1
|
Zhang Y, Cong Y, Bailey TS, Dubois LJ, Theys J, Lambin P. Harnessing native-cryptic plasmids for stable overexpression of heterologous genes in Clostridium butyricum DSM 10702 for industrial and medical applications. Microbiol Res 2024; 288:127889. [PMID: 39217797 DOI: 10.1016/j.micres.2024.127889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Clostridium butyricum has emerged as a promising candidate for both industrial and medical biotechnologies, underscoring the key pursuit of stable gene overexpression in engineering C. butyricum. Unlike antibiotic-selective vectors, native-cryptic plasmids can be utilized for antibiotic-free expression systems in bacteria but have not been effectively exploited in C. butyricum to date. This study focuses on leveraging these plasmids, pCB101 and pCB102, in C. butyricum DSM10702 for stable gene overexpression without antibiotic selection via efficient gene integration using the SacB-based allelic exchange method. Integration of reporter IFP2.0 and glucuronidase generated sustained near-infrared fluorescence and robust enzyme activity across successive subcultures. Furthermore, successful secretion of a cellulase, Cel9M, and the human interleukin 10 from pCB102 highlights native-cryptic plasmids' potential in conferring stable gene products for industrial and medical applications in C. butyricum. This work appears to be the first study to harness the Clostridium native-cryptic plasmid for stable gene overexpression without antibiotics, thereby advancing the biotechnological prospects of C. butyricum.
Collapse
Affiliation(s)
- Yanchao Zhang
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands.
| | - Ying Cong
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Tom S Bailey
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands
| |
Collapse
|
2
|
Nakatsukasa H, Takahashi M, Shibano M, Ishigami Y, Kawaguchi T, Nakamura Y, Kaneda H. Clinical impact of concomitant BIO-three use in advanced or recurrent non-small cell lung cancer treated with immune-checkpoint inhibitor. Int J Clin Oncol 2024:10.1007/s10147-024-02622-z. [PMID: 39278980 DOI: 10.1007/s10147-024-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been approved as first-line therapy for advanced non-small cell lung cancer (NSCLC). The probiotic MIYAIRI 588 can potentially improve the outcomes of patients with advanced NSCLC treated with ICI. However, the impact of other probiotics on ICI-treatment efficacy remains unclear. Thus, we aimed to clarify the association between BIO-three use and treatment outcomes in patients with advanced NSCLC treated with ICI. METHODS This retrospective study included patients aged ≥ 18 years with advanced or recurrent NSCLC who had received ICI monotherapy or ICI plus chemotherapy. Concomitant therapy with probiotic bacteria was defined as receiving it within 180 days before ICI therapy. RESULTS Here, 289 patients were enrolled, including 23 (8.0%) receiving BIO-three. In the multivariable analysis, the progression-free survival (PFS) and overall survival (OS) of patients receiving BIO-three tended to be longer than those of patients not receiving probiotic therapy (PFS, hazard ratio [HR] 0.75; 95% confidence interval [CI] 0.43-1.30; p = 0.33; OS, HR 0.69; 95% CI 0.37-1.28; p = 0.24). After propensity score matching with weighted adjustment, patients receiving BIO-three tended to have prolonged PFS (median PFS [range] 7.6 months [2.6-17.4] vs 3.2 months [1.6-7.0]; HR 0.53; 95% CI 0.25-1.12; p = 0.09) and OS (median OS [range] 25.6 months [10.8-not reached] vs 10.9 months [7.3-not reached]; HR 0.57; 95% CI 0.24-1.36; p = 0.20) than those not receiving probiotic therapy. CONCLUSION This study suggests the prognostic impact of concomitant BIO-three use in patients with advanced NSCLC on ICI treatment.
Collapse
Affiliation(s)
- Hitomi Nakatsukasa
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Masaya Takahashi
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
- Department of Quality and Safety Management, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Masahito Shibano
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Yusuke Ishigami
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasutaka Nakamura
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
3
|
Liu J, Wen B, Huang Y, Deng G, Yan Q, Jia L. Exploring the effect of Clostridium butyricum on lung injury associated with acute pancreatitis in mice by combined 16S rRNA and metabolomics analysis. Anaerobe 2024; 87:102854. [PMID: 38614288 DOI: 10.1016/j.anaerobe.2024.102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVES Acute lung injury is a critical complication of severe acute pancreatitis (SAP). The gut microbiota and its metabolites play an important role in SAP development and may provide new targets for AP-associated lung injury. Based on the ability to reverse AP injury, we proposed that Clostridium butyricum may reduce the potential for AP-associated lung injury by modulating with intestinal microbiota and related metabolic pathways. METHODS An AP disease model was established in mice and treated with C. butyricum. The structure and composition of the intestinal microbiota in mouse feces were analyzed by 16 S rRNA gene sequencing. Non-targeted metabolite analysis was used to quantify the microbiota derivatives. The histopathology of mouse pancreas and lung tissues was examined using hematoxylin-eosin staining. Pancreatic and lung tissues from mice were stained with immunohistochemistry and protein immunoblotting to detect inflammatory factors IL-6, IL-1β, and MCP-1. RESULTS C. butyricum ameliorated the dysregulation of microbiota diversity in a model of AP combined with lung injury and affected fatty acid metabolism by lowering triglyceride levels, which were closely related to the alteration in the relative abundance of Erysipelatoclostridium and Akkermansia. In addition, C. butyricum treatment attenuated pathological damage in the pancreatic and lung tissues and significantly suppressed the expression of inflammatory factors in mice. CONCLUSIONS C. butyricum may alleviate lung injury associated with AP by interfering with the relevant intestinal microbiota and modulating relevant metabolic pathways.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Biyan Wen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Yaoxing Huang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Guiqing Deng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Qingqing Yan
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Lin Jia
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
4
|
Yang Y, Shao Y, Pei C, Liu Y, Zhang M, Zhu X, Li J, Feng L, Li G, Li K, Liang Y, Li Y. Pangenome analyses of Clostridium butyricum provide insights into its genetic characteristics and industrial application. Genomics 2024; 116:110855. [PMID: 38703968 DOI: 10.1016/j.ygeno.2024.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Clostridium butyricum is a Gram-positive anaerobic bacterium known for its ability to produce butyate. In this study, we conducted whole-genome sequencing and assembly of 14C. butyricum industrial strains collected from various parts of China. We performed a pan-genome comparative analysis of the 14 assembled strains and 139 strains downloaded from NCBI. We found that the genes related to critical industrial production pathways were primarily present in the core and soft-core gene categories. The phylogenetic analysis revealed that strains from the same clade of the phylogenetic tree possessed similar antibiotic resistance and virulence factors, with most of these genes present in the shell and cloud gene categories. Finally, we predicted the genes producing bacteriocins and botulinum toxins as well as CRISPR systems responsible for host defense. In conclusion, our research provides a desirable pan-genome database for the industrial production, food application, and genetic research of C. butyricum.
Collapse
Affiliation(s)
- Yicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Shao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Pei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangyang Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshan Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lifei Feng
- Henan Jinbaihe Biotechnology Co., Ltd., Tangyin, Anyang 455000, China
| | - Guanghua Li
- Henan Jinbaihe Biotechnology Co., Ltd., Tangyin, Anyang 455000, China
| | - Keke Li
- Henan Jinbaihe Biotechnology Co., Ltd., Tangyin, Anyang 455000, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Li S, Zhang YX. Sensitive delivery systems and novel encapsulation technologies for live biotherapeutic products and probiotics. Crit Rev Microbiol 2024; 50:371-384. [PMID: 37074732 DOI: 10.1080/1040841x.2023.2202237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023]
Abstract
Live biotherapeutic product (LBP), a type of biological product, holds promise for the prevention or treatment of metabolic disease and pathogenic infection. Probiotics are live microorganisms that improve the intestinal microbial balance and beneficially affect the health of the host when ingested in sufficient numbers. These biological products possess the advantages of inhibition of pathogens, degradation of toxins, and modulation of immunity. The application of LBP and probiotic delivery systems has attracted great interest to researchers. The initial used technologies for LBP and probiotic encapsulation are traditional capsules and microcapsules. However, the stability and targeted delivery capability require further improved. The specific sensitive materials can greatly improve the delivery efficiency of LBPs and probiotics. The specific sensitive delivery systems show advantages over traditional ones due to their better properties of biocompatibility, biodegradability, innocuousness, and stability. Moreover, some new technologies, including layer-by-layer encapsulation, polyelectrolyte complexation, and electrohydrodynamic technology, show great potential in LBP and probiotic delivery. In this review, novel delivery systems and new technologies of LBPs and probiotics were presented, and the challenges and prospects were explored in specific sensitive materials for LBP and probiotic delivery.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
Tang X. Probiotic Roles of Clostridium butyricum in Piglets: Considering Aspects of Intestinal Barrier Function. Animals (Basel) 2024; 14:1069. [PMID: 38612308 PMCID: PMC11010893 DOI: 10.3390/ani14071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
China, as the global leader in pork production and consumption, is faced with challenges in ensuring sustainable and wholesome growth of the pig industry while also guaranteeing meat food safety amidst the ban on antibiotics usage in animal feed. The focus of the pig industry lies in guaranteeing piglet health and enhancing overall production performance through nutrition regulation. Clostridium butyricum (C. butyricum), a new type of probiotic, possesses characteristics such as heat resistance, acid resistance, and bile-salt tolerance, meaning it has potential as a feed additive. Previous studies have demonstrated that C. butyricum has a probiotic effect on piglets and can serve as a substitute for antibiotics. The objective of this study was to review the probiotic role of C. butyricum in the production of piglets, specifically focusing on intestinal barrier function. Through this review, we explored the probiotic effects of C. butyricum on piglets from the perspective of intestinal health. That is, C. butyricum promotes intestinal health by regulating the functions of the mechanical barrier, chemical barrier, immune barrier, and microbial barrier of piglets, thereby improving the growth of piglets. This review can provide a reference for the rational utilization and application of C. butyricum in swine production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertification Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
7
|
Hagihara M, Ariyoshi T, Eguchi S, Oka K, Takahashi M, Kato H, Shibata Y, Umemura T, Mori T, Miyazaki N, Hirai J, Asai N, Mori N, Mikamo H. Oral Clostridium butyricum on mice endometritis through uterine microbiome and metabolic alternations. Front Microbiol 2024; 15:1351899. [PMID: 38450161 PMCID: PMC10915095 DOI: 10.3389/fmicb.2024.1351899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Endometritis occurs frequently in humans and animals, which can negatively affect fertility and cause preterm parturition syndrome. Orally administered Clostridium butyricum, a butyrate-producing gram-positive anaerobe, exhibits anti-inflammatory effects. However, the precise mechanism by which Clostridium butyricum attenuates endometritis remains unclear. This in vivo study evaluated the anti-inflammatory effects of orally administered Clostridium butyricum on uterine tissues. In addition, we conducted uterine microbiome and lipid metabolome analyses to determine the underlying mechanisms. Female Balb/c mice were divided into the following four groups (n = 5-20): (1) mock group, (2) only operation group (mice only underwent operation to exposed uterine horns from the side), (3) control group (mice underwent the same operation with the operation group + perfusion of lipopolysaccharide solution from uterine horns), and (4) Clostridium butyricum administration group (mice underwent the same operation with the control group + oral Clostridium butyricum administration from days 0 to 9). Clostridium butyricum was administered via oral gavage. On day 10, we investigated protein expression, uterine microbiome, and lipid metabolism in uterine tissues. Consequently, orally administered Clostridium butyricum altered the uterine microbiome and induced proliferation of Lactobacillus and Limosilactobacillus species. The effects can contribute to show the anti-inflammatory effect through the interferon-β upregulation in uterine tissues. Additionally, oral Clostridium butyricum administration resulted in the upregulations of some lipid metabolites, such as ω-3 polyunsaturated fatty acid resolvin D5, in uterine tissues, and resolvin D5 showed anti-inflammatory effects. However, the orally administered Clostridium butyricum induced anti-inflammatory effect was attenuated with the deletion of G protein-coupled receptor 120 and 15-lipooxgenase inhibition. In conclusion, Clostridium butyricum in the gut has anti-inflammatory effects on uterine tissues through alterations in the uterine microbiome and lipid metabolism. This study revealed a gut-uterus axis mechanism and provided insights into the treatment and prophylaxis of endometritis.
Collapse
Affiliation(s)
- Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute, Japan
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Tadashi Ariyoshi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Shuhei Eguchi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | | | - Hideo Kato
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Yuichi Shibata
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Takumi Umemura
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Takeshi Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Narimi Miyazaki
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Jun Hirai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Nobuaki Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
8
|
Yang Q, Zaongo SD, Zhu L, Yan J, Yang J, Ouyang J. The Potential of Clostridium butyricum to Preserve Gut Health, and to Mitigate Non-AIDS Comorbidities in People Living with HIV. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10227-1. [PMID: 38336953 DOI: 10.1007/s12602-024-10227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
A dramatic reduction in mortality among people living with HIV (PLWH) has been achieved during the modern antiretroviral therapy (ART) era. However, ART does not restore gut barrier function even after long-term viral suppression, allowing microbial products to enter the systemic blood circulation and induce chronic immune activation. In PLWH, a chronic state of systemic inflammation exists and persists, which increases the risk of development of inflammation-associated non-AIDS comorbidities such as metabolic disorders, cardiovascular diseases, and cancer. Clostridium butyricum is a human butyrate-producing symbiont present in the gut microbiome. Convergent evidence has demonstrated favorable effects of C. butyricum for gastrointestinal health, including maintenance of the structural and functional integrity of the gut barrier, inhibition of pathogenic bacteria within the intestine, and reduction of microbial translocation. Moreover, C. butyricum supplementation has been observed to have a positive effect on various inflammation-related diseases such as diabetes, ulcerative colitis, and cancer, which are also recognized as non-AIDS comorbidities associated with epithelial gut damage. There is currently scant published research in the literature, focusing on the influence of C. butyricum in the gut of PLWH. In this hypothesis review, we speculate the use of C. butyricum as a probiotic oral supplementation may well emerge as a potential future synergistic adjunctive strategy in PLWH, in tandem with ART, to restore and consolidate intestinal barrier integrity, repair the leaky gut, prevent microbial translocation from the gut, and reduce both gut and systemic inflammation, with the ultimate objective of decreasing the risk for development of non-AIDS comorbidities in PLWH.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Lijiao Zhu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiangyu Yan
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
9
|
Paz Del Socorro T, Oka K, Boulard O, Takahashi M, Poulin LF, Hayashi A, Chamaillard M. The biotherapeutic Clostridium butyricum MIYAIRI 588 strain potentiates enterotropism of Rorγt +Treg and PD-1 blockade efficacy. Gut Microbes 2024; 16:2315631. [PMID: 38385162 PMCID: PMC10885180 DOI: 10.1080/19490976.2024.2315631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have been positioned as a standard of care for patients with advanced non-small-cell lung carcinomas (NSCLC). A pilot clinical trial has reflected optimistic association between supplementation with Clostridium butyricum MIYAIRI 588 (CBM588) and ICI efficacy in NSCLC. However, it remains to be established whether this biotherapeutic strain may be sufficient to heighten the immunogenicity of the tumor draining lymph nodes to overcome resistance to ICI. Herein, we report that supplementation with CBM588 led to an improved responsiveness to antibody targeting programmed cell death protein 1 (aPD-1). This was statistically associated with a significant decrease in α-diversity of gut microbiota from CBM588-treated mice upon PD-1 blockade. At the level of the tumor-draining lymph node, such combination of treatment significantly lowered the frequency of microbiota-modulated subset of regulatory T cells that express Retinoic Orphan Receptor gamma t (Rorγ t+ Treg). Specifically, this strongly immunosuppressive was negatively correlated with the abundance of bacteria that belong to the family of Ruminococcaceae. Accordingly, the colonic expression of both indoleamine 2,3-Dioxygenase 1 (IDO-1) and interleukin-10 (IL-10) were heightened in mice with greater PD-1 blockade efficacy. The CBM588-induced ability to secrete Interleukin-10 of lamina propria mononuclear cells was heightened in tumor bearers when compared with cancer-free mice. Conversely, blockade of interleukin-10 signaling preferentially enhanced the capacity of CD8+ T cells to secrete Interferon gamma when being cocultured with CBM588-primed lamina propria mononuclear cells of tumor-bearing mice. Our results demonstrate that CBM588-centered intervention can adequately improve intestinal homeostasis and efficiently overcome resistance to PD-1 blockade in mice.
Collapse
Affiliation(s)
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd, Saitama, Japan
| | | | | | | | - Atsushi Hayashi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd, Saitama, Japan
| | | |
Collapse
|
10
|
Zhang Y, Lu M, Zhang Y, Yuan X, Zhou M, Xu X, Zhang T, Song J. Clostridium butyricum MIYAIRI 588 alleviates periodontal bone loss in mice with diabetes mellitus. Ann N Y Acad Sci 2023; 1529:84-100. [PMID: 37658670 DOI: 10.1111/nyas.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The gut microbiota is a bridge linking periodontitis and systemic diseases, such as diabetes mellitus (DM). The probiotic Clostridium butyricum MIYAIRI 588 (CBM588) is reportedly an effective therapeutic approach for gut dysbiosis. Here, in a mouse model, we explored the therapeutic effect of CBM588 on periodontal bone destruction in DM and DM-associated periodontitis (DMP), as well as the underlying mechanism. Micro-computed tomography revealed that DM and DMP both aggravated periodontal bone destruction, which was alleviated by intragastric supplementation with CBM588. Moreover, 16S rRNA sequencing and untargeted metabolite analysis indicated that CBM588 ameliorated DMP-triggered dysbiosis and led to reduced oxidative stress associated with elevated 4-hydroxybenzenemethanol (4-HBA) in serum. Furthermore, in vitro and in vivo experiments found that the metabolite 4-HBA promoted nuclear factor erythroid 2-related factor 2 (Nrf2) signaling activation and modulated the polarization of macrophages, thus ameliorating inflammatory bone destruction in DMP. Our study demonstrates the protective effects of CBM588 in DM-induced mice, with and without ligature-induced periodontitis. The mechanism involves regulation of the gut microbiota and restoration of the integrity of the gut barrier to alleviate oxidative damage by elevating serum 4-HBA. This study suggests the possibility of CBM588 as a therapeutic adjuvant for periodontal treatment in diabetes patients.
Collapse
Affiliation(s)
- Yanan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Lu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xulei Yuan
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Xu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Zhao M, Xie X, Xu B, Chen Y, Cai Y, Chen K, Guan X, Ni C, Luo X, Zhou L. Paeonol alleviates ulcerative colitis in mice by increasing short-chain fatty acids derived from Clostridium butyricum. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155056. [PMID: 37703619 DOI: 10.1016/j.phymed.2023.155056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Increasing evidence suggests that repairing the damaged intestinal epithelial barrier and restoring its function is the key to solving the problem of prolonged ulcerative colitis. Previous studies have shown that paeonol (pae) can alleviate colitis by down-regulating inflammatory pathways. In addition, pae also has a certain effect on regulating intestinal flora. However, it remains unclear whether pae can play a role in repairing the intestinal barrier and whether there is a relationship between the therapeutic effect and the gut microbiota. PURPOSES The aim of this study is to investigate the effect of pae on intestinal barrier repair in UC mice and how the gut microbiota plays a part in it. STUDY DESIGN AND METHODS The therapeutic effect of pae was evaluated in a 3% DSS-induced UC mouse model. The role of pae in repairing the intestinal barrier was evaluated by detecting colonic cupped cells by Alcian blue staining, the expression of colonic epithelial tight junction protein by immunofluorescence and western blot, and the proportion of IL-22+ILC3 cells in the lamina propria lymphocytes by flow cytometry. Subsequently, 16S rRNA sequencing was used to observe the changes in intestinal flora, GC-MS was used to detect the level of SCFAs, and qPCR was used to identify the abundance of Clostridium butyricum in the intestine to evaluate the effect of pae on the gut microbiota. The antibiotic-mediated depletion of the gut flora was then used to verify that pae depends on C. butyricum to play a healing role. Finally, non-targeted metabolomics was employed to investigate the potential pathways of pae regulating C. butyricum. RESULTS Pae could improve intestinal microecological imbalance and promote the production of short-chain fatty acids (SCFAs). Most importantly, we identified C. butyricum as a key bacterium responsible for the intestinal barrier repair effect of pae in UC mice. Eradication of intestinal flora by antibiotics abolished the repair of the intestinal barrier and the promotion of SCFAs production by pae, while C. butyricum colonization could restore the therapeutic effects of pae in UC mice, which further confirmed that C. butyricum was indeed the "driver bacterium" of pae in UC treatment. Untargeted metabolomics showed that pae regulated some amino acid metabolism and 2-Oxocarboxylic acid metabolism in C. butyricum. CONCLUSIONS Our study showed that the restoration of the impaired intestinal barrier by pae to alleviate colitis is associated with increased C. butyricum and SCFAs production, which may be a promising strategy for the treatment of UC.
Collapse
Affiliation(s)
- Meng Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueqian Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunliang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kehan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinling Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Ni
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
12
|
Gao J, Zhao L, Cheng Y, Lei W, Wang Y, Liu X, Zheng N, Shao L, Chen X, Sun Y, Ling Z, Xu W. Probiotics for the treatment of depression and its comorbidities: A systemic review. Front Cell Infect Microbiol 2023; 13:1167116. [PMID: 37139495 PMCID: PMC10149938 DOI: 10.3389/fcimb.2023.1167116] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Depression is one of the most common psychiatric conditions, characterized by significant and persistent depressed mood and diminished interest, and often coexists with various comorbidities. The underlying mechanism of depression remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant clinical trials and animal studies support the new notion that the gut microbiota has emerged as a novel actor in the pathophysiology of depression, which partakes in bidirectional communication between the gut and the brain through the neuroendocrine, nervous, and immune signaling pathways, collectively known as the microbiota-gut-brain (MGB) axis. Alterations in the gut microbiota can trigger the changes in neurotransmitters, neuroinflammation, and behaviors. With the transition of human microbiome research from studying associations to investigating mechanistic causality, the MGB axis has emerged as a novel therapeutic target in depression and its comorbidities. These novel insights have fueled idea that targeting on the gut microbiota may open new windows for efficient treatment of depression and its comorbidities. Probiotics, live beneficial microorganisms, can be used to modulate gut dysbiosis into a new eubiosis and modify the occurrence and development of depression and its comorbidities. In present review, we summarize recent findings regarding the MGB axis in depression and discuss the potential therapeutic effects of probiotics on depression and its comorbidities.
Collapse
Affiliation(s)
- Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xulei Chen
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yilai Sun
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Weijie Xu
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
13
|
Pu W, Zhang H, Zhang T, Guo X, Wang X, Tang S. Inhibitory effects of Clostridium butyricum culture and supernatant on inflammatory colorectal cancer in mice. Front Immunol 2023; 14:1004756. [PMID: 37081884 PMCID: PMC10111964 DOI: 10.3389/fimmu.2023.1004756] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Clostridium butyricum (CB) is a spore-forming, gram-positive and obligate anaerobic rod bacterium. CB can modulate the composition of the gut microbiome and promote the growth of beneficial microbes in the intestine by generating short-chain fatty acids (SCFAs), which in turn protect against colitis and prevents the formation of inflammatory-associated colorectal cancer (CRC) by ameliorating colon inflammatory processes. Yet, it remains unclear whether the culture and supernatant of CB could directly influence inflammatory CRC in mice. In this study, azoxymethane (AOM)+dextran sodium sulphate (DSS) was used to induce CRC model in C57BL/6 mice. Next, the serum levels of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-10 (IL-10), and cytokines TNF-α, were measured and the pathohistological examination of the large intestine was performed. Both CB culture and supernatant were found to have anti-inflammatory properties. Subsequently, Western blot and Real-Time Quantitative PCR (RT-qPCR) revealed that CB and supernatant regulate the NF-κB/p65 pathway to inhibit the development and progression of inflammatory CRC in AOM+DSS-treated mice, which could be due to the high levels of butyric acid in the supernatant.
Collapse
Affiliation(s)
- Wenfeng Pu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Gastroenterology, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Hong Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
- Department of Gastroenterology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhang
- Department of Gastroenterology, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Xiaoguang Guo
- Department of Pathology, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Xiaoqing Wang
- Department of Nucler Medicine, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Shaohui Tang,
| |
Collapse
|
14
|
Liu X, Qiu X, Yang Y, Wang J, Wang Q, Liu J, Yang F, Liu Z, Qi R. Alteration of gut microbiome and metabolome by Clostridium butyricum can repair the intestinal dysbiosis caused by antibiotics in mice. iScience 2023; 26:106190. [PMID: 36895644 PMCID: PMC9988658 DOI: 10.1016/j.isci.2023.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the repair effects of Clostridium butyricum (CBX 2021) on the antibiotic (ABX)-induced intestinal dysbiosis in mice by the multi-omics method. Results showed that ABX eliminated more than 90% of cecal bacteria and also exerted adverse effects on the intestinal structure and overall health in mice after 10 days of the treatment. Of interest, supplementing CBX 2021 in the mice for the next 10 days colonized more butyrate-producing bacteria and accelerated butyrate production compared with the mice by natural recovery. The reconstruction of intestinal microbiota efficiently promoted the improvement of the damaged gut morphology and physical barrier in the mice. In addition, CBX 2021 significantly reduced the content of disease-related metabolites and meanwhile promoted carbohydrate digestion and absorption in mice followed the microbiome alternation. In conclusion, CBX 2021 can repair the intestinal ecology of mice damaged by the antibiotics through reconstructing gut microbiota and optimizing metabolic functions.
Collapse
Affiliation(s)
- Xin Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Yong Yang
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Jingbo Liu
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
15
|
Wang J, Chen J, Li L, Zhang H, Pang D, Ouyang H, Jin X, Tang X. Clostridium butyricum and Bifidobacterium pseudolongum Attenuate the Development of Cardiac Fibrosis in Mice. Microbiol Spectr 2022; 10:e0252422. [PMID: 36318049 PMCID: PMC9769846 DOI: 10.1128/spectrum.02524-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Cardiac fibrosis is an integral aspect of every form of cardiovascular diseases, which is one of the leading causes of death worldwide. It is urgent to explore new effective drugs and treatments. In this paper, transverse aortic constriction (TAC)-induced cardiac fibrosis was significantly alleviated by a cocktail of antibiotics to clear the intestinal flora, indicating that the gut microbiota was associated with the disease process of cardiac fibrosis. We transplanted feces from sham-operated and TAC-treated mice to mice treated with a cocktail of antibiotics. We found that TAC-treated gut microbiota dysbiosis cannot cause cardiac fibrosis on its own. Interestingly, healthy fecal microbiota transplantation could alleviate cardiac fibrosis, indicating that targeted probiotics and related metabolite intervention may restore a normal microenvironment for the treatment or prevention of cardiac fibrosis. We used 16S rRNA sequencing of fecal samples and discovered that butyric acid-producing bacteria and Bifidobacterium pseudolongum were the dominant bacteria in the group with the lowest degree of cardiac fibrosis. Moreover, we demonstrated that sodium butyrate prevented the development of cardiac fibrosis. The effect of Clostridium butyricum (butyric acid-producing bacteria) was better than that of B. pseudolongum on cardiac fibrosis. Surprisingly, the cocktail of two probiotics had a stronger ability than a single probiotic. In conclusion, therapies targeting the gut microbiota and metabolites such as probiotics present new strategies for treating cardiovascular disease. IMPORTANCE Cardiac fibrosis is a basic process in cardiac remodeling. It is related to almost all types of cardiovascular diseases (CVD) and has become an important global health problem. Basic research and a number of clinical studies have shown that myocardial fibrosis can be prevented and reversed to a certain extent. It is urgent to explore new effective drugs and treatments. We indicated a causal relationship between cardiac fibrosis and gut microbiota. Gut microbiota dysbiosis cannot cause cardiac fibrosis on its own. Interestingly, healthy fecal microbiota transplantation could alleviate cardiac fibrosis. According to our findings, the combined use of butyric acid-producing bacteria and B. pseudolongum can help prevent cardiac fibrosis. Therapies targeting the gut microbiota and metabolites, such as probiotics, represent new strategies for treating cardiovascular disease.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun China
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, People’s Republic of China
- Chongqing Research Institute of Jilin University, Chongqing, People’s Republic of China
| |
Collapse
|
16
|
Hagihara M, Yamashita M, Ariyoshi T, Eguchi S, Minemura A, Miura D, Higashi S, Oka K, Nonogaki T, Mori T, Iwasaki K, Hirai J, Shibata Y, Umemura T, Kato H, Asai N, Yamagishi Y, Ota A, Takahashi M, Mikamo H. Clostridium butyricum-induced ω-3 fatty acid 18-HEPE elicits anti-influenza virus pneumonia effects through interferon-λ upregulation. Cell Rep 2022; 41:111755. [PMID: 36516771 DOI: 10.1016/j.celrep.2022.111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022] Open
Abstract
The precise mechanism by which butyrate-producing bacteria in the gut contribute to resistance to respiratory viral infections remains to be elucidated. Here, we describe a gut-lung axis mechanism and report that orally administered Clostridium butyricum (CB) enhances influenza virus infection resistance through upregulation of interferon (IFN)-λ in lung epithelial cells. Gut microbiome-induced ω-3 fatty acid 18-hydroxy eicosapentaenoic acid (18-HEPE) promotes IFN-λ production through the G protein-coupled receptor (GPR)120 and IFN regulatory factor (IRF)-1/-7 activations. CB promotes 18-HEPE production in the gut and enhances ω-3 fatty acid sensitivity in the lungs by promoting GPR120 expression. This study finds a gut-lung axis mechanism and provides insights into the treatments and prophylaxis for viral respiratory infections.
Collapse
Affiliation(s)
- Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute 480-1195, Japan; Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Makoto Yamashita
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Tadashi Ariyoshi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan; R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Shuhei Eguchi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Ayaka Minemura
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Daiki Miura
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Seiya Higashi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Kentaro Oka
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan; R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Tsunemasa Nonogaki
- Department of Pharmacy, College of Pharmacy Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Takeshi Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Kenta Iwasaki
- Departments of Kidney Disease and Transplant Immunology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Jun Hirai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yuichi Shibata
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute 480-1195, Japan
| | - Takumi Umemura
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Hideo Kato
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan; Department of Pharmacy, Mie University Hospital, Tsu, Mie, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Akinobu Ota
- Departments of Biochemistry, Aichi Medical University, Nagakute 480-1195, Japan
| | - Motomichi Takahashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan; R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan.
| |
Collapse
|
17
|
A Pilot Study: Favorable Effects of Clostridium butyricum on Intestinal Microbiota for Adjuvant Therapy of Lung Cancer. Cancers (Basel) 2022; 14:cancers14153599. [PMID: 35892858 PMCID: PMC9332558 DOI: 10.3390/cancers14153599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Probiotics as medications have previously been shown to change intestinal microbial characteristics, potentially influencing cancer therapy efficacy. Patients with non-squamous non-small cell lung cancer (NS-NSCLC) treated by bevacizumab plus platinum-based chemotherapy were randomized to obtain Clostridium butyricum supplement (CBS) or receive a placebo as adjuvant therapy. Clinical efficacy and safety were assessed using progression-free survival (PFS), overall survival (OS), and adverse events (AE). Intestinal microbiota was longitudinally explored between CBS and placebo groups over time. Patients who took CBS had significantly decreased bacterial richness and abundance, as well as increased the total richness of the genus Clostridium, Bifidobacterium, and Lactobacillus compared to the placebo group (p < 0.05). Beta diversity and the interactional network of intestinal microbiota were distinctly different between CBS and placebo group. However, there were no significant variations between them in terms of microbial taxonomical taxa and alpha diversity. The potential opportunistic pathogen Shewanella was still detectable after treatment in the placebo group, while no distinguishing microbial markers were found in the CBS group. In terms of clinical efficacy, the CBS group had a significantly reduced AE compare to the placebo group (p < 0.05), although no significantly longer PFS and OS. Therefore, favorable modifications in intestinal microbiota and significant improvements in drug safety make probiotics be promising adjunctive therapeutic avenues for lung cancer treatment.
Collapse
|
18
|
Grenda T, Grenda A, Domaradzki P, Krawczyk P, Kwiatek K. Probiotic Potential of Clostridium spp.-Advantages and Doubts. Curr Issues Mol Biol 2022; 44:3118-3130. [PMID: 35877439 PMCID: PMC9315758 DOI: 10.3390/cimb44070215] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium spp. is a large genus of obligate anaerobes and is an extremely heterogeneous group of bacteria that can be classified into 19 clusters. Genetic analyses based on the next-generation sequencing of 16S rRNA genes and metagenome analyses conducted on human feces, mucosal biopsies, and luminal content have shown that the three main groups of strict extremophile anaerobes present in the intestines are Clostridium cluster IV (also known as the Clostridium leptum group), Clostridium cluster XIVa (also known as the Clostridium coccoides group) and Bacteroides. In addition to the mentioned clusters, some C. butyricum strains are also considered beneficial for human health. Moreover, this bacterium has been widely used as a probiotic in Asia (particularly in Japan, Korea, and China). The mentioned commensal Clostridia are involved in the regulation and maintenance of all intestinal functions. In the literature, the development processes of new therapies are described based on commensal Clostridia activity. In addition, some Clostridia are associated with pathogenic processes. Some C. butyricum strains detected in stool samples are involved in botulism cases and have also been implicated in severe diseases such as infant botulism and necrotizing enterocolitis in preterm neonates. The aim of this study is to review reports on the possibility of using Clostridium strains as probiotics, consider their positive impact on human health, and identify the risks associated with the expression of their pathogenic properties.
Collapse
Affiliation(s)
- Tomasz Grenda
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland;
- Correspondence: ; Tel.: +48-81-889-3191
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-950 Lublin, Poland; (A.G.); (P.K.)
| | - Piotr Domaradzki
- Department of Commodity Science and Animal Raw Materials Processing, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-950 Lublin, Poland; (A.G.); (P.K.)
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland;
| |
Collapse
|
19
|
Yan Q, Cai L, Guo W. New Advances in Improving Bone Health Based on Specific Gut Microbiota. Front Cell Infect Microbiol 2022; 12:821429. [PMID: 35860378 PMCID: PMC9289272 DOI: 10.3389/fcimb.2022.821429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/01/2022] [Indexed: 12/31/2022] Open
Abstract
The gut microbiota has been shown to play an important role in the pathogenesis of various diseases, including metabolic diseases, cardiovascular diseases, and cancer. Recent studies suggest that the gut microbiota is also closely associated with bone metabolism. However, given the high diversity of the gut microbiota, the effects of different taxa and compositions on bone are poorly understood. Previous studies demonstrated that the mechanisms underlying the effects of the gut microbiota on bone mainly include its modulation of nutrient absorption, intestinal permeability, metabolites (such as short-chain amino acids), immune responses, and hormones or neurotransmitters (such as 5-hydroxytryptamine). Several studies found that external interventions, such as dietary changes, improved bone health and altered the composition of the gut microbiota. This review summarises the beneficial gut bacteria and explores how dietary, natural, and physical factors alter the diversity and composition of the gut microbiota to improve bone health, thereby providing potential new insight into the prevention of osteoporosis.
Collapse
|
20
|
Wen J, Zhao W, Li J, Hu C, Zou X, Dong X. Dietary Supplementation of Chitosan Oligosaccharide–Clostridium butyricum Synbiotic Relieved Early-Weaned Stress by Improving Intestinal Health on Pigeon Squabs (Columba livia). Front Immunol 2022; 13:926162. [PMID: 35844624 PMCID: PMC9284028 DOI: 10.3389/fimmu.2022.926162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
According to a previous study, we had found that early weaning causes harm to growth performance, intestinal morphology, activity of digestive enzymes, and antioxidant status in pigeon squabs (Columba livia). Chitosan oligosaccharides (COS) and Clostridium butyricum have been reported to have great potential to improve the growth performance and intestinal health of early-weaned animals. Therefore, the aim of this study is to explore whether dietary supplementation with COS-C. butyricum synbiotic could relieve early-weaned stress by evaluating its effects on growth performance and intestinal health in pigeon squabs. A total of 160 squabs (weaned at 7 days of age) were randomly divided into 5 groups: the control group, fed with artificial crop milk; the COS supplementation group, fed with artificial crop milk + 150 mg/kg COS; and three synbiotic supplementation groups, fed with artificial crop milk + 150 mg/kg COS + 200, 300, and 400 mg/kg C. butyricum. The results showed that a diet supplemented with COS-C. butyricum synbiotic benefitted the growth performance of early-weaned squabs; even so the differences were not significant among the five groups (p > 0.05). In addition, dietary supplementation of 150 mg/kg COS + 300~400 mg/kg C. butyricum significantly improved the intestinal morphology (especially villus surface area and the ratio of villus height to crypt depth), the activity of digestive enzymes (lipase, trypsin, and leucine aminopeptidase) in duodenum contents, and the production of total short-chain fatty acids and acetic acid in ileum content (p < 0.05). Additionally, dietary supplementation of 150 mg/kg COS + 400 mg/kg C. butyricum benefitted gut health by improving the antioxidant capacity (glutathione peroxidase and total antioxidant capacity) and cytokine status (IL-4 and IL-10) (p < 0.05), as well as by improving the intestinal microbiota diversity. In conclusion, our results revealed that dietary supplementation with synbiotic (150 mg/kg COS + 300~400 mg/kg C. butyricum) could relieve early-weaned stress by maintaining intestinal health in pigeon squabs.
Collapse
|
21
|
Xu T, Yang D, Liu K, Gao Q, Liu Z, Li G. Miya Improves Osteoarthritis Characteristics via the Gut-Muscle-Joint Axis According to Multi-Omics Analyses. Front Pharmacol 2022; 13:816891. [PMID: 35668932 PMCID: PMC9163738 DOI: 10.3389/fphar.2022.816891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The gut microbiota is associated with osteoarthritis (OA) progression. Miya (MY) is a product made from Clostridium butyricum, a member of gut microbiota. This study was conducted to investigate the effects of MY on OA and its underlying mechanisms. Methods: An OA rat model was established, and MY was used to treat the rats for 4 weeks. Knee joint samples from the rats were stained with hematoxylin-eosin, and fecal samples from the OA and OA+MY groups were subjected to 16S rDNA sequencing and metabolomic analysis. The contents of succinate dehydrogenase and muscle glycogen in the tibia muscle were determined, and related genes and proteins were detected using quantitative reverse transcription polymerase chain reaction and western blotting. Results: Hematoxylin and eosin staining showed that treatment with MY alleviated the symptoms of OA. According to the sequencing results, MY significantly increased the Chao1, Shannon, and Pielou evenness values compared to those in the untreated group. At the genus level, the abundances of Prevotella, Ruminococcus, Desulfovibrio, Shigella, Helicobacter, and Streptococcus were higher in the OA group, whereas Lactobacillus, Oscillospira, Clostridium, and Coprococcus were enriched after MY treatment. Metabolomic analysis revealed 395 differentially expressed metabolites. Additionally, MY treatment significantly increased the succinate dehydrogenase and muscle glycogen contents in the muscle caused by OA (p > 0.05). Finally, AMPK, Tfam, Myod, Ldh, Chrna1, Chrnd, Rapsyn, and Agrin were significantly downregulated in the muscles of OA mice, whereas Lcad, Mcad, and IL-1β were upregulated; MY significantly reversed these trends induced by OA. Conclusions: MY may promote the repair of joint damage and protect against OA via the gut-muscle-joint axis.
Collapse
Affiliation(s)
- Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Yang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaiyuan Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiuming Gao
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongchen Liu
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zhongchen Liu, ; Guodong Li,
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zhongchen Liu, ; Guodong Li,
| |
Collapse
|
22
|
Ariyoshi T, Hagihara M, Takahashi M, Mikamo H. Effect of Clostridium butyricum on Gastrointestinal Infections. Biomedicines 2022; 10:483. [PMID: 35203691 PMCID: PMC8962260 DOI: 10.3390/biomedicines10020483] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Clostridium butyricum is a human commensal bacterium with beneficial effects including butyrate production, spore formation, increasing levels of beneficial bacteria, and inhibition of pathogenic bacteria. Owing to its preventive and ameliorative effects on gastrointestinal infections, C. butyricum MIYAIRI 588 (CBM 588) has been used as a probiotic in clinical and veterinary medicine for decades. This review summarizes the effects of C. butyricum, including CBM 588, on bacterial gastrointestinal infections. Further, the characteristics of the causative bacteria, examples of clinical and veterinary use, and mechanisms exploited in basic research are presented. C. butyricum is widely effective against Clostoridioides difficile, the causative pathogen of nosocomial infections; Helicobacter pylori, the causative pathogen of gastric cancer; and antibiotic-resistant Escherichia coli. Accordingly, its mechanism is gradually being elucidated. As C. butyricum is effective against gastrointestinal infections caused by antibiotics-induced dysbiosis, it can inhibit the transmission of antibiotic-resistant genes and maintain homeostasis of the gut microbiome. Altogether, C. butyricum is expected to be one of the antimicrobial-resistance (AMR) countermeasures for the One-health approach.
Collapse
Affiliation(s)
- Tadashi Ariyoshi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (T.A.); (M.H.); (M.T.)
- Miyarisan Pharmaceutical Co., Ltd., Saitama City 331-0804, Saitama, Japan
| | - Mao Hagihara
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (T.A.); (M.H.); (M.T.)
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Motomichi Takahashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (T.A.); (M.H.); (M.T.)
- Miyarisan Pharmaceutical Co., Ltd., Saitama City 331-0804, Saitama, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (T.A.); (M.H.); (M.T.)
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| |
Collapse
|
23
|
Stoeva MK, Garcia-So J, Justice N, Myers J, Tyagi S, Nemchek M, McMurdie PJ, Kolterman O, Eid J. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes 2022; 13:1-28. [PMID: 33874858 PMCID: PMC8078720 DOI: 10.1080/19490976.2021.1907272] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridium butyricum is a butyrate-producing human gut symbiont that has been safely used as a probiotic for decades. C. butyricum strains have been investigated for potential protective or ameliorative effects in a wide range of human diseases, including gut-acquired infection, intestinal injury, irritable bowel syndrome, inflammatory bowel disease, neurodegenerative disease, metabolic disease, and colorectal cancer. In this review we summarize the studies on C. butyricum supplementation with special attention to proposed mechanisms for the associated health benefits and the supporting experimental evidence. These mechanisms center on molecular signals (especially butyrate) as well as immunological signals in the digestive system that cascade well beyond the gut to the liver, adipose tissue, brain, and more. The safety of probiotic C. butyricum strains appears well-established. We identify areas where additional human randomized controlled trials would provide valuable further data related to the strains' utility as an intervention.
Collapse
Affiliation(s)
- Magdalena K. Stoeva
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Jeewon Garcia-So
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Nicholas Justice
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Julia Myers
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Surabhi Tyagi
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Madeleine Nemchek
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Paul J. McMurdie
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Orville Kolterman
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - John Eid
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA,CONTACT John Eid Pendulum Therapeutics, Inc, San Francisco, California, USA
| |
Collapse
|
24
|
Li W, Xu B, Wang L, Sun Q, Deng W, Wei F, Ma H, Fu C, Wang G, Li S. Effects of Clostridium butyricum on Growth Performance, Gut Microbiota and Intestinal Barrier Function of Broilers. Front Microbiol 2021; 12:777456. [PMID: 34956140 PMCID: PMC8692979 DOI: 10.3389/fmicb.2021.777456] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
This study was conducted to evaluate the effects of Clostridium butyricum dietary supplementation on the growth, antioxidant, immune response, gut microbiota, and intestinal barrier function of broilers under high stocking density (HSD) stress. A total of 324 1-day-old Arbor Acres male broilers were randomly assigned to three treatments with six replicates, each replicate including 18 chickens (18 birds/m2). The experiment lasted 6 weeks. The three treatments were basal diet (control, CON), basal diet supplemented with 1 × 109 colony forming units (cfu)/kg C. butyricum (CB), and basal diet supplemented with 10 mg/kg virginiamycin (antibiotic, ANT). The results showed that the body weight (BW) and average daily gain (ADG) of broilers in the CB group were significantly higher than those in the CON group in three periods (p < 0.05). The total antioxidant capacity (T-AOC) and the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in serum of the CB group were significantly increased compared with those in the CON and ANT groups at 42 days (p < 0.05). At 42 days, the serum immunoglobulin M (IgM) and immunoglobulin G (IgG) levels of the CB group were significantly higher than those of the CON group. Compared with the CON group, interleukin-1β (IL-1β) in the CB group was significantly decreased in the starter and grower stages (p < 0.05), but there was no significant difference between the two treatment groups (p > 0.05). C. butyricum significantly decreased the high stocking density-induced expression levels of IL-1β and tumor necrosis factor-α (TNF-α) in the ileum of broilers at different stages. Additionally, C. butyricum could increase the expressions of claudin-1 and zonula occludens-1 (ZO-1) in intestinal tissue. Moreover, C. butyricum significantly increased the Sobs and Shannon indices in the CB group compared with the ANT group (p < 0.05), while the Ace index in the CB group was significantly higher than that of the CON group (p < 0.05). Furthermore, by using 16S rRNA gene sequencing, the proportion of Bacteroides in the CB group was increased compared to those in the CON and ANT groups at the genus level. In conclusion, C. butyricum supplemented into feed could improve the growth performance and feed utilization of broilers by promoting immune and intestinal barrier function and benefiting the cecal microflora.
Collapse
Affiliation(s)
- Wenjia Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bin Xu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Linyi Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Quanyou Sun
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wen Deng
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fengxian Wei
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huihui Ma
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chen Fu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaili Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaoyu Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
25
|
Effects of Different Fermented Feeds on Production Performance, Cecal Microorganisms, and Intestinal Immunity of Laying Hens. Animals (Basel) 2021; 11:ani11102799. [PMID: 34679821 PMCID: PMC8532698 DOI: 10.3390/ani11102799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Fermented feed exerts beneficial effects on intestinal microorganisms, host health, and production performance. However, the effect of fermented feed on laying hens is uncertain due to the different types of inoculated probiotics, fermentation substrates, and fermentation technology. Hence, this experiment was conducted to investigate the effects of fermented feed with different compound strains on the performance and intestinal health of laying hens. Supplement fermented feed reduced the feed conversion ratio and promoted egg quality. Both dietary treatment (fermented feed A produced Bacillus subtilis, Lactobacillus, and Yeast and fermented feed B produced by C. butyricum and L. salivarius) influenced intestinal immunity and regulated cecal microbial structure. This may be because the metabolites of microorganisms in fermented feed and the reduced pH value inhibited the colonization of harmful bacteria, improved the intestinal morphology, and then had a positive impact on the production performance and albumen quality of laying hens. Abstract This experiment was conducted to investigate the effects of different compound probiotics on the performance, cecal microflora, and intestinal immunity of laying hens. A total of 270 Jing Fen No.6 (22-week-old) were randomly divided into 3 groups: basal diet (CON); basal diet supplemented with 6% fermented feed A by Bacillussubtilis,Lactobacillus, and Yeast (FA); and with 6% fermented feed B by C. butyricum and L. salivarius (FB). Phytic acid, trypsin inhibitor, β-glucan concentrations, and pH value in fermented feed were lower than the CON group (p < 0.05). The feed conversion ratio (FCR) in the experimental groups was decreased, while albumen height and Haugh unit were increased, compared with the CON group (p < 0.05). Fermented feed could upregulate the expression of the signal pathway (TLR4/MyD88/NF-κB) to inhibit mRNA expression of pro-inflammatory cytokines (p < 0.05). Fermented feed promoted the level of Romboutsia (in the FA group) Butyricicoccus (in the FB group), and other beneficial bacteria, and reduced opportunistic pathogens, such as Enterocooccus (p < 0.05). Spearman’s correlations showed that the above bacteria were closely related to albumen height and intestinal immunity. In summary, fermented feed can decrease the feed conversion ratio, and improve the performance and intestinal immunity of laying hens, which may be related to the improvement of the cecal microflora structure.
Collapse
|
26
|
Liu Y, Liu C, An K, Gong X, Xia Z. Effect of Dietary Clostridium butyricum Supplementation on Growth Performance, Intestinal Barrier Function, Immune Function, and Microbiota Diversity of Pekin Ducks. Animals (Basel) 2021; 11:ani11092514. [PMID: 34573480 PMCID: PMC8471152 DOI: 10.3390/ani11092514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In poultry farming, the use of prophylactic antibiotics can lead to increased resistance, so probiotics are a good alternative. Clostridium butyricum (C. butyricum) has been widely used to improve the gut health of animals. Therefore, we carried out the current study of Pekin ducks supplemented with C. butyricum for a period of 42 days. Here, we found a clear increase in the growth performance of Pekin ducks supplemented with C. butyricum. Moreover, a high level of secretory IgA, IgM, IgG, IL-4, and IL-10 and comparatively higher short-chain fatty acids (SCFAs) and intestinal tight junction changes were found in Pekin ducks supplemented with C. butyricum. The gut microbial diversity of Pekin ducks supplemented with C. butyricum was clearly different than that of Pekin ducks fed a non-C. butyricum diet. In conclusion, our findings suggest that 400 mg/kg C. butyricum supplementation improved the intestinal health of Pekin ducks by increasing the α-diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems indicating that 400 mg/kg C. butyricum might be a preferable antibiotic alternative for commercial application. Abstract Clostridium butyricum (C. butyricum) is increasingly being used to test the promotion of the gut health of animals. However, the modes of action for such applications for waterfowl remain unclear. Thus, we investigated whether or not intestinal barrier function, immune-related gene expression, and the diversity of the intestinal microbiota in Pekin ducks varied under C. butyricum supplementation. A total of 500 ducks were randomly assigned into five treatments supplemented with basal diets containing: either 0 (group Control), 200 (group CB200), 400 (group CB400) and 600 (group CB600) mg/kg C. butyricum or 150 mg/kg aureomycin (group A150) for 42 days. In comparison with the control group, C. butyricum supplementation enhanced the growth performance and intestinal villus height of Pekin ducks at 42 d. Serum immune indexes and fecal short-chain fatty acids (SCFAs) were all improved at both 21 d and 42 d after C. butyricum addition. The mRNA expression levels of Mucin2, Zonula occludens-1 (ZO-1), Caudin-3, and Occludin increased at 21 d and 42 d and the mRNA expression levels of IL-4 and IL-10 only increased at 42 d after C. butyricum addition. Dietary C. butyricum also resulted in an increase in the number of diversities of operational taxonomic units (OTUs), and an increase in the α-diversity of intestinal microbiota. The addition of C. butyricum altered the composition of the intestinal microbiota from 21 d to 42 d. The relative abundance of Firmicutes and Bacteroidetes showed little changes among groups; however, the relative abundance of Firmicutes/Bacteroidetes were found to have been significantly different between the 21 d and 42 d. C. butyricum administration improved the intestinal health of Pekin ducks by increasing the diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems. The optimal dietary supplementation dosage was recommended as 400 mg/kg in the diet.
Collapse
Affiliation(s)
- Yanhan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
- Shandong Provincial Center for Animal Disease Control, Ji’nan 250100, China;
| | - Cun Liu
- Shandong Provincial Center for Animal Disease Control, Ji’nan 250100, China;
| | - Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
| | - Xiaowei Gong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
- Correspondence: ; Tel.: +86-10-62733781
| |
Collapse
|
27
|
Administration of Lactobacillus reuteri Combined with Clostridium butyricum Attenuates Cisplatin-Induced Renal Damage by Gut Microbiota Reconstitution, Increasing Butyric Acid Production, and Suppressing Renal Inflammation. Nutrients 2021; 13:nu13082792. [PMID: 34444952 PMCID: PMC8402234 DOI: 10.3390/nu13082792] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023] Open
Abstract
Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut–kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier.
Collapse
|
28
|
Hagihara M, Ariyoshi T, Kuroki Y, Eguchi S, Higashi S, Mori T, Nonogaki T, Iwasaki K, Yamashita M, Asai N, Koizumi Y, Oka K, Takahashi M, Yamagishi Y, Mikamo H. Clostridium butyricum enhances colonization resistance against Clostridioides difficile by metabolic and immune modulation. Sci Rep 2021; 11:15007. [PMID: 34294848 PMCID: PMC8298451 DOI: 10.1038/s41598-021-94572-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023] Open
Abstract
Clostridioides difficile infection (CDI) represents the leading cause of nosocomial diarrhea worldwide and is associated with gut dysbiosis and intestinal damage. Clostridium butyricum MIYAIRI 588 (CBM 588) contributes significantly to reduce epithelial damage. However, the impacts of CBM 588 on antibacterial therapy for CDI are not clear. Here we show that CBM 588 enhanced the antibacterial activity of fidaxomicin against C. difficile and negatively modulated gut succinate levels to prevent C. difficile proliferation and downregulate tumor necrosis factor-α (TNF-α) producing macrophages in the colon lumina propria (cLP), resulting in a significant decrease in colon epithelial damage. Additionally, CBM 588 upregulated T cell-dependent pathogen specific immunoglobulin A (IgA) via interleukin (IL)-17A producing CD4+ cells and plasma B cells in the cLP, and Th17 cells in the cLP enhanced the gut epithelial barrier function. IL-17A and succinic acid modulations with CBM 588 enhance gut colonization resistance to C. difficile and protect the colon tissue from CDI.
Collapse
Affiliation(s)
- Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute, 480-1195, Japan.,Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Tadashi Ariyoshi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.,Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Yasutoshi Kuroki
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.,Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Shuhei Eguchi
- Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Seiya Higashi
- Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Takeshi Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Tsunemasa Nonogaki
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, 463-8521, Japan
| | - Kenta Iwasaki
- Departments of Kidney Disease and Transplant Immunology, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Makoto Yamashita
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Yusuke Koizumi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Kentaro Oka
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.,Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Motomichi Takahashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.,Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.
| |
Collapse
|
29
|
Tremblay A, Lingrand L, Maillard M, Feuz B, Tompkins TA. The effects of psychobiotics on the microbiota-gut-brain axis in early-life stress and neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110142. [PMID: 33069817 DOI: 10.1016/j.pnpbp.2020.110142] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Psychobiotics are considered among potential avenues for modulating the bidirectional communication between the gastrointestinal tract and central nervous system, defined as the microbiota-gut-brain axis (MGBA). Even though causality has not yet been established, intestinal dysbiosis has emerged as a hallmark of several diseases, including neuropsychiatric disorders (NPDs). The fact that the microbiota and central nervous system are co-developing during the first years of life has provided a paradigm suggesting a potential role of psychobiotics for earlier interventions. Studies in animal models of early-life stress (ELS) have shown that they can counteract the pervasive effects of stress during this crucial developmental period, and rescue behavioral symptoms related to anxiety and depression later in life. In humans, evidence from clinical studies on the efficacy of psychobiotics at improving mental outcomes in most NPDs remain limited, except for major depressive disorder for which more studies are available. Consequently, the beneficial effect of psychobiotics on depression-related outcomes in adults are becoming clearer. While the specific mechanisms at play remain elusive, the effect of psychobiotics are generally considered to involve the hypothalamic-pituitary-adrenal axis, intestinal permeability, and inflammation. It is anticipated that future clinical studies will explore the potential role of psychobiotics at mitigating the risk developing NPDs in vulnerable individuals or in the context of childhood adversity. However, such studies remain challenging at present in terms of design and target populations; the profound impact of stress on the proper development of the MGBA during the first year of life is becoming increasingly recognized, but the trajectories post-ELS in humans and the mechanisms by which stress affects the susceptibility to various NPDs are still ill-defined. As psychobiotics are likely to exert both shared and specific mechanisms, a better definition of target subpopulations would allow to tailor psychobiotics selection by aligning mechanistic properties with known pathophysiological mechanisms or risk factors. Here we review the available evidence from clinical and preclinical studies supporting a role for psychobiotics at ameliorating depression-related outcomes, highlighting the knowledge gaps and challenges associated with conducting longitudinal studies to address outstanding key questions in the field.
Collapse
Affiliation(s)
- Annie Tremblay
- Rosell® Institute for Microbiome and Probiotics, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Lucie Lingrand
- Lallemand Health Solutions, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Morgane Maillard
- Lallemand Health Solutions, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Berengere Feuz
- Lallemand Health Solutions, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Thomas A Tompkins
- Rosell® Institute for Microbiome and Probiotics, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada.
| |
Collapse
|
30
|
Shang X, Zhang X, Du C, Ma Z, Jin S, Ao N, Yang J, Du J. Clostridium butyricum Alleviates Gut Microbiota Alteration-Induced Bone Loss after Bariatric Surgery by Promoting Bone Autophagy. J Pharmacol Exp Ther 2021; 377:254-264. [PMID: 33658315 DOI: 10.1124/jpet.120.000410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Bariatric surgery is the most common and effective treatment of severe obesity; however, these bariatric procedures always result in detrimental effects on bone metabolism by underlying mechanisms. This study aims to investigate the skeletal response to bariatric surgery and to explore whether Clostridium butyricum alleviates gut microbiota alteration-induced bone loss after bariatric surgery. Consequently, male SD rats received Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) surgery, respectively, followed by body weight recording. The bone loss after bariatric surgery was further determined by dual-energy X-ray absorptiometry (DXA), micro-CT measurement, histologic analyses, and Western blot. Besides, 16S rDNA gene sequencing was performed to determine the gut microbiota alteration after surgery, and intervention with fecal microbiota from RYGB donor was conducted in obese SD rats, followed by C. butyricum administration. Accordingly, rats in the RYGB and SG groups maintained sustained weight loss, and DXA and micro-CT measurement further demonstrated significant bone loss after bariatric surgery. Besides, histologic and Western blot analyses validated enhanced osteoclastogenesis and inhibited osteoblastogenesis and defective autophagy after surgery. The 16S rDNA gene sequencing suggested a significant alteration of gut microbiota composition in the RYGB group, and intervention with fecal microbiota from RYGB donor further determined that this kind of alteration contributed to the bone loss after RYGB. Meanwhile, C. butyricum might protect against this postoperative bone loss by promoting osteoblast autophagy. In summary, this study suggests novel mechanisms to clarify the skeletal response to bariatric surgery and provides a potential candidate for the treatment of bone disorder among bariatric patients. SIGNIFICANCE STATEMENT: The significance of this study is the discovery of obvious bone loss and defective autophagy after bariatric surgery. Besides, it is revealed that gut microbiota alterations could be the reason for impaired bone mass after bariatric surgery. Furthermore, Clostridium butyricum could alleviate the gut microbiota alteration-induced bone loss after bariatric surgery by promoting osteoblast autophagy.
Collapse
Affiliation(s)
- Xueying Shang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolei Zhang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cen Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhuoqi Ma
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
31
|
Zhao L, Liu S, Zhang Z, Zhang J, Jin X, Zhang J, Jiang W, Li H, Lin H. Low and high concentrations of butyrate regulate fat accumulation in chicken adipocytes via different mechanisms. Adipocyte 2020; 9:120-131. [PMID: 32163011 PMCID: PMC7153540 DOI: 10.1080/21623945.2020.1738791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the effects of varying concentrations of sodium butyrate (SB) on fat accumulation and cell proliferation in chicken adipocytes. High and low serial concentrations of SB used significantly reduced adipocytic fat accumulation. However, they were observed to exhibit differences in cell morphology and distinctions in lipogenic genes expression profiles. At lower concentration (0.01 mM), fat accumulation was decreased with an associated downregulation in the expression of lipogenic genes, which was mediated by free fatty acid receptors (FFARs). Contarily, at higher concentration (1 mM), the fat droplets laden in adipocytes were enlarged, and this was accompanied with activation of lipogenic genes expression. However, the total accumulated fat was also decreased largely due to reduction in cell numbers, which was partially attributable to the reduction in histone deacetylase (HDAC) activity. Animal experiments further indicated that dietary supplementation of lower dose coated SB (0.1% wt/wt) inhibited fat deposition in livers and abdominal fat tissues of broilers, suggesting the potential application of sodium butyrate as feed additive in the regulation of fat deposition.
Collapse
Affiliation(s)
- Liqin Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shuang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Zhihao Zhang
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Jianmei Zhang
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xiaoqian Jin
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Jing Zhang
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Wenxiang Jiang
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
32
|
Ariyoshi T, Hagihara M, Eguchi S, Fukuda A, Iwasaki K, Oka K, Takahashi M, Yamagishi Y, Mikamo H. Clostridium butyricum MIYAIRI 588-Induced Protectin D1 Has an Anti-inflammatory Effect on Antibiotic-Induced Intestinal Disorder. Front Microbiol 2020; 11:587725. [PMID: 33193245 PMCID: PMC7661741 DOI: 10.3389/fmicb.2020.587725] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Metabolites are thought as the end products in cellular regulatory processes and their levels show the strongest relationships with the phenotype. Previously, we showed that the administration of Clostridium butyricum MIYAIRI 588 (CBM 588) upregulated protectin D1, an anti-inflammatory lipid metabolite, in colon tissue under antibiotic therapy. However, how CBM 588 induces protectin D1 expression and whether the metabolite has anti-inflammatory effects on antibiotic-induced inflammation are unclear. Therefore, here, we evaluated the effect of CBM 588 on lipid metabolism and protectin D1 in gut protection from antibiotic-induced intestinal disorders. In the CBM 588 treatment group, expression levels of genes encoding lipid receptors related to the conversion of DHA to protectin D1, such as polyunsaturated fatty acid (PUFA) receptors, G-protein coupled receptor 120 (GPR120), and 15-lipoxygenase (LOX), were increased in colon tissue. CD4+ cells producing interleukin (IL)-4, the main component of T helper type 2 (Th2) cells that can activate 15-LOX, also increased in CBM 588-treated groups even after clindamycin co-administration. In addition, similar to CBM 588, exogenously administered protectin D1 reduced inflammatory cytokines, while IL-10 and TGF-β1, works as anti-inflammatory cytokines, were increased. Our data revealed that CBM 588 activated 15-LOX to enhance protectin D1 production by increasing IL-4-producing CD4+ cell population in the intestinal tract. Additionally, CBM 588-induced protectin D1 clearly upregulated IL-10-producing CD4+ cells to control antibiotic-induced gut inflammation. We provide new insights into CBM 588-mediated lipid metabolism induction for the treatment of gut inflammatory diseases.
Collapse
Affiliation(s)
- Tadashi Ariyoshi
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Nagakute, Japan.,Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Mao Hagihara
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Nagakute, Japan.,Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute, Japan
| | | | - Aiki Fukuda
- Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Kenta Iwasaki
- Departments of Kidney Disease and Transplant Immunology, Aichi Medical University, Nagakute, Japan
| | - Kentaro Oka
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Nagakute, Japan.,Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute, Japan
| | - Motomichi Takahashi
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Nagakute, Japan.,Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Nagakute, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Nagakute, Japan
| |
Collapse
|
33
|
Salgia NJ, Bergerot PG, Maia MC, Dizman N, Hsu J, Gillece JD, Folkerts M, Reining L, Trent J, Highlander SK, Pal SK. Stool Microbiome Profiling of Patients with Metastatic Renal Cell Carcinoma Receiving Anti-PD-1 Immune Checkpoint Inhibitors. Eur Urol 2020; 78:498-502. [PMID: 32828600 DOI: 10.1016/j.eururo.2020.07.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022]
Abstract
Preclinical models and early clinical data suggest an interplay between the gut microbiome and response to immunotherapy in solid tumors including metastatic renal cell carcinoma (mRCC). We sought to characterize the stool microbiome of mRCC patients receiving a checkpoint inhibitor (CPI) and to assess treatment-related changes in microbiome composition over the course of CPI therapy. Stool was collected from 31 patients before initiation of nivolumab (77%) or nivolumab plus ipilimumab (23%) therapy, of whom 58% experienced clinical benefit. Greater microbial diversity was associated with clinical benefit from CPI therapy (p = 0.001), and multiple species were associated with clinical benefit or lack thereof. Temporal profiling of the microbiome indicated that the relative abundance of Akkermansia muciniphila increased in patients deriving clinical benefit from CPIs. This study substantiates results from previous CPI-related microbiome profiling studies in mRCC. Temporal changes in microbiome composition suggest potential utility in modulating the microbiome for more successful CPI outcomes. PATIENT SUMMARY: We compared the composition and diversity of the gut microbiome in patients receiving immunotherapy for renal cell carcinoma. We found that higher microbial diversity is associated with better treatment outcomes. Treatment response is characterized by changes in microbial species over the course of treatment.
Collapse
Affiliation(s)
- Nicholas J Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Paulo G Bergerot
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Nazli Dizman
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - JoAnn Hsu
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - John D Gillece
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, USA
| | - Megan Folkerts
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, USA
| | - Lauren Reining
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, USA
| | - Jeffrey Trent
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Sarah K Highlander
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, USA.
| | - Sumanta K Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
34
|
Tomita Y, Ikeda T, Sakata S, Saruwatari K, Sato R, Iyama S, Jodai T, Akaike K, Ishizuka S, Saeki S, Sakagami T. Association of Probiotic Clostridium butyricum Therapy with Survival and Response to Immune Checkpoint Blockade in Patients with Lung Cancer. Cancer Immunol Res 2020; 8:1236-1242. [DOI: 10.1158/2326-6066.cir-20-0051] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/21/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022]
|
35
|
Hu X, Guo J, Xu M, Jiang P, Yuan X, Zhao C, Maimai T, Cao Y, Zhang N, Fu Y. Clostridium tyrobutyricum alleviates Staphylococcus aureus-induced endometritis in mice by inhibiting endometrial barrier disruption and inflammatory response. Food Funct 2020; 10:6699-6710. [PMID: 31559977 DOI: 10.1039/c9fo00654k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Endometritis is an inflammatory disease of the uterus caused by bacterial infection, and it affects both human and animal health. This study aims to investigate the protective effects and molecular mechanisms of probiotics such as Clostridium tyrobutyricum (C. tyrobutyricum) on Staphylococcus aureus (S. aureus)-induced endometritis. The results showed that S. aureus infection significantly induced the pathological damage of the uterus, increased the production of pro-inflammatory cytokines, such as TNF-α and IL-1β, and attenuated the expression of tight junction proteins of uterine tissues. However, C. tyrobutyricum pretreatment obviously reduced the inflammatory response and reversed the changes of tight junction proteins of the uterus induced by S. aureus. Together, the data showed that C. tyrobutyricum also inhibited the expression of the TLR2/NF-κB signaling pathway and HDAC induced by S. aureus. In addition, the treatment of mice with live C. tyrobutyricum, spent culture supernatants (SCS) from C. tyrobutyricum, rather than inactive C. tyrobutyricum, inhibited the inflammatory response induced by S. aureus. Through further research, we found that the levels of butyrate in both blood and uterine tissues of mice treated with C. tyrobutyricum were significantly increased. These findings underscore the protective effect of C. tyrobutyricum on endometritis by enhancing the uterus barrier integrity and inhibiting the inflammatory response. The anti-inflammatory mechanism may occur through the regulation of the expression of TLR2/NF-κB and HDAC, and C. tyrobutyricum can be a potentially therapeutic candidate for the treatment of endometritis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Clostridium butyricum Modulates the Microbiome to Protect Intestinal Barrier Function in Mice with Antibiotic-Induced Dysbiosis. iScience 2019; 23:100772. [PMID: 31954979 PMCID: PMC6970176 DOI: 10.1016/j.isci.2019.100772] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridium butyricum MIYAIRI 588 (CBM 588) is a probiotic bacterium that has previously been used to prevent antibiotic-associated diarrhea. However, the underlying mechanism by which CBM 588 protects the gut epithelial barrier remains unclear. Here, we show that CBM 588 increased the abundance of Bifidobacterium, Lactobacillus, and Lactococcus species in the gut microbiome and also enhanced the intestinal barrier function of mice with antibiotic-induced dysbiosis. Additionally, CBM 588 significantly promoted the expansion of IL-17A-producing γδT cells and IL-17A-producing CD4 cells in the colonic lamina propria (cLP), which was closely associated with changes in the intestinal microbial composition. Additionally, CBM 588 plays an important role in controlling antibiotic-induced gut inflammation through upregulation of anti-inflammatory lipid metabolites such as palmitoleic acid, 15d-prostaglandin J2, and protectin D1. This study reveals a previously unrecognized mechanism of CBM 588 and provides new insights into gut epithelial barrier protection with probiotics under conditions of antibiotic-induced dysbiosis. CBM 588 increases the abundance of Bifidobacterium, Lactobacillus, and Lactococcus Microbiota-driven TGF-β1 controls the differentiation of lymphocytes to γδT cells CBM 588 promotes the expansion of IL-17A-producing γδT cells and CD4 cells CBM 588 upregulates anti-inflammatory lipid metabolites
Collapse
|
37
|
Wang K, Chen G, Cao G, Xu Y, Wang Y, Yang C. Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, intestinal structure, and inflammation in lipopolysaccharide-challenged weaned piglets. J Anim Sci 2019; 97:4140-4151. [PMID: 31310662 PMCID: PMC6776315 DOI: 10.1093/jas/skz235] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
This study was conducted to investigate the effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, inflammation-related pathways, and microflora community in weaned piglets challenged with lipopolysaccharide (LPS). One hundred and eighty 28-d-old weaned piglets were randomly divided into 3 treatments groups: piglets fed with a basal diet (Con), piglets fed with a basal diet containing 6 × 109 CFU C. butyricum·kg-1 (CB), and piglets fed with a basal diet containing 2 × 1010 CFU E. faecali·kg-1 (EF). At the end of trial, 1 pig was randomly selected from for each pen (6 pigs per treatment group) and these 18 piglets were orally challenged with LPS 25 μg·kg-1 body weight. The result showed that piglets fed C. butyricum and E. faecalis had greater final BW compared with the control piglets (P < 0.05). The C. butyricum and E. faecalis fed piglets had lower levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), IL-1β, tumor inflammatory factor-α (TNF-α), and had greater level of serum interferon-γ (IFN-γ) than control piglets at 1.5 and 3 h after injection with LPS (P < 0.05). Furthermore, piglets in the C. butyricum or E. faecalis treatment groups had a greater ratio of jejunal villus height to crypt depth (V/C) compared with control piglets after challenge with LPS for 3 h (P < 0.05). Compared with the control treatment, the CB and EF treatments significantly decreased the expression of inflammation-related pathway factors (TLR4, MyD88, and NF-κB) after challenge with LPS for 3 h (P < 0.05). High-throughput sequencing revealed that C. butyricum and E. faecalis modulated bacterial diversity in the colon. The species richness and alpha diversity (Shannon) of bacterial samples in CB or EF piglets challenged with LPS were higher than those in LPS-challenged control piglets. Furthermore, the relative abundance of Bacteroidales-Rikenellanceae in the CB group was higher than that in the control group (P < 0.05), whereas EF piglets had a higher relative abundance of Lactobacillus amylovorus and Lactobacillus gasseri (P < 0.05). In conclusion, dietary supplementation with C. butyricum or E. faecalis promoted growth performance, improved immunity, relieved intestinal villus damage and inflammation, and optimized the intestinal flora in LPS-challenged weaned piglets.
Collapse
Affiliation(s)
- Kangli Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Guangyong Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Yongxia Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
38
|
Adhikari B, Hernandez-Patlan D, Solis-Cruz B, Kwon YM, Arreguin MA, Latorre JD, Hernandez-Velasco X, Hargis BM, Tellez-Isaias G. Evaluation of the Antimicrobial and Anti-inflammatory Properties of Bacillus-DFM (Norum™) in Broiler Chickens Infected With Salmonella Enteritidis. Front Vet Sci 2019; 6:282. [PMID: 31508436 PMCID: PMC6718558 DOI: 10.3389/fvets.2019.00282] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Restrictions of in-feed antibiotics use in poultry has pushed research toward finding appropriate alternatives such as Direct-Fed Microbials (DFM). In this study, previously tested Bacillus isolates (B. subtilis and B. amyloliquefaciens) were used to evaluate their therapeutic and prophylactic effects against Salmonella enterica serovar Enteritidis (S. Enteritidis) in broiler chickens. For this purpose, initial antibacterial activity of Bacillus-DFM (104 spores/g or 106 spores/g) against S. Enteritidis colonization in crop, proventriculus and intestine was investigated using an in vitro digestive model. Furthermore, to evaluate therapeutic and prophylactic effects of Bacillus-DFM (104 spores/g) against S. Enteritidis colonization, altogether 60 (n = 30/group) and 30 (n = 15/group) 1-day-old broiler chickens were randomly allocated to either DFM or control group (without Bacillus-DFM), respectively. Chickens were orally gavaged with 104 cfu of S. Enteritidis per chicken at 1-day old, and cecal tonsils (CT) and crop were collected 3 and 10 days later during the therapeutic study, whereas they were orally gavaged with 107 cfu of S. Enteritidis per chicken at 6-day-old, and CT and crop were collected 24 h later from two independent trials during the prophylactic study. Serum superoxide dismutase (SOD), FITC-d and intestinal IgA levels were reported for both chicken studies, in addition cecal microbiota analysis was performed during the therapeutic study. DFM significantly reduced S. Enteritidis concentration in the intestine compartment, and in both proventriculus and intestine compartments as compared to the control when used at 104 spores/g and 106 spores/g, respectively (p < 0.05). DFM significantly reduced FITC-d and IgA as well as SOD and IgA levels (p < 0.05) compared to the control in therapeutic and prophylactic studies, respectively. Interestingly, in the therapeutic study, there were significant differences in bacterial community structure and predicted metabolic pathways between DFM and control. Likewise, phylum Actinobacteria and the genera Bifidobacterium, Roseburia, Proteus, and cc_115 were decreased, while the genus Streptococcus was enriched significantly in the DFM group as compared to the control (MetagenomeSeq, p < 0.05). Thus, the overall results suggest that the Bacillus-DFM can reduce S. Enteritidis colonization and improve the intestinal health in chickens through mechanism(s) that might involve the modulation of gut microbiota and their metabolic pathways.
Collapse
Affiliation(s)
- Bishnu Adhikari
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Daniel Hernandez-Patlan
- Unidad de Investigación Multidisciplinaria, Laboratorio 5: LEDEFAR, Facultad de Estudios Superiores (FES) Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, Mexico
| | - Bruno Solis-Cruz
- Unidad de Investigación Multidisciplinaria, Laboratorio 5: LEDEFAR, Facultad de Estudios Superiores (FES) Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, Mexico
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
39
|
Pan LL, Niu W, Fang X, Liang W, Li H, Chen W, Zhang H, Bhatia M, Sun J. Clostridium butyricum Strains Suppress Experimental Acute Pancreatitis by Maintaining Intestinal Homeostasis. Mol Nutr Food Res 2019; 63:e1801419. [PMID: 31034143 DOI: 10.1002/mnfr.201801419] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/13/2019] [Indexed: 01/24/2023]
Abstract
SCOPE Acute pancreatitis (AP) is a common abdominal inflammatory disease. Disturbed gut homeostasis secondary to pancreatic inflammation aggravates the condition retroactively. The current study investigates potential beneficial effects of Clostridium butyricum (C. butyricum) strains on AP and underlying mechanisms. METHODS AND RESULTS C. butyricum strains MIYAIRI 588 (CBM588) and CGMCC0313.1 (CB0313.1) were supplemented to mice for three weeks before experimental AP or SAP induction. Both CBM588 and CB0313.1 protected against AP, as evidenced by reduced serum amylase and lipase levels, pancreatic edema, and myeloperoxidase activity. Amelioration of both experimental AP and SAP by CB0313.1 indicated a non-model-specific effect. Moreover, C. butyricum inhibited pancreatic neutrophil and dendritic cell infiltration, nucleotide-binding domain leucine-rich repeat-containing family, pyrin domain-containing 3 inflammasome activation, and pro-inflammatory pathways. Additionally in the gut, C. butyricum strains attenuated AP-associated intestinal inflammation and barrier dysfunction, accompanied with reduced pathogenic bacteria Escherichia coli and Enterococcus penetration into pancreas. Gut microbiome analyses further revealed that beneficial effects of C. butyricum on pancreatic-gut homeostasis were correlated with improved dysbiosis. In particular, relative abundance of Desulfovibrionaceae decreased, and Verrucomicrobiaceae Clostridiaceae and Lactobacillaceae increased. CONCLUSIONS For the first time, a protective effect of C. butyricum in AP by modulating intestinal homeostasis is demonstrated.
Collapse
Affiliation(s)
- Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wenying Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xin Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wenjie Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hongli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Madhav Bhatia
- Inflammation Research Group, Department of Pathology, University of Otago, Christchurch, 8140, New Zealand
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
40
|
Hagihara M, Yamashita R, Matsumoto A, Mori T, Inagaki T, Nonogaki T, Kuroki Y, Higashi S, Oka K, Takahashi M, Mikamo H. The impact of probiotic Clostridium butyricum MIYAIRI 588 on murine gut metabolic alterations. J Infect Chemother 2019; 25:571-577. [PMID: 31101528 DOI: 10.1016/j.jiac.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Clostridium butyricum MIYAIRI 588 (CBM 588) is a probiotic bacterium used in antidiarrheal medicine in Japan. A few studies analyzed the changes in gut microbiome in patients treated with antimicrobials based on metagenomics sequencing. However, the impact of CBM 588 on gut metabolic alterations has not been fully elucidated. This study was to reveal the impact of CBM 588 on gut metabolic alterations. MATERIAL AND METHODS In this in vivo study, mice were divided into four groups and CBM 588, clindamycin (CLDM), and normal saline (control) was orally administered (1. CLDM, 2. CBM 588, 3. CBM 588 + CLDM, 4. water) for 4 days. Fecal samples were collected to extract DNA for metagenomics analysis. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to obtain relative Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway abundance information derived from metagenomics data. RESULTS CLDM treatment resulted in a dramatic increase in Firmicutes phylum compared to non-CLDM-treated groups (control and CBM 588-treated group). Then, the CBM 588 + CLDM-treated group showed a trend similar in many metabolic pathways to the CLDM-treated group. On the other hand, the CBM 588 + CLDM-treated group showed higher relative abundance compared to the CLDM-treated group especially in starch and sucrose metabolism. DISCUSSION We concluded that CBM 588 caused a gut microbiome functional shift toward increased carbohydrate metabolism. These results support the hypothesis that CBM 588 treatment modulates gut microbiome under dysbiosis conditions due to antimicrobials.
Collapse
Affiliation(s)
- Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Japan
| | - Rieko Yamashita
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Japan
| | - Asami Matsumoto
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Japan; Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | - Takeshi Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | | | - Tsunemasa Nonogaki
- Department of Pharmacy, College of Pharmacy Kinjyo Gakuin University, Japan
| | - Yasutoshi Kuroki
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan; Miyarisan Pharmaceutical Co., Ltd., Japan
| | | | - Kentaro Oka
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan; Miyarisan Pharmaceutical Co., Ltd., Japan
| | - Motomichi Takahashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan; Miyarisan Pharmaceutical Co., Ltd., Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan.
| |
Collapse
|
41
|
Oka K, McCartney E, Ariyoshi T, Kudo H, Vilá B, de Jong L, Kozłowski K, Jankowski J, Morgan S, Kruger C, Takahashi M. In vivo safety evaluation of theClostridium butyricumMIYAIRI 588 strain in broilers, piglets, and turkeys. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319826955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Kentaro Oka
- Tokyo R&D Center, Miyarisan Pharmaceutical Co. Ltd, Kita-ku, Tokyo, Japan
| | | | - Tadashi Ariyoshi
- Tokyo R&D Center, Miyarisan Pharmaceutical Co. Ltd, Kita-ku, Tokyo, Japan
| | - Hayami Kudo
- Tokyo R&D Center, Miyarisan Pharmaceutical Co. Ltd, Kita-ku, Tokyo, Japan
| | - Borja Vilá
- Animal Nutrition, IRTA Centre Mas Bover, Constanti, Tarragona, Spain
| | - Lineke de Jong
- Department of Nutrition and Feed Research, CCL Research, Veghel, The Netherlands
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Sarah Morgan
- Spherix Consulting, ChromaDex, Rockville, MD, USA
| | | | | |
Collapse
|