides fragilis isolated from blood culture bottles in two tertiary care hospitals in Japan. Anaerobe 2020; 64:102215. [PMID: 32574601 DOI: 10.1016/j.anaerobe.2020.102215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
The in vitro susceptibilities of Bacteroides fragilis to antimicrobial agents, especially to carbapenem, are a major concern in the treatment of patients with bloodstream infections. In this study, 50 isolates of B. fragilis were obtained from positive blood bottles from 2014 to 2019 in Saitama, Japan. Their susceptibility to ampicillin/sulbactam was reduced to 70.0% compared with a previous report, whereas they were still sufficiently susceptible to piperacillin/tazobactam (94.0%). Five cfiA-positive isolates (5/50, 10.0%) were identified that were resistant to doripenem and meropenem, and two of them carried an insertion sequence located upstream of the cfiA-coding region. In particular, imipenem should be considered as a first-line carbapenem for the empirical treatment of B. fragilis infection because only insertion sequence and cfiA double-positive strains showed resistance to imipenem. Thirty-six percent of the isolates had a reduced minimum inhibitory concentration for moxifloxacin. In addition, metronidazole should still be considered as an active agent for B. fragilis because all isolates were susceptible to this antibiotic and the prevalence of the nim gene was low in Japan.
Collapse
|
49
|
Cui CY, Chen C, Liu BT, He Q, Wu XT, Sun RY, Zhang Y, Cui ZH, Guo WY, Jia QL, Li C, Kreiswirth BN, Liao XP, Chen L, Liu YH, Sun J. Co-occurrence of Plasmid-Mediated Tigecycline and Carbapenem Resistance in Acinetobacter spp. from Waterfowls and Their Neighboring Environment. Antimicrob Agents Chemother 2020; 64:e02502-19. [PMID: 32122894 PMCID: PMC7179582 DOI: 10.1128/aac.02502-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/21/2020] [Indexed: 11/20/2022] Open
Abstract
Tigecycline serves as one of the antibiotics of last resort to treat multidrug-resistant (including carbapenem-resistant) pathogens. However, the recently emerged plasmid-mediated tigecycline resistance mechanism, Tet(X), challenges the clinical efficacy of this class of antibiotics. In this study, we detected 180 tet(X)-harboring Acinetobacter isolates (8.9%, n = 180) from 2,018 samples collected from avian farms and adjacent environments in China. Eighteen tet(X)-harboring isolates (10.0%) were found to cocarry the carbapenemase gene blaNDM-1, mostly from waterfowl samples (94.4%, 17/18). Interestingly, among six Acinetobacter strains, tet(X) and blaNDM-1 were found to colocalize on the same plasmids. Moreover, whole-genome sequencing (WGS) revealed a novel orthologue of tet(X) in the six isolates coharboring tet(X) and blaNDM-1 Inverse PCR suggested that the two tet(X) genes form a single transposable unit and may be cotransferred. Sequence comparison between six tet(X)- and blaNDM-1-coharboring plasmids showed that they shared a highly homologous plasmid backbone even though they were isolated from different Acinetobacter species (three from Acinetobacter indicus, two from Acinetobacter schindleri, and one from Acinetobacter lwoffii) from various sources and from different geological regions, suggesting the horizontal genetic transfer of a common tet(X)- and blaNDM-1-coharboring plasmid among Acinetobacter species in China. Emergence and spread of such plasmids and strains are of great clinical concern, and measures must be implemented to avoid their dissemination.
Collapse
Affiliation(s)
- Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Chong Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qian He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Xiao-Ting Wu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Yan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ze-Hua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Wen-Ying Guo
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Qiu-Lin Jia
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Cang Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Barry N Kreiswirth
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
50
|
Duan Y, Chen Z, Tan L, Wang X, Xue Y, Wang S, Wang Q, Das R, Lin H, Hou J, Li L, Mao D, Luo Y. Gut resistomes, microbiota and antibiotic residues in Chinese patients undergoing antibiotic administration and healthy individuals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135674. [PMID: 31785918 DOI: 10.1016/j.scitotenv.2019.135674] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 05/21/2023]
Abstract
Human gut microbiota is an important reservoir of antibiotic resistance genes (ARGs). Although dysbacteriosis after the antibiotic course has been previously observed in the patient guts, a comprehensive comparison of gut resistomes, microbiota and antibiotic residues in healthy individuals and patients undergoing antibiotic administration is little. Using high-throughput qPCR, 16S rRNA gene amplicon sequencing and UPLC-MS/MS, we systematically examined the antibiotic resistome, gut microbiota, and antibiotic residues in fecal samples from both Chinese healthy individuals and patients receiving antibiotic therapy. Compared with healthy individuals, patients' guts harbored lower diverse gut resistome and microbiota, but higher concentrations of antibiotics and ARGs. Antibiotic concentration in human guts was positively correlated with ARG total abundance, but was negatively related to the diversity of both ARGs and bacterial communities, which demonstrated that antibiotic administration could shape the antibiotic resistomes and bacterial communities in the patient guts. Gene cfxA was evaluated as a potential biomarker to distinguish the patients receiving antibiotic therapy from the healthy individuals in China since its wide detection and significant enrichment in the guts of the patients. The detection of some veterinary antibiotics in human guts illustrated the potential transmission of antibiotic from the external environment to human via the food chain. The obtained results could help to better understand the influence of antibiotic therapy in shaping antibiotic reistomes and bacterial communities in Chinese individuals.
Collapse
Affiliation(s)
- Yujing Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lu Tan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingang Xue
- Key Laboratory of Environmental Protection of Water Environment Biological Monitoring of Jiangsu Province, Changzhou Environmental Monitoring Center, Changzhou 213001, China
| | - Shaopeng Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ranjit Das
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huai Lin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jie Hou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Linyun Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|