1
|
Lan Y, Jin B, Zhang Y, Huang Y, Luo Z, Su C, Li J, Ma L, Zhou J. Vaginal microbiota, menopause, and the use of menopausal hormone therapy: a cross-sectional, pilot study in Chinese women. Menopause 2024; 31:1014-1023. [PMID: 39226419 DOI: 10.1097/gme.0000000000002432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
OBJECTIVE To compare the vaginal microbiota of premenopausal and postmenopausal women and postmenopausal women undergoing menopausal hormone therapy (MHT) and examine the association between vaginal microbiota and genitourinary syndrome of menopause (GSM). METHODS This cross-sectional study classified 94 women aged 40 to 60 years into three groups: premenopausal (Pre, n = 32), postmenopausal (Post, n = 30), and postmenopausal women who received MHT orally (Post + MHT, n = 32). Neither the Pre nor the Post group received hormone therapy within the past 6 months. Postmenopausal women who received vaginal MHT were not included. Vaginal swabs were obtained, and microbial composition was characterized by 16S rRNA gene sequencing targeting the V3 to V4 region. Clinical data were collected and serum sex hormones were measured. The most bothersome symptom approach and vaginal health index were used to evaluate GSM. Mann-Whitney U or Kruskal-Wallis ANOVA followed by multiple comparison tests were performed for comparison between or across groups. The correlations between GSM symptom scores and vaginal microbiota were determined using Spearman's correlation analysis. RESULTS The vaginal community of postmenopausal women was characterized by a decreased abundance of Lactobacillus (Post 18% vs Pre 69%); an increased abundance of several anaerobic bacteria, including Prevotella , Escherichia-Shigella , and Bifidobacterium ; and a higher microbial diversity ( P < 0.001 for Shannon and Simpson indexes) than those of premenopausal women. The vaginal community of postmenopausal women who received MHT had an increased abundance of Lactobacillus (54%) and lower microbial diversity ( P < 0.001 for Shannon and Simpson indexes) than the postmenopausal women. The vaginal microbial community composition of the Pre group shared more similarity with that of the Post + MHT group (Adonis P = 0.051) than with that of the Post group (Adonis P < 0.001). A decreased abundance of Lactobacillus and high diversity in the vaginal community were found in women with moderate to severe GSM symptoms. CONCLUSIONS Among Chinese postmenopausal women, those receiving MHT had higher Lactobacillus abundance but lower abundance of diverse anaerobes and diversity of the vaginal microbial community compared to non-MHT women. MHT in postmenopausal women may potentially contribute to reestablishing vaginal microbiota homeostasis. Findings in this pilot study, however, need to be examined in larger, prospective studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingjing Li
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | | | | |
Collapse
|
2
|
Núño K, Jensen AS, O'Connor G, Houston TJ, Dikici E, Zingg JM, Deo S, Daunert S. Insights into Women's health: Exploring the vaginal microbiome, quorum sensing dynamics, and therapeutic potential of quorum sensing quenchers. Mol Aspects Med 2024; 100:101304. [PMID: 39255544 DOI: 10.1016/j.mam.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/28/2024] [Indexed: 09/12/2024]
Abstract
The vaginal microbiome is an important aspect of women's health that changes dynamically with various stages of the woman's life. Just like the gut microbiome, the vaginal microbiome can also be affected by pathologies that dramatically change the typical composition of native vaginal microorganisms. However, the mechanism as to how both vaginal endemic and gut endemic opportunistic microbes can express pathogenicity in vaginal polymicrobial biofilms is poorly understood. Quorum sensing is the cellular density-dependent bacterial and fungal communication process in which chemical signaling molecules, known as autoinducers, activate expression for genes responsible for virulence and pathogenicity, such as biofilm formation and virulence factor production. Quorum sensing inhibition, or quorum quenching, has been explored as a potential therapeutic route for both bacterial and fungal infections. By applying these quorum quenchers, one can reduce biofilm formation of opportunistic vaginal microbes and combine them with antibiotics for a synergistic effect. This review aims to display the relationship between the vaginal and gut microbiome, the role of quorum sensing in polymicrobial biofilm formation which cause pathology in the vaginal microbiome, and how quorum quenchers can be utilized to attenuate the severity of bacterial and fungal infections.
Collapse
Affiliation(s)
- Kevin Núño
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Anne Sophie Jensen
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Tiffani Janae Houston
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Department of Internal Medicine, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Jean Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Lafioniatis A, Samara AA, Makaritsis PK, Dafopoulos S, Sotiriou S, Dafopoulos K. Understanding the Role of Female Genital Tract Microbiome in Recurrent Implantation Failure. J Clin Med 2024; 13:3173. [PMID: 38892884 PMCID: PMC11172434 DOI: 10.3390/jcm13113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The realization of the role of the microbiome of the female reproductive tract in health and disease has opened numerous possibilities for the scientific examination of the intertwining role between the human host and its microbiota. The imbalance in the composition of the microbial communities of the vagina and uterus is now recognized as a risk factor for many complications in pregnancy and according to the data from numerous studies, it is possible for this imbalance to play a crucial role in creating a hostile endometrial environment, and therefore, contributing to the etiology of recurrent implantation failure. Nevertheless, our current understanding of these complicated biological phenomena is far from complete, and in the future, there needs to be a systematic and thorough investigation of the diagnosis and therapy of this condition. This will enable scientists who engage in the field of assisted reproduction technologies to accurately identify and cure women in whom dysbiosis hinders the achievement of a healthy pregnancy.
Collapse
Affiliation(s)
- Anastasios Lafioniatis
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| | - Athina A. Samara
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
- Department of Embryology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Peter K. Makaritsis
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| | - Stefanos Dafopoulos
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| |
Collapse
|
4
|
Zhang W, Yin Y, Jiang Y, Yang Y, Wang W, Wang X, Ge Y, Liu B, Yao L. Relationship between vaginal and oral microbiome in patients of human papillomavirus (HPV) infection and cervical cancer. J Transl Med 2024; 22:396. [PMID: 38685022 PMCID: PMC11059664 DOI: 10.1186/s12967-024-05124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The aim of this study was to assess the microbial variations and biomarkers in the vaginal and oral environments of patients with human papillomavirus (HPV) and cervical cancer (CC) and to develop novel prediction models. MATERIALS AND METHODS This study included 164 samples collected from both the vaginal tract and oral subgingival plaque of 82 women. The participants were divided into four distinct groups based on their vaginal and oral samples: the control group (Z/KZ, n = 22), abortion group (AB/KAB, n = 17), HPV-infected group (HP/KHP, n = 21), and cervical cancer group (CC/KCC, n = 22). Microbiota analysis was conducted using full-length 16S rDNA gene sequencing with the PacBio platform. RESULTS The vaginal bacterial community in the Z and AB groups exhibited a relatively simple structure predominantly dominated by Lactobacillus. However, CC group shows high abundances of anaerobic bacteria and alpha diversity. Biomarkers such as Bacteroides, Mycoplasma, Bacillus, Dialister, Porphyromonas, Anaerococcus, and Prevotella were identified as indicators of CC. Correlations were established between elevated blood C-reactive protein (CRP) levels and local/systemic inflammation, pregnancy, childbirth, and abortion, which contribute to unevenness in the vaginal microenvironment. The altered microbial diversity in the CC group was confirmed by amino acid metabolism. Oral microbial diversity exhibited an inverse pattern to that of the vaginal microbiome, indicating a unique relationship. The microbial diversity of the KCC group was significantly lower than that of the KZ group, indicating a link between oral health and cancer development. Several microbes, including Fusobacterium, Campylobacter, Capnocytophaga, Veillonella, Streptococcus, Lachnoanaerobaculum, Propionibacterium, Prevotella, Lactobacillus, and Neisseria, were identified as CC biomarkers. Moreover, periodontal pathogens were associated with blood CRP levels and oral hygiene conditions. Elevated oral microbial amino acid metabolism in the CC group was closely linked to the presence of pathogens. Positive correlations indicated a synergistic relationship between vaginal and oral bacteria. CONCLUSION HPV infection and CC impact both the vaginal and oral microenvironments, affecting systemic metabolism and the synergy between bacteria. This suggests that the use of oral flora markers is a potential screening tool for the diagnosis of CC.
Collapse
Affiliation(s)
- Wei Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Yanfei Yin
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Yisha Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yangyang Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wentao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaoya Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yan Ge
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gynecology, Lanzhou University First Hospital, Lanzhou, China
| | - Bin Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| | - Lihe Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Department of Neurology, Lanzhou University First Hospital, Lanzhou, China.
| |
Collapse
|
5
|
Shen J, Sun H, Chu J, Gong X, Liu X. Cervicovaginal microbiota: a promising direction for prevention and treatment in cervical cancer. Infect Agent Cancer 2024; 19:13. [PMID: 38641803 PMCID: PMC11027553 DOI: 10.1186/s13027-024-00573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/21/2024] Open
Abstract
Cervical cancer is a common malignancy in women, with high incidence rate and mortality. Persistent infection of high-risk human papillomavirus (HPV) is the most important risk factor for cervical cancer and precancerous lesions. Cervicovaginal microbiota (CVM) plays an essential role in the defense of HPV infections and prevention of subsequent lesions. Dominance of Lactobacillus is the key of CVM homeostasis, which can be regulated by host, exogenous and endogenous factors. Dysbiosis of CVM, including altered microbial, metabolic, and immune signatures, can contribute to persist HPV infection, leading to cervical cancer. However, there is no evidence of the causality between CVM and cervical cancer, and the underlying mechanism remains unexplored. Considering the close correlation between CVM dysbiosis and persistent HPV infection, this review will overview CVM, its role in cervical cancer development and related mechanisms, and the prospects for therapeutic applications.
Collapse
Affiliation(s)
- Jie Shen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Hao Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Jing Chu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Xiaodi Gong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China.
| | - Xiaojun Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China.
| |
Collapse
|
6
|
Campisciano G, Sorz A, Cason C, Zanotta N, Gionechetti F, Piazza M, Carli P, Uliana FM, Ballaminut L, Ricci G, De Seta F, Maso G, Comar M. Genital Dysbiosis and Different Systemic Immune Responses Based on the Trimester of Pregnancy in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:4298. [PMID: 38673883 PMCID: PMC11050260 DOI: 10.3390/ijms25084298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Respiratory infections are common in pregnancy with conflicting evidence supporting their association with neonatal congenital anomalies, especially during the first trimester. We profiled cytokine and chemokine systemic responses in 242 pregnant women and their newborns after SARS-CoV-2 infection, acquired in different trimesters. Also, we tested transplacental IgG passage and maternal vaginal-rectal microbiomes. IgG transplacental passage was evident, especially with infection acquired in the first trimester. G-CSF concentration-involved in immune cell recruitment-decreased in infected women compared to uninfected ones: a beneficial event for the reduction of inflammation but detrimental to ability to fight infections at birth. The later the infection was acquired, the higher the systemic concentration of IL-8, IP-10, and MCP-1, associated with COVID-19 disease severity. All infected women showed dysbiosis of vaginal and rectal microbiomes, compared to uninfected ones. Two newborns tested positive for SARS-CoV-2 within the first 48 h of life. Notably, their mothers had acute infection at delivery. Although respiratory infections in pregnancy are reported to affect babies' health, with SARS-CoV-2 acquired early during gestation this risk seems low because of the maternal immune response. The observed vaginal and rectal dysbiosis could be relevant for neonatal microbiome establishment, although in our series immediate neonatal outcomes were reassuring.
Collapse
Affiliation(s)
- Giuseppina Campisciano
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Alice Sorz
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health–IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (A.S.); (M.P.); (G.R.); (F.D.S.); (G.M.)
| | - Carolina Cason
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Nunzia Zanotta
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Fabrizia Gionechetti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy;
| | - Maria Piazza
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health–IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (A.S.); (M.P.); (G.R.); (F.D.S.); (G.M.)
| | - Petra Carli
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Francesca Maria Uliana
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Lisa Ballaminut
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Giuseppe Ricci
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health–IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (A.S.); (M.P.); (G.R.); (F.D.S.); (G.M.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Francesco De Seta
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health–IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (A.S.); (M.P.); (G.R.); (F.D.S.); (G.M.)
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Gianpaolo Maso
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health–IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (A.S.); (M.P.); (G.R.); (F.D.S.); (G.M.)
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
7
|
Teh HE, Pung CK, Arasoo VJT, Yap PSX. A Landscape View of the Female Genital Tract Microbiome in Healthy Controls and Women With Reproductive Health Conditions Associated With Ectopic Pregnancy. Br J Biomed Sci 2024; 80:12098. [PMID: 38283642 PMCID: PMC10811206 DOI: 10.3389/bjbs.2023.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
Disruption of the female genital microbiome is associated with several pregnancy complications, including miscarriage, preterm onset of labour, and tubal pregnancy. Ectopic pregnancy is a known cause of maternal morbidity and mortality, but early diagnosis and treatment of ectopic pregnancy remain a challenge. Despite growing established associations between genital microbiome and female reproductive health, few studies have specifically focused on its link with ectopic pregnancy. Therefore, the current review aims to provide a comprehensive account of the female genital microbiome in healthy and fertile women compared to those in ectopic pregnancy and its associated risk factors. The microbial diversity from various sites of the female genital tract was explored for a reliable proxy of female reproductive health in sequencing-based ectopic pregnancy research. Our report confirmed the predominance of Lactobacillus in the vagina and the cervix among healthy women. The relative abundance decreased in the vaginal and cervical microbiome in the disease state. In contrast, there were inconsistent findings on the uterine microbiome across studies. Additionally, we explore a spectrum of opportunities to enhance our understanding of the female genital tract microbiome and reproductive conditions. In conclusion, this study identifies gaps within the field and emphasises the need for visionary solutions in metagenomic tools for the early detection of ectopic pregnancy and other gynaecological diseases.
Collapse
Affiliation(s)
| | | | | | - Polly Soo Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
8
|
Gryaznova M, Kozarenko O, Smirnova Y, Burakova I, Syromyatnikov M, Maslov A, Lebedeva O. Cervical and Vaginal Microbiomes in Early Miscarriages and Ongoing Pregnancy with and without Dydrogesterone Usage. Int J Mol Sci 2023; 24:13836. [PMID: 37762139 PMCID: PMC10531357 DOI: 10.3390/ijms241813836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Emerging evidence suggests that the reproductive tract microbiota is a key modulator of local inflammatory and immune pathways throughout pregnancy and may subsequently impact pregnancy outcomes. In this study, our objective was to analyze the cervical and vaginal microbiomes during early pregnancy among three groups: women with healthy ongoing pregnancies, women undergoing dydrogesterone treatment, and those who experienced miscarriages. The experiment involved 51 women at 8-11 weeks of gestation. The microbiome was examined using 16S rRNA sequencing on the Ion Torrent PGM platform. Across all groups, Lactobacillus iners was predominant, suggesting that the vaginal community type CST III is common among the majority of participants. Notably, our data highlighted the significant roles of Gardnerella vaginalis and Mycoplasma girerdii in the pathogenesis of early miscarriage. Conversely, L. iners and Bifidobacterium longum have a protective effect in early pregnancy. Moreover, dydrogesterone intake appeared to influence notable differences between the cervical and vaginal microbiomes. Overall, our study enhanced our understanding of the cervical and vaginal microbiome composition in the eastern European population during early pregnancy.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (O.K.); (Y.S.); (I.B.); (M.S.); (A.M.)
| | - Olesya Kozarenko
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (O.K.); (Y.S.); (I.B.); (M.S.); (A.M.)
- Antenatal Care Department, Yakovlevo Central District Hospital, 309070 Stroitel, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (O.K.); (Y.S.); (I.B.); (M.S.); (A.M.)
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (O.K.); (Y.S.); (I.B.); (M.S.); (A.M.)
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (O.K.); (Y.S.); (I.B.); (M.S.); (A.M.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Alexander Maslov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (O.K.); (Y.S.); (I.B.); (M.S.); (A.M.)
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Olga Lebedeva
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (O.K.); (Y.S.); (I.B.); (M.S.); (A.M.)
- Department of Obstetrics and Gynecology, Belgorod State National University, 308015 Belgorod, Russia
| |
Collapse
|
9
|
Dos Santos SJ, Shukla I, Hill JE, Money DM. Birth Mode Does Not Determine the Presence of Shared Bacterial Strains between the Maternal Vaginal Microbiome and the Infant Stool Microbiome. Microbiol Spectr 2023; 11:e0061423. [PMID: 37338388 PMCID: PMC10433807 DOI: 10.1128/spectrum.00614-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023] Open
Abstract
Dysbiosis of the neonatal gut microbiome during early life has been suggested as the missing link that may explain higher rates of certain diseases in caesarean section-delivered infants. Many studies report delivery mode-related dysbiosis in infants due to a lack of maternal vaginal microbiome exposure, prompting interventions to correct the neonatal gut microbiome by transferring these missing microbes after caesarean delivery. The maternal vaginal microbiome is among the first microbial exposures that many infants experience, yet little is known about the extent of direct transmission of maternal vaginal microbes. As part of the Maternal Microbiome Legacy Project, we aimed to determine if maternal vaginal bacteria are vertically transmitted to infants. We employed cpn60 microbiome profiling, culture-based screening, molecular strain typing, and whole-genome sequencing to determine whether identical maternal vaginal strains were present in infant stool microbiomes. We identified identical cpn60 sequence variants in both halves of maternal-infant dyads in 204 of 585 Canadian women and their newborn infants (38.9%). The same species of Bifidobacterium and Enterococcus were cultured from maternal and corresponding infant samples in 33 and 13 of these mother-infant dyads, respectively. Pulsed-field gel electrophoresis and whole-genome sequencing determined that near-identical strains were detected in these dyads irrespective of delivery mode, indicating an alternative source in cases of caesarean delivery. Overall, we demonstrated that vertical transmission of maternal vaginal microbiota is likely limited and that transmission from other maternal body sites, such as the gut and breast milk, may compensate for the lack of maternal vaginal microbiome exposure during caesarean delivery. IMPORTANCE The importance of the gut microbiome in human health and disease is widely recognized, and there has been a growing appreciation that alterations in gut microbiome composition during a "critical window" of development may impact health in later life. Attempts to correct gut microbiome dysbiosis related to birth mode are underpinned by the assumption that the lack of exposure to maternal vaginal microbes during caesarean delivery is responsible for dysbiosis. Here, we demonstrate that there is limited transmission of the maternal vaginal microbiome to the neonatal gut, even in cases of vaginal delivery. Furthermore, the presence of identical strains shared between mothers and infants in early life, even in cases of caesarean delivery, highlights compensatory microbial exposures and sources for the neonatal stool microbiome other than the maternal vagina.
Collapse
Affiliation(s)
- Scott J. Dos Santos
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ishika Shukla
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Deborah M. Money
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
- Women’s Health Research Institute, B.C. Women’s Hospital, Vancouver, British Columbia, Canada
| | - The Maternal Microbiome Legacy Project Team
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
- Women’s Health Research Institute, B.C. Women’s Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Sharifian K, Shoja Z, Jalilvand S. The interplay between human papillomavirus and vaginal microbiota in cervical cancer development. Virol J 2023; 20:73. [PMID: 37076931 PMCID: PMC10114331 DOI: 10.1186/s12985-023-02037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Over the past few decades, we have grown accustomed to the idea that human papillomavirus can cause tumors. The genetic and environmental factors that make the difference between elimination of viral infection and the development of cancer are therefore an area of active investigation at present. Microbiota has emerged as an important factor that may affect this balance by increasing or decreasing the ability of viral infection to promote. The female reproductive system has its specific microbiota that helps to maintain health and prevent infection with pathogens. In contrast to other mucosal sites, the vaginal microbiota typically has low diversity and contains few Lactobacillus spp. which by using high-throughput 16s rRNA gene sequencing, classified into five different community state types. According to emerging information, increased diversity of vaginal microbiota and reduced abundance of Lactobacillus spp. contribute to HPV acquisition, persistence, and development of cervical cancer. In this review, the role of normal female reproductive tract microbiota in health, mechanisms which dysbiosis can cause diseases through interaction with microbes and several therapeutic approaches were addressed.
Collapse
Affiliation(s)
- Kimia Sharifian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 14155, Iran
| | | | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 14155, Iran.
| |
Collapse
|
11
|
Alvisi S, Ceccarani C, Foschi C, Baldassarre M, Lami A, Severgnini M, Camboni T, Consolandi C, Seracchioli R, Meriggiola MC. Effect of ospemifene on vaginal microbiome in postmenopausal women with vulvovaginal atrophy. Menopause 2023; 30:361-369. [PMID: 36727789 DOI: 10.1097/gme.0000000000002150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES This study aimed (i) to compare the vaginal microbiome profiles of women suffering from vulvovaginal atrophy with that of healthy postmenopausal women and to (ii) assess the effect of ospemifene and systemic hormone treatment on the composition of the vaginal microbiome. METHODS Sixty-seven postmenopausal women attending the Gynecology Clinic of Azienda Ospedaliero-Universitaria of Bologna (Italy) were enrolled. Of them, 39 received a diagnosis of atrophy and 28 were considered healthy controls. In the group of atrophic women, 20 were prescribed ospemifene and 19 received hormone treatment. The vaginal health index was calculated, and a vaginal swab was collected for the assessment of vaginal maturation index and the analysis of vaginal microbiome through 16S rRNA gene sequencing. Clinical/microbiological analyses were repeated after 3 months of treatment. RESULTS The vaginal microbiome of atrophic women was characterized by a significant reduction of Lactobacillus ( P = 0.002) and an increase of Streptococcus ( P = 0.008) and Sneathia ( P = 0.02). A positive correlation between vaginal health index/vaginal maturation index and Lactobacillus abundance was found ( P = 0.002 and P = 0.035, respectively). Both therapeutic approaches effectively improved vaginal indices. Systemic hormone treatment induced changes in minority bacterial groups of the vaginal microbiome, whereas ospemifene was able to eliminate specific bacterial taxa, such as Staphylococcus ( P = 0.04) and Clostridium ( P = 0.01). Both treatments induced a trend in the increase of bifidobacteria. CONCLUSIONS The vaginal microbiome of atrophic women differs significantly from that of healthy postmenopausal women. Ospemifene may lead to a condition of vaginal health, likely characterized by the reduction of "potentially harmful" bacteria.
Collapse
Affiliation(s)
| | - Camilla Ceccarani
- Institute of Biomedical Technologies-National Research Council, Segrate, Milan, Italy
| | | | | | | | - Marco Severgnini
- Institute of Biomedical Technologies-National Research Council, Segrate, Milan, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies-National Research Council, Segrate, Milan, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies-National Research Council, Segrate, Milan, Italy
| | | | | |
Collapse
|
12
|
The Vaginal Microbiome in Health and Disease-What Role Do Common Intimate Hygiene Practices Play? Microorganisms 2023; 11:microorganisms11020298. [PMID: 36838262 PMCID: PMC9959050 DOI: 10.3390/microorganisms11020298] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
The vaginal microbiome is a dynamic, sensitive microenvironment. The hallmark of a 'healthy' vaginal microbiome is currently believed to be one dominated by Lactobacillus spp., which acidifies the vaginal environment and help to protect against invading pathogens. However, a 'normal' microbiome is often difficult, if not impossible, to characterise given that it varies in response to numerous variables, including pregnancy, the menstrual cycle, contraceptive use, diet, ethnicity, and stress. A Lactobacillus-depleted microbiome has been linked to a variety of adverse vaginal health outcomes, including preterm birth (PTB), bacterial vaginosis (BV), and increased risk of sexually transmitted infections. The latter two of these have also been associated with feminine intimate hygiene practices, many of which are practised without any evidence of health benefits. The most extensively studied practice is vaginal douching, which is known to cause vaginal dysbiosis, predisposing women to BV, pelvic inflammatory disease, and PTB. However, little is known of the impact that intimate hygiene practices and associated products have on the vaginal microbiome. This review aims to outline the major factors influencing the vaginal microbiome and common vaginal infections, as well as to summarise current research surrounding the impact of hygiene products and practices on the vaginal microbiome.
Collapse
|
13
|
Chávez-Torres M, Gómez-Palacio-Schjetnan M, Reyes-Terán G, Briceño O, Ávila-Ríos S, Romero-Mora KA, Pinto-Cardoso S. The vaginal microbiota of women living with HIV on suppressive antiretroviral therapy and its relation to high-risk human papillomavirus infection. BMC Microbiol 2023; 23:21. [PMID: 36658503 PMCID: PMC9850673 DOI: 10.1186/s12866-023-02769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Few studies have investigated the vaginal microbiota (VM) in women living with HIV (WLWH) in the context of high-risk human papillomavirus (HR-HPV) infection, even though WLWH are at an increased risk of HPV-related malignancies, including cervical cancer. To explore the impact of HIV and HPV infection on the VM in WLWH, we determined the prevalence of HR-HPV infection and cervical cytologic abnormalities in a cohort of 44 WLWH and 39 seronegative-women (SNW), characterized the vaginal microbiota by 16S sequencing, assessed genital inflammation and systemic immune activation by multiplex bead assay and flow cytometry, respectively. Finally, we explored relationships between bacterial richness and diversity, the top 20 bacterial genera, genital inflammation and systemic immune activation. RESULTS We found that HR-HPV prevalence was similar between WLWH and SNW. High-grade squamous intraepithelial lesions (HSIL) were only detected in WLWH negative for HR-HPV infection. In regression analyses, no risk factors were identified. Women co-infected with HIV and HR-HPV had the highest level of systemic immune activation, and these levels were significantly different compared with SNW without HR-HPV infection. Lactobacillus iners was the dominant Lactobacillus species in WLWH and SNW alike. CONCLUSION We found no evidence of differences in vaginal microbial richness and diversity, microbial community structure, and genital inflammation by HIV, HPV, or HIV and HPV status.
Collapse
Affiliation(s)
- Monserrat Chávez-Torres
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Maria Gómez-Palacio-Schjetnan
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Gustavo Reyes-Terán
- grid.415745.60000 0004 1791 0836Comisión Coordinadora de Institutos Nacionales de Salud Y Hospitales de Alta Especialidad, Secretaría de Salud, Ciudad de México, México
| | - Olivia Briceño
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Santiago Ávila-Ríos
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Karla Alejandra Romero-Mora
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Sandra Pinto-Cardoso
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| |
Collapse
|
14
|
Wang W, Liu Y, Yang Y, Ren J, Zhou H. Changes in vaginal microbiome after focused ultrasound treatment of high-risk human papillomavirus infection-related low-grade cervical lesions. BMC Infect Dis 2023; 23:3. [PMID: 36604622 PMCID: PMC9814320 DOI: 10.1186/s12879-022-07937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In this study, the changes of vaginal microbiome after focused ultrasound (FU) treatment were evaluated to explore the possible mechanism of FU in the treatment of high-risk human papillomavirus (HR-HPV) infection. METHODS This study was nested in the FU arm of a prospective cohort study. A total of 37 patients diagnosed with HR-HPV infection-related cervical low-grade squamous intraepithelial lesion (LSIL) who met the inclusion criteria were enrolled in this study from October 2020 to November 2021, and these patients were treated with FU. We used 16S ribosomal RNA (16S rRNA) gene amplicon sequencing to profile the vaginal microbiota composition of patients before and 3 months after FU treatment. RESULTS After FU treatment, HR-HPV was cleared in 24 patients, with a clearance rate of 75.0% (24/32). Lactobacillus iners was the predominant species among all samples. No significant difference was found in alpha-diversity index before and 3 months after FU treatment (P > 0.05), but the rarefaction curves showed that the vaginal microbial diversity before FU treatment was higher than that after FU treatment. Linear discriminant analysis (LDA) effect size (LEfSe) showed that Bifidobacterium contributed the most to the difference between the two groups at the genus level, and the abundance after FU treatment was significantly higher than that before treatment (P = 0.000). CONCLUSIONS The decrease of vaginal microbial diversity may be related to the clearance of HR-HPV infection, and FU treatment contributed to the decrease of vaginal microbial diversity. Increased Bifidobacterium abundance in the vaginal microbiome may be associated with clearance of HR-HPV infection, and FU treatment may contribute to the increase in Bifidobacterium abundance. TRIAL REGISTRATION NUMBER This study was registered in the Chinese Clinical Trial Registry on 23/11/2020 (ChiCTR2000040162).
Collapse
Affiliation(s)
- Wenping Wang
- grid.413387.a0000 0004 1758 177XDepartment of Gynecology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, 637000 China
| | - Yujuan Liu
- grid.413387.a0000 0004 1758 177XDepartment of Gynecology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, 637000 China
| | - Yamei Yang
- grid.413387.a0000 0004 1758 177XDepartment of Gynecology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, 637000 China
| | - Jiaojiao Ren
- grid.413387.a0000 0004 1758 177XDepartment of Gynecology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, 637000 China
| | - Honggui Zhou
- grid.413387.a0000 0004 1758 177XDepartment of Gynecology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, 637000 China
| |
Collapse
|
15
|
Orihara K, Yahagi K, Saito Y, Watanabe Y, Sasai T, Hara T, Tsukuda N, Oki K, Fujimoto J, Matsuki T. Characterization of Bifidobacterium kashiwanohense that utilizes both milk- and plant-derived oligosaccharides. Gut Microbes 2023; 15:2207455. [PMID: 37188713 PMCID: PMC10187079 DOI: 10.1080/19490976.2023.2207455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Bifidobacteria are prominent members of the human gut microbiota throughout life. The ability to utilize milk- and plant-derived carbohydrates is important for bifidobacterial colonization of the infant and adult gut. The Bifidobacterium catenulatum subspecies kashiwanohense (B. kashiwanohense) was originally isolated from infant feces. However, only a few strains have been described, and the characteristics of this subspecies have been poorly investigated. Here, we characterized genotypes and phenotypes of 23 B. kashiwanohense-associated strains, including 12 newly sequenced isolates. Genome-based analysis clarified the phylogenetic relationship between these strains, revealing that only 13 strains are genuine B. kashiwanohense. We defined specific marker sequences and investigated the worldwide prevalence of B. kashiwanohense based on metagenome data. This revealed that not only infants but also adults and weaning children harbor this subspecies in the gut. Most B. kashiwanohense strains utilize long-chain xylans and possess genes for extracellular xylanase (GH10), arabinofuranosidase and xylosidase (GH43), and ABC transporters that contribute to the utilization of xylan-derived oligosaccharides. We also confirmed that B. kashiwanohense strains utilize short- and long-chain human milk oligosaccharides and possess genes for fucosidase (GH95 and GH29) and specific ABC transporter substrate-binding proteins that contribute to the utilization of a wide range of human milk oligosaccharides. Collectively, we found that B. kashiwanohense strains utilize both plant- and milk-derived carbohydrates and identified key genetic factors that allow them to assimilate various carbohydrates.
Collapse
Affiliation(s)
- Kento Orihara
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kana Yahagi
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Yuki Saito
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Yohei Watanabe
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Toshio Sasai
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Taeko Hara
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Naoki Tsukuda
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kaihei Oki
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Junji Fujimoto
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Takahiro Matsuki
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| |
Collapse
|
16
|
Berus SM, Adamczyk-Popławska M, Goździk K, Przedpełska G, Szymborski TR, Stepanenko Y, Kamińska A. SERS-PLSR Analysis of Vaginal Microflora: Towards the Spectral Library of Microorganisms. Int J Mol Sci 2022; 23:ijms232012576. [PMID: 36293436 PMCID: PMC9604117 DOI: 10.3390/ijms232012576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
The accurate identification of microorganisms belonging to vaginal microflora is crucial for establishing which microorganisms are responsible for microbial shifting from beneficial symbiotic to pathogenic bacteria and understanding pathogenesis leading to vaginosis and vaginal infections. In this study, we involved the surface-enhanced Raman spectroscopy (SERS) technique to compile the spectral signatures of the most significant microorganisms being part of the natural vaginal microbiota and some vaginal pathogens. Obtained data will supply our still developing spectral SERS database of microorganisms. The SERS results were assisted by Partial Least Squares Regression (PLSR), which visually discloses some dependencies between spectral images and hence their biochemical compositions of the outer structure. In our work, we focused on the most common and typical of the reproductive system microorganisms (Lactobacillus spp. and Bifidobacterium spp.) and vaginal pathogens: bacteria (e.g., Gardnerella vaginalis, Prevotella bivia, Atopobium vaginae), fungi (e.g., Candida albicans, Candida glabrata), and protozoa (Trichomonas vaginalis). The obtained results proved that each microorganism has its unique spectral fingerprint that differentiates it from the rest. Moreover, the discrimination was obtained at a high level of explained information by subsequent factors, e.g., in the inter-species distinction of Candida spp. the first three factors explain 98% of the variance in block Y with 95% of data within the X matrix, while in differentiation between Lactobacillus spp. and Bifidobacterium spp. (natural flora) and pathogen (e.g., Candida glabrata) the information is explained at the level of 45% of the Y matrix with 94% of original data. PLSR gave us insight into discriminating variables based on which the marker bands representing specific compounds in the outer structure of microorganisms were found: for Lactobacillus spp. 1400 cm−1, for fungi 905 and 1209 cm−1, and for protozoa 805, 890, 1062, 1185, 1300, 1555, and 1610 cm−1. Then, they can be used as significant marker bands in the analysis of clinical subjects, e.g., vaginal swabs.
Collapse
Affiliation(s)
- Sylwia Magdalena Berus
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (S.M.B.); (A.K.)
| | - Monika Adamczyk-Popławska
- Department of Molecular Virology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Goździk
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Grażyna Przedpełska
- Department of Dermatology and Venerology, Infant Jesus Clinical Hospital, Koszykowa 82a, 02-008 Warsaw, Poland
| | - Tomasz R. Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Yuriy Stepanenko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (S.M.B.); (A.K.)
| |
Collapse
|
17
|
Severgnini M, Morselli S, Camboni T, Ceccarani C, Salvo M, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C, Consolandi C, Marangoni A. Gardnerella vaginalis clades in pregnancy: New insights into the interactions with the vaginal microbiome. PLoS One 2022; 17:e0269590. [PMID: 35700195 PMCID: PMC9197028 DOI: 10.1371/journal.pone.0269590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
Gardnerella vaginalis (GV) is an anaerobic bacterial species involved in the pathogenesis of bacterial vaginosis (BV), a condition of vaginal dysbiosis associated with adverse pregnancy outcomes. GV strains are categorized into four clades, characterized by a different ability to produce virulence factors, such as sialidase. We investigated the distribution of GV clades and sialidase genes in the vaginal ecosystem of a cohort of pregnant women, assessing the correlations between GV clades and the whole vaginal microbiome. A total of 61 Caucasian pregnant women were enrolled. Their vaginal swabs, collected both at the first and third trimester of pregnancy, were used for (i) evaluation of the vaginal status by Nugent score, (ii) vaginal microbiome profiling by 16S rRNA sequencing, (iii) detection and quantification of GV clades and sialidase A gene by qPCR assays. DNA of at least one GV clade was detected in most vaginal swabs, with clade 4 being the most common one. GV clade 2, together with the presence of multiple clades (>2 simultaneously), were significantly associated with a BV condition. Significantly higher GV loads and sialidase gene levels were found in BV cases, compared to the healthy status. Clade 2 was related to the major shifts in the vaginal microbial composition, with a decrease in Lactobacillus and an increase in several BV-related taxa. As the number of GV clades detected simultaneously increased, a group of BV-associated bacteria tended to increase as well, while Bifidobacterium tended to decrease. A negative correlation between sialidase gene levels and Lactobacillus, and a positive correlation with Gardnerella, Atopobium, Prevotella, Megasphaera, and Sneathia were observed. Our results added knowledge about the interactions of GV clades with the inhabitants of the vaginal microbiome, possibly helping to predict the severity of BV and opening new perspectives for the prevention of pregnancy-related complications.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies – National Research Council, Segrate, Milan, Italy
| | - Sara Morselli
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies – National Research Council, Segrate, Milan, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies – National Research Council, Segrate, Milan, Italy
| | - Melissa Salvo
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | | | | | - Maria Federica Pedna
- Unit of Microbiology, Greater Romagna Hub Laboratory, Pievesestina di Cesena, Italy
| | - Vittorio Sambri
- Microbiology, DIMES, University of Bologna, Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, Pievesestina di Cesena, Italy
| | - Claudio Foschi
- Microbiology, DIMES, University of Bologna, Bologna, Italy
- * E-mail:
| | - Clarissa Consolandi
- Institute of Biomedical Technologies – National Research Council, Segrate, Milan, Italy
| | | |
Collapse
|
18
|
Huang Y, Li D, Cai W, Zhu H, Shane MI, Liao C, Pan S. Distribution of Vaginal and Gut Microbiome in Advanced Maternal Age. Front Cell Infect Microbiol 2022; 12:819802. [PMID: 35694547 PMCID: PMC9186158 DOI: 10.3389/fcimb.2022.819802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The distribution of the microbiome in women with advanced maternal age (AMA) is poorly understood. To gain insight into this, the vaginal and gut microbiota of 62 women were sampled and sequenced using the 16S rRNA technique. These women were divided into three groups, namely, the AMA (age ≥ 35 years, n = 13) group, the non-advanced maternal age (NMA) (age < 35 years, n = 38) group, and the control group (non-pregnant healthy women, age >35 years, n = 11). We found that the alpha diversity of vaginal microbiota in the AMA group significantly increased. However, the beta diversity significantly decreased in the AMA group compared with the control group. There was no significant difference in the diversity of gut microbiota among the three groups. The distributions of microbiota were significantly different among AMA, NMA, and control groups. In vaginal microbiota, the abundance of Lactobacillus was higher in the pregnant groups. Bifidobacterium was significantly enriched in the AMA group. In gut microbiota, Prevotella bivia was significantly enriched in the AMA group. Vaginal and gut microbiota in women with AMA were noticeably different from the NMA and non-pregnant women, and this phenomenon is probably related to the increased risk of complications in women with AMA.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dianjie Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wei Cai
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honglei Zhu
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mc Intyre Shane
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Can Liao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- *Correspondence: Can Liao, ; Shilei Pan,
| | - Shilei Pan
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Can Liao, ; Shilei Pan,
| |
Collapse
|
19
|
Characterization of a novel type of glycogen-degrading amylopullulanase from Lactobacillus crispatus. Appl Microbiol Biotechnol 2022; 106:4053-4064. [PMID: 35612627 DOI: 10.1007/s00253-022-11975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
Glycogen is one of the major carbohydrates utilized by the human vaginal microbiota, which is commonly dominated by Lactobacillus, especially L. crispatus. An in silico analysis predicted that a type I pullulanase was involved in glycogen degradation in L. crispatus. The biochemical and genetic properties of the pullulanase still need to be determined. Here, we de novo identified the glycogen (Glg)-utilization enzyme (named GlgU) from L. crispatus through a biochemical assay. GlgU was optimally active at acidic pH, approximately 4.0 ~ 4.5, and was able to hydrolyze glycogen into low-molecular-weight malto-oligosaccharides. Actually, GlgU was a type II pullulanase (amylopullulanase) with just one catalytic domain that possessed substrate specificity toward both α-1,4 and α-1,6-glucosidic bonds. Phylogenetically, GlgU was obviously divergent from the known amylases and pullulanases (including amylopullulanases) in lactobacilli. In addition, we confirmed the catalytic activity of glgU in a nonglycogen-utilizing lactobacilli strain, demonstrating the essential role of glgU in glycogen metabolism. Overall, this study characterized a novel type of amylopullulanases, contributing to the knowledge of the glycogen utilization mechanism of the dominant species of human vaginal microbiota. KEY POINTS: • GlgU was a type II pullulanase, not a type I pullulanase predicted before. • GlgU was able to completely hydrolyze glycogen into malto-oligosaccharides. • GlgU played a key role in the metabolism of extracellular glycogen.
Collapse
|
20
|
Severgnini M, Morselli S, Camboni T, Ceccarani C, Laghi L, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C, Consolandi C, Marangoni A. A Deep Look at the Vaginal Environment During Pregnancy and Puerperium. Front Cell Infect Microbiol 2022; 12:838405. [PMID: 35656029 PMCID: PMC9152327 DOI: 10.3389/fcimb.2022.838405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
A deep comprehension of the vaginal ecosystem may hold promise for unraveling the pathophysiology of pregnancy and may provide novel biomarkers to identify subjects at risk of maternal-fetal complications. In this prospective study, we assessed the characteristics of the vaginal environment in a cohort of pregnant women throughout their different gestational ages and puerperium. Both the vaginal bacterial composition and the vaginal metabolic profiles were analyzed. A total of 63 Caucasian women with a successful pregnancy and 9 subjects who had a first trimester miscarriage were enrolled. For the study, obstetric examinations were scheduled along the three trimester phases (9-13, 20-24, 32-34 gestation weeks) and puerperium (40-55 days after delivery). Two vaginal swabs were collected at each time point, to assess the vaginal microbiome profiling (by Nugent score and 16S rRNA gene sequencing) and the vaginal metabolic composition (1H-NMR spectroscopy). During pregnancy, the vaginal microbiome underwent marked changes, with a significant decrease in overall diversity, and increased stability. Over time, we found a significant increase of Lactobacillus and a decrease of several genera related to bacterial vaginosis (BV), such as Prevotella, Atopobium and Sneathia. It is worth noting that the levels of Bifidobacterium spp. tended to decrease at the end of pregnancy. At the puerperium, a significantly lower content of Lactobacillus and higher levels of Gardnerella, Prevotella, Atopobium, and Streptococcus were observed. Women receiving an intrapartum antibiotic prophylaxis for Group B Streptococcus (GBS) were characterized by a vaginal abundance of Prevotella compared to untreated women. Analysis of bacterial relative abundances highlighted an increased abundance of Fusobacterium in women suffering a first trimester abortion, at all taxonomic levels. Lactobacillus abundance was strongly correlated with higher levels of lactate, sarcosine, and many amino acids (i.e., isoleucine, leucine, phenylalanine, valine, threonine, tryptophan). Conversely, BV-associated genera, such as Gardnerella, Atopobium, and Sneathia, were related to amines (e.g., putrescine, methylamine), formate, acetate, alcohols, and short-chain fatty-acids (i.e., butyrate, propionate).
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Sara Morselli
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | | | | | | | - Vittorio Sambri
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, Cesena, Italy
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Ferreira CST, Marconi C, Parada CMGL, Ravel J, da Silva MG. Sialidase Activity in the Cervicovaginal Fluid Is Associated With Changes in Bacterial Components of Lactobacillus-Deprived Microbiota. Front Cell Infect Microbiol 2022; 11:813520. [PMID: 35096658 PMCID: PMC8793624 DOI: 10.3389/fcimb.2021.813520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Sialidase activity in the cervicovaginal fluid (CVF) is associated with microscopic findings of bacterial vaginosis (BV). Sequencing of bacterial 16S rRNA gene in vaginal samples has revealed that the majority of microscopic BV cases fit into vaginal community-state type IV (CST IV), which was recently named "molecular-BV." Bacterial vaginosis-associated bacterial species, such as Gardnerella spp., may act as sources of CVF sialidases. These hydrolases lead to impairment of local immunity and enable bacterial adhesion to epithelial and biofilm formation. However, the impact of CVL sialidase on microbiota components and diversity remains unknown. OBJECTIVE To assess if CVF sialidase activity is associated with changes in bacterial components of CST IV. METHODS One hundred forty women were cross-sectionally enrolled. The presence of molecular-BV (CST IV) was assessed by V3-V4 16S rRNA sequencing (Illumina). Fluorometric assays were performed using 2-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUAN) for measuring sialidase activity in CVF samples. Linear discriminant analysis effect size (LEfSe) was performed to identify the differently enriched bacterial taxa in molecular-BV according to the status of CVF sialidase activity. RESULTS Forty-four participants (31.4%) had molecular-BV, of which 30 (68.2%) had sialidase activity at detectable levels. A total of 24 bacterial taxa were enriched in the presence of sialidase activity, while just two taxa were enriched in sialidase-negative samples. CONCLUSION Sialidase activity in molecular-BV is associated with changes in bacterial components of the local microbiome. This association should be further investigated, since it may result in diminished local defenses against pathogens.
Collapse
Affiliation(s)
| | - Camila Marconi
- Department of Pathology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil.,Department of Basic Pathology, Sector of Biological Sciences, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Cristina M G L Parada
- Department of Nursing, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Jacques Ravel
- Institute of Genomic Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcia Guimaraes da Silva
- Department of Pathology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
22
|
Byrd PM, Fallico V, Tang P, Wong C. Novel microaerobic agar plate method delivers highly selective and accurate enumeration of probiotic lactobacilli in freeze-dried blends containing bifidobacteria. METHODS IN MICROBIOLOGY 2022; 195:106451. [PMID: 35339581 DOI: 10.1016/j.mimet.2022.106451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
The enumeration of viable bacteria is an essential metric in the dietary supplement and food industry to ensure quality of probiotic products. However, selective enumeration of lactobacilli in probiotic freeze-dried blends containing bifidobacteria is difficult to achieve with current Lactobacillus-specific agars (i.e., Rogosa and LAMVAB). Using a panel of Bifidobacterium and Lactobacillus commercial probiotic species, we found that Rogosa agar failed to inhibit all bifidobacteria while LAMVAB agar suppressed several lactobacilli. This prompted us to develop an alternative method of selection, hereby referred to as Lactobacillus Micro-Aerobic (LMA) method, which promotes growth under controlled microaerobic conditions (6-12% O2, 5-8% CO2) to leverage the different oxygen sensitivities of lactobacilli and bifidobacteria. Validation using pure cultures and multi-strain blends of 4 Bifidobacterium and 10 Lactobacillus species showed that LMA effectively suppressed all bifidobacteria and accurately enumerated all lactobacilli when compared to control methods. These results demonstrate the superior efficacy of modulating the redox environment to select for Lactobacillus within a Bifidobacterium-rich background, as opposed to applying acid and antibiotic pressures.
Collapse
Affiliation(s)
- Phillip M Byrd
- IFF Health & Biosciences, Danisco USA, Inc., 3329 Agriculture Dr., Madison, WI 53716-4133, USA
| | - Vincenzo Fallico
- IFF Health & Biosciences, Danisco USA, Inc., 3329 Agriculture Dr., Madison, WI 53716-4133, USA.
| | - Peipei Tang
- IFF Health & Biosciences, Danisco USA, Inc., 3329 Agriculture Dr., Madison, WI 53716-4133, USA
| | - Connie Wong
- IFF Health & Biosciences, Danisco USA, Inc., 3329 Agriculture Dr., Madison, WI 53716-4133, USA
| |
Collapse
|
23
|
Moreno I, Garcia-Grau I, Perez-Villaroya D, Gonzalez-Monfort M, Bahçeci M, Barrionuevo MJ, Taguchi S, Puente E, Dimattina M, Lim MW, Meneghini G, Aubuchon M, Leondires M, Izquierdo A, Perez-Olgiati M, Chavez A, Seethram K, Bau D, Gomez C, Valbuena D, Vilella F, Simon C. Endometrial microbiota composition is associated with reproductive outcome in infertile patients. MICROBIOME 2022; 10:1. [PMID: 34980280 PMCID: PMC8725275 DOI: 10.1186/s40168-021-01184-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 11/01/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Previous evidence indicates associations between the female reproductive tract microbiome composition and reproductive outcome in infertile patients undergoing assisted reproduction. We aimed to determine whether the endometrial microbiota composition is associated with reproductive outcomes of live birth, biochemical pregnancy, clinical miscarriage or no pregnancy. METHODS Here, we present a multicentre prospective observational study using 16S rRNA gene sequencing to analyse endometrial fluid and biopsy samples before embryo transfer in a cohort of 342 infertile patients asymptomatic for infection undergoing assisted reproductive treatments. RESULTS A dysbiotic endometrial microbiota profile composed of Atopobium, Bifidobacterium, Chryseobacterium, Gardnerella, Haemophilus, Klebsiella, Neisseria, Staphylococcus and Streptococcus was associated with unsuccessful outcomes. In contrast, Lactobacillus was consistently enriched in patients with live birth outcomes. CONCLUSIONS Our findings indicate that endometrial microbiota composition before embryo transfer is a useful biomarker to predict reproductive outcome, offering an opportunity to further improve diagnosis and treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Inmaculada Moreno
- Igenomix Foundation, INCLIVA Health Research Institute, Valencia, Spain
- Igenomix R&D, Valencia, Spain
| | - Iolanda Garcia-Grau
- Igenomix Foundation, INCLIVA Health Research Institute, Valencia, Spain
- Department of Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | | | - Marta Gonzalez-Monfort
- Igenomix Foundation, INCLIVA Health Research Institute, Valencia, Spain
- Igenomix R&D, Valencia, Spain
| | | | | | | | | | | | - Mei Wei Lim
- Alpha IVF and Women's Specialists Centre, Petaling Jaya, Selangor, Malaysia
| | | | - Mira Aubuchon
- Missouri Center for Reproductive Medicine, Chesterfield, MO, USA
| | | | - Alexandra Izquierdo
- ProcreaTec, Madrid, Spain
- Present Address: Médipôle Lyon-Villeurbanne, Villeurbanne, France
| | | | | | - Ken Seethram
- Pacific Centre for Reproductive Medicine, Burnaby, British Columbia, Canada
| | | | | | | | - Felipe Vilella
- Igenomix Foundation, INCLIVA Health Research Institute, Valencia, Spain
| | - Carlos Simon
- Igenomix Foundation, INCLIVA Health Research Institute, Valencia, Spain.
- Igenomix R&D, Valencia, Spain.
- Department of Obstetrics and Gynecology, University of Valencia, Valencia, Spain.
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
The Effect of Probiotics on Various Diseases and their Therapeutic Role: An Update Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Probiotic bacteria play a critical and functional role in clinical and nutritional applications. In the present study, the ability of various probiotics and their metabolites in the prevention and treatment of different diseases, infections and disorders was reviewed. The issues that were noticed are included: Fibrocystic, diabetes, acne, colon cancer, cardiovascular, urinary tract infections, atopic eczema syndrome, food allergies and obesity. Enhancement in using drug treatment has led to the appearance of drug-resistance concern, thus probiotics can be a suitable choice. This review focuses on the effect of probiotic bacteria and their metabolites on immune-boosting, prevention and treatment of these diseases. For this purpose, after a short glance at each disease, infection and disorder, the mechanism of probiotic action and recent studies about that disease are reviewed. It could be recommended that probiotics consumption, perhaps from birth to all stages of life, would be effective in the life-long, development of health effects and disease treatments.
Collapse
|
25
|
Dunlop AL, Satten GA, Hu YJ, Knight AK, Hill CC, Wright ML, Smith AK, Read TD, Pearce BD, Corwin EJ. Vaginal Microbiome Composition in Early Pregnancy and Risk of Spontaneous Preterm and Early Term Birth Among African American Women. Front Cell Infect Microbiol 2021; 11:641005. [PMID: 33996627 PMCID: PMC8117784 DOI: 10.3389/fcimb.2021.641005] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate the association between the early pregnancy vaginal microbiome and spontaneous preterm birth (sPTB) and early term birth (sETB) among African American women. Methods Vaginal samples collected in early pregnancy (8-14 weeks' gestation) from 436 women enrolled in the Emory University African American Vaginal, Oral, and Gut Microbiome in Pregnancy Study underwent 16S rRNA gene sequencing of the V3-V4 region, taxonomic classification, and community state type (CST) assignment. We compared vaginal CST and abundance of taxa for women whose pregnancy ended in sPTB (N = 44) or sETB (N= 84) to those who delivered full term (N = 231). Results Nearly half of the women had a vaginal microbiome classified as CST IV (Diverse CST), while one-third had CST III (L. iners dominated) and just 16% had CST I, II, or V (non-iners Lactobacillus dominated). Compared to vaginal CST I, II, or V (non-iners Lactobacillus dominated), both CST III (L. iners dominated) and CST IV (Diverse) were associated with sPTB with an adjusted odds ratio (95% confidence interval) of 4.1 (1.1, infinity) and 7.7 (2.2, infinity), respectively, in multivariate logistic regression. In contrast, no vaginal CST was associated with sETB. The linear decomposition model (LDM) based on amplicon sequence variant (ASV) relative abundance found a significant overall effect of the vaginal microbiome on sPTB (p=0.034) but not sETB (p=0.320), whereas the LDM based on presence/absence of ASV found no overall effect on sPTB (p=0.328) but a significant effect on sETB (p=0.030). In testing for ASV-specific effects, the LDM found that no ASV was significantly associated with sPTB considering either relative abundance or presence/absence data after controlling for multiple comparisons (FDR 10%), although in marginal analysis the relative abundance of Gardnerella vaginalis (p=0.011), non-iners Lactobacillus (p=0.016), and Mobiluncus curtisii (p=0.035) and the presence of Atopobium vaginae (p=0.049), BVAB2 (p=0.024), Dialister microaerophilis (p=0.011), and Prevotella amnii (p=0.044) were associated with sPTB. The LDM identified the higher abundance of 7 ASVs and the presence of 13 ASVs, all commonly residents of the gut, as associated with sETB at FDR < 10%. Conclusions In this cohort of African American women, an early pregnancy vaginal CST III or IV was associated with an increased risk of sPTB but not sETB. The relative abundance and presence of distinct taxa within the early pregnancy vaginal microbiome was associated with either sPTB or sETB.
Collapse
Affiliation(s)
- Anne L. Dunlop
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
- Department of Family & Preventive Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Glen A. Satten
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Anna K. Knight
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Cherie C. Hill
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Michelle L. Wright
- School of Nursing, University of Texas at Austin, Austin, TX, United States
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Bradley D. Pearce
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | | |
Collapse
|
26
|
Koirala R, Gargari G, Arioli S, Taverniti V, Fiore W, Grossi E, Anelli GM, Cetin I, Guglielmetti S. Effect of oral consumption of capsules containing Lactobacillus paracasei LPC-S01 on the vaginal microbiota of healthy adult women: a randomized, placebo-controlled, double-blind crossover study. FEMS Microbiol Ecol 2020; 96:5834546. [PMID: 32383767 PMCID: PMC7261233 DOI: 10.1093/femsec/fiaa084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Oral consumption of probiotics is practical and can be an effective solution to preserve vaginal eubiosis. Here, we studied the ability of orally administered Lactobacillus paracasei LPC-S01 (DSM 26760) to affect the composition of the vaginal microbiota and colonize the vaginal mucosa in nondiseased adult women. A total of 40 volunteers took oral probiotic (24 billion CFU) or placebo capsules daily for 4 weeks, and after a 4-week washout, they switched to placebo or probiotic capsules according to the crossover design. A total of 23 volunteers completed the study according to the protocol. Before and after capsule ingestion, vaginal swabs were collected for qPCR quantification to detect L. paracasei LPC-S01 and for 16S rRNA gene sequencing. Vaginal swabs were grouped according to their bacterial taxonomic structure into nine community state types (CSTs), four of which were dominated by lactobacilli. Lactobacillus paracasei LPC-S01 was detected in the vagina of two participants. Statistical modeling (including linear mixed-effects model analysis) demonstrated that daily intake of probiotic capsules reduced the relative abundance of Gardnerella spp. Quantitative PCR with Gardnerella vaginalis primers confirmed this result. Considering the pathogenic nature of G. vaginalis, these results suggest a potential positive effect of this probiotic capsule on the vaginal microbial ecosystem.
Collapse
Affiliation(s)
- Ranjan Koirala
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - Giorgio Gargari
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - Stefania Arioli
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - Valentina Taverniti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - Walter Fiore
- Sofar S.p.A., Via Firenze 40, 20060, Trezzano Rosa (MI), Trezzano Rosa, Italy
| | - Elena Grossi
- Department of Biomedical and Clinical Sciences, Unit of Obstetrics and Gynecology, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milan, Italy
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences, Unit of Obstetrics and Gynecology, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milan, Italy
| | - Irene Cetin
- Department of Biomedical and Clinical Sciences, Unit of Obstetrics and Gynecology, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milan, Italy
| | - Simone Guglielmetti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, via Luigi Mangiagalli 25, 20133, Milan, Italy
- Corresponding author:Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Luigi Mangiagalli 25, 20133 Milan, Italy. Tel: +39 0250319136; E-mail:
| |
Collapse
|
27
|
France MT, Ma B, Gajer P, Brown S, Humphrys MS, Holm JB, Waetjen LE, Brotman RM, Ravel J. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. MICROBIOME 2020; 8:166. [PMID: 33228810 PMCID: PMC7684964 DOI: 10.1186/s40168-020-00934-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Taxonomic profiles of vaginal microbial communities can be sorted into a discrete number of categories termed community state types (CSTs). This approach is advantageous because collapsing a hyper-dimensional taxonomic profile into a single categorical variable enables efforts such as data exploration, epidemiological studies, and statistical modeling. Vaginal communities are typically assigned to CSTs based on the results of hierarchical clustering of the pairwise distances between samples. However, this approach is problematic because it complicates between-study comparisons and because the results are entirely dependent on the particular set of samples that were analyzed. We sought to standardize and advance the assignment of samples to CSTs. RESULTS We developed VALENCIA (VAginaL community state typE Nearest CentroId clAssifier), a nearest centroid-based tool which classifies samples based on their similarity to a set of reference centroids. The references were defined using a comprehensive set of 13,160 taxonomic profiles from 1975 women in the USA. This large dataset allowed us to comprehensively identify, define, and characterize vaginal CSTs common to reproductive age women and expand upon the CSTs that had been defined in previous studies. We validated the broad applicability of VALENCIA for the classification of vaginal microbial communities by using it to classify three test datasets which included reproductive age eastern and southern African women, adolescent girls, and a racially/ethnically and geographically diverse sample of postmenopausal women. VALENCIA performed well on all three datasets despite the substantial variations in sequencing strategies and bioinformatics pipelines, indicating its broad application to vaginal microbiota. We further describe the relationships between community characteristics (vaginal pH, Nugent score) and participant demographics (race, age) and the CSTs defined by VALENCIA. CONCLUSION VALENCIA provides a much-needed solution for the robust and reproducible assignment of vaginal community state types. This will allow unbiased analysis of both small and large vaginal microbiota datasets, comparisons between datasets and meta-analyses that combine multiple datasets. Video abstract.
Collapse
Affiliation(s)
- Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Sarah Brown
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Michael S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Johanna B Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - L Elaine Waetjen
- Department of Obstetrics and Gynecology, University of California Davis School of Medicine, Sacramento, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|
28
|
Liang X, Li Z, Tye KD, Chen Y, Luo H, Xiao X. The effect of probiotic supplementation during pregnancy on the interaction network of vaginal microbiome. J Obstet Gynaecol Res 2020; 47:103-113. [PMID: 32885568 DOI: 10.1111/jog.14434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022]
Abstract
AIM To evaluate the effect of probiotic supplementation on the vaginal microbiome and provide the effective evidences for clinical management of pregnant women. METHODS A total of 28 healthy pregnant women at 32 weeks of gestation were enrolled. The women were divided randomly to the probiotic group where they were prescribed with 2 g combined probiotics daily (13 cases) during the third trimester of pregnancy or to the control group (15 cases) on a voluntary basis. Their vaginal samples were taken for analyzing microbiome with the 16S rDNA amplicon sequencing of V4 region. RESULTS There was no significant difference on the clinical characteristics between the probiotic and control groups. The complexity of vaginal microbial network increased from 32 weeks of gestation to antepartum. Lactobacillus was the dominant microbiota. The probiotic supplementation had no obvious influence on the structure of the vaginal microbiome, whereas the relationships of some pivotal vaginal microbiota at the genus level changed in the probiotic group. CONCLUSION The vaginal microbiome varied during the third trimester of pregnancy. The features of the vaginal microbiota after probiotic supplementation had shifted and the interaction network had the tendency to be loose. The probiotic supplementation may be useful in regulating the interaction network of vaginal microbiome.
Collapse
Affiliation(s)
- Xinyuan Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuyi Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Tsementzi D, Pena‐Gonzalez A, Bai J, Hu Y, Patel P, Shelton J, Dolan M, Arluck J, Khanna N, Conrad L, Scott I, Eng TY, Konstantinidis KT, Bruner DW. Comparison of vaginal microbiota in gynecologic cancer patients pre- and post-radiation therapy and healthy women. Cancer Med 2020; 9:3714-3724. [PMID: 32237205 PMCID: PMC7286461 DOI: 10.1002/cam4.3027] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND While the importance of commensal microbes in vaginal health is well appreciated, little is known about the effects of gynecological cancer (GynCa) and radiation therapy (RT) on the vaginal microbiome (VM) of postmenopausal women. METHODS We studied women with GynCa, pre- (N = 65) and post-RT (N = 25) and a group of healthy controls (N = 67) by sequencing the V4 region of the 16S rRNA gene from vaginal swabs and compared the diversity and composition of VMs between the three groups accounting for potential confounding factors in multivariate analysis of variance. RESULTS Comparisons of cancer vs healthy groups revealed that Lactobacillus and Bifidobacterium have significantly higher relative abundance in the healthy group, while the cancer group was enriched in 16 phylogroups associated with bacterial vaginosis (BV) and inflammation, including Sneathia, Prevotella, Peptoniphilus, Fusobacterium, Anaerococcus, Dialister, Moryella, and Peptostreptococcus. In our sample, RT affected the α-diversity and correlated with higher abundance of typically rare VM species, including several members of the Lacnospiraceae family, a taxon previously linked to vaginal dysbiosis. In addition to cancer and treatment modalities, age and vaginal pH were identified as significant parameters that structure the VM. CONCLUSIONS This is among the first reports identifying VM changes among postmenopausal women with cancer. RT alone seems to affect several phylogroups (12 bacterial genera), while gynecological cancer and its treatment modalities are associated with even greater significant shifts in the vaginal microbiota including the enrichment of opportunistic bacterial pathogens, which warrants further attention.
Collapse
Affiliation(s)
| | | | - Jinbing Bai
- Nell Hodgson Woodruff School of NursingEmory UniversityAtlantaGAUSA
| | - Yi‐Juan Hu
- Department of Biostatistics and BioinformaticsEmory UniversityAtlantaGAUSA
| | - Pretesh Patel
- Radiation OncologyWinship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Joseph Shelton
- Radiation OncologyWinship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Mary Dolan
- Department of Obstetrics and GynecologyEmory UniversityAtlantaGAUSA
| | | | - Namita Khanna
- Department of Obstetrics and GynecologyEmory UniversityAtlantaGAUSA
| | - Lesley Conrad
- Department of Obstetrics and GynecologyEmory UniversityAtlantaGAUSA
| | | | - Tony Y. Eng
- Radiation OncologyWinship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Konstantinos T. Konstantinidis
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
- School of Civil & Environmental EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Deborah W. Bruner
- Nell Hodgson Woodruff School of NursingEmory UniversityAtlantaGAUSA
- Radiation OncologyWinship Cancer InstituteEmory UniversityAtlantaGAUSA
| |
Collapse
|
30
|
Koedooder R, Mackens S, Budding A, Fares D, Blockeel C, Laven J, Schoenmakers S. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum Reprod Update 2020; 25:298-325. [PMID: 30938752 DOI: 10.1093/humupd/dmy048] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/16/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The existence of an extensive microbiome in and on the human body has increasingly dominated the scientific literature during the last decade. A shift from culture-dependent to culture-independent identification of microbes has occurred since the emergence of next-generation sequencing (NGS) techniques, whole genome shotgun and metagenomic sequencing. These sequencing analyses have revealed the presence of a rich diversity of microbes in most exposed surfaces of the human body, such as throughout the reproductive tract. The results of microbiota analyses are influenced by the technical specifications of the applied methods of analyses. Therefore, it is difficult to correctly compare and interpret the results of different studies of the same anatomical niche. OBJECTIVES AND RATIONALE The aim of this narrative review is to provide an overview of the currently used techniques and the reported microbiota compositions in the different anatomical parts of the female and male reproductive tracts since the introduction of NGS in 2005. This is crucial to understand and determine the interactions and roles of the different microbes necessary for successful reproduction. SEARCH METHODS A search in Embase, Medline Ovid, Web of science, Cochrane and Google scholar was conducted. The search was limited to English language and studies published between January 2005 and April 2018. Included articles needed to be original microbiome research related to the reproductive tracts. OUTCOMES The review provides an extensive up-to-date overview of current microbiome research in the field of human reproductive medicine. The possibility of drawing general conclusions is limited due to diversity in the execution of analytical steps in microbiome research, such as local protocols, sampling methods, primers used, sequencing techniques and bioinformatic pipelines, making it difficult to compare and interpret results of the available studies. Although some microbiota are associated with reproductive success and a good pregnancy outcome, it is still unknown whether a causal link exists. More research is needed to further explore the possible clinical implications and therapeutic interventions. WIDER IMPLICATIONS For the field of reproductive medicine, determination of what is a favourable reproductive tract microbiome will provide insight into the mechanisms of both unsuccessful and successful human reproduction. To increase pregnancy chances with live birth and to reduce reproduction-related health costs, future research could focus on postponing treatment or conception in case of the presence of unfavourable microbiota and on the development of therapeutic interventions, such as microbial therapeutics and lifestyle adaptations.
Collapse
Affiliation(s)
- Rivka Koedooder
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Shari Mackens
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101-1090, Brussels, Belgium
| | - Andries Budding
- Department of Medical Microbiology and Infection Control, Amsterdam UMC-location VUmc, Amsterdam, The Netherlands
| | - Damiat Fares
- Division of Obstetrics and Prenatal Diagnosis, Department of Obstetrics and Gynaecology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Christophe Blockeel
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101-1090, Brussels, Belgium
| | - Joop Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Sam Schoenmakers
- Division of Obstetrics and Prenatal Diagnosis, Department of Obstetrics and Gynaecology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Features of the Vaginal and Vestibular Microbioma in Patients With Vestibulodynia: A Case-Control Study. J Low Genit Tract Dis 2020; 24:290-294. [DOI: 10.1097/lgt.0000000000000523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
De Seta F, Comar M, Guaschino S, Larsen B. Bacterial Vaginitis and Vaginosis. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Comparative Pangenomics of the Mammalian Gut Commensal Bifidobacterium longum. Microorganisms 2019; 8:microorganisms8010007. [PMID: 31861401 PMCID: PMC7022738 DOI: 10.3390/microorganisms8010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Bifidobacterium longum colonizes mammalian gastrointestinal tracts where it could metabolize host-indigestible oligosaccharides. Although B. longum strains are currently segregated into three subspecies that reflect common metabolic capacities and genetic similarity, heterogeneity within subspecies suggests that these taxonomic boundaries may not be completely resolved. To address this, the B. longum pangenome was analyzed from representative strains isolated from a diverse set of sources. As a result, the B. longum pangenome is open and contains almost 17,000 genes, with over 85% of genes found in ≤28 of 191 strains. B. longum genomes share a small core gene set of only ~500 genes, or ~3% of the total pangenome. Although the individual B. longum subspecies pangenomes share similar relative abundances of clusters of orthologous groups, strains show inter- and intrasubspecies differences with respect to carbohydrate utilization gene content and growth phenotypes.
Collapse
|
34
|
Hashimoto T, Kyono K. Does dysbiotic endometrium affect blastocyst implantation in IVF patients? J Assist Reprod Genet 2019; 36:2471-2479. [PMID: 31741256 PMCID: PMC6910901 DOI: 10.1007/s10815-019-01630-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To analyze the pregnancy outcomes of IVF patients presenting eubiotic or dysbiotic endometrium at the time of embryo transfer and to analyze what bacterial profiles are suitable for embryo implantation. METHODS Ninety-nine IVF patients under 40 years old undergoing vitrified-warmed blastocyst transfer in HRT cycle had concurrent endometrial microbiome analysis. Samples from the endometrium were taken from the participants at the time of mock transfer; the bacterial profiles at genus level and percentage of lactobacilli in the endometrium of the patients were analyzed. RESULTS Thirty-one cases (31.3%) had dysbiotic endometrium. The background profiles, pregnancy rates per transfer (52.9% vs 54.8%), and miscarriage rates (11.1% vs 5.9%) were comparable between patients with eubiotic or dysbiotic endometrium. Major bacterial genera other than Lactobacillus detected in the dysbiotic endometrium were Atopobium, Gardnerella, and Streptococcus. Some patients achieved ongoing pregnancies with 0% Lactobacillus in the endometrium. The endometrial bacterial profiles of pregnant cases with dysbiotic endometrium were comparable with those of non-pregnant cases. CONCLUSION Analyzing microbiota at the species-level resolution may be necessary for identifying the true pathogenic bacteria of the endometrium and avoiding over-intervention against non-Lactobacillus microbiota. Further studies are necessary for analyzing the mechanism of how the pathogenic bacteria affect embryo implantation.
Collapse
Affiliation(s)
- Tomoko Hashimoto
- Kyono ART Clinic Takanawa, Takanawa Court 5F 3-13-1, Takanawa, Minato-ku, Tokyo, 108-0074, Japan.
| | - Koichi Kyono
- Kyono ART Clinic Takanawa, Takanawa Court 5F 3-13-1, Takanawa, Minato-ku, Tokyo, 108-0074, Japan
| |
Collapse
|
35
|
De Seta F, Campisciano G, Zanotta N, Ricci G, Comar M. The Vaginal Community State Types Microbiome-Immune Network as Key Factor for Bacterial Vaginosis and Aerobic Vaginitis. Front Microbiol 2019; 10:2451. [PMID: 31736898 PMCID: PMC6831638 DOI: 10.3389/fmicb.2019.02451] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/11/2019] [Indexed: 01/19/2023] Open
Abstract
Regarding bacterial vaginosis (BV), the relevance of the vaginal microbiota to the women’s health fulfills a key role, but knowledge gaps regarding aerobic vaginitis (AV) exist. This study aims to characterize vaginal microbiome and its relationship with the local immune mediators, providing an opportunity to define the link between vaginal commensal microorganisms and opportunistic pathogens in the relation of a given vaginal community state type (CST). A total of 90 vaginal samples from Caucasian asymptomatic women of reproductive age (18–40 years) attending the yearly examination and not reporting any vaginal complaints were retrospectively evaluated for microbiome assessment and immune factor dosage. The samples were tested by the Ion Torrent PGM and the Luminex Bio-Plex technologies for the analysis of microbiome and immune factors, respectively. In our study, the CST classification together with the local immune response profiling represented a good predictive indicator of the vaginal health, suggesting that the predominance of a specific Lactobacillus and its relative abundance are pivotal elements to maintain a physiologic status. A vaginal colonization from Bifidobacterium may absolve a protective role similar to that of Lactobacillus, corresponding to a newly identified CST, although studies are needed to better clarify its clinical significance. Moreover, within each CST, a different pattern of inflammation is activated and orchestrated both by the dominant Lactobacillus spp. and by specific non-Lactobacillus bacteria and can give insights into the pathogenic mechanisms. In conclusion, this study contributes to the characterization of vaginal dysbiosis, reshaping this concept by taking into consideration the CST profiling, local immune marker, and immune–microbial network.
Collapse
Affiliation(s)
- Francesco De Seta
- Institute for Maternal and Child Health "IRCCS Burlo Garofolo", Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Nunzia Zanotta
- Institute for Maternal and Child Health "IRCCS Burlo Garofolo", Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health "IRCCS Burlo Garofolo", Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Manola Comar
- Institute for Maternal and Child Health "IRCCS Burlo Garofolo", Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
36
|
Giordani B, Melgoza LM, Parolin C, Foschi C, Marangoni A, Abruzzo A, Dalena F, Cerchiara T, Bigucci F, Luppi B, Vitali B. Vaginal Bifidobacterium breve for preventing urogenital infections: Development of delayed release mucoadhesive oral tablets. Int J Pharm 2018; 550:455-462. [DOI: 10.1016/j.ijpharm.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/25/2023]
|
37
|
Low Maternal Microbiota Sharing across Gut, Breast Milk and Vagina, as Revealed by 16S rRNA Gene and Reduced Metagenomic Sequencing. Genes (Basel) 2018; 9:genes9050231. [PMID: 29724017 PMCID: PMC5977171 DOI: 10.3390/genes9050231] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022] Open
Abstract
The maternal microbiota plays an important role in infant gut colonization. In this work we have investigated which bacterial species are shared across the breast milk, vaginal and stool microbiotas of 109 women shortly before and after giving birth using 16S rRNA gene sequencing and a novel reduced metagenomic sequencing (RMS) approach in a subgroup of 16 women. All the species predicted by the 16S rRNA gene sequencing were also detected by RMS analysis and there was good correspondence between their relative abundances estimated by both approaches. Both approaches also demonstrate a low level of maternal microbiota sharing across the population and RMS analysis identified only two species common to most women and in all sample types (Bifidobacterium longum and Enterococcus faecalis). Breast milk was the only sample type that had significantly higher intra- than inter- individual similarity towards both vaginal and stool samples. We also searched our RMS dataset against an in silico generated reference database derived from bacterial isolates in the Human Microbiome Project. The use of this reference-based search enabled further separation of Bifidobacterium longum into Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis. We also detected the Lactobacillus rhamnosus GG strain, which was used as a probiotic supplement by some women, demonstrating the potential of RMS approach for deeper taxonomic delineation and estimation.
Collapse
|
38
|
Freitas AC, Hill JE. Bifidobacteria isolated from vaginal and gut microbiomes are indistinguishable by comparative genomics. PLoS One 2018; 13:e0196290. [PMID: 29684056 PMCID: PMC5912743 DOI: 10.1371/journal.pone.0196290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
Bifidobacteria colonize the human gastrointestinal tract, vagina, oral cavity and breast milk. They influence human physiology and nutrition through health-promoting effects, play an important role as primary colonizers of the newborn gut, and contribute to vaginal microbiome homeostasis by producing lactic acid. Nevertheless, the mechanisms by which bifidobacteria are transmitted from mother to infant remains in discussion. Moreover, studies have suggested that Bifidobacterium spp. have specializations for gut colonization, but comparisons of strains of the same bifidobacteria species from different body sites are lacking. Here, our objective was to compare the genomes of Bifidobacterium breve (n = 17) and Bifidobacterium longum (n = 26) to assess whether gut and vaginal isolates of either species were distinguishable based on genome content. Comparison of the general genome features showed that vaginal and gut isolates did not differ in size, GC content, number of genes and CRISPR, either for B. breve or B. longum. Average nucleotide identity and whole genome phylogeny analysis revealed that vaginal and gut isolates did not cluster separately. Vaginal and gut isolates also had a similar COG (Cluster of Orthologous Group) category distribution. Differences in the accessory genomes between vaginal and gut strains were observed, but were not sufficient to distinguish isolates based on their origin. The results of this study support the hypothesis that the vaginal and gut microbiomes are colonized by a shared community of Bifidobacterium, and further emphasize the potential importance of the maternal vaginal microbiome as a source of infant gut microbiota.
Collapse
Affiliation(s)
- Aline C. Freitas
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
39
|
Draft Genome Sequences of Bifidobacterium Strains N4G05 and N5G01, Isolated from the Human Vaginal Microbiome. GENOME ANNOUNCEMENTS 2018; 6:6/2/e01433-17. [PMID: 29326217 PMCID: PMC5764941 DOI: 10.1128/genomea.01433-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We report here the draft genome sequences of Bifidobacterium strains N4G05 and N5G01, isolated from the human vaginal microbiome. Genome sequences were obtained by de novo assembly from high-quality reads. Both strains were closely related to Bifidobacterium kashiwanohense based on barcode marker sequences and average nucleotide identity analysis.
Collapse
|