1
|
Irwin K, Hathorn G, Gabor CR. Cognitive and behavioral response of mosquitofish (Gambusia affinis) to environmental factors: Microplastics, predator cues, and detour design methods. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39537366 DOI: 10.1111/jfb.15998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Urban stream syndrome is the collective term used to describe the physical and ecological degradation of streams draining urban lands that poses substantial threats to freshwater ecosystems. Among various consequences of urban expansion, microplastic pollution and shifts in predator-prey dynamics are prominent alterations to natural habitat that could impact the cognitive and behavioral responses of aquatic species. To explore how symptoms of urban stream syndrome impact the cognitive and behavioral responses of fish, we conducted two experiments using a delayed detour test to measure risk-taking and inhibitory control in Gambusia affinis. In the first experiment, we hypothesized that G. affinis exposed to different concentrations of microplastics would show altered inhibitory control and risk-taking. In the second experiment, we hypothesized that exposure to predator chemical cues during the detour task would alter inhibitory control and risk-taking in G. affinis. We did not find significant differences in inhibitory control or risk-taking in G. affinis exposed to microplastics or predator cues. We then compared the effect size and confidence intervals (CI) of these results with published results that used the same detour test to study inhibitory control and risk-taking in G. affinis in response to different environmental conditions. Our investigations revealed that the CIs of the two studies presented here were larger than the CIs in the previously published studies. We consider potential changes to the experimental design that might have affected our ability to detect differences, such as the dimensions of the testing tanks. We also suggest extending the duration of the test to allow ample time for both exiting the starting chamber and solving the detour. We also propose considering the size and age of the species under study and adjusting the dimensions used in the detour paradigm design. Although our findings are specific to G. affinis, our results underscore the importance of considering aspects of the detour test design that are ecologically relevant to the study species when analysing cognitive and behavioral responses in fish. With our discussion, we contribute to the understanding of detour test methodologies and highlight potential ecological factors that could influence cognitive and behavioral outcomes.
Collapse
Affiliation(s)
- Kyndal Irwin
- Biology Department, Texas State University, San Marcos, Texas, USA
| | - Grace Hathorn
- Biology Department, Texas State University, San Marcos, Texas, USA
| | - Caitlin R Gabor
- Biology Department, Texas State University, San Marcos, Texas, USA
- Institute for Molecular Life Sciences, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
2
|
Porras-Rivera G, Górski K, Colin N. Behavioral biomarkers in fishes: A non-lethal approach to assess the effects of chemical pollution on freshwater ecosystems. ENVIRONMENTAL RESEARCH 2024; 260:119607. [PMID: 39002628 DOI: 10.1016/j.envres.2024.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The expansion of the human population and the escalating use of chemical products pose a considerable threat to aquatic biodiversity. Consequently, there is an imperative need for the implementation of non-lethal, cost-effective, and easily deployable biomonitoring tools. In this context, fish and their behavior as biomarkers have gained prominence in monitoring of freshwater ecosystems. The aim of this study was to assess the state of art in the use of behavioral biomarkers in ecotoxicology, emphasizing their role as informative tools for global environmental monitoring. Through a systematic literature search, ninety-two articles focusing on the evaluation of behavioral changes in freshwater fish in response to pollution were identified. The most prevalent keywords were "behavior" (7%) and "zebrafish" (6%). Experiments were conducted in countries with expansive territories, such as the United States (18%) and Brazil (17%). Exotic species were primarily employed (58%), with Danio rerio (26%) being the most frequently studied species. Among pollutants, pesticides (32%) and medicines (25%) were the most frequently studied, while locomotion (38%) and social behaviors (18%) were the most frequently evaluated behaviors. Across these studies, authors consistently reported significant changes in the behavior of fish exposed to contaminants, including decreased swimming speed and compromised feeding efficiency. The review findings affirm that evaluating behavioral biomarkers in freshwater fish offers an informative, non-lethal, cost-effective, and easily implementable approach to understanding pollution impacts on freshwater ecosystems. Although few studies on behavioral biomarkers were available to date, the number has rapidly increased in recent years. Furthermore, a variety of novel approaches and study models are being included. Research into behavioral biomarkers is crucial for understanding and managing environmental risks in freshwater ecosystems. Nevertheless, further studies are needed to enhance our understanding of behavioral toxicity indicators, considering factors such as life stage, sex, and breeding season in the tested species.
Collapse
Affiliation(s)
- Geraldine Porras-Rivera
- Doctorado en Ciencias Mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Konrad Górski
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, 4030000, Chile
| | - Nicole Colin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, 5090000, Chile.
| |
Collapse
|
3
|
Lemesle P, Frøyland SH, Ask A, Zhang J, Ciesielski TM, Asimakopoulos AG, Noreikiene K, Wilson NM, Sonne C, Garbus SE, Jaspers VLB, Arzel C. From mother to egg: Variability in maternal transfer of trace elements and steroid hormones in common eider (Somateria mollissima). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:176935. [PMID: 39427911 DOI: 10.1016/j.scitotenv.2024.176935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
The Baltic Sea is among the most polluted seas worldwide with elevated concentrations of trace elements (TEs). TEs can induce negative effects on organisms and may be transferred to eggs causing endocrine-disrupting effects on embryos. The Baltic Sea population of common eider (Somateria mollissima) has declined over the last thirty years, but the potential contribution of TEs to this decline is understudied. The aim of this study was to assess maternal transfer of TEs during the incubation period. Associations between TEs and steroid hormone concentrations in eggs (androstenedione, testosterone, pregnenolone and progesterone) were also investigated. Ten nests from Bengtskär (Finland) were monitored, for which hens at the beginning and end of the egg-laying were blood-sampled and their clutches were collected. Red blood cells from females (n = 10) and homogenized eggs (n = 44) were analyzed for 10 TEs (As, Ca, Cd, Cu, Hg, Mg, Ni, Pb, Se and Zn). Maternal and egg concentrations were correlated for Cu, Hg and Se (R2 = 0.51, R2 = 0.51, R2 = 0.52, respectively and all p-values ≤0.01). Three eggs had the highest Pb concentrations (1.43-2.24 μg g-1 ww) ever reported for this species. Although maternal and egg Pb concentrations were not significantly correlated, those eggs were laid by the same female, also having the highest Pb concentration (3.4 μg g-1 ww). Most blood TE concentrations in females were below known toxicity limits, except for Pb where 20 % of 10 females (including one outlier) had concentrations above the toxicity limit reported for subclinical poisoning in Anatini (> 0.2 μg g-1 ww). Steroid hormones in eggs were interrelated, but not correlated to TEs. Overall, the results call for more urgent research into the origin and consequences of high Pb concentrations and continued monitoring of the common eider populations in the Baltic Sea.
Collapse
Affiliation(s)
- Prescillia Lemesle
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway.
| | - Sunniva H Frøyland
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Amalie Ask
- Department of Biology, University of Turku, Vesilinnanite 5, 20014 Turku, Finland
| | - Junjie Zhang
- Department of Chemistry, NTNU, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway; Department of Arctic Technology, The University Centre in Svalbard (UNIS), P.O. Box 156, 9171 Longyearbyen, Norway
| | | | - Kristina Noreikiene
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu 51006, Estonia; Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave 7, 10257 Vilnius, Lithuania
| | - Nora M Wilson
- Faculty of Science and Engineering, Åbo Akademi University, Tuomiokirkontori 3, 20500 Turku, Finland
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, P.O. Box 358, 4000 Roskilde, Denmark
| | - Svend Erik Garbus
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, P.O. Box 358, 4000 Roskilde, Denmark
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Céline Arzel
- Department of Biology, University of Turku, Vesilinnanite 5, 20014 Turku, Finland
| |
Collapse
|
4
|
Bertram MG, Ågerstrand M, Thoré ESJ, Allen J, Balshine S, Brand JA, Brooks BW, Dang Z, Duquesne S, Ford AT, Hoffmann F, Hollert H, Jacob S, Kloas W, Klüver N, Lazorchak J, Ledesma M, Maack G, Macartney EL, Martin JM, Melvin SD, Michelangeli M, Mohr S, Padilla S, Pyle G, Saaristo M, Sahm R, Smit E, Steevens JA, van den Berg S, Vossen LE, Wlodkowic D, Wong BBM, Ziegler M, Brodin T. EthoCRED: a framework to guide reporting and evaluation of the relevance and reliability of behavioural ecotoxicity studies. Biol Rev Camb Philos Soc 2024. [PMID: 39394884 DOI: 10.1111/brv.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Behavioural analysis has been attracting significant attention as a broad indicator of sub-lethal toxicity and has secured a place as an important subdiscipline in ecotoxicology. Among the most notable characteristics of behavioural research, compared to other established approaches in sub-lethal ecotoxicology (e.g. reproductive and developmental bioassays), are the wide range of study designs being used and the diversity of endpoints considered. At the same time, environmental hazard and risk assessment, which underpins regulatory decisions to protect the environment from potentially harmful chemicals, often recommends that ecotoxicological data be produced following accepted and validated test guidelines. These guidelines typically do not address behavioural changes, meaning that these, often sensitive, effects are not represented in hazard and risk assessments. Here, we propose a new tool, the EthoCRED evaluation method, for assessing the relevance and reliability of behavioural ecotoxicity data, which considers the unique requirements and challenges encountered in this field. This method and accompanying reporting recommendations are designed to serve as an extension of the "Criteria for Reporting and Evaluating Ecotoxicity Data (CRED)" project. As such, EthoCRED can both accommodate the wide array of experimental design approaches seen in behavioural ecotoxicology, and could be readily implemented into regulatory frameworks as deemed appropriate by policy makers of different jurisdictions to allow better integration of knowledge gained from behavioural testing into environmental protection. Furthermore, through our reporting recommendations, we aim to improve the reporting of behavioural studies in the peer-reviewed literature, and thereby increase their usefulness to inform chemical regulation.
Collapse
Affiliation(s)
- Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, 3800, Australia
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8c, Stockholm, 114 18, Sweden
| | - Eli S J Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth, and Environment, University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
- TRANSfarm, Science, Engineering, and Technology Group, KU Leuven, Bijzondereweg 12, Bierbeek, 3360, Belgium
| | - Joel Allen
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. EPA, 26 Martin Luther King Drive West, Cincinnati, 45268, Ohio, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience, & Behaviour, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada
| | - Jack A Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Institute of Zoology, Zoological Society of London, Outer Circle, Regent's Park, London, NW1, 4RY, UK
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, 76798-7266, Texas, USA
| | - ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Sabine Duquesne
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK
| | - Frauke Hoffmann
- Department of Chemical and Product Safety, The German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Henner Hollert
- Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, 60438, Germany
| | - Stefanie Jacob
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Nils Klüver
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig, 04318, Germany
| | - Jim Lazorchak
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. EPA, 26 Martin Luther King Drive West, Cincinnati, 45268, Ohio, USA
| | - Mariana Ledesma
- Swedish Chemicals Agency (KemI), Löfströms allé 5, Stockholm, 172 66, Sweden
| | - Gerd Maack
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Erin L Macartney
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Biological Sciences North (D26), Sydney, 2052, Australia
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, John Hopkins Drive, Sydney, 2006, Australia
| | - Jake M Martin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Edmund Rice Drive, Southport, 4215, Australia
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, 4111, Australia
| | - Silvia Mohr
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, 109 T.W. Alexander Drive, Durham, 27711, North Carolina, USA
| | - Gregory Pyle
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, Alberta, Canada
| | - Minna Saaristo
- Environment Protection Authority Victoria, EPA Science, 2 Terrace Way, Macleod, 3085, Australia
| | - René Sahm
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
- Department of Freshwater Ecology in Landscape Planning, University of Kassel, Gottschalkstraße 24, Kassel, 34127, Germany
| | - Els Smit
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Jeffery A Steevens
- Columbia Environmental Research Center, U.S. Geological Survey (USGS), 4200 New Haven Road, Columbia, 65201, Missouri, USA
| | - Sanne van den Berg
- Wageningen University and Research, P.O. Box 47, Wageningen, 6700 AA, the Netherlands
| | - Laura E Vossen
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Ulls väg 26, Uppsala, 756 51, Sweden
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, 289 McKimmies Road, Melbourne, 3083, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, 3800, Australia
| | - Michael Ziegler
- Eurofins Aquatic Ecotoxicology GmbH, Eutinger Strasse 24, Niefern-Öschelbronn, 75223, Germany
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, Tübingen, 72076, Germany
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
| |
Collapse
|
5
|
Mena F, Araújo CVM, Echeverría-Sáenz S, Brenes-Bravo G, Moreira-Santos M. Assessing habitat selection in the prawn Macrobrachium rosenbergii using the model toxicant copper and colonization as a test endpoint: Does prior exposure determine biochemical and behavioral responses? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107073. [PMID: 39232254 DOI: 10.1016/j.aquatox.2024.107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Habitat selection by aquatic organisms is dependent on the availability of adequate conditions to support life and the benefits that the habitat provides. Contaminated environments tend to be less attractive to organisms because reduced habitat quality leads to increased maintenance costs. Consequently, reduced colonization of such disturbed habitats is an expected response. However, colonization has been understudied as an ecotoxicological test endpoint, despite its proven ability to assess habitat selection by populations across various taxa. The aim of the present study was to investigate whether previous exposure to copper could alter the colonization behavior of the freshwater prawn Macrobrachium rosenbergii along a non-forced exposure gradient of interconnected copper-contaminated habitats (0 to 500 µg/L) due to physiological and behavioral impairments. To assess this, post-larvae of M. rosenbergii were pre-exposed to 0, 50, 250 and 500 µg/L copper for a maximum period of 48 h. The physiological status and motility of the organisms after pre-exposure to copper were evaluated using behavioral endpoints (swimming activity by video tracking) and biochemical biomarkers (biotransformation, oxidative stress and neurotoxicity). The results indicated that pre-exposure to copper (at concentrations of 0, 50 and 500 µg/L) significantly influenced the median colonization concentration (CC50), which decreased from 270 µg/L to 109 µg/L. None of the assessed swimming parameters (speed, motility rate, exploration rate, and total distance) were affected by the pre-exposure to copper (0, 50 and 250 µg/L). Biochemically, cholinesterase levels were only affected in the prawn population exposed to 250 µg/L of copper. The present study provides a better understanding of the relevance of colonization as an ecotoxicological endpoint for assessing the spatial distribution of populations, including both new inhabitants and previously exposed organisms, in recovering habitats.
Collapse
Affiliation(s)
- Freylan Mena
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), 86-3000, Heredia, Costa Rica.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalucía (ICMAN-CSIC), 11510, Puerto Real, Cádiz, Spain
| | - Silvia Echeverría-Sáenz
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), 86-3000, Heredia, Costa Rica
| | - Gabriel Brenes-Bravo
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), 86-3000, Heredia, Costa Rica
| | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology - Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
6
|
Addy-Orduna LM, Ortiz-Santaliestra ME, Mougeot F, Bolívar-Muñoz P, Camarero PR, Mateo R. Behavioral Responses of Imidacloprid-Dosed Farmland Birds to a Simulated Predation Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39034620 DOI: 10.1021/acs.est.4c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Sublethal exposure to imidacloprid and other neonicotinoid insecticides may affect the neurological functions of birds. As such, behavior may be compromised. Here, we tested experimentally the effects of 1 and 6 mg/kg bw of imidacloprid on the antipredator behavioral responses of the red-legged partridge (Alectoris rufa) to simulated predator threats. Sixty-six partridges were challenged in groups or individually to intra- and interspecific alarm calls, to a raptor silhouette (aerial predation risk), and to a fox model (terrestrial predation risk). Antipredator behaviors were recorded as active (escape, active vigilance) and passive (passive vigilance, crouching, and freezing) responses. Latency in response to the stimuli, percentage of individuals who responded, response duration, speed of active responses, and vocalizations were measured. In experiments with partridges in the group, crouching against simulated predation risk lasted less time in birds treated with 6 mg a.i./kg bw than in control birds. In the experiments with individual partridges, passive vigilance against the intraspecific alarm lasted longer in birds treated with 6 mg a.i./kg bw than in control birds. The observed hyperreactivity to the predatory threat after a sublethal imidacloprid exposure can have consequences on survival under field conditions, where predation is a main driver of population dynamics.
Collapse
Affiliation(s)
- Laura M Addy-Orduna
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Paraná, Ruta 11 km 12.5, 3100 Paraná, Entre Ríos, Argentina
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Paula Bolívar-Muñoz
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
7
|
Baekelandt S, Leroux N, Lambert J, Bernay B, Robert JB, Burattin L, Gérard C, Delierneux C, Cornet V, Kestemont P. Evaluating the toxicity of estetrol, 17α-ethinylestradiol, and their combination with drospirenone on zebrafish larvae: A behavioural and proteomic study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106941. [PMID: 38723469 DOI: 10.1016/j.aquatox.2024.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE To characterise and compare the toxicity of estetrol (E4) and 17α-ethinylestradiol (EE2), and their respective mixture with the progestin drospirenone (DRSP) in zebrafish (Danio rerio) embryos. METHODS Zebrafish embryos were exposed to E4, EE2, DRSP, E4+DRSP, and EE2+DRSP in a fish embryo acute toxicity (FET) test. A second test examined behavioural responses and, using label-free proteomics, identified changes in protein expression in response to hormonal treatments, across a range of concentrations, including those that are considered to be environmentally relevant. RESULTS In the FET test, no effects were found from E4 at concentrations ≤100 mg/L, while EE2 induced mortality and morphological abnormalities at concentrations of 1-2 mg/L. In the behavioural test, exposure to 30 ng/L EE2 (∼200 × predicted environmental concentration - PEC) resulted in hypoactivity in fish larvae and exposure to 0.3 ng/L EE2 (∼2 × PEC) led to quantitative changes in protein abundance, revealing potential impacts on RNA processing and protein synthesis machinery. Exposure to E4 did not alter behaviour, but several groups of proteins were modulated, mainly at 710 ng/L (∼200 × PEC), including proteins involved in oxidative phosphorylation. When combined with DRSP, EE2 induced reduced effects on behaviour and proteomic responses, suggesting an antagonistic effect of DRSP. E4+DRSP induced no significant effects on behaviour or proteomic profiles at tested concentrations. CONCLUSIONS These findings suggest that E4-based combined oral contraceptives present a more favourable environmental profile than EE2-based contraceptives, particularly during the early developmental stages of fish.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium.
| | - Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Benoît Bernay
- University of Caen Basse-Normandie, Proteogen Platform, SFR ICORE 4206, Esplanade de la Paix, Caen, CEDEX 14032, France
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Céline Gérard
- Estetra SRL, an affiliate company of Mithra Pharmaceuticals, Rue Saint-Georges 5, Liège, 4000, Belgium
| | - Céline Delierneux
- Estetra SRL, an affiliate company of Mithra Pharmaceuticals, Rue Saint-Georges 5, Liège, 4000, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| |
Collapse
|
8
|
Porseryd T, Larsson J, Lindman J, Malmström E, Smolarz K, Grahn M, Dinnétz P. Effects on food intake of Gammarus spp. after exposure to PFBA in very low concentrations. MARINE POLLUTION BULLETIN 2024; 202:116369. [PMID: 38640762 DOI: 10.1016/j.marpolbul.2024.116369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of thousands of highly persistent anthropogenic chemicals widely used in many industries. Therefore, they are, ubiquitously present in various types of environments. Despite their omnipresence, ecotoxicological studies of most PFAS are scarce, and those available often assess the effects of long chain PFAS. In this study, we present the results of an exposure experiment in which wild aquatic amphipod Gammarus spp. was exposed to the short chain perfluorinated substance perfluorobutanoic acid (PFBA) at very low and environmentally relevant concentrations of 0, 10 and 100 ng/L. The exposure lasted for 12 days, and food intake and non-reproductive behavior were analyzed. Exposure to 10 and 100 ng/L PFBA resulted in a lower consumption of food during exposure but no effect on behavior was found.
Collapse
Affiliation(s)
- Tove Porseryd
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden.
| | - Josefine Larsson
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden; Marint centrum, Simrishamn Kommun, Simrishamn, Sweden
| | - Johanna Lindman
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Erica Malmström
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Poland
| | - Mats Grahn
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Patrik Dinnétz
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| |
Collapse
|
9
|
Musto C, Cerri J, Capizzi D, Fontana MC, Rubini S, Merialdi G, Berzi D, Ciuti F, Santi A, Rossi A, Barsi F, Gelmini L, Fiorentini L, Pupillo G, Torreggiani C, Bianchi A, Gazzola A, Prati P, Sala G, Apollonio M, Delogu M, Biancardi A, Uboldi L, Moretti A, Garbarino C. First evidence of widespread positivity to anticoagulant rodenticides in grey wolves (Canis lupus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169990. [PMID: 38232835 DOI: 10.1016/j.scitotenv.2024.169990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Second-generation Anticoagulant Rodenticides (ARs) can be critical for carnivores, due to their widespread use and impacts. However, although many studies explored the impacts of ARs on small and mesocarnivores, none assessed the extent to which they could contaminate large carnivores in anthropized landscapes. We filled this gap by exploring spatiotemporal trends in grey wolf (Canis lupus) exposure to ARs in central and northern Italy, by subjecting a large sample of dead wolves (n = 186) to the LC-MS/MS method. Most wolves (n = 115/186, 61.8 %) tested positive for ARs (1 compound, n = 36; 2 compounds, n = 47; 3 compounds, n = 16; 4 or more compounds, n = 16). Bromadiolone, brodifacoum and difenacoum, were the most common compounds, with brodifacoum and bromadiolone being the ARs that co-occurred the most (n = 61). Both the probability of testing positive for multiple ARs and the concentration of brodifacoum, and bromadiolone in the liver, systematically increased in wolves that were found at more anthropized sites. Moreover, wolves became more likely to test positive for ARs through time, particularly after 2020. Our results underline that rodent control, based on ARs, increases the risks of unintentional poisoning of non-target wildlife. However, this risk does not only involve small and mesocarnivores, but also large carnivores at the top of the food chain, such as wolves. Therefore, rodent control is adding one further conservation threat to endangered large carnivores in anthropized landscapes of Europe, whose severity could increase over time and be far higher than previously thought. Large-scale monitoring schemes for ARs in European large carnivores should be devised as soon as possible.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy.
| | - Jacopo Cerri
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
| | - Dario Capizzi
- Directorate for Environment, Latium Region, 00173 Rome, Italy
| | - Maria Cristina Fontana
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Silva Rubini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Duccio Berzi
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Francesca Ciuti
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Annalisa Santi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Arianna Rossi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Filippo Barsi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Pupillo
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Camilla Torreggiani
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandra Gazzola
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Paola Prati
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Sala
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Alberto Biancardi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Uboldi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Moretti
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Chiara Garbarino
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| |
Collapse
|
10
|
Olasege BS, Oh ZY, Tahir MS, Porto-Neto LR, Hayes BJ, Fortes MRS. Genomic regions and biological pathways associated with sex-limited reproductive traits in bovine species. J Anim Sci 2024; 102:skae085. [PMID: 38545844 PMCID: PMC11135212 DOI: 10.1093/jas/skae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
Many animal species exhibit sex-limited traits, where certain phenotypes are exclusively expressed in one sex. Yet, the genomic regions that contribute to these sex-limited traits in males and females remain a subject of debate. Reproductive traits are ideal phenotypes to study sexual differences since they are mostly expressed in a sex-limited way. Therefore, this study aims to use local correlation analyses to identify genomic regions and biological pathways significantly associated with male and female sex-limited traits in two distinct cattle breeds (Brahman [BB] and Tropical Composite [TC]). We used the Correlation Scan method to perform local correlation analysis on 42 trait pairs consisting of six female and seven male reproductive traits recorded on ~1,000 animals for each sex in each breed. To pinpoint a specific region associated with these sex-limited reproductive traits, we investigated the genomic region(s) consistently identified as significant across the 42 trait pairs in each breed. The genes found in the identified regions were subjected to Quantitative Trait Loci (QTL) colocalization, QTL enrichment analyses, and functional analyses to gain biological insight into sexual differences. We found that the genomic regions associated with the sex-limited reproductive phenotypes are widely distributed across all the chromosomes. However, no single region across the genome was associated with all the 42 reproductive trait pairs in the two breeds. Nevertheless, we found a region on the X-chromosome to be most significant for 80% to 90% (BB: 33 and TC: 38) of the total 42 trait pairs. A considerable number of the genes in this region were regulatory genes. By considering only genomic regions that were significant for at least 50% of the 42 trait pairs, we observed more regions spread across the autosomes and the X-chromosome. All genomic regions identified were highly enriched for trait-specific QTL linked to sex-limited traits (percentage of normal sperm, metabolic weight, average daily gain, carcass weight, age at puberty, etc.). The gene list created from these identified regions was enriched for biological pathways that contribute to the observed differences between sexes. Our results demonstrate that genomic regions associated with male and female sex-limited reproductive traits are distributed across the genome. Yet, chromosome X seems to exert a relatively larger effect on the phenotypic variation observed between the sexes.
Collapse
Affiliation(s)
- Babatunde S Olasege
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
- Ag and Food, CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | - Zhen Yin Oh
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Muhammad S Tahir
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
- Ag and Food, CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | | | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| |
Collapse
|
11
|
Islam MA, Lopes I, Domingues I, Silva DCVR, Blasco J, Pereira JL, Araújo CVM. Behavioural, developmental and biochemical effects in zebrafish caused by ibuprofen, irgarol and terbuthylazine. CHEMOSPHERE 2023; 344:140373. [PMID: 37806324 DOI: 10.1016/j.chemosphere.2023.140373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
The increasing use of chemicals and their release into aquatic ecosystems are harming aquatic biota. Despite extensive ecotoxicological research, many environmental pollutants' ecological effects are still unknown. This study examined the spatial avoidance, behavioural and biochemical impacts of ibuprofen, irgarol, and terbuthylazine on the early life stages of zebrafish (Danio rerio) under a range of ecologically relevant concentrations (0-500 μg/L). Embryos were exposed following the OECD guideline "fish embryo toxicity test" complemented with biochemical assessment of AChE activity and behavioural analyses (swimming activity) using the video tracking system Zebrabox. Moreover, spatial avoidance was assessed by exposing 120 hpf-old larvae of D. rerio to a gradient of each chemical, by using the heterogeneous multi-habitat assay system (HeMHAS). The results obtained revealed that the 3 compounds delayed hatching at concentrations of 50 and 500 μg/L for both ibuprofen and irgarol and 500 μg/L for terbuthylazine. Moreover, all chemicals elicited a dose-dependent depression of movement (swimming distance) with LOEC values of 5, 500 and 50 μg/L for ibuprofen, irgarol and terbuthylazine, respectively. Zebrafish larvae avoided the three chemicals studied, with 4 h-AC50 values for ibuprofen, irgarol, and terbuthylazine of 64.32, 79.86, and 131.04 μg/L, respectively. The results of the HeMHAS assay suggest that larvae may early on avoid (just after 4 h of exposure) concentrations of the three chemicals that may later induce, apical and biochemical effects. Findings from this study make clear some advantages of using HeMHAS in ecotoxicology as it is: ecologically relevant (by simulating a chemically heterogeneous environmental scenario), sensitive (the perception of chemicals and the avoidance can occur at concentrations lower than those producing lethal or sublethal effects) and more humane and refined approach (organisms are not mandatorily exposed to concentrations that can produce individual toxicity).
Collapse
Affiliation(s)
- Mohammed Ariful Islam
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Management and Conservation of the Sea, University of Cadiz, 11510, Puerto Real, Spain.
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Inês Domingues
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Daniel C V R Silva
- Institute of Exact Sciences, Federal University of Southern and Southeastern Pará, Marabá, 68507-590, Pará, Brazil; Institute of Natural Resources, Federal University of Itajubá (UNIFEI), Laboratory of Limnology and Ecotoxicolo Gy, Itajubá, 37500-903, Minas Gerais, Brazil.
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| | - Joana Luísa Pereira
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Cristiano V M Araújo
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| |
Collapse
|
12
|
Candolin U, Rahman T. Behavioural responses of fishes to anthropogenic disturbances: Adaptive value and ecological consequences. JOURNAL OF FISH BIOLOGY 2023; 103:773-783. [PMID: 36647916 DOI: 10.1111/jfb.15322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/14/2023] [Indexed: 05/17/2023]
Abstract
Aquatic ecosystems are changing at an accelerating rate because of human activities. The changes alter the abundance and distribution of fishes, with potential consequences for ecosystem structure and function. Behavioural responses often underlie these changes in population dynamics, such as altered habitat choice or foraging activity. Here, we present a framework for understanding how and why behaviour is affected by human activities and how the behavioural responses in turn influence higher ecological levels. We further review the literature to assess the present state of the field and identify gaps in our knowledge. We begin with discussing the factors that determine how an individual responds to a change in the environment and whether the response is adaptive or not. In particular, we explain the importance of the evolutionary history of the species. We then search the literature to assess our current knowledge of the impact of human disturbances on the behaviour of fishes and the consequences for ecosystems. The search reveals that much attention has been directed to the impact of human activities on the behaviour of fishes, but that worryingly little is known about the consequences of these responses for populations, communities and ecosystems. Yet, behavioural responses can have profound ecological consequences given that behaviour underly many, if not most, species interactions. Thus, more attention should be paid to the mechanisms and pathways through which behavioural responses influence higher ecological levels. Such information is needed if we are to determine the ultimate effects of human activities on biodiversity and the function and stability of aquatic ecosystems.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Tawfiqur Rahman
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Shelton DS, Dinges ZM, Khemka A, Sykes DJ, Suriyampola PS, Shelton DEP, Boyd P, Kelly JR, Bower M, Amro H, Glaholt SP, Latta MB, Perkins HL, Shaw JR, Martins EP. A pair of cadmium-exposed zebrafish affect social behavior of the un-exposed majority. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104119. [PMID: 37028532 PMCID: PMC10423439 DOI: 10.1016/j.etap.2023.104119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 06/15/2023]
Abstract
To account for global contamination events, we must identify direct and indirect pollutant effects. Although pollutants can have direct effects on individuals, it is unknown how a few contaminated individuals affect groups, a widespread social organization. We show environmentally relevant levels of cadmium (Cd) can have indirect social effects revealed in the social context of a larger group. Cd-contaminated individuals had poor vision and more aggressive responses, but no other behavioral effects. The presence of experienced Cd-exposed pairs in the groups had an indirect effect on the un-exposed individual's social interactions leading to the shoal becoming bolder and moving closer to a novel object than control groups. Because a few directly affected individuals could indirectly affect social behavior of the un-exposed majority, we believe that such acute but potentially important heavy metal toxicity could inform reliable predictions about the consequences of their use in a changing world.
Collapse
Affiliation(s)
- Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL 33134, USA.
| | - Zoe M Dinges
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA
| | - Anuj Khemka
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA
| | - Delawrence J Sykes
- Department of Biology, Berry College, 2277 Martha Berry Hwy NW, Mount Berry, GA 30149, USA
| | - Piyumika S Suriyampola
- School of Life Sciences, Arizona State University, 427 East Tyler Hall, Tempe, AZ 85287, USA
| | | | - Ploypenmas Boyd
- Biochemistry and Molecular Biology, Oregon State University, 128 Kidder Hall, Corvallis 97331, OR, USA
| | - Jeffrey R Kelly
- Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, TX 37996, USA
| | - Myra Bower
- Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, TX 37996, USA
| | - Halima Amro
- Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, TX 37996, USA
| | - Stephen P Glaholt
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Mitchell B Latta
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Hannah L Perkins
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Joseph R Shaw
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Emília P Martins
- School of Life Sciences, Arizona State University, 427 East Tyler Hall, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Słoczyńska K, Orzeł J, Murzyn A, Popiół J, Gunia-Krzyżak A, Koczurkiewicz-Adamczyk P, Pękala E. Antidepressant pharmaceuticals in aquatic systems, individual-level ecotoxicological effects: growth, survival and behavior. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106554. [PMID: 37167880 DOI: 10.1016/j.aquatox.2023.106554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
The growing consumption of antidepressant pharmaceuticals has resulted in their widespread occurrence in the environment, particularly in waterways with a typical concentration range from ng L-1 to μg L-1. An increasing number of studies have confirmed the ecotoxic potency of antidepressants, not only at high concentrations but also at environmentally relevant levels. The present review covers literature from the last decade on the individual-level ecotoxicological effects of the most commonly used antidepressants, including their impact on behavior, growth, and survival. We focus on the relationship between antidepressants physico-chemical properties and dynamics in the environment. Furthermore, we discuss the advantages of considering behavioral changes as sensitive endpoints in ecotoxicology, as well as some current methodological shortcomings in the field, including low standardization, reproducibility and context-dependency.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Justyna Orzeł
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aleksandra Murzyn
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
15
|
Jacquier L, Molet M, Doums C. Urban colonies are less aggressive but forage more than their forest counterparts in the ant Temnothorax nylanderi. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
16
|
Henry J, Bai Y, Wlodkowic D. Digital Video Acquisition and Optimization Techniques for Effective Animal Tracking in Behavioral Ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2342-2352. [PMID: 35848752 PMCID: PMC9826254 DOI: 10.1002/etc.5434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Behavioral phenotypic analysis is an emerging and increasingly important toolbox in aquatic ecotoxicology. In this regard digital video recording has recently become a standard in obtaining behavioral data. Subsequent analysis requires applications of specialized software for detecting and reconstructing animal locomotory trajectories as well as extracting quantitative biometric endpoints associated with specific behavioral traits. Despite some profound advantages for behavioral ecotoxicology, there is a notable lack of standardization of procedures and guidelines that would aid in consistently acquiring high-quality digital videos. The latter are fundamental for using animal tracking software successfully and to avoid issues such as identification switching, incorrect interpolation, and low tracking visibility. Achieving an optimized tracking not only saves user time and effort to analyze the results but also provides high-fidelity data with minimal artifacts. In the present study we, for the first time, provide an easily accessible guide on how to set up and optimize digital video acquisition while minimizing pitfalls in obtaining the highest-quality data for subsequent animal tracking. We also discuss straightforward digital video postprocessing techniques that can be employed to further enhance tracking consistency or improve the videos that were acquired in otherwise suboptimal settings. The present study provides an essential guidebook for any aquatic ecotoxicology studies that utilize digital video acquisition systems for evaluation of behavioral endpoints. Environ Toxicol Chem 2022;41:2342-2352. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Yutao Bai
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Donald Wlodkowic
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
17
|
Rahman T, Candolin U. Linking animal behavior to ecosystem change in disturbed environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental disturbances often cause individuals to change their behavior. The behavioral responses can induce a chain of reactions through the network of species interactions, via consumptive and trait mediated connections. Given that species interactions define ecosystem structure and functioning, changes to these interactions often have ecological repercussions. Here, we explore the transmission of behavioral responses through the network of species interactions, and how the responses influence ecological conditions. We describe the underlying mechanisms and the ultimate impact that the behavioral responses can have on ecosystem structure and functioning, including biodiversity and ecosystems stability and services. We explain why behavioral responses of some species have a larger impact than that of others on ecosystems, and why research should focus on these species and their interactions. With the work, we synthesize existing theory and empirical evidence to provide a conceptual framework that links behavior responses to altered species interactions, community dynamics, and ecosystem processes. Considering that species interactions link biodiversity to ecosystem functioning, a deeper understanding of behavioral responses and their causes and consequences can improve our knowledge of the mechanisms and pathways through which human activities alter ecosystems. This knowledge can improve our ability to predict the effects of ongoing disturbances on communities and ecosystems and decide on the interventions needed to mitigate negative effects.
Collapse
|
18
|
Yi C, Yang L, Yi R, Yu H, Zhang J, Nawaz MI. Degradation of the nonylphenol aqueous solution by strong ionization discharge: evaluation of degradation mechanism and the water toxicity of zebrafish. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:227-243. [PMID: 35906905 DOI: 10.2166/wst.2022.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonylphenol (NP) is a typical environmental endogenous disrupter with low concentration and high toxicity. This paper describes the mechanism of NP degradation in solution by strong ionization dielectric barrier discharge (SIDBD). Furthermore, the degradation performance of NP by SIDBD was tested by changing the equipment voltage, the initial concentration of NP in aqueous solution, pH, and inorganic ions. Degradation pathways of NP were detected using a high-performance liquid chromatography-mass spectrometer. The biological effects of NP degradation were assessed by detecting indicators of embryonic development in zebrafish (survival rate, fetal movement, heartbeat, the body length, behavior, deformity) and adult fish (sex differentiation, weight, ovarian testes pathological section analysis). The results showed when the input O2 was 5 L/min and the voltage was 3.2 kV, the degradation efficiency of NP can reach 99.0% after 60 min of experiment. Equipment voltage, initial concentration of NP in solution, pH, inorganic ions and other factors can influence the degradation efficiency of NP by DBD. At the higher concentration of NP, the greater influence on embryonic development in zebrafish was noticed. Although the effects of NP on zebrafish sex differentiation were not obvious, it showed significant male weight inhibition and decrease in sperm number.
Collapse
Affiliation(s)
- Chengwu Yi
- School of Environmental and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China E-mail:
| | - Liu Yang
- School of Environmental and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China E-mail:
| | - Rongjie Yi
- School of Environmental and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China E-mail:
| | - Haijun Yu
- School of Environmental and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China E-mail:
| | - Jianan Zhang
- School of Environmental and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China E-mail:
| | - Muhammad Imran Nawaz
- Department of Environmental Engineering, University of Engineering and Technology, Taxila 47080, Pakistan
| |
Collapse
|
19
|
Beckman AK, Richey BMS, Rosenthal GG. Behavioral responses of wild animals to anthropogenic change: insights from domestication. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03205-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Mechanisms of Suppression of Epinephrine Production in Rats by Low-Dose Developmental Exposure to DDT. Bull Exp Biol Med 2022; 173:110-113. [PMID: 35618967 DOI: 10.1007/s10517-022-05503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 10/18/2022]
Abstract
We studied the mechanisms underlying decreased production of epinephrine by adrenal glands in rats developmentally exposed to endocrine disruptor DDT was performed on the basis of assessment of morphology, fine structure, and function of the adrenal medulla and medullary cells. It was found that the main mechanisms of disruptive action of DDT leading to a decrease in epinephrine secretion into systemic circulation are a decrease in the growth rate of the adrenal medulla, a decrease in the number of mitochondria in adrenal cells, especially under the outer cytoplasmic membrane, destructive changes in mitochondria, and a progressive decrease in the synthesis of tyrosine hydroxylase. The decrease in the number of mitochondria and suppression tyrosine hydroxylase synthesis in adrenal cells predominate during the pubertal period, while slowdown of the growth of the adrenal medulla and progressive decrease in the synthesis of tyrosine hydroxylase seem to be the most evident mechanisms after puberty.
Collapse
|
21
|
Lutz CK, Coleman K, Hopper LM, Novak MA, Perlman JE, Pomerantz O. Nonhuman primate abnormal behavior: Etiology, assessment, and treatment. Am J Primatol 2022; 84:e23380. [PMID: 35383995 DOI: 10.1002/ajp.23380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/29/2022]
Abstract
Across captive settings, nonhuman primates may develop an array of abnormal behaviors including stereotypic and self-injurious behavior. Abnormal behavior can indicate a state of poor welfare, since it is often associated with a suboptimal environment. However, this may not always be the case as some behaviors can develop independently of any psychological distress, be triggered in environments known to promote welfare, and be part of an animal's coping mechanism. Furthermore, not all animals develop abnormal behavior, which has led researchers to assess risk factors that differentiate individuals in the display of these behaviors. Intrinsic risk factors that have been identified include the animal's species and genetics, age, sex, temperament, and clinical condition, while environmental risk factors include variables such as the animal's rearing, housing condition, husbandry procedures, and research experiences. To identify specific triggers and at-risk animals, the expression of abnormal behavior in captive nonhuman primates should be routinely addressed in a consistent manner by appropriately trained staff. Which behaviors to assess, what assessment methods to use, which primates to monitor, and the aims of data collection should all be identified before proceeding to an intervention and/or treatment. This article provides guidance for this process, by presenting an overview of known triggers and risk factors that should be considered, steps to design a comprehensive evaluation plan, and strategies that might be used for prevention or treatment. It also outlines the tools and processes for assessing and evaluating behavior in an appendix. This process will lead to a better understanding of abnormal behavior in captive primate colonies and ultimately to improved welfare.
Collapse
Affiliation(s)
- Corrine K Lutz
- Institute for Laboratory Animal Research, The National Academies of Sciences, Engineering, and Medicine, Washington, District of Columbia, USA
| | - Kristine Coleman
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Lydia M Hopper
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melinda A Novak
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jaine E Perlman
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ori Pomerantz
- Population and Behavioral Health Services, California National Primate Research Center, University of California, Davis, California, USA
| |
Collapse
|
22
|
Molina EM, Kavazis AN, Mendonça MT, Akingbemi BT. Effects of different DDE exposure paradigms on testicular steroid hormone secretion and hepatic oxidative stress in male Long-Evans rats. Gen Comp Endocrinol 2022; 317:113963. [PMID: 34902316 DOI: 10.1016/j.ygcen.2021.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/16/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Chronic exposure to low doses of anthropogenic chemicals in the environment continues to be a major health issue. Due to concerns about the effects in humans and wildlife, use of persistent organic pollutants, such as dichlorodiphenyltrichloroethane (DDT), is prohibited. However, their ubiquitous nature and persistence allows them to remain in the environment at low levels for decades. Dichlorodiphenyldichloroethylene (DDE) is the most persistent metabolite of DDT and has been shown to cause hepatotoxicity, nephrotoxicity, hormonal disorders, and induce oxidative stress in many organisms. Although the effects of acute exposure to DDT and its metabolite DDE have been extensively studied, the chronic effects of sub-lethal DDE exposure at levels comparable to those found in the environment have not been well documented. Long-Evans male rats were used to determine the effect of relatively chronic and short term DDE (doses ranged from 0.001 to 100 μg/L) exposure on endocrine function and oxidative stress at different developmental time points. We found that circulating serum testosterone (T) levels were significantly decreased and T secretion in testicular explants were significantly influenced in a dose dependent manner in both pre-pubertal and pubertal male rats after DDE exposure, with pubertal rats being the most affected contrary to our original prediction. Additionally, exposure to DDE increased expression of protein oxidation indicating a possible increase in cellular damage caused by oxidative stress. This study suggests that chronic exposures to environmentally relevant levels of DDE affected testicular function and decreased T secretion with implications for reproductive capacity.
Collapse
Affiliation(s)
- Erica M Molina
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College St, Auburn, AL 36849, USA.
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, 287 Kinesiology Building, 301 Wire Road, Auburn, AL 36849, USA.
| | - Mary T Mendonça
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College St, Auburn, AL 36849, USA.
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, Auburn University, 1130 Wire Road, Auburn, AL 36849, USA.
| |
Collapse
|
23
|
Curi L, Cuzziol Boccioni A, Peltzer P, Attademo A, Bassó A, León E, Lajmanovich R. Signals from predators, injured conspecifics, and pesticide modify the swimming behavior of the gregarious tadpole of the Dorbigny’s Toad, Rhinella dorbignyi (Anura: Bufonidae). CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tadpoles detect chemical signals released from predators and conspecifics, as well as those present in the environment, and adjust their behavioral responses. This study evaluated the swimming activity of Dorbigny’s Toad (Rhinella dorbignyi (Duméril and Bibron, 1841)) tadpoles exposed to chemical signals, including cues from a predator fish, the marbled swamp eel (Synbranchus marmoratus Bloch, 1795), and an injured conspecific; sublethal concentration of insecticide cypermethrin; and their combination. Swimming behavior (total distance moved, mean speed, global activity, number of contacts between tadpoles) was evaluated in an individual (1) and groups of different size (3, 5, 7, and 10 tadpoles) using a video-tracking software tool. Predator exposure modified behavioral parameters, reducing encounters with predators and, therefore, mortality. Total distance moved and mean speed increased in trials involving 1 tadpole and 3 interacting tadpoles exposed to injured conspecifics, whereas global activity increased in all group sizes, showing that gregarious tadpoles may be affected by alarm cues and their behavior may be disrupted. The insecticide treatments (alone and combined) increased parameters in all group sizes, causing hyperactivity due to its neurotoxic effect. The different responses observed after exposure to alarm cues and environmental signals in the different group sizes modified the normal behavior and the ecological dynamics of gregarious tadpoles.
Collapse
Affiliation(s)
- L.M. Curi
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE), Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste (FCV, UNNE), Sargento Cabral 2139, CP 3400, Corrientes, Argentina
| | - A.P. Cuzziol Boccioni
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Ciudad Universitaria, Paraje “El Pozo”, RN N° 168, Km 472, CP 3000, Santa Fe, Argentina
| | - P.M. Peltzer
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Ciudad Universitaria, Paraje “El Pozo”, RN N° 168, Km 472, CP 3000, Santa Fe, Argentina
| | - A.M. Attademo
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Ciudad Universitaria, Paraje “El Pozo”, RN N° 168, Km 472, CP 3000, Santa Fe, Argentina
| | - A. Bassó
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Ciudad Universitaria, Paraje “El Pozo”, RN N° 168, Km 472, CP 3000, Santa Fe, Argentina
| | - E.J. León
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Ciudad Universitaria, Paraje “El Pozo”, RN N° 168, Km 472, CP 3000, Santa Fe, Argentina
- Instituto Nacional de Limnología, Laboratorio de Biodiversidad y Conservación de tetrápodos (INALI-UNL- CONICET), Ciudad Universitaria, Paraje “El Pozo”, RN n° 168, Km 472, CP 3000, Santa Fe, Argentina
| | - R.C. Lajmanovich
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Ciudad Universitaria, Paraje “El Pozo”, RN N° 168, Km 472, CP 3000, Santa Fe, Argentina
| |
Collapse
|
24
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
25
|
Klein K, Heß S, Schulte-Oehlmann U, Oehlmann J. Locomotor behavior of Neocaridina palmata: a study with leachates from UV-weathered microplastics. PeerJ 2021; 9:e12442. [PMID: 34820186 PMCID: PMC8588861 DOI: 10.7717/peerj.12442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/15/2021] [Indexed: 02/02/2023] Open
Abstract
Weathering of plastics leads to the formation of increasingly smaller particles with the release of chemical compounds. The latter occurs with currently unknown environmental impacts. Leachate-induced effects of weathered microplastics (MPs) are therefore of increasing concern. To investigate the toxicity of the chemical mixtures from such plastics, we exposed the freshwater shrimp Neocaridina palmata to enriched leachates from unweathered and artificially weathered (UV-A/B light) MPs (≤1 mm) from recycled low-density polyethylene (LDPE-R) pellets and from a biodegradable, not fully bio-based starch blend (SB) foil. We analyzed the individual locomotor activity (moved distance and frozen events) on day 1, 3, 7 and 14 of exposure to five leachate concentrations equivalent to 0.40–15.6 g MPs L−1, representing the upper scale of MPs that have been found in the environment. The median moved distance did not change as a function of concentration, except for the unweathered SB treatment on day 14 that indicated hyperactivity with increasing concentrations. Significant impacts were solely detected for few concentrations and exposure days. Generally, no consistent trend was observed across the experiments. We further assessed the baseline toxicity of the samples in the Microtox assay and detected high bioluminescence inhibitions of the bacterium Aliivibrio fischeri. This study demonstrates that neither the recycled nor the biodegradable material are without impacts on test parameters and therefore cannot be seen as safe alternative for conventional plastics regarding the toxicity. However, the observed in vitro toxicity did not result in substantial effects on the behavior of shrimps. Overall, we assume that the two endpoints examined in the atyid shrimp N. palmata were not sensitive to chemicals leaching from plastics or that effects on the in vivo level affect other toxic endpoints which were not considered in this study.
Collapse
Affiliation(s)
- Kristina Klein
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sebastian Heß
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Ulrike Schulte-Oehlmann
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Kompiš M, Ballová ZK. The influence of preferred habitat and daily range of the European hare on its contamination by heavy metals: a case study from the West Carpathians. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52093-52105. [PMID: 34002308 DOI: 10.1007/s11356-021-14363-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The Spišská Magura mountain range, located in the Middle Spiš, is one of the regions in Slovakia most contaminated by heavy metals resulting from mining and smelting activities. Heavy metals and other potentially toxic elements have accumulated in mountain areas via atmospheric transport. The influence of the daily range size of the European hare on its contamination by heavy metals was investigated in three habitat types (forest, woodland edge, meadow) in the Spišská Magura mountain range in the West Carpathians. Individual hares (n = 21) were traced and located by GPS following snowfall. Pair samples of their faeces (n = 64) and food (n = 64) were collected from feeding sites. The maps created were used for determination of the size of the daily range as being small or large. All hares that have a small daily range avoid meadows and open spaces due to the higher predation risk. However, individuals with a large daily range feed in all habitats, including meadows. Hares with a small daily range in a forest habitat ingested higher amounts of bio-elements Ca, Cr, S, and Mn as well as higher amounts of heavy metals Ba and Pb than hares with a large daily range. Moreover, dominant hares with a small daily range, with access to abundant food sources in a forest habitat, may gradually take on higher levels of bio-elements including heavy metals that are present in their food source. In contrast, in the woodland edge, hares with a small daily range had a smaller concentration of Ca, Cr, Mn, S, Ba, and Pb compared to hares with a large daily range. Caecotrophy plays a very significant role as far as the intake of nutrients and other elements is concerned. We found significant dependence between concentrations of the elements Cr, S, Ba, Pb, and Cd in the food of European hares and in their faeces.
Collapse
Affiliation(s)
- Martin Kompiš
- Institute of High Mountain Biology, University of Žilina, Javorina 7, SK-05956, Tatranská, Slovakia
| | - Zuzana Kompišová Ballová
- Institute of High Mountain Biology, University of Žilina, Javorina 7, SK-05956, Tatranská, Slovakia.
| |
Collapse
|
27
|
Lennox RJ, Westrelin S, Souza AT, Šmejkal M, Říha M, Prchalová M, Nathan R, Koeck B, Killen S, Jarić I, Gjelland K, Hollins J, Hellstrom G, Hansen H, Cooke SJ, Boukal D, Brooks JL, Brodin T, Baktoft H, Adam T, Arlinghaus R. A role for lakes in revealing the nature of animal movement using high dimensional telemetry systems. MOVEMENT ECOLOGY 2021; 9:40. [PMID: 34321114 PMCID: PMC8320048 DOI: 10.1186/s40462-021-00244-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
Movement ecology is increasingly relying on experimental approaches and hypothesis testing to reveal how, when, where, why, and which animals move. Movement of megafauna is inherently interesting but many of the fundamental questions of movement ecology can be efficiently tested in study systems with high degrees of control. Lakes can be seen as microcosms for studying ecological processes and the use of high-resolution positioning systems to triangulate exact coordinates of fish, along with sensors that relay information about depth, temperature, acceleration, predation, and more, can be used to answer some of movement ecology's most pressing questions. We describe how key questions in animal movement have been approached and how experiments can be designed to gather information about movement processes to answer questions about the physiological, genetic, and environmental drivers of movement using lakes. We submit that whole lake telemetry studies have a key role to play not only in movement ecology but more broadly in biology as key scientific arenas for knowledge advancement. New hardware for tracking aquatic animals and statistical tools for understanding the processes underlying detection data will continue to advance the potential for revealing the paradigms that govern movement and biological phenomena not just within lakes but in other realms spanning lands and oceans.
Collapse
Affiliation(s)
- Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries (LFI) at NORCE Norwegian Research Centre, Nygårdsporten 112, 5008, Bergen, Norway.
| | - Samuel Westrelin
- INRAE, Aix Marseille Univ, Pôle R&D ECLA, RECOVER, 3275 Route de Cézanne - CS 40061, 13182 Cedex 5, Aix-en-Provence, France
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Milan Říha
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marie Prchalová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 102 Berman Bldg, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Shaun Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Ivan Jarić
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Karl Gjelland
- Norwegian Institute of Nature Research, Tromsø, Norway
| | - Jack Hollins
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
- University of Windsor, Windsor, ON, Canada
| | - Gustav Hellstrom
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henry Hansen
- Karlstads University, Universitetsgatan 2, 651 88, Karlstad, Sweden
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Boukal
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jill L Brooks
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henrik Baktoft
- Technical University of Denmark, Vejlsøvej 39, Building Silkeborg-039, 8600, Silkeborg, Denmark
| | - Timo Adam
- Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
- Division of Integrative Fisheries Management, Humboldt-Universität zu Berlin, Bergen, Germany
| |
Collapse
|
28
|
Fisher DN, Kilgour RJ, Siracusa ER, Foote JR, Hobson EA, Montiglio PO, Saltz JB, Wey TW, Wice EW. Anticipated effects of abiotic environmental change on intraspecific social interactions. Biol Rev Camb Philos Soc 2021; 96:2661-2693. [PMID: 34212487 DOI: 10.1111/brv.12772] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Social interactions are ubiquitous across the animal kingdom. A variety of ecological and evolutionary processes are dependent on social interactions, such as movement, disease spread, information transmission, and density-dependent reproduction and survival. Social interactions, like any behaviour, are context dependent, varying with environmental conditions. Currently, environments are changing rapidly across multiple dimensions, becoming warmer and more variable, while habitats are increasingly fragmented and contaminated with pollutants. Social interactions are expected to change in response to these stressors and to continue to change into the future. However, a comprehensive understanding of the form and magnitude of the effects of these environmental changes on social interactions is currently lacking. Focusing on four major forms of rapid environmental change currently occurring, we review how these changing environmental gradients are expected to have immediate effects on social interactions such as communication, agonistic behaviours, and group formation, which will thereby induce changes in social organisation including mating systems, dominance hierarchies, and collective behaviour. Our review covers intraspecific variation in social interactions across environments, including studies in both the wild and in laboratory settings, and across a range of taxa. The expected responses of social behaviour to environmental change are diverse, but we identify several general themes. First, very dry, variable, fragmented, or polluted environments are likely to destabilise existing social systems. This occurs as these conditions limit the energy available for complex social interactions and affect dissimilar phenotypes differently. Second, a given environmental change can lead to opposite responses in social behaviour, and the direction of the response often hinges on the natural history of the organism in question. Third, our review highlights the fact that changes in environmental factors are not occurring in isolation: multiple factors are changing simultaneously, which may have antagonistic or synergistic effects, and more work should be done to understand these combined effects. We close by identifying methodological and analytical techniques that might help to study the response of social interactions to changing environments, highlight consistent patterns among taxa, and predict subsequent evolutionary change. We expect that the changes in social interactions that we document here will have consequences for individuals, groups, and for the ecology and evolution of populations, and therefore warrant a central place in the study of animal populations, particularly in an era of rapid environmental change.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, U.K
| | - R Julia Kilgour
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, U.S.A
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Stocker Road, Exeter, EX4 4PY, U.K
| | - Jennifer R Foote
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue Président-Kennedy, Montréal, QC, H2X 3X8, Canada
| | - Julia B Saltz
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| | - Tina W Wey
- Maelstrom Research, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, QC, H3G 1A4, Canada
| | - Eric W Wice
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| |
Collapse
|
29
|
Assersohn K, Brekke P, Hemmings N. Physiological factors influencing female fertility in birds. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202274. [PMID: 34350009 PMCID: PMC8316823 DOI: 10.1098/rsos.202274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/12/2021] [Indexed: 05/30/2023]
Abstract
Fertility is fundamental to reproductive success, but not all copulation attempts result in a fertilized embryo. Fertilization failure is especially costly for females, but we still lack a clear understanding of the causes of variation in female fertility across taxa. Birds make a useful model system for fertility research, partly because their large eggs are easily studied outside of the female's body, but also because of the wealth of data available on the reproductive productivity of commercial birds. Here, we review the factors contributing to female infertility in birds, providing evidence that female fertility traits are understudied relative to male fertility traits, and that avian fertility research has been dominated by studies focused on Galliformes and captive (relative to wild) populations. We then discuss the key stages of the female reproductive cycle where fertility may be compromised, and make recommendations for future research. We particularly emphasize that studies must differentiate between infertility and embryo mortality as causes of hatching failure, and that non-breeding individuals should be monitored more routinely where possible. This review lays the groundwork for developing a clearer understanding of the causes of female infertility, with important consequences for multiple fields including reproductive science, conservation and commercial breeding.
Collapse
Affiliation(s)
- Katherine Assersohn
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - Nicola Hemmings
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
30
|
Measurements of the swimming speeds of motile microorganisms using object tracking and their correlation with water pollution and rheology levels. Sci Rep 2021; 11:11821. [PMID: 34083631 PMCID: PMC8175393 DOI: 10.1038/s41598-021-91134-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/19/2021] [Indexed: 11/09/2022] Open
Abstract
Self-propelled microscopic organisms are ubiquitous in water. Such organisms' motility depends on hydrodynamic and physical factors related to the rheology of the surrounding media and biological factors depending on the organisms' state and well-being. Here we demonstrate that the swimming speed of Paramecium aurelia, a unicellular protozoan, globally found in fresh, brackish, and salt waters, can be used as a measurable frugal indicator of the presence of pollutants in water. This study establishes a significant and consistent relationship between Paramecia's swimming speed and the presence of five different organic and inorganic contaminants at varying concentrations centered around drinking water thresholds. The large size and ubiquity of the targeted microorganism, the avoidance of reagents or specialized tools for the measurement, and the simple data collection based on an object tracking algorithm enable the automatization of the assessment and real-time results using globally available technology.
Collapse
|
31
|
Ford AT, Ågerstrand M, Brooks BW, Allen J, Bertram MG, Brodin T, Dang Z, Duquesne S, Sahm R, Hoffmann F, Hollert H, Jacob S, Klüver N, Lazorchak JM, Ledesma M, Melvin SD, Mohr S, Padilla S, Pyle GG, Scholz S, Saaristo M, Smit E, Steevens JA, van den Berg S, Kloas W, Wong BBM, Ziegler M, Maack G. The Role of Behavioral Ecotoxicology in Environmental Protection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5620-5628. [PMID: 33851533 PMCID: PMC8935421 DOI: 10.1021/acs.est.0c06493] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
For decades, we have known that chemicals affect human and wildlife behavior. Moreover, due to recent technological and computational advances, scientists are now increasingly aware that a wide variety of contaminants and other environmental stressors adversely affect organismal behavior and subsequent ecological outcomes in terrestrial and aquatic ecosystems. There is also a groundswell of concern that regulatory ecotoxicology does not adequately consider behavior, primarily due to a lack of standardized toxicity methods. This has, in turn, led to the exclusion of many behavioral ecotoxicology studies from chemical risk assessments. To improve understanding of the challenges and opportunities for behavioral ecotoxicology within regulatory toxicology/risk assessment, a unique workshop with international representatives from the fields of behavioral ecology, ecotoxicology, regulatory (eco)toxicology, neurotoxicology, test standardization, and risk assessment resulted in the formation of consensus perspectives and recommendations, which promise to serve as a roadmap to advance interfaces among the basic and translational sciences, and regulatory practices.
Collapse
Affiliation(s)
- Alex T Ford
- University of Portsmouth, Portsmouth, United Kingdom
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Baylor University, Waco, Texas 76706, United States
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Joel Allen
- U.S. EPA Office of Research and Development, Cincinnati, Ohio 45268, United States
| | | | - Tomas Brodin
- Swedish University of Agricultural Sciences, Umeå, Sweden
| | - ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht, The Netherlands
| | | | - René Sahm
- German Environment Agency (UBA), Dessau, Germany
| | - Frauke Hoffmann
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | - Nils Klüver
- Environmental Research Center (UFZ), Leipzig, Germany
| | - James M Lazorchak
- U.S. EPA Office of Research and Development, Cincinnati, Ohio 45268, United States
| | - Mariana Ledesma
- Swedish Chemicals Agency (KemI), Sundbyberg, Stockholms Lan, Sweden
| | - Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, Australia
| | - Silvia Mohr
- German Environment Agency (UBA), Dessau, Germany
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, U.S. EPA, Durham, North Carolina, United States
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Stefan Scholz
- Swedish Chemicals Agency (KemI), Sundbyberg, Stockholms Lan, Sweden
| | - Minna Saaristo
- Environment Protection Authority Victoria (EPA), Carlton, Australia
| | - Els Smit
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht, The Netherlands
| | - Jeffery A Steevens
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | | | - Werner Kloas
- Leibniz-Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael Ziegler
- Animal Physiological Ecology, University of Tübingen, Tübingen, Germany
| | - Gerd Maack
- German Environment Agency (UBA), Dessau, Germany
| |
Collapse
|
32
|
Bai Y, Henry J, Campana O, Wlodkowic D. Emerging prospects of integrated bioanalytical systems in neuro-behavioral toxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143922. [PMID: 33302078 DOI: 10.1016/j.scitotenv.2020.143922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Neurotoxicity effects of industrial contaminants are currently significantly under investigated and require innovative analytical approaches to assess health and environmental risks at individual, population and ecosystem levels. Behavioral changes assessed using small aquatic invertebrates as standard biological indicators of the aggregate toxic effects, have been broadly postulated as highly integrative indicators of neurotoxicity with physiological and ecological relevance. Despite recent increase in understanding of the emerging value of behavioral biotests, their wider implementation especially in high-throughput environmental risk assessment assays, is largely limited by the lack of advances in analytical technologies. To date, most of the behavioral biotests have only been performed with larger-volumes and lacked dynamic flow-through conditions. They also lack features necessary for development of higher throughput neuro-behavioral ecotoxicity assays such as miniaturization and integration of automated components. We postulate that some contemporary analytical limitations can be effectively addressed by innovative Lab-on-a-Chip (LOC) technologies, an emerging and multidisciplinary field poised to bring significant miniaturization to aquatic ecotoxicity testing. Recent developments in this emerging field demonstrate particular opportunities to study a plethora of behavioral responses of small model organisms in a high-throughput fashion. In this review, we highlight recent advances in this budding new interdisciplinary field of research. We also outline the existing challenges, barriers to development and provide a future outlook in the evolving field of neurobehavioral ecotoxicology.
Collapse
Affiliation(s)
- Yutao Bai
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Jason Henry
- School of Science, RMIT University, Melbourne, VIC, Australia
| | | | | |
Collapse
|
33
|
Bereta M, Teplan M, Chafai DE, Radil R, Cifra M. Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture. Sci Rep 2021; 11:328. [PMID: 33431983 PMCID: PMC7801494 DOI: 10.1038/s41598-020-79668-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Normal or excessive oxidative metabolism in organisms is essential in physiological and pathophysiological processes, respectively. Therefore, monitoring of biological oxidative processes induced by the chemical or physical stimuli is nowadays of extreme importance due to the environment overloaded with various physicochemical factors. Current techniques typically require the addition of chemical labels or light illumination, which perturb the samples to be analyzed. Moreover, the current techniques are very demanding in terms of sample preparation and equipment. To alleviate these limitations, we propose a label-free monitoring tool of oxidation based on biological autoluminescence (BAL). We demonstrate this tool on Saccharomyces cerevisiae cell culture. We showed that BAL can be used to monitor chemical perturbation of yeast due to Fenton reagents initiated oxidation-the BAL intensity changes with hydrogen peroxide concentration in a dose-dependent manner. Furthermore, we also showed that BAL reflects the effects of low-frequency magnetic field on the yeast cell culture, where we observed a disturbance of the BAL kinetics in the exposed vs. control case. Our results contribute to the development of novel techniques for label-free, real-time, noninvasive monitoring of oxidative processes and approaches for their modulation.
Collapse
Affiliation(s)
- Martin Bereta
- Institute of Measurement Science of the Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Health, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | - Michal Teplan
- Institute of Measurement Science of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Djamel Eddine Chafai
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia
| | - Roman Radil
- Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
34
|
Anlar H, Bacanli M, Başaran N. Endocrine disrupting mechanisms and effects of pesticides. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Pesticides are important agents that are intentionally introduced into the environment to control various pests and disease carriers, often by killing them. Although pesticides have many important objectives, including protection against crop loss and vector-borne diseases, there are significant concerns over the potential toxicity of pesticides on various organisms, including humans. The frequent use of pesticides in agriculture has led to the long-term exposure of humans to different pesticide residues. Exposure to pesticides has been linked to disturbances in the endocrine system of animals and humans. There are increasing data on the relation between lipophilic pesticides with low biodegradability and changes in reproductive functions and parameters of male and female animals. But more epidemiological and detailed information is necessary on the probability and strength of pesticide exposure-outcome relations regarding endocrine-disrupting effects.
Collapse
|
35
|
Krzykwa JC, Sellin Jeffries MK. Comparison of behavioral assays for assessing toxicant-induced alterations in neurological function in larval fathead minnows. CHEMOSPHERE 2020; 257:126825. [PMID: 32381281 DOI: 10.1016/j.chemosphere.2020.126825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Neuroactive compounds are routinely detected in surface waters at concentrations that pose potential threats to wildlife. Exposure to neurotoxicants can adversely affect exposed organism by altering ecologically-important behaviors (e.g., feeding and predator response) that are likely to have important repercussions for populations. These compounds can elicit behavioral effects at concentrations lower than those that induce overt toxicity as indicated by mortality or decreased growth. Though a wide variety of methods have been employed to assess the behavior of early life stage fish, it is unclear which assays are best suited for identifying ecologically-relevant behavioral changes following exposures to neurotoxicants. The goal of the present study was to promote the use of behavioral assays for assessing the behavioral impacts of exposure to neurotoxic compounds by comparing the performance of different behavioral assays in larval fish. To achieve this goal, the sensitivity and practicality of three behavioral assays (i.e., feeding, optomotor response, and C-start assays) were compared in larval fathead minnows exposed to a known neurotoxicant, chlorpyrifos. There were significant alterations in the performance of fathead minnow larvae in all three behavioral assays in response to a 12-d embryo-larval exposure to chlorpyrifos. However, feeding and C-start were the most practical of the selected assays, as they took less time and allowed for larger samples sizes. Further work to standardize behavioral testing methods, and to link alterations to ecologically-relevant behaviors, will help promote the use of these assays when investigating the potential environmental impacts of neurotoxic compounds.
Collapse
Affiliation(s)
- Julie C Krzykwa
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | | |
Collapse
|
36
|
Yaglova NV, Timokhina EP, Yaglov VV, Obernikhin SS, Nazimova SV, Tsomartova DA. Changes in Histophysiology of the Adrenal Medulla in Rats after Prenatal and Postnatal Exposure to Endocrine Disruptor DDT. Bull Exp Biol Med 2020; 169:398-400. [PMID: 32748142 DOI: 10.1007/s10517-020-04895-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/29/2022]
Abstract
We studied histophysiology of the adrenal medulla in adult (70-day-old) male Wistar rats developmentally exposed to low doses of endocrine disruptor DDT. It was found that exposure to DDT during the prenatal and postnatal ontogeny decelerated the development of the adrenal medulla and reduced the synthesis of tyrosine hydroxylase, the rate-liming enzyme of catecholamine synthesis, in chromaffin cells, which led to a decrease in epinephrine secretion into the blood.
Collapse
Affiliation(s)
- N V Yaglova
- Research Institute of Human Morphology, Moscow, Russia.
| | - E P Timokhina
- Research Institute of Human Morphology, Moscow, Russia
| | - V V Yaglov
- Research Institute of Human Morphology, Moscow, Russia
| | | | - S V Nazimova
- Research Institute of Human Morphology, Moscow, Russia
| | | |
Collapse
|
37
|
Karsauliya K, Sonker AK, Bhateria M, Taneja I, Srivastava A, Sharma M, Singh SP. Plasma protein binding, metabolism, reaction phenotyping and toxicokinetic studies of fenarimol after oral and intravenous administration in rats. Xenobiotica 2020; 51:72-81. [PMID: 32660295 DOI: 10.1080/00498254.2020.1796170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fenarimol (FNL), an organic chlorinated fungicide, is widely used in agriculture for protection from fungal spores and fungi. Despite being an endocrine disruptor, no toxicokinetic data is reported for this fungicide. In the present work, we determined the plasma protein binding, metabolic pathways and toxicokinetics of FNL in rats. In vitro binding of FNL to rat and human plasma proteins was ∼90%, suggesting that FNL is a highly protein bound fungicide. The predicted in vivo hepatic clearance of FNL in rats and humans was estimated to be 36.71 and 14.39 mL/min/kg, respectively, indicating it to be an intermediate clearance compound. Reaction phenotyping assay showed that CYP3A4 mainly contributed to the overall metabolism of FNL. The oral toxicokinetic study of FNL in rats at no observed adverse effect level dose (1 mg/kg) showed maximum plasma concentration (C max) of 33.97 ± 4.45 ng/mL at 1 h (T max). The AUC0-∞ obtained was 180.18 ± 17.76 h*ng/mL, whereas, the t 1/2 was ∼4.74 h. Following intravenous administration, FNL displayed a clearance of 42.48 mL/min/kg which was close to the predicted in vivo hepatic clearance. The absolute oral bioavailability of FNL at 1 mg/kg dose in rats was 45.25%. FNL at 10 mg/kg oral dose exhibited non-linear toxicokinetics with greater than dose-proportional increase in the systemic exposure (AUC0-∞ 8270.53 ± 1798.59 h*ng/mL).
Collapse
Affiliation(s)
- Kajal Karsauliya
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Ashish Kumar Sonker
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manisha Bhateria
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Isha Taneja
- Simcyp Division, Certara UK Limited, Sheffield, UK
| | - Anshuman Srivastava
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sheelendra Pratap Singh
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Analytical Chemistry Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| |
Collapse
|
38
|
Ding J, Yang W, Wang S, Zhang H, Yang Y, Bao X, Zhang Y. Effects of environmental metal pollution on reproduction of a free-living resident songbird, the tree sparrow (Passer montanus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137674. [PMID: 32163734 DOI: 10.1016/j.scitotenv.2020.137674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Anthropogenic metal pollution is known to adversely affect bird reproduction; however, few systematic studies are available on the effects of metal pollution on breeding performance and parental investment in a common resident songbird, the tree sparrow (Passer montanus). We conducted this study in two sites, a long-term heavy metal polluted site (Baiyin [BY]) and a relatively unpolluted site at approximately 110 km distance (Liujiaxia [LJX]), to assess the potential effects of environmental metal contamination on breeding parameters (clutch size, hatching success, fledging success, and growth of nestlings) and parental investment. The results showed smaller clutch size, lower fledging success, and differences in incubation behaviors of tree sparrows in BY than in LJX. Although there was no difference in parental body condition (residual body mass) between the two study sites, the parents responded differently with respect to reproduction due to varying metal levels in their habitats and bodies. Higher Cd levels in the primary feathers of females in BY were associated with lower clutch sizes. Parental investment including incubation duration and feeding rates showed no significant difference between the two sites during the incubation and nestling periods, but the frequencies of incubation visits were higher in BY. Parental behavior during the incubation period was also negatively affected by the parental Pb and Cd levels. Although the nestling growth patterns were relatively similar between the two sites, the nestlings were smaller, had lower body weight, and fledged later and fledging rate was also lower in BY than in LJX. Metal concentrations were higher in nestling organs and feces in BY. Taken together, metal pollution might adversely affect nestling growth condition. Our results suggest a negative response in the reproduction of tree sparrows to long-term environmental metal pollution.
Collapse
Affiliation(s)
- Jian Ding
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huijie Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xinkang Bao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
39
|
Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S. Effects of Pollution on Fish Behavior, Personality, and Cognition: Some Research Perspectives. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00086] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
40
|
Pullaguri N, Nema S, Bhargava Y, Bhargava A. Triclosan alters adult zebrafish behavior and targets acetylcholinesterase activity and expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103311. [PMID: 31841724 DOI: 10.1016/j.etap.2019.103311] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Triclosan is widely used in consumer products as an antimicrobial agent. Epidemiological studies have reported the association of triclosan with adverse birth outcomes. The toxic effects of triclosan on the developing stages of zebrafish are reported, however, its role as behavioral modifier is limited. In the present study, adult zebrafish were exposed to triclosan (0.3 and 0.6 mg/L) for 48 h and the exploratory behavior was analyzed using ZebraTrack. Triclosan exposed group showed significantly reduced locomotion concomitant with increased freezing duration. They also showed erratic movements suggesting that triclosan induced anxiety-like behavior in adult zebrafish. Next, we tested the hypothesis that the anxiety-like behavior is linked to altered acetylcholinesterase activity. We found that the triclosan exposure decreased acetylcholinesterase activity in the brain and skeletal muscle but acetylcholinesterase (ache) gene was significantly down-regulated only in the skeletal muscle of the adult zebrafish exposed to triclosan. In addition, we also observed a down-regulation of myelin basic protein (mbp) gene in the skeletal muscle of adult zebrafish treated with triclosan. Thus, our data indicates that even short exposure of triclosan is potent enough to induce behavioral anomalies in adult zebrafish that appear to involve acetylcholinesterase and other structural proteins especially in the skeletal muscle.
Collapse
Affiliation(s)
- Narasimha Pullaguri
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502285, India
| | - Shubham Nema
- Molecular Engineering and Imaging Lab, School of Biological Sciences, Dr Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Yogesh Bhargava
- Molecular Engineering and Imaging Lab, School of Biological Sciences, Dr Harisingh Gour Central University, Sagar, MP, 470003, India.
| | - Anamika Bhargava
- Ion Channel Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502285, India.
| |
Collapse
|
41
|
DeLeon S, Webster MS, DeVoogd TJ, Dhondt AA. Developmental polychlorinated biphenyl exposure influences adult zebra finch reproductive behaviour. PLoS One 2020; 15:e0230283. [PMID: 32191759 PMCID: PMC7082000 DOI: 10.1371/journal.pone.0230283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/25/2020] [Indexed: 01/07/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are worldwide chemical pollutants that have been linked to disrupted reproduction and altered sexual behaviour in many organisms. However, the effect of developmental PCB-exposure on adult passerine reproductive behaviour remains unknown. A commercial PCB mixture (Aroclor 1242) or an estrogenic congener (PCB 52) were administered in sublethal amounts to nestling zebra finches (Taeniopygia guttata) in the laboratory to identify effects of developmental PCB-exposure on adult zebra finch reproductive parameters. Results indicate that although traditional measures of reproductive success are not altered by this PCB dosage, PCBs do alter sexual behaviours such as male song and nesting behaviour. Males treated with PCB 52 in the nest sang significantly fewer syllables than control males, while females treated with Aroclor 1242 in the nest showed the strongest song preferences. PCB treatment also caused an increase in the number of nesting attempts and abandoned nests in the Aroclor 1242 treatment relative to the PCB 52 treatment, and offspring with control fathers fledged significantly earlier than those with fathers treated with Aroclor 1242. Behavioural differences between males seem to best explain these reproductive effects, most notably aggression. These findings suggest that sublethal PCB-exposure during development can significantly alter key reproductive characteristics of adult zebra finches, likely reducing fitness in the wild.
Collapse
Affiliation(s)
- Sara DeLeon
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Michael S. Webster
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, United States of America
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, New York, United States of America
| | - Timothy J. DeVoogd
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| | - André A. Dhondt
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
42
|
Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value. SUSTAINABILITY 2020. [DOI: 10.3390/su12041442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The degradation of wetland ecosystems is currently recognized as one of the main threats to global biodiversity. As a means of compensation, constructed wetlands (CWs), which are built to treat agricultural runoff and municipal wastewater, have become important for maintaining biodiversity. Here, we review studies on the relationships between CWs and their associated biodiversity published over the past three decades. In doing so, we provide an overview of how wildlife utilizes CWs, and the effects of biodiversity on pollutant transformation and removal. Beyond their primary aim (to purify various kinds of wastewater), CWs provide sub-optimal habitat for many species and, in turn, their purification function can be strongly influenced by the biodiversity that they support. However, there are some difficulties when using CWs to conserve biodiversity because some key characteristics of these engineered ecosystems vary from natural wetlands, including some fundamental ecological processes. Without proper management intervention, these features of CWs can promote biological invasion, as well as form an ‘ecological trap’ for native species. Management options, such as basin-wide integrative management and building in more natural wetland components, can partially offset these adverse impacts. Overall, the awareness of managers and the public regarding the potential value of CWs in biodiversity conservation remains superficial. More in-depth research, especially on how to balance different stakeholder values between wastewater managers and conservationists, is now required.
Collapse
|
43
|
Sievers M, Hale R, Parris KM, Melvin SD, Lanctôt CM, Swearer SE. Contaminant-induced behavioural changes in amphibians: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133570. [PMID: 31369889 DOI: 10.1016/j.scitotenv.2019.07.376] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Environmental contamination contributes to the threatened status of many amphibian populations. Many contaminants alter behaviour at concentrations commonly experienced in the environment, with negative consequences for individual fitness, populations and communities. A comprehensive, quantitative evaluation of the behavioural sensitivity of amphibians is warranted to better understand the population-level and resultant ecological impacts of contaminants. We conducted a systematic review and meta-analysis evaluating behavioural changes following exposure to contaminants. Most studies were conducted in North America and Europe on larval stages, and 64% of the 116 studies focussed on the effects of insecticides. We found that a suite of contaminants influence a wide range of behaviours in amphibians, with insecticides typically invoking the strongest responses. In particular, insecticides increased rates of abnormal swimming, and reduced escape responses to simulated predator attacks. Our analysis identified five key needs for future research, in particular the need: (1) for researchers to provide more details of experimental protocols and results (2) to develop a strong research base for future quantitative reviews, (3) to broaden the suite of contaminants tested, (4) to better study and thus understand the effects of multiple stressors, and (5) to establish the ecological importance of behavioural alterations. Behavioural endpoints provide useful sub-lethal indicators of how contaminants influence amphibians, and coupled with standard ecotoxicological endpoints, can provide valuable information for population models assessing the broader ecological consequences of environmental contamination.
Collapse
Affiliation(s)
- Michael Sievers
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Australian Rivers Institute - Coast & Estuaries, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Robin Hale
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kirsten M Parris
- School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, Queensland 4222, Australia
| | - Chantal M Lanctôt
- Australian Rivers Institute, Griffith University, Southport, Queensland 4222, Australia
| | - Stephen E Swearer
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Gaw S, Harford A, Pettigrove V, Sevicke‐Jones G, Manning T, Ataria J, Cresswell T, Dafforn KA, Leusch FDL, Moggridge B, Cameron M, Chapman J, Coates G, Colville A, Death C, Hageman K, Hassell K, Hoak M, Gadd J, Jolley DF, Karami A, Kotzakoulakis K, Lim R, McRae N, Metzeling L, Mooney T, Myers J, Pearson A, Saaristo M, Sharley D, Stuthe J, Sutherland O, Thomas O, Tremblay L, Wood W, Boxall ABA, Rudd MA, Brooks BW. Towards Sustainable Environmental Quality: Priority Research Questions for the Australasian Region of Oceania. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:917-935. [PMID: 31273905 PMCID: PMC6899907 DOI: 10.1002/ieam.4180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 06/24/2019] [Indexed: 05/06/2023]
Abstract
Environmental challenges persist across the world, including the Australasian region of Oceania, where biodiversity hotspots and unique ecosystems such as the Great Barrier Reef are common. These systems are routinely affected by multiple stressors from anthropogenic activities, and increasingly influenced by global megatrends (e.g., the food-energy-water nexus, demographic transitions to cities) and climate change. Here we report priority research questions from the Global Horizon Scanning Project, which aimed to identify, prioritize, and advance environmental quality research needs from an Australasian perspective, within a global context. We employed a transparent and inclusive process of soliciting key questions from Australasian members of the Society of Environmental Toxicology and Chemistry. Following submission of 78 questions, 20 priority research questions were identified during an expert workshop in Nelson, New Zealand. These research questions covered a range of issues of global relevance, including research needed to more closely integrate ecotoxicology and ecology for the protection of ecosystems, increase flexibility for prioritizing chemical substances currently in commerce, understand the impacts of complex mixtures and multiple stressors, and define environmental quality and ecosystem integrity of temporary waters. Some questions have specific relevance to Australasia, particularly the uncertainties associated with using toxicity data from exotic species to protect unique indigenous species. Several related priority questions deal with the theme of how widely international ecotoxicological data and databases can be applied to regional ecosystems. Other timely questions, which focus on improving predictive chemistry and toxicology tools and techniques, will be important to answer several of the priority questions identified here. Another important question raised was how to protect local cultural and social values and maintain indigenous engagement during problem formulation and identification of ecosystem protection goals. Addressing these questions will be challenging, but doing so promises to advance environmental sustainability in Oceania and globally.
Collapse
Affiliation(s)
- Sally Gaw
- School of Physical and Chemical SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Andrew Harford
- Department of the Environment and EnergyAustralian Government, DarwinAustralia
| | - Vincent Pettigrove
- Aquatic Environmental Stress Research CentreRMIT University, BundooraVictoriaAustralia
| | | | | | | | - Tom Cresswell
- Australia's Nuclear Science and Technology OrganisationLucas HeightsAustralia
| | | | - Frederic DL Leusch
- Australian Rivers Institute and School of Environment and ScienceGriffith UniversityBrisbaneAustralia
| | - Bradley Moggridge
- Institute for Applied EcologyUniversity of CanberraCanberraAustralia
| | | | - John Chapman
- Office of Environment and HeritageNew South WalesAustralia
| | - Gary Coates
- Te Rūnanga o Ngāi TahuChristchurchNew Zealand
| | - Anne Colville
- School of Life SciencesUniversity of Technology SydneySydneyAustralia
| | - Claire Death
- Faculty of Veterinary ScienceUniversity of MelbourneVictoriaAustralia
| | - Kimberly Hageman
- Department of Chemistry and BiochemistryUtah State University, LoganUtahUSA
| | - Kathryn Hassell
- Aquatic Environmental Stress Research CentreRMIT University, BundooraVictoriaAustralia
| | - Molly Hoak
- School of BiosciencesThe University of Melbourne, ParkvilleVictoriaAustralia
| | - Jennifer Gadd
- National Institute of Atmospheric and Water ResearchAucklandNew Zealand
| | - Dianne F Jolley
- Faculty of Science, University of Technology SydneySydneyAustralia
| | - Ali Karami
- Environmental Futures Research InstituteGriffith UniversityBrisbaneAustralia
| | | | - Richard Lim
- Faculty of Science, University of Technology SydneySydneyAustralia
| | - Nicole McRae
- School of Physical and Chemical SciencesUniversity of CanterburyChristchurchNew Zealand
| | | | - Thomas Mooney
- Department of the Environment and EnergyAustralian Government, DarwinAustralia
| | - Jackie Myers
- Aquatic Environmental Stress Research CentreRMIT University, BundooraVictoriaAustralia
| | | | - Minna Saaristo
- School of Biological SciencesMonash UniversityMelbourneAustralia
| | - Dave Sharley
- Bio2Lab, Melbourne Innovation CentreGreensboroughAustralia
| | | | | | - Oliver Thomas
- School of Applied Chemistry and Environmental ScienceRMIT University, MelbourneVictoriaAustralia
| | - Louis Tremblay
- Cawthron InstituteNelsonNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | | | | | | | | |
Collapse
|
45
|
South J, Botha TL, Wolmarans NJ, Wepener V, Weyl OLF. Assessing predator-prey interactions in a chemically altered aquatic environment: the effects of DDT on Xenopus laevis and Culex sp. larvae interactions and behaviour. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:771-780. [PMID: 31278447 DOI: 10.1007/s10646-019-02075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Behavioural assays are used as a tool to understand ecotoxicological effects on organisms, but are often not applied in an ecologically relevant context. Assessment of the effect of chemical contaminants on behaviours relating to fitness and trophic interactions for example, requires incorporating predator-prey interactions to create impact assessments. Dichlorodiphenyltrichloroethane (DDT) is a controlled substance but is still regularly used as a form of mosquito control. There is little explicit information on the effect of DDT on animal behaviour and the consequent effects upon trophic interactions. This study uses a 3 × 2 factorial design to assess the feeding behaviour of Xenopus laevis toward Culex sp. larvae when supplied with different prey cues. We also assess the behavioural responses of mosquito larvae when supplied with no threat cue and predator threat cues when exposed to 0 µg/L, 2 µg/L and 20 µg/L DDT. There was a significant "DDT exposure" x "prey cue" interaction whereby DDT significantly decreased the foraging behaviour of X. laevis towards live prey cues, however there was no effect of DDT on X. laevis response to olfactory prey cues. Dichlorodiphenyltrichloroethane exposure caused mosquito larvae to appear hyperactive regardless of DDT concentration. Mosquito larvae anti-predator response was significantly dampened when exposed to 2 µg/L DDT, however when exposed to 20 µg/L the anti-predator responses were not impaired. Our results indicate a complex interplay in trophic interactions under DDT exposure, wherein effects are mediated depending on species and concentration. There are possible implications regarding reduced anti-predator behaviour in the prey species but also reduced foraging capacity in the predator, which could drive changes in ecosystem energy pathways. We demonstrate that in order to quantify effects of pesticides upon trophic interactions it is necessary to consider ecologically relevant behaviours of both predator and prey species.
Collapse
Affiliation(s)
- Josie South
- DST/NRF Research Chair in Inland Fisheries and Freshwater Ecology Laboratory, South African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, 6140, South Africa.
| | - Tarryn L Botha
- Unit for Environmental Sciences and Management, Water Research Group, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Nico J Wolmarans
- Unit for Environmental Sciences and Management, Water Research Group, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Victor Wepener
- Unit for Environmental Sciences and Management, Water Research Group, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Olaf L F Weyl
- DST/NRF Research Chair in Inland Fisheries and Freshwater Ecology Laboratory, South African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, 6140, South Africa
| |
Collapse
|
46
|
Park M, Lee Y, Khan A, Aleta P, Cho Y, Park H, Park YH, Kim S. Metabolite tracking to elucidate the effects of environmental pollutants. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:112-124. [PMID: 31128390 DOI: 10.1016/j.jhazmat.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to determine whether behavioral tests and metabolic profiling of organisms can be promising alternatives for assessing the health of aquatic systems. Water samples from four potential pollution sources in South Korea were collected for toxicity evaluation. First, conventional acute toxicity test in Daphnia magna and behavioral test in zebrafish was conducted to assess water quality. Second, metabolomic analysis was performed on zebrafish exposed to water samples and on environmental fish collected from the same source. Acute toxicity test in D. magna showed that none of the water samples exerted significant adverse effects. However, activity of zebrafish larvae exposed to samples from the zinc smelter (ZS) and industrial complex (IND) sites decreased compared to those exposed to samples from the reference site (RS). Metabolomic analysis using the Manhattan plot and Partial Least Square (PLS)/Orthogonal PLS Discriminant Analysis (OPLS-DA) showed differences in metabolic profiles between RS and ZS, and between IND and abandoned mine site (M). Interestingly, applying the same metabolomic analysis to environmental fish revealed patterns similar to those for zebrafish, despite the uncontrollable variables involved in environmental sampling. This study shows that metabolomics is a promising tool in assessing the health of aquatic environments.
Collapse
Affiliation(s)
- Minseung Park
- Bio Monitoring Laboratory, Program in Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Yeseung Lee
- Metabolomics Laboratory, College of Pharmacy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Adnan Khan
- Metabolomics Laboratory, College of Pharmacy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Prince Aleta
- Bio Monitoring Laboratory, Program in Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Yunchul Cho
- Department of Environmental Engineering, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 300-716, Republic of Korea
| | | | - Youngja Hwang Park
- Metabolomics Laboratory, College of Pharmacy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea.
| | - Sungpyo Kim
- Bio Monitoring Laboratory, Program in Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea.
| |
Collapse
|
47
|
Candolin U, Wong BBM. Mate choice in a polluted world: consequences for individuals, populations and communities. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180055. [PMID: 31352882 DOI: 10.1098/rstb.2018.0055] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pollution (e.g. by chemicals, noise, light, heat) is an insidious consequence of anthropogenic activity that affects environments worldwide. Exposure of wildlife to pollutants has the capacity to adversely affect animal communication and behaviour across a wide range of sensory modalities-by not only impacting the signalling environment, but also the way in which animals produce, perceive and interpret signals and cues. Such disturbances, particularly when it comes to sex, can drastically alter fitness. Here, we consider how pollutants disrupt communication and behaviour during mate choice, and the ecological and evolutionary changes such disturbances can engender. We explain how the different stages of mate choice can be affected by pollution, from encountering mates to the final choice, and how changes to these stages can influence individual fitness, population dynamics and community structure. We end with discussing how an understanding of these disturbances can help inform better conservation and management practices and highlight important considerations and avenues for future research. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organsimal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
48
|
Caro T, Berger J. Can behavioural ecologists help establish protected areas? Philos Trans R Soc Lond B Biol Sci 2019; 374:20180062. [PMID: 31352878 DOI: 10.1098/rstb.2018.0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protecting wild places is conservation's most pressing task given rapid contemporary declines in biodiversity and massive land use changes. We suggest that behavioural ecology has a valuable, albeit limited, role to play in this agenda. Behaviourally based empiricism and modelling, especially of animal movements and habitat preferences have enjoyed wide applicability in delineating reserve boundaries. In protected areas that sanction exploitation, it may also be important to understand individuals' behavioural and life-history responses to management decisions. We also argue, however, that the in-depth studies of behavioural ecologists may have an important role in conservation by elevating species' status from mundane to charismatic and often sparking public empathy, and their mere presence in field generates local (or broader) intrigue. More generally behavioural ecologists will only be listened to, and their contributions considered of conservation importance, if they become more involved in decision-making processes as witnessed by several prominent examples that have supported the establishment of protected areas. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- Tim Caro
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA.,Center for Population Biology, University of California, Davis, CA 95616, USA
| | - Joel Berger
- Department of FWC Biology, Colorado State University, Fort Collins, CO 80523, USA.,Wildlife Conservation Society, Bronx, NY 10460, USA
| |
Collapse
|
49
|
Jiang L, Yang Y, Zhang Y, Liu Y, Pan B, Wang B, Lin Y. Accumulation and toxicological effects of nonylphenol in tomato (Solanum lycopersicum L) plants. Sci Rep 2019; 9:7022. [PMID: 31065044 PMCID: PMC6504949 DOI: 10.1038/s41598-019-43550-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 04/28/2019] [Indexed: 11/18/2022] Open
Abstract
Nonylphenol (NP) is one of the most worrisome and ubiquitous environmental endocrine disruptors. The tomato is one of the most important agricultural plants in the world. However, little is known about the toxicological effects of NP on tomato crops or the accommodative responses of tomato plants to NP stress. Thus, in this study, relevant tests were performed using pot experiments, and they indicated that when the NP concentration in the soil was elevated from 25 mg kg-1 to 400 mg kg-1, NP was progressively accumulated by the tomato plants. The NP induced growth inhibition and a declined in the total chlorophyll content, and it aggravated membrane lipid peroxidation in tomato plants. When confronted with NP stress, the tomato plants correspondingly induced their antioxidant enzymes via both molecular and protein pathways to relieve the NP-induced oxidative stress. All the above results would be illuminating for developing strategies to address NP-induced damage to agricultural output, food quality and public health.
Collapse
Affiliation(s)
- Lei Jiang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Yi Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Yong Zhang
- Hainan Entry-Exit Inspection and Quarantine Bureau, Haikou, 570311, China
| | - Ying Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Bo Pan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Bingjie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
50
|
Hale R, Swearer SE, Sievers M, Coleman R. Balancing biodiversity outcomes and pollution management in urban stormwater treatment wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:302-307. [PMID: 30583104 DOI: 10.1016/j.jenvman.2018.12.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Wetlands are increasingly being constructed to mitigate the effects of urban stormwater, such as altered hydrological regimes and reduced water quality, on downstream aquatic ecosystems. While the primary purpose of these wetlands is to manage stormwater, they also attract animals whose growth, survival and breeding (i.e. 'fitness') may be compromised. Such deleterious effects will be exacerbated if animals are caught in 'ecological traps', mistakenly preferring wetlands with unsuitable environmental conditions. Alternatively, wetlands that offer suitable habitat conditions for animals could be beneficial, especially in fragmented urban landscapes. Consequently, a thorough understanding of the potential ecological impacts of stormwater treatment wetlands is critical for managing unintended consequences to urban biodiversity. To help facilitate this understanding, we draw upon findings from a four-year research program conducted in the city of Melbourne in south-eastern Australia as a case study. First, we summarise our research demonstrating that some stormwater wetlands can be ecological traps for native frogs and fish in the study region, whilst others likely provide important habitat in areas where few natural waterbodies remain. We use our work to highlight that while stormwater wetlands can be ecological traps, their effects can be properly managed. We propose the need for a better understanding of the ecological consequences of changes to wetland quality and their population-level impacts across the landscape. We hope that this study will generate discussions about how to most effectively manage constructed wetlands in urban landscapes and more research for a better understanding of the issues and opportunities regarding potential ecological traps.
Collapse
Affiliation(s)
- Robin Hale
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Stephen E Swearer
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael Sievers
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rhys Coleman
- Melbourne Water Corporation, Docklands, Victoria, 3008, Australia; School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|