1
|
Siddiqui M, Chiang A, Lac E, Kern J, Wilkinson G, Jungwirth A, Allen J, Riley R. Developmental Social Experience Changes Behavior in a Threatening Environment in Corydoras Catfish. Ecol Evol 2024; 14:e70391. [PMID: 39398628 PMCID: PMC11470158 DOI: 10.1002/ece3.70391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Coordinated responses to threats are important for predator evasion in many species. This study examines the effect of developmental social experience on antipredator behavior and group cohesion in a highly gregarious catfish that communicates via tactile interaction, Corydoras aeneus. We reared fish either in a mixed-age group of age-matched peers and adult C. aeneus (mixed-age condition, or MAC), or with age-matched peers only (same-age condition, or SAC). A startle test was conducted with small groups of subadults from either social rearing condition. Prior to any startle events, SAC subadults had increased tactile communication compared to MAC subadults, but SAC individuals were overall less active. SAC fish exhibited a stronger antipredator response to startles, and were more likely to freeze or take refuge in cover in response to a startle than MAC fish. MAC fish tended to respond to startle events by maintaining or decreasing their cohesion, whereas SAC fish tended to maintain or increase their cohesion. These behavioral differences are attributed to MAC fish developing with group protection as a result of shoaling with adults, resulting in reduced antipredator responses when reared with adults. This study underscores how social context during development can be critical in shaping how individuals perceive and respond to potential threats in their environment.
Collapse
Affiliation(s)
- Munir Siddiqui
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Austin Chiang
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Ethan Lac
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Jesse Kern
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Gerald Wilkinson
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Arne Jungwirth
- Konrad Lorenz Institute of EthologyUniversity of Veterinary Medicine ViennaWienAustria
| | - James Allen
- Social and Public Health Sciences Unit, School of Health and WellbeingUniversity of GlasgowGlasgowUK
| | - Riva J. Riley
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
2
|
Yan JL, Rosenbaum JR, Esteves S, Dobbin ML, Dukas R. Sexual conflict and social networks in bed bugs: effects of social experience. Behav Ecol 2024; 35:arae030. [PMID: 38690087 PMCID: PMC11059254 DOI: 10.1093/beheco/arae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/26/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Living in groups can provide essential experience that improves sexual performance and reproductive success. While the effects of social experience have drawn considerable scientific interest, commonly used behavioral assays often do not capture the dynamic nature of interactions within a social group. Here, we conducted 3 experiments using a social network framework to test whether social experience during early adulthood improves the sexual competence of bed bugs (Cimex lectularius) when placed in a complex and competitive group environment. In each experiment, we observed replicate groups of bed bugs comprising previously socialized and previously isolated individuals of the same sex, along with an equal number of standardized individuals of the opposite sex. Regardless of whether we controlled for their insemination history, previously isolated males mounted and inseminated females at significantly higher rates than previously socialized males. However, we found no evidence of social experience influencing our other measures of sexual competence: proportion of mounts directed at females, ability to overcome female resistance, and strength of opposite-sex social associations. We similarly did not detect effects of social experience on our female sexual competence metrics: propensity to avoid mounts, rate of successfully avoiding mounts, opposite-sex social association strength, and rate of receiving inseminations. Our findings indicate that early social experience does not improve sexual competence in male and female bed bugs.
Collapse
Affiliation(s)
- Janice L Yan
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jack R Rosenbaum
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Selena Esteves
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Maggie L Dobbin
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
3
|
Ernst TR, Hogers RMHW, Korosi A, van Leeuwen JL, Kotrschal A, Pollux BJA. Coercive mating has no impact on spatial learning, cognitive flexibility, and fecundity in female porthole livebearers (Poeciliopsis gracilis). JOURNAL OF FISH BIOLOGY 2024. [PMID: 38402692 DOI: 10.1111/jfb.15696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Coercive mating is a sexual selection strategy that is likely to influence female cognition. Female harassment levels have been linked to altered brain gene expression patterns and brain size evolution, suggesting females may respond to coercive mating by investing energy into "outsmarting" males. However, females exposed to coercive males have decreased foraging efficiency and likely increased stress levels, suggesting their brain function might instead be impaired. While it is therefore likely that coercive mating impacts female cognitive abilities, a direct test of this idea is currently lacking. In this study, we investigate the impact of coercive mating on female spatial memory and cognitive flexibility in a species with prevalent coercive mating. We compared the performance of female porthole livebearers (Poeciliopsis gracilis), which had been previously housed alone or with a coercive male, in both a spatial food localization task and a reversal learning task. While we found that both single and paired fish exhibited high proficiency in learning both tasks, we found no differences in learning ability between females that had or had not experienced coercive mating. In addition, our study found that the presence of a coercive male had no impact on female fecundity, but did influence female mass and standard length. Several studies have assumed that the presence of males, particularly coercive males, may affect the cognitive performance of female fish. However, our study shows that for some species females adapted to coercive mating regimes may be unaffected by male presence with regards to some cognitive tasks.
Collapse
Affiliation(s)
- Tiffany R Ernst
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - R M H W Hogers
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - A Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - J L van Leeuwen
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - A Kotrschal
- Department of Animal Sciences, Behavioral Ecology Group, Wageningen University, Wageningen, The Netherlands
| | - Bart J A Pollux
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
4
|
MacLeod KJ, English S, Ruuskanen SK, Taborsky B. Stress in the social context: a behavioural and eco-evolutionary perspective. J Exp Biol 2023; 226:jeb245829. [PMID: 37529973 PMCID: PMC10445731 DOI: 10.1242/jeb.245829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The social environment is one of the primary sources of challenging stimuli that can induce a stress response in animals. It comprises both short-term and stable interactions among conspecifics (including unrelated individuals, mates, potential mates and kin). Social stress is of unique interest in the field of stress research because (1) the social domain is arguably the most complex and fluctuating component of an animal's environment; (2) stress is socially transmissible; and (3) stress can be buffered by social partners. Thus, social interactions can be both the cause and cure of stress. Here, we review the history of social stress research, and discuss social stressors and their effects on organisms across early life and adulthood. We also consider cross-generational effects. We discuss the physiological mechanisms underpinning social stressors and stress responses, as well as the potential adaptive value of responses to social stressors. Finally, we identify outstanding challenges in social stress research, and propose a framework for addressing these in future work.
Collapse
Affiliation(s)
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Suvi K. Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, FI-40014, Finland
- Department of Biology, University of Turku, Turku, FI-20014, Finland
| | - Barbara Taborsky
- Division of Behavioural Biology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Institute for Advanced Study, 14193 Berlin, Germany
| |
Collapse
|
5
|
Webster MM. Social learning in non-grouping animals. Biol Rev Camb Philos Soc 2023; 98:1329-1344. [PMID: 36992613 DOI: 10.1111/brv.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Social learning is widespread in the animal kingdom and is involved in behaviours from navigation and predator avoidance to mate choice and foraging. While social learning has been extensively studied in group-living species, this article presents a literature review demonstrating that social learning is also seen in a range of non-grouping animals, including arthropods, fishes and tetrapod groups, and in a variety of behavioural contexts. We should not be surprised by this pattern, since non-grouping animals are not necessarily non-social, and stand to benefit from attending to and responding to social information in the same ways that group-living species do. The article goes on to ask what non-grouping species can tell us about the evolution and development of social learning. First, while social learning may be based on the same cognitive processes as other kinds of learning, albeit with social stimuli, sensory organs and brain regions associated with detection and motivation to respond to social information may be under selection. Non-grouping species may provide useful comparison taxa in phylogenetic analyses investigating if and how the social environment drives selection on these input channels. Second, non-grouping species may be ideal candidates for exploring how ontogenetic experience of social cues shapes the development of social learning, allowing researchers to avoid some of the negative welfare implications associated with raising group-living animals under restricted social conditions. Finally, while non-grouping species may be capable of learning socially under experimental conditions, there is a need to consider how non-grouping restricts access to learning opportunities under natural conditions and whether this places a functional constraint on what non-grouping animals actually learn socially in the wild.
Collapse
Affiliation(s)
- Mike M Webster
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| |
Collapse
|
6
|
Emmerson MG. Losing a parent in early-life impairs flock size discrimination and lowers oxytocin receptor abundance in a medial amygdala homologue of adult zebra finches. Dev Psychobiol 2022; 64:e22307. [PMID: 36282756 DOI: 10.1002/dev.22307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 01/27/2023]
Abstract
Experiencing inadequate parental care during early-life diminishes adult social competencies. For example, low parental care impairs adult socio-cognitive abilities (e.g., recognizing familiar conspecifics) and affiliation (e.g., close social proximity); outcomes attributed to diminished medial amygdala nonapeptide functioning in rodents. Whether parental care has effects beyond familiarity, and if siblings have similar effects to parents, is unclear. Here, zebra finches were used to explore if parent and/or sibling number shape adult recognition and preference of small versus large flocks and nonapeptide (oxytocin, vasotocin) receptor expression in an avian homologue of the mammalian medial amygdala. Chicks were raised by single mothers or fathers in small broods or paired parents in small or large broods matched to single parents for chicks per nest or per parent, respectively. Pair-raised birds had preferred flock sizes as adults, but birds raised by single parents had equal preference for either size. Oxytocin receptor expression was lower in birds raised by single parents versus paired parents, but vasotocin receptor levels were unaffected. Such results highlight parents as formative antecedents of their offspring's social competencies related to group size preference and their nonapeptide mechanisms, outcomes that influence an animal's ability to live in social groups.
Collapse
Affiliation(s)
- Michael G Emmerson
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
De Waele H, Vila Pouca C, van Boerdonk D, Luiten E, Leenheer LM, Mitchell D, Vega-Trejo R, Kotrschal A. Jumping out of trouble: evidence for a cognitive map in guppies ( Poecilia reticulata). Behav Ecol 2022; 33:1161-1169. [PMID: 36518634 PMCID: PMC9735236 DOI: 10.1093/beheco/arac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 09/10/2024] Open
Abstract
Spatial cognitive abilities allow individuals to remember the location of resources such as food patches, predator hide-outs, or shelters. Animals typically incorporate learned spatial information or use external environmental cues to navigate their surroundings. A spectacular example of how some fishes move is through aerial jumping. For instance, fish that are trapped within isolated pools, cut off from the main body of water during dry periods, may jump over obstacles and direct their jumps to return to safe locations. However, what information such re-orientation behavior during jumping is based on remains enigmatic. Here we combine a lab and field experiment to test if guppies (Poecilia reticulata) incorporate learned spatial information and external environmental cues (visual and auditory) to determine where to jump. In a spatial memory assay we found that guppies were more likely to jump towards deeper areas, hence incorporating past spatial information to jump to safety. In a matched versus mismatched spatial cue experiment in the field, we found that animals only showed directed jumping when visual and auditory cues matched. We show that in unfamiliar entrapments guppies direct their jumps by combining visual and auditory cues, whereas in familiar entrapments they use a cognitive map. We hence conclude that jumping behavior is a goal-directed behavior, guided by different sources of information and involving important spatial cognitive skills.
Collapse
Affiliation(s)
- Hannah De Waele
- Department of Animal Sciences: Behavioural Ecology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Catarina Vila Pouca
- Department of Animal Sciences: Behavioural Ecology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Dimphy van Boerdonk
- Department of Animal Sciences: Behavioural Ecology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Ewoud Luiten
- Department of Animal Sciences: Behavioural Ecology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Lisanne M Leenheer
- Department of Animal Sciences: Behavioural Ecology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - David Mitchell
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Regina Vega-Trejo
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3SZ, UK
| | - Alexander Kotrschal
- Department of Animal Sciences: Behavioural Ecology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
8
|
Fan R, Reader SM, Sakata JT. Alarm cues and alarmed conspecifics: neural activity during social learning from different cues in Trinidadian guppies. Proc Biol Sci 2022; 289:20220829. [PMID: 36043284 PMCID: PMC9428528 DOI: 10.1098/rspb.2022.0829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
Learning to respond appropriately to novel dangers is often essential to survival and success, but carries risks. Learning about novel threats from others (social learning) can reduce these risks. Many species, including the Trinidadian guppy (Poecilia reticulata), respond defensively to both conspecific chemical alarm cues and conspecific anti-predator behaviours, and in other fish such social information can lead to a learned aversion to novel threats. However, relatively little is known about the neural substrates underlying social learning and the degree to which different forms of learning share similar neural mechanisms. Here, we explored the neural substrates mediating social learning of novel threats from two different conspecific cues (i.e. social cue-based threat learning). We first demonstrated that guppies rapidly learn about threats paired with either alarm cues or with conspecific threat responses (demonstration). Then, focusing on acquisition rather than recall, we discovered that phospho-S6 expression, a marker of neural activity, was elevated in guppies during learning from alarm cues in the putative homologue of the mammalian lateral septum and the preoptic area. Surprisingly, these changes in neural activity were not observed in fish learning from conspecific demonstration. Together, these results implicate forebrain areas in social learning about threat but raise the possibility that circuits contribute to such learning in a stimulus-specific manner.
Collapse
Affiliation(s)
- Raina Fan
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Simon M. Reader
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T. Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Center for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Social behavior mediates the use of social and personal information in wild jays. Sci Rep 2022; 12:2494. [PMID: 35169186 PMCID: PMC8847367 DOI: 10.1038/s41598-022-06496-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
The factors favoring the evolution of certain cognitive abilities in animals remain unclear. Social learning is a cognitive ability that reduces the cost of acquiring personal information and forms the foundation for cultural behavior. Theory predicts the evolutionary pressures to evolve social learning should be greater in more social species. However, research testing this theory has primarily occurred in captivity, where artificial environments can affect performance and yield conflicting results. We compared the use of social and personal information, and the social learning mechanisms used by wild, asocial California scrub-jays and social Mexican jays. We trained demonstrators to solve one door on a multi-door task, then measured the behavior of naïve conspecifics towards the task. If social learning occurs, observations of demonstrators will change the rate that naïve individuals interact with each door. We found both species socially learned, though personal information had a much greater effect on behavior in the asocial species while social information was more important for the social species. Additionally, both species used social information to avoid, rather than copy, conspecifics. Our findings demonstrate that while complex social group structures may be unnecessary for the evolution of social learning, it does affect the use of social versus personal information.
Collapse
|
10
|
Montalbano G, Bertolucci C, Lucon-Xiccato T. Cognitive Phenotypic Plasticity: Environmental Enrichment Affects Learning but Not Executive Functions in a Teleost Fish, Poecilia reticulata. BIOLOGY 2022; 11:64. [PMID: 35053062 PMCID: PMC8772815 DOI: 10.3390/biology11010064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Many aspects of animal cognition are plastically adjusted in response to the environment through individual experience. A remarkable example of this cognitive phenotypic plasticity is often observed when comparing individuals raised in a barren environment to individuals raised in an enriched environment. Evidence of enrichment-driven cognitive plasticity in teleost fish continues to grow, but it remains restricted to a few cognitive traits. The purpose of this study was to investigate how environmental enrichment affects multiple cognitive traits (learning, cognitive flexibility, and inhibitory control) in the guppy, Poecilia reticulata. To reach this goal, we exposed new-born guppies to different treatments: an enrichment environment with social companions, natural substrate, vegetation, and live prey or a barren environment with none of the above. After a month of treatment, we tested the subjects in a battery of three cognitive tasks. Guppies from the enriched environment learned a color discrimination faster compared to guppies from the environment with no enrichments. We observed no difference between guppies of the two treatments in the cognitive flexibility task, requiring selection of a previously unrewarded stimulus, nor in the inhibitory control task, requiring the inhibition of the attack response toward live prey. Overall, the results indicated that environmental enrichment had an influence on guppies' learning ability, but not on the remaining cognitive functions investigated.
Collapse
Affiliation(s)
- Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | | |
Collapse
|
11
|
Fischer S, Balshine S, Hadolt MC, Schaedelin FC. Siblings matter: Family heterogeneity improves associative learning later in life. Ethology 2021. [DOI: 10.1111/eth.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Stefan Fischer
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
- Department of Behavioural and Cognitive Biology University of Vienna Vienna Austria
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour McMaster University Hamilton ON Canada
| | - Michaela C. Hadolt
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
| | - Franziska C. Schaedelin
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
| |
Collapse
|
12
|
Sanmartín-Villar I, Jeanson R. Early social context does not influence behavioral variation at adulthood in ants. Curr Zool 2021; 68:335-344. [PMID: 35592349 PMCID: PMC9113369 DOI: 10.1093/cz/zoab063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
Early experience can prepare offspring to adapt their behaviors to the environment they are likely to encounter later in life. In several species of ants, colonies show ontogenic changes in the brood-to-worker ratio that are known to have an impact on worker morphology. However, little information is available on the influence of fluctuations in the early social context on the expression of behavior in adulthood. Using the ant Lasius niger, we tested whether the brood-to-worker ratio during larval stages influenced the level of behavioral variability at adult stages. We raised batches of 20 or 180 larvae in the presence of 60 workers until adulthood. We then quantified the activity level and wall-following tendency of callow workers on 10 successive trials to test the prediction that larvae reared under a high brood-to-worker ratio should show greater behavioral variations. We found that manipulation of the brood-to-worker ratio influenced the duration of development and the size of individuals at emergence. We detected no influence of early social context on the level of between- or within-individual variation measured for individual activity level or on wall-following behavior. Our study suggests that behavioral traits may be more canalized than morphological traits.
Collapse
Affiliation(s)
- Iago Sanmartín-Villar
- Centre de Recherches Sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Universidade de Vigo, ECOEVO Lab, Escola de Enxeñaría Forestal, Campus A Xunqueira, Pontevedra, Spain
| | - Raphaël Jeanson
- Centre de Recherches Sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
Culbert BM, Tsui N, Balshine S. Learning performance is associated with social preferences in a group-living fish. Behav Processes 2021; 191:104464. [PMID: 34329728 DOI: 10.1016/j.beproc.2021.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/13/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Many animals live in groups yet grouping tendencies and preferences for groups of different sizes vary considerably between individuals. This variation reflects, at least in part, differences in how individuals evaluate and perceive their physical surroundings and their social environment. While such differences are likely related to individual variation in cognition, there have been few studies that have directly investigated how cognitive abilities are linked to individual grouping decisions. Therefore, in this study we assessed whether performance on a foraging-based reversal learning task is related to grouping preferences (a group of three fish versus a single fish) in a group-living cichlid fish, Neolamprologus pulcher. While most fish preferred to associate with the group over a single fish, individuals that completed the reversal learning task the quickest were the least interested in the group under elevated predation risk. In addition, fish that quickly completed the reversal learning task also adjusted their grouping preferences the most when predation risk increased. This result suggests that the observed relationship between learning performance and grouping decisions may be linked to individual differences in behavioural flexibility. Overall, our results offer valuable insight into the potential factors that underlie inter-individual variation in grouping decisions.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Nicholas Tsui
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Iwata E, Masamoto K, Kuga H, Ogino M. Timing of isolation from an enriched environment determines the level of aggressive behavior and sexual maturity in Siamese fighting fish (Betta splendens). BMC ZOOL 2021; 6:15. [PMID: 37170314 PMCID: PMC10127351 DOI: 10.1186/s40850-021-00081-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Teleost fish are known to respond to environmental manipulation, which makes them an ideal model animal for testing relationships between the environment and behavior. The Siamese fighting fish, Betta splendens, is a solitary, highly territorial fish that displays fierce stereotyped aggressive behavior toward conspecifics or members of other species. Adult fish, especially males, are generally housed in isolation in captivity. Here we report evidence that an enriched rearing environment can decrease the level of aggression in bettas and enable adults to be housed in groups.
Results
B. splendens individuals were hatched in our laboratory and raised in groups in an enriched environment. At the juvenile or subadult stage, some individuals were relocated to a poor environment and kept in isolation. To evaluate aggression, a mirror-image test was conducted at the juvenile, subadult, and adult stages for each fish, and body parameters as well as plasma concentrations of 11-ketotestosterone, estradiol, and cortisol were evaluated. Male and female adult bettas raised in a group showed lower levels of aggression than other adult fish. The magnitude of threatening behavior was greater in adult bettas isolated as subadults, whereas the magnitude of fighting behavior was grater in adult bettas isolated as juveniles. The influence of rearing conditions on behavior was greater in females than in males. Plasma cortisol concentrations of adult bettas isolated as subadults after the mirror-image test were higher than those in other experimental groups. Adult males isolated as subadults had significantly higher plasma concentrations of 11-ketotestosterone than males raised in a group and isolated as juveniles. Females isolated as subadults had a higher gonadosomatic index than females raised in a group and females isolated as juveniles.
Conclusions
These results indicate that bettas can be kept in a group under enriched environments and that the timing of isolation influences the aggression and sexual maturity of bettas. Female and male bettas responded differently to environmental manipulation. Judging from their level of sexual maturity, bettas isolated as subadults show proper development.
Collapse
|
15
|
Goldman JA, Crane AL, Feyten LEA, Collins E, Brown GE. Disturbance cue communication is shaped by emitter diet and receiver background risk in Trinidadian guppies. Curr Zool 2021; 68:433-440. [PMID: 36090140 PMCID: PMC9450174 DOI: 10.1093/cz/zoab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
In animal communication systems, individuals that detect a cue (i.e., “receivers”) are often influenced by characteristics of the cue emitter. For instance, in many species, receivers avoid chemical cues that are released by emitters experiencing disturbance. These chemical “disturbance cues” appear to benefit receivers by warning them about nearby danger, such as a predator’s approach. While the active ingredients in disturbance cues have been largely unexplored, by-products of metabolized protein are thought to play a role for some species. If so, the content (quality) and volume (quantity) of the emitter’s diet should affect their disturbance cues, thus altering how receivers perceive the cues and respond. Guppies Poecilia reticulata are a species known to discriminate among disturbance cues from different types of donors, but dietary variation has yet to be explored. In this study, we found evidence that diet quality and quantity can affect disturbance cues released by guppy emitters (i.e., experimental “donors”). Receivers discriminated between donor cue treatments, responding more strongly to cues from donors fed a protein-rich bloodworm diet (Experiment 1), as well as an overall larger diet (Experiment 2). We also found that receivers exposed to higher background risk were more sensitive to disturbance cue variation, with the strongest avoidance responses displayed by high-risk receivers toward disturbance cues from donors fed the high-quality diet. Therefore, diet, and perhaps protein specifically, affects either the concentration or composition of disturbance cues released by guppies. Such variation may be important in information signaling in social species like the guppy.
Collapse
Affiliation(s)
- Jack A Goldman
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, Canada H4B 1R6
| | - Adam L Crane
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, Canada H4B 1R6
| | - Laurence E A Feyten
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, Canada H4B 1R6
| | - Emily Collins
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, Canada H4B 1R6
| | - Grant E Brown
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, Canada H4B 1R6
| |
Collapse
|
16
|
Abstract
Explaining how animals respond to an increasingly urbanised world is a major challenge for evolutionary biologists. Urban environments often present animals with novel problems that differ from those encountered in their evolutionary past. To navigate these rapidly changing habitats successfully, animals may need to adjust their behaviour flexibly over relatively short timescales. These behavioural changes, in turn, may be facilitated by an ability to acquire, store and process information from the environment. The question of how cognitive abilities allow animals to avoid threats and exploit resources (or constrain their ability to do so) is attracting increasing research interest, with a growing number of studies investigating cognitive and behavioural differences between urban-dwelling animals and their non-urban counterparts. In this review we consider why such differences might arise, focusing on the informational challenges faced by animals living in urban environments, and how different cognitive abilities can assist in overcoming these challenges. We focus largely on birds, as avian taxa have been the subject of most research to date, but discuss work in other species where relevant. We also address the potential consequences of cognitive variation at the individual and species level. For instance, do urban environments select for, or influence the development of, particular cognitive abilities? Are individuals or species with particular cognitive phenotypes more likely to become established in urban habitats? How do other factors, such as social behaviour and individual personality, interact with cognition to influence behaviour in urban environments? The aim of this review is to synthesise current knowledge and identify key avenues for future research, in order to improve our understanding of the ecological and evolutionary consequences of urbanisation.
Collapse
Affiliation(s)
- Victoria E Lee
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| |
Collapse
|
17
|
Salena MG, Turko AJ, Singh A, Pathak A, Hughes E, Brown C, Balshine S. Understanding fish cognition: a review and appraisal of current practices. Anim Cogn 2021; 24:395-406. [PMID: 33595750 DOI: 10.1007/s10071-021-01488-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/24/2020] [Accepted: 02/06/2021] [Indexed: 02/04/2023]
Abstract
With over 30,000 recognized species, fishes exhibit an extraordinary variety of morphological, behavioural, and life-history traits. The field of fish cognition has grown markedly with numerous studies on fish spatial navigation, numeracy, learning, decision-making, and even theory of mind. However, most cognitive research on fishes takes place in a highly controlled laboratory environment and it can therefore be difficult to determine whether findings generalize to the ecology of wild fishes. Here, we summarize four prominent research areas in fish cognition, highlighting some of the recent advances and key findings. Next, we survey the literature, targeting these four areas, and quantify the nearly ubiquitous use of captive-bred individuals and a heavy reliance on lab-based research. We then discuss common practices that occur prior to experimentation and within experiments that could hinder our ability to make more general conclusions about fish cognition, and suggest possible solutions. By complementing ecologically relevant laboratory-based studies with in situ cognitive tests, we will gain further inroads toward unraveling how fishes learn and make decisions about food, mates, and territories.
Collapse
Affiliation(s)
- Matthew G Salena
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Andy J Turko
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Angad Singh
- Department of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Avani Pathak
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Emily Hughes
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Culum Brown
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Sigal Balshine
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
18
|
Kilgour RJ, Norris DR, McAdam AG. Carry-over effects of resource competition and social environment on aggression. Behav Ecol 2019. [DOI: 10.1093/beheco/arz170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Aggressive behavior is common in many species and is often adaptive because it enables individuals to gain access to limited resources. However, aggression is also highly plastic and the degree of plasticity could be influenced by factors such as resource limitation and the social environment. In this study, we examined how the effects of social experience and resource limitation could persist to affect future aggressive interactions. Using naturally inbred strains of Drosophila melanogaster that differ in aggressiveness, we manipulated the level of available resources by varying fly density (two treatments: high and low per capita resources) and group composition by varying strain frequency (five treatments: homogeneous strains, or mixed at 1:3, 1:1 or 3:1 ratios of the more aggressive to less-aggressive strain). For each treatment group, we measured aggression before and after flies were placed through a 4-day period of fixed resources. There was no consistent effect of resource competition on aggression. Instead, changes in aggression depended on resource availability in combination with group composition. In homogeneous groups made up of only one strain, all males became more aggressive following the fixed-resource period, regardless of fly density. In mixed-strain treatments at high density, we observed plastic shifts in aggression of males from both strains, but the direction of plastic responses depended on social composition. Our results show that aggression may not only be influenced by the intensity of previous competitive experiences caused by resource limitation, but also through social effects caused by the composition of the group.
Collapse
Affiliation(s)
- R J Kilgour
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - D R Norris
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - A G McAdam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Emergence of consistent intra-individual locomotor patterns during zebrafish development. Sci Rep 2019; 9:13647. [PMID: 31541136 PMCID: PMC6754443 DOI: 10.1038/s41598-019-49614-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The analysis of larval zebrafish locomotor behavior has emerged as a powerful indicator of perturbations in the nervous system and is used in many fields of research, including neuroscience, toxicology and drug discovery. The behavior of larval zebrafish however, is highly variable, resulting in the use of large numbers of animals and the inability to detect small effects. In this study, we analyzed whether individual locomotor behavior is stable over development and whether behavioral parameters correlate with physiological and morphological features, with the aim of better understanding the variability and predictability of larval locomotor behavior. Our results reveal that locomotor activity of an individual larva remains consistent throughout a given day and is predictable throughout larval development, especially during dark phases, under which larvae demonstrate light-searching behaviors and increased activity. The larvae’s response to startle-stimuli was found to be unpredictable, with no correlation found between response strength and locomotor activity. Furthermore, locomotor activity was not associated with physiological or morphological features of a larva (resting heart rate, body length, size of the swim bladder). Overall, our findings highlight the areas of intra-individual consistency, which could be used to improve the sensitivity of assays using zebrafish locomotor activity as an endpoint.
Collapse
|
20
|
Armstrong T, Khursigara AJ, Killen SS, Fearnley H, Parsons KJ, Esbaugh AJ. Oil exposure alters social group cohesion in fish. Sci Rep 2019; 9:13520. [PMID: 31534177 PMCID: PMC6751191 DOI: 10.1038/s41598-019-49994-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022] Open
Abstract
Many animal taxa live in groups to increase foraging and reproductive success and aid in predator avoidance. For fish, a large proportion of species spend all or part of their lives in groups, with group coordination playing an important role in the emergent benefits of group-living. Group cohesion can be altered by an array of factors, including exposure to toxic environmental contaminants. Oil spills are one of the most serious forms of pollution in aquatic systems, and while a range of effects of acute oil exposure on animal physiology have been demonstrated, sub-lethal effects on animal behavior are relatively under-studied. Here we used an open-field behavioral assay to explore influence of acute oil exposure on social behavior in a gregarious fish native to the Gulf of Mexico, Atlantic croaker (Micropogonias undulatus). We used two oil concentrations (0.7% and 2% oil dilution, or 6.0 ± 0.9 and 32.9 ± 5.9 μg l-1 ΣPAH50 respectively) and assays were performed when all members of a group were exposed, when only one member was exposed, and when no individuals were exposed. Shoal cohesion, as assessed via mean neighbor distance, showed significant impairment following acute exposure to 2% oil. Fish in oil-exposed groups also showed reduced voluntary movement speed. Importantly, overall group cohesion was disrupted when even one fish within a shoal was exposed to 2% oil, and the behavior of unexposed in mixed groups, in terms of movement speed and proximity to the arena wall, was affected by the presence of these exposed fish. These results demonstrate that oil exposure can have adverse effects on fish behavior that may lead to reduced ecological success.
Collapse
Affiliation(s)
- Tiffany Armstrong
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Alexis J Khursigara
- University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, 78373, USA.
| | - Shaun S Killen
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Hannah Fearnley
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Kevin J Parsons
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Andrew J Esbaugh
- University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, 78373, USA
| |
Collapse
|
21
|
de Carvalho DR, Flecker AS, Alves CBM, Sparks JP, Pompeu PS. Trophic responses to aquatic pollution of native and exotic livebearer fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:503-515. [PMID: 31128341 DOI: 10.1016/j.scitotenv.2019.05.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/25/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
The objective of this study was to evaluate if aquatic pollution promote diet shifts in two livebearer fishes (Poeciliidae): an exotic species, the guppy (Poecilia reticulata), and a native livebearer (Phalloceros uai). The study was carried out in a Brazilian basin highly impacted by anthropogenic activities, especially discharge of domestic and industrial sewage from a region with more than five million human inhabitants. To evaluate the trophic ecology of both native and exotic species it was analysed carbon (δ13C) and nitrogen (δ15N) stable isotopes of fish tissue, food resources and, sewage. Moreover, stable isotopes analyses were coupled with gut contents of the two species to provide additional information about fish diet. Exotic guppy abundance was high in the most polluted site, where P. reticulata assimilated carbon directly from sewage. The native species was absent in the most polluted site, but presented wider niches than the exotic species in almost all other sites. Gut content analyses indicated high consumption of aquatic insects by both species. However, while the native species consumed a diverse suite of insect taxa, the exotic species consumed mainly Chironomidae larvae. We conclude that aquatic pollution promotes diet shifts in both native and exotic species, with both species changing their trophic niches in a similar way according to the level of degradation of the environment. The ability to directly assimilate sewage, together with its capacity to survive in environments with poor water quality and its reproductive strategy, may favour the establishment of exotic guppies in strongly polluted sites.
Collapse
Affiliation(s)
- Débora Reis de Carvalho
- Laboratório de Ecologia de Peixes, Setor de Ecologia, Departamento de Biologia, 3, Campus Universitário, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil.
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Carlos Bernardo Mascarenhas Alves
- Laboratório Nuvelhas, Projeto Manuelzão, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Jed P Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paulo Santos Pompeu
- Laboratório de Ecologia de Peixes, Setor de Ecologia, Departamento de Biologia, 3, Campus Universitário, Caixa Postal 3037, 37200-000 Lavras, MG, Brazil
| |
Collapse
|
22
|
Nurture is above nature: nursery experience determines habitat preference of red sea bream Pagrus major juveniles. J ETHOL 2019. [DOI: 10.1007/s10164-019-00605-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Screven LA, Dent ML. Social isolation produces no effect on ultrasonic vocalization production in adult female CBA/CaJ mice. PLoS One 2019; 14:e0213068. [PMID: 30835741 PMCID: PMC6400338 DOI: 10.1371/journal.pone.0213068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 02/14/2019] [Indexed: 12/24/2022] Open
Abstract
Mice produce ultrasonic vocalizations (USVs) in a wide variety of social contexts, including courtship, investigation, and territorial defense. Despite the belief that mouse USVs are innate, social experience may be necessary for mice to learn the appropriate situation to emit USVs. Mouse USVs have been divided into categories based on their spectrotemporal parameters, but it is currently unclear if social experience changes these parameters (e.g., frequency and duration) or the proportion of calls from each category produced. Social isolation has been found to influence USV production in male mice. To investigate the influence of social isolation on vocal behavior in female mice, recordings were made of USVs emitted to unfamiliar male and female mice by subjects with one of three types of social experience. Twenty-four adult female CBA/CaJ mice either lived alone, lived with other females only, or lived with other females and had limited access to a male. Mice were recorded while in isolation, ensuring all recorded USVs were from the female of interest. Vocalizations were separated into nine categories and peak frequency, duration, and bandwidth were measured for every call. Socially isolated mice did not produce significantly more USVs or USV types than socially experienced mice. Social isolation did not have a significant effect on the features of USVs, suggesting production of USVs may not be learned in female mice.
Collapse
Affiliation(s)
- Laurel A. Screven
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, United States of America
| | - Micheal L. Dent
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, United States of America
| |
Collapse
|
24
|
Rudin FS, Simmons LW, Tomkins JL. Social cues affect quantitative genetic variation and covariation in animal personality traits. Evolution 2019; 73:540-553. [PMID: 30549262 DOI: 10.1111/evo.13661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022]
Abstract
The social environment is expected to have substantial effects on behavior, and as a consequence, its heritability and evolvability. We investigated these effects by exposing Australian field crickets (Teleogryllus oceanicus) to either silence or recordings of male acoustic sexual signals. We used a combined pedigree and full-sib/half-sib breeding design to estimate the repeatability, heritability, and evolvability of behaviors related to boldness, exploration, and activity. All behaviors measured were significantly repeatable in both social environments. Additionally, most behaviors showed significant heritabilities in the two environments. We found no difference in repeatabilities between the silent and the acoustic environment but did find significant differences in the heritabilities and evolvabilities between these environments. There was a high degree of similarity between the phenotypic covariance matrices across the two environments, while the genotypic covariance matrices were highly dissimilar. Reflecting this, we found significant genotype-by-environment interactions for most of the behaviors. Lastly, we found that the repeatable aspect of behavior ("personality") was significantly heritable for most behaviors, but that these heritabilities were higher in the acoustic than in the silent environment. We conclude that the social environment can have a significant impact on the heritability and evolvability of behavior, and argue that evolutionary inferences from phenotypic studies should be made with caution.
Collapse
Affiliation(s)
- Fabian S Rudin
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
25
|
Champneys T, Castaldo G, Consuegra S, Garcia de Leaniz C. Density-dependent changes in neophobia and stress-coping styles in the world's oldest farmed fish. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181473. [PMID: 30662751 PMCID: PMC6304122 DOI: 10.1098/rsos.181473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/09/2018] [Indexed: 05/02/2023]
Abstract
Farmed fish are typically reared at densities much higher than those observed in the wild, but to what extent crowding results in abnormal behaviours that can impact welfare and stress coping styles is subject to debate. Neophobia (i.e. fear of the 'new') is thought to be adaptive under natural conditions by limiting risks, but it is potentially maladapted in captivity, where there are no predators or novel foods. We reared juvenile Nile tilapia (Oreochromis niloticus) for six weeks at either high (50 g l-1) or low density (14 g l-1), assessed the extent of skin and eye darkening (two proxies of chronic stress), and exposed them to a novel object in an open test arena, with and without cover, to assess the effects of density on neophobia and stress coping styles. Fish reared at high density were darker, more neophobic, less aggressive, less mobile and less likely to take risks than those reared at low density, and these effects were exacerbated when no cover was available. Thus, the reactive coping style shown by fish at high density was very different from the proactive coping style shown by fish at low density. Our findings provide novel insights into the plasticity of fish behaviour and the effects of aquaculture intensification on one of the world's oldest farmed and most invasive fish, and highlight the importance of considering context. Crowding could have a positive effect on the welfare of tilapia by reducing aggressive behaviour, but it can also make fish chronically stressed and more fearful, which could make them less invasive.
Collapse
Affiliation(s)
| | | | | | - C. Garcia de Leaniz
- Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|
26
|
|
27
|
Silva DCVR, Araújo CVM, Marassi RJ, Cardoso-Silva S, Neto MB, Silva GC, Ribeiro R, Silva FT, Paiva TCB, Pompêo MLM. Influence of interspecific interactions on avoidance response to contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:824-831. [PMID: 29925054 DOI: 10.1016/j.scitotenv.2018.06.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/02/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
An increasing number of studies have shown the ability of organisms to escape from toxic effects due to contamination, by moving spatially towards less contaminated habitats. However, this issue has been investigated in monospecific scenarios, without considering possible interactions between species during the contamination avoidance process. It is widely known that the spatial distribution of one species can be affected by another one, in different ways. Therefore, the main question addressed in the present study was as follows: Might interspecific interaction between the freshwater fish Danio rerio (zebrafish) and Poecilia reticulata (guppy) change their behavior patterns in terms of avoidance in the presence of a copper gradient? Zebrafish and guppies exposed to a copper gradient were tested for avoidance responses in a free-choice, non-forced, static, multi-compartmented exposure system, using two distinct approaches: (1) monospecific tests, in which only one species was exposed to the copper gradient, at two different population densities; and (2) multispecific tests, in which both species were tested simultaneously. In the control (with no copper) monospecific tests, both species were randomly distributed; however, in the control multispecific test, P. reticulata tended to aggregate. In the monospecific tests with a copper gradient, both species avoided copper in a similar way, with AC50 (concentration triggering avoidance in 50% of the exposed population) values between 15 and 18 μg·L-1, irrespective of the population density. However, in the multispecific tests, P. reticulata displaced D. rerio to previously avoided copper levels, consequently increasing the AC50 of D. rerio to 75 μg·L-1. This study shows the importance of understanding the interactions among species in contaminated areas, and the way that one species can prevent the avoidance behavior of another.
Collapse
Affiliation(s)
- Daniel C V R Silva
- Department of Ecology, University of São Paulo, São Paulo, Brazil; Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Rodrigo J Marassi
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil; Department of Exact Sciences, School of Metallurgical and Industrial Engineering, UFF, Volta Redonda, Rio de Janeiro, Brazil
| | - Sheila Cardoso-Silva
- Environmental Sciences Program, São Paulo State University - UNESP, Sorocaba campus, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, SP, 18087-180, Brazil
| | - Morun B Neto
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Gilmar C Silva
- Department of Exact Sciences, School of Metallurgical and Industrial Engineering, UFF, Volta Redonda, Rio de Janeiro, Brazil
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Flávio T Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Teresa C B Paiva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | | |
Collapse
|
28
|
Chouinard-Thuly L, Reddon AR, Leris I, Earley RL, Reader SM. Developmental plasticity of the stress response in female but not in male guppies. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172268. [PMID: 29657818 PMCID: PMC5882742 DOI: 10.1098/rsos.172268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/02/2018] [Indexed: 05/03/2023]
Abstract
To survive, animals must respond appropriately to stress. Stress responses are costly, so early-life experiences with potential stressors could adaptively tailor adult stress responses to local conditions. However, how multiple stressors influence the development of the stress response remains unclear, as is the role of sex. Trinidadian guppies (Poecilia reticulata) are small fish with extensive life-history differences between the sexes and population variation in predation pressure and social density. We investigated how sex and early-life experience influence hormonal stress responses by manipulating conspecific density and perceived predation risk during development. In adults, we sampled cortisol twice to measure initial release and change over time in response to a recurring stressor. The sexes differed considerably in their physiological stress response. Males released more cortisol for their body mass than females and did not reduce cortisol release over time. By contrast, all females, except those reared at high density together with predation cues, reduced cortisol release over time. Cortisol responses of males were thus less dynamic in response to current circumstances and early-life experiences than females, consistent with life-history differences between the sexes. Our study underscores the importance of early-life experiences, interacting ecological factors and sex differences in the organization of the stress response.
Collapse
Affiliation(s)
- L. Chouinard-Thuly
- Department of Biology, McGill University, Montréal, Canada
- Author for correspondence: L. Chouinard-Thuly e-mail:
| | - A. R. Reddon
- Department of Biology, McGill University, Montréal, Canada
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | - I. Leris
- Department of Biology, McGill University, Montréal, Canada
- Department of Biology and Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - R. L. Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - S. M. Reader
- Department of Biology, McGill University, Montréal, Canada
| |
Collapse
|
29
|
Kraft B, Lemakos VA, Travis J, Hughes KA. Pervasive indirect genetic effects on behavioral development in polymorphic eastern mosquitofish. Behav Ecol 2017. [DOI: 10.1093/beheco/arx180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brittany Kraft
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Valerie A Lemakos
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
30
|
Cabrera-Álvarez MJ, Swaney WT, Reader SM. Forebrain activation during social exposure in wild-type guppies. Physiol Behav 2017; 182:107-113. [DOI: 10.1016/j.physbeh.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022]
|
31
|
Wolcott HL, Ojanguren AF, Barbosa M. The effects of familiarity on escape responses in the Trinidadian guppy ( Poecilia reticulata). PeerJ 2017; 5:e3899. [PMID: 29038756 PMCID: PMC5640977 DOI: 10.7717/peerj.3899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/16/2017] [Indexed: 11/20/2022] Open
Abstract
Predation is the main cause of mortality during early life stages. The ability to avoid and evade potential threats is, therefore, favoured to evolve during the early stages of life. It is also during these early stages that the process of familiarization occurs. It has long been recognized that associating with familiar individuals confers antipredator benefits. Yet gaps in our knowledge remain about how predator evasion is affected by social experience during early stages. In this study, we test the hypothesis that familiarization acquired during early life stages improves escape responses. Using the guppy Poecilia reticulata, we examine the effect of different recent social conditions in the three main components of predator evasion. Using high-speed motion analysis, we compared the number of individuals in each test group that responded to a visual stimulus, their reactive distance and magnitude of their response (maximum speed, maximum acceleration and distance) in groups composed either of familiar or non-familiar individuals. Contrary to the prediction, groups composed of familiar individuals were less responsive than groups of unfamiliar individuals. Reactive distance and magnitude of response were more dependent on individual size rather than on familiarity. Larger individuals reached higher maximum speeds and total distances in their escape response. Our result indicates that familiarity is likely to affect behaviour earlier in a predator-prey interaction, which then affects the behavioural component of the response. Taken together, our study contributes to previous ones by distinguishing which components of an escape response are modulated by familiarity.
Collapse
Affiliation(s)
- Hayley L Wolcott
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Fife, United Kingdom
| | - Alfredo F Ojanguren
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Fife, United Kingdom
| | - Miguel Barbosa
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Fife, United Kingdom.,CESAM, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
32
|
Etheredge RI, Avenas C, Armstrong MJ, Cummings ME. Sex-specific cognitive-behavioural profiles emerging from individual variation in numerosity discrimination in Gambusia affinis. Anim Cogn 2017; 21:37-53. [PMID: 29022119 DOI: 10.1007/s10071-017-1134-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Abstract
The relationship between an individual's cognitive abilities and other behavioural attributes is complex, yet critical to understanding how individual differences in cognition arise. Here we use western mosquitofish, Gambusia affinis, to investigate the relationship between individual associative learning performance in numerical discrimination tests and independent measures of activity, exploration, anxiety and sociability. We found extensive and highly repeatable inter-individual variation in learning performance (r = 0.89; ICC = 0.89). Males and females exhibited similar learning performance, yet differed in sociability, activity and their relationship between learning and anxiety/exploration tendencies. Sex-specific multivariate behaviour scores successfully predicted variation in individual learning performance, whereas combined sex analyses did not. Female multivariate behaviour scores significantly predict learning performance across females (ρ = 0.80, p = 0.005) with high-performing female learners differentiated from female non-learners and low-performing learners by significant contributions of activity and sociability measures. Meanwhile, males of different learning performance levels (high-, low- and non-learners) were distinguished from each other by unique behavioural loadings of sociability, activity and anxiety/exploration scores, respectively. Our data suggest that despite convergence on learning performance, the sexes diverge in cognitive-behavioural relationships that are likely products of different sexual selection pressures.
Collapse
Affiliation(s)
- R Ian Etheredge
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.,Max Planck Institute for Ornithology and Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Capucine Avenas
- Neuroscience and Signaling Department, Paris-Sud University, Orsay, France
| | - Matthew J Armstrong
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
| | - Molly E Cummings
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
33
|
Bannier F, Tebbich S, Taborsky B. Early experience affects learning performance and neophobia in a cooperatively breeding cichlid. Ethology 2017. [DOI: 10.1111/eth.12646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Francis Bannier
- Behavioural Ecology; Institute of Ecology and Evolution; University of Bern; Hinterkappelen Switzerland
| | - Sabine Tebbich
- Department for Behavioural Biology; University of Vienna; Vienna Austria
| | - Barbara Taborsky
- Behavioural Ecology; Institute of Ecology and Evolution; University of Bern; Hinterkappelen Switzerland
| |
Collapse
|
34
|
Giehr J, Heinze J, Schrempf A. Group demography affects ant colony performance and individual speed of queen and worker aging. BMC Evol Biol 2017; 17:173. [PMID: 28764664 PMCID: PMC5540184 DOI: 10.1186/s12862-017-1026-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background The performance and fitness of social societies mainly depends on the efficiency of interactions between reproductive individuals and helpers. Helpers need to react to the group’s requirements and to adjust their tasks accordingly, while the reproductive individual has to adjust its reproductive rate. Social insects provide a good system to study the interrelations between individual and group characteristics. In general, sterile workers focus on brood care and foraging while the queen lays eggs. Reproductive division of labor is determined by caste and not interchangeable as, e.g., in social mammals or birds. Hence, changing social and environmental conditions require a flexible response by each caste. In the ant Cardiocondyla obscurior, worker task allocation is based on age polyethism, with young workers focusing on brood care and old workers on foraging. Here, we examine how group age demography affects colony performance and fitness in colonies consisting of only old or young workers and a single old or young queen. We hypothesized that both groups will be fully functional, but that the forced task shift affects the individuals’ performance. Moreover, we expected reduced worker longevity in groups with only young workers due to precocious foraging but no effect on queen longevity depending on group composition. Results Neither the performance of queens nor that of workers declined strongly with time per se, but offspring number and weight were influenced by queen age and the interaction between queen and worker age. Individual residual life expectancy strongly depended on colony demography instead of physiological age. While worker age affected queen longevity only slightly, exposing old workers to the conditions of colony founding increased their life spans by up to 50% relative to workers that had emerged shortly before colony set-up. Conclusions The social environment strongly affected the tempo of aging and senescence in C. obscurior, highlighting the plasticity of life expectancy in social insects. Furthermore, colonies obtained the highest reproductive output when consisting of same-aged queens and workers independent of their physiological age. However, workers appeared to be able to adjust their behavior to the colony’s needs and not to suffer from age-dependent restrictions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1026-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany.
| | - Jürgen Heinze
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Alexandra Schrempf
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
35
|
Greggor AL, Thornton A, Clayton NS. Harnessing learning biases is essential for applying social learning in conservation. Behav Ecol Sociobiol 2016; 71:16. [PMID: 28018026 PMCID: PMC5143356 DOI: 10.1007/s00265-016-2238-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022]
Abstract
Social learning can influence how animals respond to anthropogenic changes in the environment, determining whether animals survive novel threats and exploit novel resources or produce maladaptive behaviour and contribute to human-wildlife conflict. Predicting where social learning will occur and manipulating its use are, therefore, important in conservation, but doing so is not straightforward. Learning is an inherently biased process that has been shaped by natural selection to prioritize important information and facilitate its efficient uptake. In this regard, social learning is no different from other learning processes because it too is shaped by perceptual filters, attentional biases and learning constraints that can differ between habitats, species, individuals and contexts. The biases that constrain social learning are not understood well enough to accurately predict whether or not social learning will occur in many situations, which limits the effective use of social learning in conservation practice. Nevertheless, we argue that by tapping into the biases that guide the social transmission of information, the conservation applications of social learning could be improved. We explore the conservation areas where social learning is highly relevant and link them to biases in the cues and contexts that shape social information use. The resulting synthesis highlights many promising areas for collaboration between the fields and stresses the importance of systematic reviews of the evidence surrounding social learning practices.
Collapse
Affiliation(s)
- Alison L. Greggor
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Biological Sciences, Dartmouth College, Hanover, NH USA
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | |
Collapse
|
36
|
Hasenjager MJ, Dugatkin LA. Familiarity affects network structure and information flow in guppy (Poecilia reticulata) shoals. Behav Ecol 2016. [DOI: 10.1093/beheco/arw152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
37
|
|
38
|
Näslund J, Larsen MH, Thomassen ST, Aarestrup K, Johnsson JI. Environment‐dependent plasticity and ontogenetic changes in the brain of hatchery‐reared Atlantic salmon. J Zool (1987) 2016. [DOI: 10.1111/jzo.12392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Näslund
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - M. H. Larsen
- National Institute of Aquatic Resources Section for Freshwater Fisheries and Ecology Technical University of Denmark Silkeborg Denmark
- Danish Centre for Wild Salmon Randers Denmark
| | | | - K. Aarestrup
- National Institute of Aquatic Resources Section for Freshwater Fisheries and Ecology Technical University of Denmark Silkeborg Denmark
| | - J. I. Johnsson
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
| |
Collapse
|
39
|
Abstract
Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on ‘ordinary’ processes but with extraordinary consequences.
Collapse
Affiliation(s)
- Simon M Reader
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
40
|
Jacquin L, Dybwad C, Rolshausen G, Hendry AP, Reader SM. Evolutionary and immediate effects of crude-oil pollution: depression of exploratory behaviour across populations of Trinidadian guppies. Anim Cogn 2016; 20:97-108. [DOI: 10.1007/s10071-016-1027-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/21/2016] [Accepted: 08/19/2016] [Indexed: 11/29/2022]
|
41
|
|
42
|
Taborsky B. Opening the Black Box of Developmental Experiments: Behavioural Mechanisms Underlying Long-Term Effects of Early Social Experience. Ethology 2016. [DOI: 10.1111/eth.12473] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Barbara Taborsky
- Behavioural Ecology; Institute of Ecology and Evolution; University of Bern; Hinterkappelen Switzerland
| |
Collapse
|
43
|
Barbosa M, Camacho-Cervantes M, Ojanguren AF. Phenotype Matching and Early Social Conditions Affect Shoaling and Exploration Decisions. Ethology 2016. [DOI: 10.1111/eth.12455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Miguel Barbosa
- CESAM; Department of Biology; Universidade de Aveiro; Aveiro Portugal
- Scottish Oceans Institute; School of Biology; University of St Andrews; St Andrews UK
| | | | - Alfredo F. Ojanguren
- Scottish Oceans Institute; School of Biology; University of St Andrews; St Andrews UK
| |
Collapse
|
44
|
Fischer S, Bessert-Nettelbeck M, Kotrschal A, Taborsky B. Rearing-Group Size Determines Social Competence and Brain Structure in a Cooperatively Breeding Cichlid. Am Nat 2015; 186:123-40. [DOI: 10.1086/681636] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Affiliation(s)
- E. Leadbeater
- School of Biological Sciences; Royal Holloway University of London; Surrey UK
| |
Collapse
|
46
|
Ruploh T, Henning M, Bischof HJ, von Engelhardt N. Effects of social conditions during adolescence on courtship and aggressive behavior are not abolished by adult social experience. Dev Psychobiol 2014; 57:73-82. [PMID: 25545997 DOI: 10.1002/dev.21262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 09/24/2014] [Indexed: 01/22/2023]
Abstract
Social experience during adolescence has long-lasting consequences for adult social behavior in many species. In zebra finches, individuals reared in pairs during adolescence start to court females faster, sing more courtship motifs to females and are more aggressive compared with group-reared males. We investigated whether such differences are stable during adulthood or can be abolished by novel social experience after adolescence by giving all birds extensive experience with group life during adulthood. Courtship and aggressiveness increased in all males, but pair-reared males still had a higher motif rate and were more aggressive than group-reared males. Males no longer differed in courtship latency. In addition to the stable treatment differences, individual differences in behavior remained stable over time. Our results show that differences in behavior acquired during adolescence are preserved into adulthood, although adults still change their social behavior. Adolescence can thus be seen as a sensitive period during which social conditions have a lasting effect on adult behavior.
Collapse
Affiliation(s)
- Tim Ruploh
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, D-33501, Bielefeld, Germany
| | | | | | | |
Collapse
|
47
|
van Leeuwen EJ, Haun DB. Conformity without majority? The case for demarcating social from majority influences. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Jonsson B, Jonsson N. Early environment influences later performance in fishes. JOURNAL OF FISH BIOLOGY 2014; 85:151-88. [PMID: 24961386 DOI: 10.1111/jfb.12432] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/28/2014] [Indexed: 05/19/2023]
Abstract
Conditions fish encounter during embryogenesis and early life history can leave lasting effects not only on morphology, but also on growth rate, life-history and behavioural traits. The ecology of offspring can be affected by conditions experienced by their parents and mother in particular. This review summarizes such early impacts and their ecological influences for a variety of teleost species, but with special reference to salmonids. Growth and adult body size, sex ratio, egg size, lifespan and tendency to migrate can all be affected by early influences. Mechanisms behind such phenotypically plastic impacts are not well known, but epigenetic change appears to be one central mechanism. The thermal regime during development and incubation is particularly important, but also early food consumption and intraspecific density can all be responsible for later life-history variation. For behavioural traits, early experiences with effects on brain, sensory development and cognition appear essential. This may also influence boldness and other social behaviours such as mate choice. At the end of the review, several issues and questions for future studies are given.
Collapse
Affiliation(s)
- B Jonsson
- Norwegian Institute for Nature Research, Gaustadalléen 21, N-0349 Oslo, Norway
| | | |
Collapse
|
49
|
Laskowski KL, Bell AM. Strong personalities, not social niches, drive individual differences in social behaviours in sticklebacks. Anim Behav 2014; 90:287-295. [PMID: 25076789 PMCID: PMC4112482 DOI: 10.1016/j.anbehav.2014.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Understanding the mechanisms responsible for consistent individual differences in behaviour is a recent challenge for behavioural ecology. Although theory is rapidly developing in this area, there are few empirical tests. There are at least two hypotheses to explain why individuals behave differently from one another in a dynamic social environment. The social niche specialization hypothesis proposes that repeated social interactions generate consistent individual differences in social behaviour. The behavioural type hypothesis proposes that an individual's social behaviour reflects its behavioural type. We tested these two hypotheses by manipulating the opportunity for repeated social interactions in groups of three spine stickleback, Gasterosteus aculeatus, and by measuring the behavioural types of the same individuals in three contexts: when in a novel environment, when presented with an opportunity to associate with conspecifics and when confronted by an intruder. We found no evidence that repeated social interactions increased between-individual variation in social foraging behaviour. Instead, individuals' social foraging behaviour was related to their behavioural type, specifically their shoaling behaviour. In addition, the behavioural types of the members of a group strongly influenced a group's average foraging behaviour. Together, these results do not support the hypothesis that social dynamics within groups generates individual differences in behaviour. Instead, they suggest the reverse: individual differences in behaviour drive group-level dynamics.
Collapse
Affiliation(s)
- Kate L. Laskowski
- Department of Biology & Ecology of Fishes, Leibniz Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
- School of Integrative Biology, University of Illinois, Urbana, IL, U.S.A
| | - Alison M. Bell
- School of Integrative Biology, University of Illinois, Urbana, IL, U.S.A
| |
Collapse
|
50
|
Takahashi K, Masuda R, Yamashita Y. Development of observational learning during school formation in jack mackerel Trachurus japonicus juveniles. Behav Processes 2014; 103:52-7. [DOI: 10.1016/j.beproc.2013.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 10/11/2013] [Accepted: 10/27/2013] [Indexed: 10/26/2022]
|