1
|
Gu Z, Zhou X, Li S, Pang Y, Xu Y, Zhang X, Zhang J, Jiang H, Lu Z, Wang H, Han L, Bai S, Zhou C. The HD-ZIP IV transcription factor GLABRA2 acts as an activator for proanthocyanidin biosynthesis in Medicago truncatula seed coat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2303-2315. [PMID: 38990552 DOI: 10.1111/tpj.16918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Proanthocyanidins (PAs), a group of flavonoids, are found in leaves, flowers, fruits, and seed coats of many plant species. PAs are primarily composed of epicatechin units in the seed coats of the model legume species, Medicago truncatula. It can be synthesized from two separate pathways, the leucoanthocyanidin reductase (MtLAR) pathway and the anthocyanidin synthase (MtANS) pathway, which produce epicatechin through anthocyanidin reductase (MtANR). These pathways are mainly controlled by the MYB-bHLH-WD40 (MBW) ternary complex. Here, we characterize a class IV homeodomain-leucine zipper (HD-ZIP IV) transcription factor, GLABRA2 (MtGL2), which contributes to PA biosynthesis in the seed coat of M. truncatula. Null mutation of MtGL2 results in dark brown seed coat, which is accompanied by reduced PAs accumulation and increased anthocyanins content. The MtGL2 gene is predominantly expressed in the seed coat during the early stages of seed development. Genetic and molecular analyses indicate that MtGL2 positively regulates PA biosynthesis by directly activating the expression of MtANR. Additionally, our results show that MtGL2 is strongly induced by the MBW activator complexes that are involved in PA biosynthesis. Taken together, our results suggest that MtGL2 acts as a novel positive regulator in PA biosynthesis, expanding the regulatory network and providing insights for genetic engineering of PA production.
Collapse
Affiliation(s)
- Zhiqun Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Xin Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Shuangshuang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Xue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Hongjiao Jiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
- Shandong Peanut Research Institute, Qingdao, 266199, P.R. China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P.R. China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| |
Collapse
|
2
|
Tong Z, Dai X, Wang Y, Li X, He F, Yin G. Analysis of rotational grazing management for sheep in mixed grassland. PeerJ 2024; 12:e17453. [PMID: 38827294 PMCID: PMC11144397 DOI: 10.7717/peerj.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
Sown mixed grassland is rarely used for livestock raising and grazing; however, different forages can provide various nutrients for livestock, which may be beneficial to animal health and welfare. We established a sown mixed grassland and adopted a rotational grazing system, monitored the changes in aboveground biomass and sheep weights during the summer grazing period, measured the nutrients of forage by near-infrared spectroscopy, tested the contents of medium- and long-chain fatty acids by gas chromatography, and explored an efficient sheep fattening system that is suitable for agro-pastoral interlacing areas. The results showed that the maximum forage supply in a single grazing paddock was 4.6 kg DM/d, the highest dry matter intake (DMI) was 1.80 kg DM/ewe/d, the average daily weight gain (ADG) was 193.3 g, the DMI and ADG were significantly correlated (P < 0.05), and the average feed weight gain ratio (F/G) reached 8.02. The average crude protein and metabolizable energy intake by sheep were 286 g/ewe/d and 18.5 MJ/ewe/d respectively, and the n-6/n-3 ratio of polyunsaturated fatty acids in mutton was 2.84. The results indicated that the sheep fattening system had high feed conversion efficiency, could improve the yield and quality of sheep, and could be promoted in suitable regions.
Collapse
Affiliation(s)
- Zongyong Tong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianlin Dai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianglin Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guomei Yin
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| |
Collapse
|
3
|
Keum GB, Pandey S, Kim ES, Doo H, Kwak J, Ryu S, Choi Y, Kang J, Kim S, Kim HB. Understanding the Diversity and Roles of the Ruminal Microbiome. J Microbiol 2024; 62:217-230. [PMID: 38662310 DOI: 10.1007/s12275-024-00121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/26/2024]
Abstract
The importance of ruminal microbiota in ruminants is emphasized, not only as a special symbiotic relationship with ruminants but also as an interactive and dynamic ecosystem established by the metabolites of various rumen microorganisms. Rumen microbial community is essential for life maintenance and production as they help decompose and utilize fiber that is difficult to digest, supplying about 70% of the energy needed by the host and 60-85% of the amino acids that reach the small intestine. Bacteria are the most abundant in the rumen, but protozoa, which are relatively large, account for 40-50% of the total microorganisms. However, the composition of these ruminal microbiota is not conserved or constant throughout life and is greatly influenced by the host. It is known that the initial colonization of calves immediately after birth is mainly influenced by the mother, and later changes depending on various factors such as diet, age, gender and breed. The initial rumen microbial community contains aerobic and facultative anaerobic bacteria due to the presence of oxygen, but as age increases, a hypoxic environment is created inside the rumen, and anaerobic bacteria become dominant in the rumen microbial community. As calves grow, taxonomic diversity increases, especially as they begin to consume solid food. Understanding the factors affecting the rumen microbial community and their effects and changes can lead to the early development and stabilization of the microbial community through the control of rumen microorganisms, and is expected to ultimately help improve host productivity and efficiency.
Collapse
Affiliation(s)
- Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sriniwas Pandey
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sumin Ryu
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yejin Choi
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Juyoun Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sheena Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
4
|
Duarte RDC, Iannetta PPM, Gomes AM, Vasconcelos MW. More than a meat- or synthetic nitrogen fertiliser-substitute: a review of legume phytochemicals as drivers of 'One Health' via their influence on the functional diversity of soil- and gut-microbes. FRONTIERS IN PLANT SCIENCE 2024; 15:1337653. [PMID: 38450400 PMCID: PMC10915056 DOI: 10.3389/fpls.2024.1337653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Legumes are essential to healthy agroecosystems, with a rich phytochemical content that impacts overall human and animal well-being and environmental sustainability. While these phytochemicals can have both positive and negative effects, legumes have traditionally been bred to produce genotypes with lower levels of certain plant phytochemicals, specifically those commonly termed as 'antifeedants' including phenolic compounds, saponins, alkaloids, tannins, and raffinose family oligosaccharides (RFOs). However, when incorporated into a balanced diet, such legume phytochemicals can offer health benefits for both humans and animals. They can positively influence the human gut microbiome by promoting the growth of beneficial bacteria, contributing to gut health, and demonstrating anti-inflammatory and antioxidant properties. Beyond their nutritional value, legume phytochemicals also play a vital role in soil health. The phytochemical containing residues from their shoots and roots usually remain in-field to positively affect soil nutrient status and microbiome diversity, so enhancing soil functions and benefiting performance and yield of following crops. This review explores the role of legume phytochemicals from a 'one health' perspective, examining their on soil- and gut-microbial ecology, bridging the gap between human nutrition and agroecological science.
Collapse
Affiliation(s)
- Rafael D. C. Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Pietro P. M. Iannetta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Ecological Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Ana M. Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
5
|
Tan Z, Liu J, Wang L. Factors affecting the rumen fluid foaming performance in goat fed high concentrate diet. Front Vet Sci 2024; 11:1299404. [PMID: 38435370 PMCID: PMC10904640 DOI: 10.3389/fvets.2024.1299404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Feeding high concentrate diets is highly prone to rumen bloat in ruminants, which is very common in production. This study explored the factors responsible for the occurrence of foamy rumen bloat. The experiment was conducted using goats as test animals, fed high concentrate diets and scored for rumen distension into high, medium and low bloat score groups. Rumen fluid was collected from 6 goats in each group separately. The foaming production, foam persistence, pH value, viscosity and the content of protein, total saccharide and mineral elements in rumen original fluid (ROL) were measured, and the protein and total saccharide content in rumen foam liquid (RFL) and rumen residual liquid (RRL) were determined. The results showed that the protein content in rumen original fluid and rumen foam liquid was significantly higher than that in rumen residual liquid (p < 0.05), and the protein content in rumen foam liquid was 10.81% higher than that in rumen original fluid. The higher the rumen bloat score, the higher the foam production, foam persistence, viscosity, protein, Ni, Mg, Ca, and K concentrations of the rumen original fluid, and the lower the PH and Na concentrations of the rumen original fluid; correlation analysis showed that the viscosity of the rumen original fluid was significantly and positively correlated with the foam production and foam persistence (p < 0.05). Foaming production and foam persistence of rumen original fluid were significantly and positively correlated with the contents of protein, total saccharide, K, Ca, Mg and Ni (p < 0.05). and negatively correlated with the content of Na (p < 0.05); after controlling other components those were significantly related to the foaming performance of rumen original fluid only protein still was significantly positively correlated with the foam persistence of rumen original fluid (P<0.05). In summary, the contents of protein, total saccharide and mineral elements in the rumen fluid had a significant effect on the foaming performance of rumen in ruminants, with protein playing a decisive role and the other components playing a supporting role. Reducing the content of protein in the diet in production is beneficial to reduce the occurrence of rumen bloat in ruminants.
Collapse
Affiliation(s)
- Zehao Tan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - JunFeng Liu
- Wuhan Xinzhou Vocational High School, Wuhan, China
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Woodmartin S, Smith PE, Creighton P, Boland TM, Dunne E, McGovern FM. Sward type alters enteric methane emissions, nitrogen output and the relative abundance of the rumen microbial ecosystem in sheep. J Anim Sci 2024; 102:skae256. [PMID: 39252598 PMCID: PMC11439154 DOI: 10.1093/jas/skae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/18/2024] [Indexed: 09/11/2024] Open
Abstract
Observed improvements in animal and sward performance, coupled with a desire for more sustainable pasture-based feeding systems, has triggered a surge in the implementation of more botanically diverse pastures. However, thus far, there has been limited research investigating the effects of botanically diverse sward types on enteric methane (CH4) or nitrogen (N) excretion, alongside the ruminal microbiota and fermentation profile, in sheep. Hence, this study investigates the effect of sward type on CH4 production and N excretion, in addition to assessing the rumen microbiome, volatile fatty acid proportions, and ammonia nitrogen (NH3-N) concentration in sheep. A 5 × 5 Latin square design experiment was implemented to investigate 5 dietary treatments; perennial ryegrass (Lolium perenne L.; PRG) only or PRG plus white clover (Trifolium repens L.; PRG + WC), red clover (Trifolium pratense L.; PRG + RC), chicory (Chicorium intybus L.; PRG + Chic) or plantain (Plantago lanceolata L.; PRG + Plan). Diets were mixed at a ratio of 75% PRG and 25% of the respective companion forage and 100% PRG for the PRG treatment, on a dry matter basis. Twenty castrated male sheep were housed in metabolism crates across 5 feeding periods. Methane measurements were acquired utilizing portable accumulation chambers. Rumen fluid was harvested using a transoesophageal sampling device. Microbial rumen DNA was extracted and subjected to 16S rRNA amplicon sequencing and fermentation analysis. Data were analyzed using PROC MIXED in SAS. Results show that animals consuming PRG + WC ranked lower for CH4 production (g/d) than sheep offered PRG, PRG + Chic or PRG + Plan (P < 0.01) while the addition of any companion forage ranked CH4 yield (g/kg dry matter intake (DMI)) lower (P < 0.001) than PRG. There was a moderate positive correlation between DMI and CH4 (g/d; r = 0.51). Ruminal NH3-N was lowest in animals consuming the PRG diet (P < 0.01). There was a greater abundance of Methanobrevibacter and reduced abundance of Methanosphaera (P < 0.001) in sheep offered PRG, compared with any binary sward. On average, herb diets (PRG + Chic or PRG + Plan) reduced the urinary nitrogen concentration of sheep by 34% in comparison to legume diets (PRG + WC or PRG + RC) and 13% relative to the PRG diet (P < 0.001). Sheep offered PRG + Chic had a greater dietary nitrogen use efficiency than PRG + RC (P < 0.05). This study demonstrates the potential for sward type to influence rumen function and the microbial community, along with CH4 and N output from sheep.
Collapse
Affiliation(s)
- Sarah Woodmartin
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, Co. Galway, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul E Smith
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - Philip Creighton
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Tommy M Boland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin Dunne
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Fiona M McGovern
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, Co. Galway, Ireland
| |
Collapse
|
7
|
Qy K, Wang L, Wang Z, Xue B, Peng Q. The study on the feasibility of dietary supplementation with dimethyl silicone oil to prevent frothy rumen bloat in goats fed with high concentrate diets. Anim Biotechnol 2023; 34:2940-2950. [PMID: 36165712 DOI: 10.1080/10495398.2022.2126364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The current study was conducted to investigate the feasibility of high concentration diet (HCD) supplementation with Dimethyl Silicone Oil (DSO) to prevent frothy rumen bloat in goats. The treatments were control group (group C, feeding HCD) and test group (group T, feeding HCD supplemented with 0.1%DSO). The results showed that compared with the group C, the ruminal pH value, Microbial Crude Protein content of group T was extremely significantly higher (p < 0.01), the levels of acetic acid and propionic acid were significantly (p < 0.05) and extremely significantly (p < 0.01) lower in group T, respectively. The foam production and foam strength of the rumen fluid in the group T was extremely significantly lower (p < 0.01), the viscosity was extremely significantly (p < 0.01) higher than those of group C. The total gastrointestinal apparent digestibility of various nutrients, the rumen microbial relative abundance at the phylum level and genus level were not significantly different (p > 0.05). The results indicated that the supplementation of 0.1% DSO in HCD can significantly eliminate foam of the rumen fluid, and didn't disturb the ruminal microorganisms, no negatively affect on digestibility of nutrients in goats, thereby has the application prospect of preventing frothy rumen bloat.
Collapse
Affiliation(s)
- Kangzhuzuoma Qy
- Key Laboratory of Bovine Low-Carbon Farming and Safe Production, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lizhi Wang
- Key Laboratory of Bovine Low-Carbon Farming and Safe Production, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhisheng Wang
- Key Laboratory of Bovine Low-Carbon Farming and Safe Production, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bai Xue
- Key Laboratory of Bovine Low-Carbon Farming and Safe Production, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Quanhui Peng
- Key Laboratory of Bovine Low-Carbon Farming and Safe Production, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zhang XJ, Wang LZ, Wang ZS, Xue B, Peng QH. Effect of dietary concentrate level on digestibility of nutrients in each region of the gastrointestinal tract and rumen fermentation in goats. Anim Biotechnol 2023; 34:1900-1908. [PMID: 35522131 DOI: 10.1080/10495398.2022.2058004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study evaluated the effects of high concentrate diets (HCD) on the rumen fermentation and the digestibility of nutrients in different sites of the gastrointestinal tract (GIT) in goats. Four goats were used in a crossover design. The goats were fitted with a ruminal cannula and flexible T-cannulae proximal duodenum and terminal ileum. Treatments were as follows: low concentrate group (LCG) and high concentrate group (HCG). Duodenal flow and forestomach digestibility of starch were significantly higher in the HCG than those in the LCG (p < 0.05); There was no significant difference in ileum flow and digestibility of starch in the small intestine, large intestine and total GIT (p > 0.05). The digestibility of crude protein (CP) in the forestomach was significantly higher in the HCG than in the LCG (p < 0.05); the flow of the duodenum and ileum of CP, and the CP digestibility of the small intestine, large intestine and total GIT were not significantly different between groups (p > 0.05). The duodenal and ileal flow of neutral detergent fiber (NDF), the NDF digestibility of the different segments and total GIT were not significantly different between groups (p > 0.05). Compared to the LCG, the ruminal pH of the HCG was significantly lower (p < 0.05). The HCG concentrations of microbial crude protein, ammonia nitrogen and isovaleric acid were significantly higher (p < 0.05) than the LCG. The foam strength, foam production and viscosity of the rumen fluid in the HCG were higher than the LCG (p < 0.01). These results showed that when the goats were fed with HCD, the digestibility of nutrients was not significantly impaired, but the risk of frothy rumen bloat increased. ImplicationsDue to a serious shortage of high-quality roughage in China, producers commonly used a high-concentrate diet in ruminants, which can improve animal production performance.Gastrointestinal digestive function plays a vital role in the absorption of nutrients and the healthy growth of animals.Therefore, this research evaluated the digestibility of various nutrients in different segments of the gastrointestinal tract (GIT) under HCD feeding by using three-site cannula goats as experimental animals.The results indicated that the GIT of goats could fully digest nutrients such as starch and protein under HCD feeding conditions.
Collapse
Affiliation(s)
- Xue-Jiao Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Li-Zhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Sheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Quan-Hui Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Du W, Wang X, Xu L, Zhou X, Song D, Xu Q. Editorial: Research advances in intestinal diseases and related diarrhea in animal production. Front Vet Sci 2023; 10:1201231. [PMID: 37215480 PMCID: PMC10193028 DOI: 10.3389/fvets.2023.1201231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Affiliation(s)
- Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianghuang Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Le Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
De Bhowmick G, Hayes M. Potential of Seaweeds to Mitigate Production of Greenhouse Gases during Production of Ruminant Proteins. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200145. [PMID: 37205931 PMCID: PMC10190624 DOI: 10.1002/gch2.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Indexed: 05/21/2023]
Abstract
The potential of seaweed to mitigate methane is real and studies with red seaweeds have found reductions in methane produced from ruminants fed red seaweeds in the region of 60-90% where the active compound responsible for this is bromoform. Other studies with brown and green seaweeds have observed reductions in methane production of between 20 and 45% in vitro and 10% in vivo. Benefits of feeding seaweeds to ruminants are seaweed specific and animal species-dependent. In some instances, positive effects on milk production and performance are observed where selected seaweeds are fed to ruminants while other studies note reductions in performance traits. A balance between reducing methane and maintaining animal health and food quality is necessary. Seaweeds are a source of essential amino acids and minerals however, and offer huge potential for use as feeds for animal health maintenance once formulations and doses are correctly prepared and administered. A negative aspect of seaweed use for animal feed currently is the cost associated with wild harvest and indeed aquaculture production and improvements must be made here if seaweed ingredients are to be used as a solution to control methane production from ruminants for continued production of animal/ruminant sourced proteins in the future. This review collates information concerning different seaweeds and how they and their constituents can reduce methane from ruminants and ensure sustainable production of ruminant proteins in an environmentally beneficial manner.
Collapse
Affiliation(s)
- Goldy De Bhowmick
- Food BioSciences DepartmentTeagasc Food Research CentreAshtownDublin 15D15 KN3KIreland
| | - Maria Hayes
- Food BioSciences DepartmentTeagasc Food Research CentreAshtownDublin 15D15 KN3KIreland
| |
Collapse
|
11
|
Wang Y, Wang L, Wang Z, Xue B, Peng Q, Hu R, Yan T. Recent advances in research in the rumen bloat of ruminant animals fed high-concentrate diets. Front Vet Sci 2023; 10:1142965. [PMID: 37035805 PMCID: PMC10076780 DOI: 10.3389/fvets.2023.1142965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Rumen bloat is the most common digestive disorder in fattening ruminants, which is responsible for around 2-3 % of deaths in the ruminants industry and is therefore considered to be a serious threat to ruminant farming. The root cause of rumen bloat caused by feeding high concentrate dies would be attributed to the production of a large amount of stable foam during the fattening period. The exact mechanism of rumen foam formation has yet to be investigated. Proteins, polysaccharides and carboxylates derived from feed, and synthesized by microbes during the rumen fermentation may act as foaming agents or stabilizers in the formation progress of rumen foam. Supplementation of condensed tannins and other additives can be an effective way to prevent feedlot bloat induced by feeding high concentrate diets.
Collapse
Affiliation(s)
- Yusu Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bai Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Quanhui Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rui Hu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianhai Yan
- Ruminant Nutrition and Feed Analysis Laboratory, Agri-Food and Biosciences Institute, Hillsborough, United Kingdom
| |
Collapse
|
12
|
Allworth MB, McQuillan M, McGrath SR, Wilson CS, Hernandez-Jover M. A survey on bloat in southern Australian beef production systems. Aust Vet J 2023; 101:121-126. [PMID: 36544238 DOI: 10.1111/avj.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Frothy bloat, associated predominantly with grazing legume-based pastures, is considered the second most costly disease in beef cattle in southern Australia, costing $84.4 M annually. It frequently results in the sudden death of cattle. In response to concerns from cattle producers, an online survey was conducted in southern Australia in late 2020 to determine the impact of bloat, identify risk factors and determine the efficacy of current preventive measures. For 217 responses, over two-thirds (70%) of producers reported bloat occurring in the previous 12 months, with estimated morbidity and mortality rates of 3.7% and 5.0% respectively. Bloat was associated with clover or clover-dominant paddocks (79%) and was not associated with grass or grass-dominant pastures or low clover pastures (92%) nor grazing crops (27%). For bloat that occurred in the past 12 months, cattle were very commonly grazing on clover or clover-dominant paddocks (90%) and occasionally lucerne-dominated paddocks (7%). Two-thirds of producers reported having preventive measures in place when losses occurred. Bayesian Network analysis confirmed that grazing clover-based pastures for more than 7 days, yearling cattle and the months of July-September were the main risk factors for bloat occurrence, with pasture type (clover) being the most important. Conversely, no clear relationship between weather conditions and bloat occurrence was evident. This survey highlights the known risk of clover-based pastures for causing bloat in cattle, and that losses occur in many cases despite preventive measures being used. This suggests that current methods for preventing bloat in cattle are suboptimal.
Collapse
Affiliation(s)
- M B Allworth
- Fred Morley Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Gulbali institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - M McQuillan
- Fred Morley Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Gulbali institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - S R McGrath
- Fred Morley Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Gulbali institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - C S Wilson
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - M Hernandez-Jover
- Gulbali institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
13
|
Dietary Supplementation with a Blend of Hydrolyzable and Condensed Tannins Ameliorates Diet-Induced Intestinal Inflammation in Zebrafish ( Danio rerio). Animals (Basel) 2022; 13:ani13010167. [PMID: 36611775 PMCID: PMC9818001 DOI: 10.3390/ani13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
The current study evaluated the effects of hydrolyzable and condensed tannins from chestnut and quebracho wood, respectively (TSP, Silvafeed®), on zebrafish with intestinal inflammation induced by a plant-based diet (basal diet). Four experimental diets were prepared as follows: the basal diet + 0 TSP, the basal diet + TSP at 0.9 g/kg of feed, the basal diet + TSP at 1.7 g/kg of feed, and the basal diet + TSP at 3.4 g/kg of feed. Eighty-four zebrafish (Danio rerio) were fed for 12 days with the experimental diets. In zebrafish fed the basal diet, intestine integrity appeared to be altered, with damaged intestinal villi, high immunoexpression of tumor necrosis factor-α (TNFα) and cyclooxygenase 2 (COX2), and high expression of the cox2, interleukin 1 (il-1b), interleukin 8 (cxcl8-l1), and tnfα genes. The tannin treatment partially restored intestinal morphology and downregulated the expression of cytokines. The best activity was detected with 1.7 and 3.4 g/kg of feed. In the guts of all groups, Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes were the most represented phyla. The most represented genera were Plesiomonas and Sphingomonas, belonging to the Proteobacteria phylum; Cetobacterium, belonging to the Fusobacteria phylum; and Lactobacillus, belonging to the Firmicutes phylum. No significant differences were detected among groups, except for a slight decrease in the Fusobacteria phylum and slight increases in the Shewanella and Bacteroides genera with TSP. In conclusion, these results suggest that tannins can improve the zebrafish intestinal inflammation caused by a terrestrial-plant-based diet in a dose-dependent manner.
Collapse
|
14
|
Smith PE, Kelly AK, Kenny DA, Waters SM. Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems. Front Vet Sci 2022; 9:958340. [PMID: 36619952 PMCID: PMC9817038 DOI: 10.3389/fvets.2022.958340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ruminant livestock play a key role in global society through the conversion of lignocellulolytic plant matter into high-quality sources of protein for human consumption. However, as a consequence of the digestive physiology of ruminant species, methane (CH4), which originates as a byproduct of enteric fermentation, is accountable for 40% of global agriculture's carbon footprint and ~6% of global greenhouse gas (GHG) emissions. Therefore, meeting the increasing demand for animal protein associated with a growing global population while reducing the GHG intensity of ruminant production will be a challenge for both the livestock industry and the research community. In recent decades, numerous strategies have been identified as having the potential to reduce the methanogenic output of livestock. Dietary supplementation with antimethanogenic compounds, targeting members of the rumen methanogen community and/or suppressing the availability of methanogenesis substrates (mainly H2 and CO2), may have the potential to reduce the methanogenic output of housed livestock. However, reducing the environmental impact of pasture-based beef cattle may be a challenge, but it can be achieved by enhancing the nutritional quality of grazed forage in an effort to improve animal growth rates and ultimately reduce lifetime emissions. In addition, the genetic selection of low-CH4-emitting and/or faster-growing animals will likely benefit all beef cattle production systems by reducing the methanogenic potential of future generations of livestock. Similarly, the development of other mitigation technologies requiring minimal intervention and labor for their application, such as anti-methanogen vaccines, would likely appeal to livestock producers, with high uptake among farmers if proven effective. Therefore, the objective of this review is to give a detailed overview of the CH4 mitigation solutions, both currently available and under development, for temperate pasture-based beef cattle production systems. A description of ruminal methanogenesis and the technologies used to estimate enteric emissions at pastures are also presented.
Collapse
Affiliation(s)
- Paul E. Smith
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland,*Correspondence: Paul E. Smith
| | - Alan K. Kelly
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| | - Sinéad M. Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| |
Collapse
|
15
|
Using supplemental condensed tannin to mitigate tall fescue toxicosis in non-pregnant, non-lactating ewes consuming tall fescue silage. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Review: Assessment of dairy cow welfare at pasture: measures available, gaps to address, and pathways to development of ad-hoc protocols. Animal 2022; 16:100597. [PMID: 35907382 DOI: 10.1016/j.animal.2022.100597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Pasture is generally perceived as positive for dairy cow welfare, but it nevertheless exposes cows to heat, parasites, and other challenges. This review is intended for people ready to design comprehensive protocols for assessing the welfare of dairy cows at pasture. We provide an overview of the benefits and risks of pasture for cows, and then go on to identify the available and feasible measures for assessing cow welfare at pasture and the gaps that need to be addressed to develop specific welfare measures. Some of the measures from on-farm welfare assessment protocols designed for indoor use (e.g. Welfare Quality®) are relevant for cows at pasture (e.g. lameness scoring). However, the timing, location and/or method for certain measures (e.g. observation of social behaviour) need to be adapted to the pasture context, as cows at pasture can roam over a large area. Measures to address specific pasture-related risks (e.g. heat stress, biosecurity) or benefits (e.g. expression of a wide range of behaviours) should be implemented in order to capture all dimensions of cow welfare at pasture. Furthermore, cow welfare is liable to vary over the grazing season due to changes in weather conditions, grass quality and pasture plots that induce variations in lying surface conditions, food availability, distance to walk to the milking parlour, and so on. It is therefore important to investigate the variability in different welfare measures across the pasture season to check whether they hold stable over time and, if not, to determine solutions that can give an overview across the grazing season. Sensors offer a promising complement to animal and environment observations, as they can capture long-term animal monitoring data, which is simply not possible for a one-day welfare-check visit. We conclude that some measures validated for indoor situations can already be used in pasture-based systems, while others need to be validated for their fitness for purpose and/or use in pasture conditions. Furthermore, thresholds should probably be determined for measures to fit with pasture contexts. If all measures can be made adaptable to all situations encountered on farms or variants of the measures can at least be proposed for each criterion, then it should be possible to produce a comprehensive welfare assessment protocol suitable for large-scale use in near future.
Collapse
|
17
|
Lozano MC, Roa L, Moreno CA, Verján-García N, Doncel B. Experimental intoxication of Brahman (Bos indicus) heifers with Enterolobium cyclocarpum fruits. Toxicon 2022; 216:57-64. [PMID: 35780973 DOI: 10.1016/j.toxicon.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022]
Abstract
Enterolobium cyclocarpum is a poisonous plant distributed throughout the Americas. The E. cyclocarpum fruits have high toxic potential for cattle in Colombia and the clinical signs and pathological lesions are ill-defined. To begin address this issue, twelve Brahman heifers were administered E. cyclocarpum fruits and the evolution of clinical signs were recorded. Blood was collected to establish biochemical and hematological parameters. Animals were euthanized between 4 and 15 days after the initial dose was given, and tissue samples were routinely processed and stained by Hematoxylin-Eosin. The severity of clinical signs and tissue lesions were correlated with the dose of E. cyclocarpum fruits. Clinical signs included fever, tachypnea, sialorrhea, jaundice, tympanism, and diarrhea. Skin lesions were consistent with photosensitization. Hematological and biochemical tests showed increased hematocrit, neutropenia, increased serum fibrinogen, elevated hepatic enzymes and azotemia. Histology revealed panlobular cytoplasmic vacuolization and extensive foci of necrosis in the liver. The skin, fore-stomach, abomasum and intestine revealed microcirculatory, inflammatory and ulcerative changes. Protein casts and tubular epithelium vacuolization were found in kidney. Depending on the toxicosis intensity, it is concluded that E. cyclocarpum fruits may cause two clinical and pathological forms of poisoning in Brahman heifers. First, a severe intoxication at repeated exposition with high (20 g/kg/d) or low (10 g/kg/d) dose that affected the digestive and tegumentary systems and the kidney. Second, a mild to moderate form with a single low dose (10 g/kg/d) that affected in lower grades the same systems/organs.
Collapse
Affiliation(s)
- María C Lozano
- Facultad de Ciencias, Departamento de Farmacia, Universidad Nacional de Colombia, Colombia.
| | - Leonardo Roa
- Laboratorio de Patología Veterinaria- Facultad de Ciencias Agropecuarias, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Cundinamarca, Colombia
| | - Carlos A Moreno
- Laboratorio Clínico, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Noel Verján-García
- Laboratory of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, USA
| | - Benjamín Doncel
- Laboratorio de Patología Veterinaria, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
18
|
Roldan MB, Cousins G, Muetzel S, Zeller WE, Fraser K, Salminen JP, Blanc A, Kaur R, Richardson K, Maher D, Jahufer Z, Woodfield DR, Caradus JR, Voisey CR. Condensed Tannins in White Clover ( Trifolium repens) Foliar Tissues Expressing the Transcription Factor TaMYB14-1 Bind to Forage Protein and Reduce Ammonia and Methane Emissions in vitro. FRONTIERS IN PLANT SCIENCE 2022; 12:777354. [PMID: 35069633 PMCID: PMC8774771 DOI: 10.3389/fpls.2021.777354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 05/29/2023]
Abstract
Grazing ruminants contribute to global climate change through enteric methane and nitrous oxide emissions. However, animal consumption of the plant polyphenolics, proanthocyanidins, or condensed tannins (CTs) can decrease both methane emissions and urine nitrogen levels, leading to reduced nitrous oxide emissions, and concomitantly increase animal health and production. CTs are largely absent in the foliage of important temperate pasture legumes, such as white clover (Trifolium repens), but found in flowers and seed coats. Attempts at enhancing levels of CT expression in white clover leaves by mutagenesis and breeding have not been successful. However, the transformation of white clover with the TaMYB14-1 transcription factor from Trifolium arvense has resulted in the production of CTs in leaves up to 1.2% of dry matter (DM). In this study, two generations of breeding elevated foliar CTs to >2% of DM. The CTs consisted predominantly of prodelphinidins (PD, 75-93%) and procyanidins (PC, 17-25%) and had a mean degree of polymerization (mDP) of approximately 10 flavan-3-ol subunits. In vitro studies showed that foliar CTs were bound to bovine serum albumin and white clover proteins at pH 6.5 and were released at pH 2.-2.5. Using rumen in vitro assays, white clover leaves containing soluble CTs of 1.6-2.4% of DM significantly reduced methane production by 19% (p ≤0.01) and ammonia production by 60% (p ≤ 0.01) relative to non-transformed wild type (WT) controls after 6 h of incubation. These results provide valuable information for further studies using CT expressing white clover leaves for bloat prevention and reduced greenhouse gas emissions in vivo.
Collapse
Affiliation(s)
- Marissa B. Roldan
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Greig Cousins
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
| | - Stefan Muetzel
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Wayne E. Zeller
- ARS-USDA, US Dairy Forage Research Center, Madison, WI, United States
| | - Karl Fraser
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Alexia Blanc
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
- AgroParis Tech, Paris, France
| | - Rupinder Kaur
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
| | - Kim Richardson
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Dorothy Maher
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Zulfi Jahufer
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
19
|
Lagrange S, MacAdam JW, Stegelmeier B, Villalba JJ. Grazing diverse combinations of tanniferous and nontanniferous legumes: implications for foraging behavior, performance, and hair cortisol in beef cattle. J Anim Sci 2021; 99:skab291. [PMID: 34657159 PMCID: PMC8575690 DOI: 10.1093/jas/skab291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Abstract
A diversity of forages with different types and concentrations of nutrients and plant secondary compounds may lead to complementary relationships that enhance cattle performance and welfare. We determined whether grazing combinations of tanniferous legumes (Lotus corniculatus, birdsfoot trefoil [BFT], Onobrychis viciifolia, sainfoin [SF]), and alfalfa [ALF] (Medicago sativa) influence foraging behavior, performance, and hair cortisol concentration in beef cattle compared with grazing the same legumes as monocultures. Twenty-one pairs of heifers grazed three spatial replications of seven treatments: monocultures of BFT, SF, or ALF, and all possible two- and three-way choices among strips of these legumes: SF-BFT, ALF-BFT, ALF-SF, and ALF-SF-BFT in two periods of 25 d each (adaptation phase + experimental period) during two consecutive years. The lowest incidence of grazing events occurred in the BFT treatment (42.0% of the total scans recorded; P < 0.10), with the rest of the treatments ranging between 47.8% (SF-BFT) and 52.6% (ALF-SF) of the total scans recorded. Heifers selected a varied diet, preferring SF over BFT or ALF in a 46:27:27 ratio for the three-way choice, and in a 70:30 ratio for both two-way choices. Heifers preferred BFT over ALF (62:38 ratio) in a two-way choice. All treatments followed similar daily grazing patterns (P > 0.10), with two major grazing events (1 h after sunrise and 3 h before dark). No differences among treatments were observed for the number of steps taken by heifers on a daily basis, motion index, or the percentage of time heifers spent standing (1,599, 5,356, and 45.3%, respectively; P > 0.10), suggesting that heifers on choice treatments did not invest extra time in walking, searching, or patch switching activities relative to heifers grazing monocultures. Heifers grazing the three-way choice gained more body weight (1.27 kg/d) than the average gains observed for animals grazing in all legume monocultures (1.00 kg/d; P = 0.014) or two-way choices (0.97 kg/d; P = 0.007), suggesting a synergism among pasture species for the treatment with the highest diversity. No differences in hair cortisol concentration were observed among treatments, with values ranging between 1.4 (BFT) and 2.12 ng/g (three-way choice; P > 0.10). Thus, forage diversity has the potential to enhance animal performance without affecting grazing efficiency, likely explained by the spatial arrangement of the forage species presented in the study.
Collapse
Affiliation(s)
- Sebastian Lagrange
- Department of Wildland Resources, Quinney College of Natural Resources, Utah State University, Logan, UT 84322, USA
- Estación Experimental Agropecuaria Bordenave, Instituto Nacional de Tecnología Agropecuaria, Bordenave, Buenos Aires 8187, Argentina
| | - Jennifer W MacAdam
- Department of Plant, Soil & Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Bryan Stegelmeier
- Poisonous Plant Research Laboratory, Agricultural Research Service, USDA, Logan, UT 84341, USA
| | - Juan J Villalba
- Department of Wildland Resources, Quinney College of Natural Resources, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
20
|
Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, Huws S, Kenny DA, Krizsan SJ, Kirwan SF, Lind V, Meyer U, Ramin M, Theodoridou K, von Soosten D, Walsh PJ, Waters S, Xing X. Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities. Animals (Basel) 2020; 10:E2432. [PMID: 33353097 PMCID: PMC7766277 DOI: 10.3390/ani10122432] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022] Open
Abstract
Seaweeds contain a myriad of nutrients and bioactives including proteins, carbohydrates and to a lesser extent lipids as well as small molecules including peptides, saponins, alkaloids and pigments. The bioactive bromoform found in the red seaweed Asparagopsis taxiformis has been identified as an agent that can reduce enteric CH4 production from livestock significantly. However, sustainable supply of this seaweed is a problem and there are some concerns over its sustainable production and potential negative environmental impacts on the ozone layer and the health impacts of bromoform. This review collates information on seaweeds and seaweed bioactives and the documented impact on CH4 emissions in vitro and in vivo as well as associated environmental, economic and health impacts.
Collapse
Affiliation(s)
- D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| | - Inga Marie Aasen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465 Trondheim, Norway;
| | - Karen A. Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| | - Fredrik Grondahl
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden;
| | - Robert Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| | - Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin 15, Ireland
| | - Sharon Huws
- Queens University Belfast (QUB), Belfast, BT7 1NN Co., Antrim, Ireland; (S.H.); (K.T.); (P.J.W.)
| | - David A. Kenny
- Animal Bioscience Research Centre, Grange, Dunsany, C15 PW93 Co., Meath, Ireland; (D.A.K.); (S.F.K.); (S.W.)
| | - Sophie J. Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; (S.J.K.); (M.R.)
| | - Stuart F. Kirwan
- Animal Bioscience Research Centre, Grange, Dunsany, C15 PW93 Co., Meath, Ireland; (D.A.K.); (S.F.K.); (S.W.)
| | - Vibeke Lind
- Norwegian Institute of Bioeconomy Research (NIBIO), Post Box 115, 1431 Ås, Norway;
| | - Ulrich Meyer
- Friedrich-Loeffler-Institut (FLI), Bundesforschungsinstitut für Tiergesundheit, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (U.M.); (D.v.S.)
| | - Mohammad Ramin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; (S.J.K.); (M.R.)
| | - Katerina Theodoridou
- Queens University Belfast (QUB), Belfast, BT7 1NN Co., Antrim, Ireland; (S.H.); (K.T.); (P.J.W.)
| | - Dirk von Soosten
- Friedrich-Loeffler-Institut (FLI), Bundesforschungsinstitut für Tiergesundheit, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (U.M.); (D.v.S.)
| | - Pamela J. Walsh
- Queens University Belfast (QUB), Belfast, BT7 1NN Co., Antrim, Ireland; (S.H.); (K.T.); (P.J.W.)
| | - Sinéad Waters
- Animal Bioscience Research Centre, Grange, Dunsany, C15 PW93 Co., Meath, Ireland; (D.A.K.); (S.F.K.); (S.W.)
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| |
Collapse
|
21
|
Mahachi LN, Chikwanha OC, Katiyatiya CL, Marufu MC, Aremu AO, Mapiye C. Sericea lespedeza (Lespedeza juncea var. sericea) for sustainable small ruminant production: Feed, helminth suppressant and meat preservation capabilities. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Lagrange S, Beauchemin KA, MacAdam J, Villalba JJ. Grazing diverse combinations of tanniferous and non-tanniferous legumes: Implications for beef cattle performance and environmental impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140788. [PMID: 32758982 DOI: 10.1016/j.scitotenv.2020.140788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
We tested the effect of increasingly diverse combinations of tanniferous legumes (birdsfoot trefoil-BFT, sainfoin-SF) and alfalfa (ALF) on cattle performance, methane (CH4) emissions and nitrogen (N) balance. Pairs of heifers (401 ± 49.6 kg) grazed three spatial replications of 7 treatments (n = 3/treatment): monocultures (BFT, SF, ALF) and all possible 2- and 3-way choices among strips of these legumes in a completely randomized block design of two 15-d periods during 2 consecutive years. Average daily gains (ADG) of heifers grazing the tanniferous legumes (1.05 kg/d) were 40% greater (p < 0.10) than of heifers grazing ALF (0.74 kg/d) during the first year. Heifers grazing the 3-way choice had greater intakes (10.4 vs 7.8 kg/d; p = 0.064) and ADG (1.21 vs. 0.95 kg/d, p = 0.054) than those grazing monocultures, suggesting a nutritional synergism among legumes. The average CH4 emissions for legume monocultures vs. 2- and 3- way choices was 222 vs. 202 and 162 g/kg BW gain (p > 0.10), respectively. For heifers grazing SF and BFT compared with ALF, blood urea N was less (14.3 and 16.8 vs 20.8 mg/dL; p < 0.05) as were urinary N concentrations (3.7 and 3.5 vs 6.0 g/L; p < 0.05), but fecal N concentrations were greater (34.5 and 35.5 vs 30.5 g/kg, respectively; p < 0.05). Combining both tanniferous legumes (SF-BFT) led to the greatest declines in urinary N (2.24 g/L) and urea-N (1.71 g/L) concentration, suggesting that different types of tannins in different legumes result in associative effects that enhance N economy. In addition, heifers grazing 3-way choices partitioned less N into urine (40.7 vs 50.6%; p = 0.037) and retained more N (36.1 vs 25.2%, p = 0.046) than heifers grazing monocultures. In summary, combinations of tanniferous legumes with alfalfa improved animal performance and reduced environmental impacts relative to monocultures, resulting in a more sustainable approach to beef production in pasture-based finishing systems.
Collapse
Affiliation(s)
- Sebastian Lagrange
- Department of Wildland Resources, Quinney College of Natural Resources, Utah State University, Logan, UT 84322, USA; Estación Experimental Agropecuaria Bordenave, Instituto Nacional de Tecnología Agropecuaria. Bordenave, Buenos Aires 8187, Argentina.
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1K 4H3, Canada
| | - Jennifer MacAdam
- Department of Plant, Soil & Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Juan J Villalba
- Department of Wildland Resources, Quinney College of Natural Resources, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
23
|
Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114623] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Azad E, Fehr KB, Derakhshani H, Forster R, Acharya S, Khafipour E, McGeough E, McAllister TA. Interrelationships of Fiber-Associated Anaerobic Fungi and Bacterial Communities in the Rumen of Bloated Cattle Grazing Alfalfa. Microorganisms 2020; 8:microorganisms8101543. [PMID: 33036363 PMCID: PMC7601590 DOI: 10.3390/microorganisms8101543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
Frothy bloat is major digestive disorder of cattle grazing alfalfa pastures. Among the many factors identified to contribute to the development of frothy bloat, the disruption of rumen microbiota appears to be of central importance. Anaerobic rumen fungi (ARF) play an important role in sequential breakdown and fermentation of plant polysaccharides and promote the physical disruption of plant cell walls. In the present study, we investigated the dynamics of ARF during the development of alfalfa-induced frothy bloat and in response to bloat preventive treatments. By sequencing the internal transcribed spacer (ITS1) region of metagenomic DNA from the solid fraction of rumen contents, we were able to identify eight distinct genera of ARF, including Neocallimastix, Caecomyces, Orpinomyces, Piromyces, Cyllamyces, Anaeromyces, Buwchfawromyces, and unclassified Neocallimastigaceae. Overall, transition of steers from a baseline hay diet to alfalfa pastures was associated with drastic changes in the composition of the fungal community, but the overall composition of ARF did not differ (p > 0.05) among bloated and non-bloated steers. A correlation network analysis of the proportion of ARF and ruminal bacterial communities identified hub fungal species that were negatively correlated with several bacterial species, suggesting the presence of inter-kingdom competition among these rumen microorganisms. Interestingly, the number of negative correlations among ARF and bacteria decreased with frothy bloat, indicating a potential disruption of normal microbial profiles within a bloated rumen ecosystem. A better understanding of fungal-bacterial interactions that differ among bloated and non-bloated rumen ecosystem could advance our understanding of the etiology of frothy bloat.
Collapse
Affiliation(s)
- Elnaz Azad
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.A.); (K.B.F.); (E.K.); (E.M.)
| | - Kelsey B. Fehr
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.A.); (K.B.F.); (E.K.); (E.M.)
| | - Hooman Derakhshani
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | - Robert Forster
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (R.F.); (S.A.)
| | - Surya Acharya
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (R.F.); (S.A.)
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.A.); (K.B.F.); (E.K.); (E.M.)
- Diamond V, Cedar Rapids, IA 52404, USA
| | - Emma McGeough
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.A.); (K.B.F.); (E.K.); (E.M.)
| | - Tim A. McAllister
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.A.); (K.B.F.); (E.K.); (E.M.)
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (R.F.); (S.A.)
- Correspondence: ; Tel.: +1-403-315-9916
| |
Collapse
|
25
|
Trotta RJ, Swanson KC. Effects of dietary supplement sources on the rate and extent of in vitro ruminal degradation of alfalfa-based diets for cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two ruminally cannulated steers [928 ± 25.5 kg body weight (BW)] were fed alfalfa hay at 2.0% of BW and served as donors of rumen fluid. Treatments were early-bud alfalfa (CON) or a combination [dry matter (DM) basis] of 80% early-bud alfalfa with 20% of corn silage (CS), brome grass hay (BGH), soybean hulls (SBH), beet pulp (BP), corn grain (CORN), dried corn distillers’ grains with solubles (DDGS), or wheat middlings (MIDD). Tubes were incubated at multiple time points over a 72 h period and assessed for rate and extent of digestion. Samples were run in duplicate and replicated over 3 d. The potential extent of DM and organic matter (OM) degradation increased (P < 0.001) with CS, SBH, BP, CORN, and DDGS supplementation compared with CON. All supplements except MIDD decreased (P < 0.001) the fractional rates of DM and OM degradation compared with CON, with BGH, SBH, and DDGS having the lowest rates. Supplementation of SBH had the lowest (P < 0.001) initial rate of DM and OM degradation. These data indicate that SBH increases the extent of digestion while reducing the initial rate of degradation, suggesting that SBH has potential to reduce the incidence of frothy legume bloat.
Collapse
Affiliation(s)
- Ronald J. Trotta
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kendall C. Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
26
|
Surface activity and foaming properties of saponin-rich plants extracts. Adv Colloid Interface Sci 2020; 279:102145. [PMID: 32229329 DOI: 10.1016/j.cis.2020.102145] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Saponins are amphiphilic glycosidic secondary metabolites produced by numerous plants. So far only few of them have been thoroughly analyzed and even less have found industrial applications as biosurfactants. In this contribution we screen 45 plants from different families, reported to be rich in saponins, for their surface activity and foaming properties. For this purpose, the room-temperature aqueous extracts (macerates) from the alleged saponin-rich plant organs were prepared and spray-dried under the same conditions, in presence of sodium benzoate and potassium sorbate as preservatives and drying aids. For 15 selected plants, the extraction was also performed using hot water (decoction for 15 min) but high temperature in most cases deteriorated surface activity of the extracts. To our knowledge, for most of the extracts this is the first quantitative report on their surface activity. Among the tested plants, only 3 showed the ability to reduce surface tension of their solutions by more than 20 mN/m at 1% dry extract mass content. The adsorption layers forming spontaneously on the surface of these extracts showed a broad range of surface dilational rheology responses - from null to very high, with surface dilational elasticity modulus, E' in excess of 100 mN/m for 5 plants. In all cases the surface dilational response was dominated by the elastic contribution, typical for saponins and other biosurfactants. Almost all extracts showed the ability to froth, but only 32 could sustain the foam for more than 1 min (for 11 extracts the foams were stable during at least 10 min). In general, the ability to lower surface tension and to produce adsorbed layers with high surface elasticity did not correlate well with the ability to form and sustain the foam. Based on the overall characteristics, Saponaria officinalis L. (soapwort), Avena sativa L. (oat), Aesculus hippocastanum L. (horse chestnut), Chenopodium quinoa Willd. (quinoa), Vaccaria hispanica (Mill.) Rauschert (cowherb) and Glycine max (L.) Merr. (soybean) are proposed as the best potential sources of saponins for surfactant applications in natural cosmetic and household products.
Collapse
|
27
|
The Potential Effect of Dietary Tannins on Enteric Methane Emission and Ruminant Production, as an Alternative to Antibiotic Feed Additives – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Antibiotic growth promoters in livestock nutrition cause microbial resistance which produces threats to human health. Therefore, tannins have been considered as natural alternative antibiotic feed additives which possess various biological properties including antimicrobial, anti-inflammatory, antioxidant and immunomodulatory. Additionally, these plants also have antiparasitic and anti-bloat characteristics which contribute to inhibit the enteric methane emission in order to improve nutrient digestibility, milk and meat quality, fatty acids composition and ruminant production. Antibiotic growth promoters have been practiced in animals feeding to increase feed intake, growth rate, weight gain as well as reduce metabolic disorders and energy losses in the rumen. In 2006, the European Union banned the usage of antibiotic growth promoters in the feeding of livestock. This antibiotic resistance issue has increased demand to explore the natural feed additives that might be useful for animal production system. Consequently, natural forages have been categorized as potential feed additives in animal production since it improves nutritive value, protein digestibility, increase amino acid absorption and growth rate. But, some plant materials are usually rich in tannins known as anti-nutritional factors. Therefore, the application of tannin-rich plants in ruminant nutrition needs great precaution due to its possible injurious effects (dose dependent) on animal health such as metabolic disorders. Hence, there is need to give attention to the usage of tannins in ruminant nutrition as an alternative to antibiotics feed additives to investigate its effects on enteric methane emissions and ruminants production. In addition, safety and risk associated with tannins feeding have also been briefly discussed.
Collapse
|
28
|
Passetti RA, Passetti LC, Gruninger RJ, Ribeiro GO, Marami Milani MR, Prado IN, McAllister TA. Effect of ammonia fibre expansion (AFEX) treatment of rice straw on in situ digestibility, microbial colonization, acetamide levels and growth performance of lambs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Lagrange S, Villalba JJ. Tannin-containing legumes and forage diversity influence foraging behavior, diet digestibility, and nitrogen excretion by lambs1,2. J Anim Sci 2019; 97:3994-4009. [PMID: 31372657 PMCID: PMC6735941 DOI: 10.1093/jas/skz246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/31/2019] [Indexed: 11/14/2022] Open
Abstract
Diverse combinations of forages with different nutrient profiles and plant secondary compounds may improve intake and nutrient utilization by ruminants. We tested the influence of diverse dietary combinations of tannin- (sainfoin-Onobrichis viciifolia; birdsfoot trefoil-Lotus corniculatus) and non-tannin- (alfalfa-Medicago sativa L.) containing legumes on intake and diet digestibility in lambs. Freshly cut birdsfoot trefoil, alfalfa, and sainfoin were offered in ad libitum amounts to 42 lambs in individual pens assigned to 7 treatments (6 animals/treatment): 1) single forage species (sainfoin [SF], birdsfoot trefoil [BFT], and alfalfa [ALF]), 2) all possible 2-way choices of the 3 forage species (alfalfa-sainfoin [ALF-SF], alfalfa-birdsfoot trefoil [ALF-BFT], and sainfoin-birdsfoot trefoil [SF-BFT]), or 3) a choice of all 3 forages (alfalfa-sainfoin-birdsfoot trefoil [ALF-SF-BFT]). Dry matter intake (DMI) was greater in ALF than in BFT (P = 0.002), and DMI in SF tended to be greater than in BFT (P = 0.053). However, when alfalfa was offered in a choice with either of the tannin-containing legumes (ALF-SF; ALF-BFT), DMI did not differ from ALF, whereas DMI in SF-BFT did not differ from SF (P > 0.10). When lambs were allowed to choose between 2 or 3 legume species, DMI was greater (36.6 vs. 33.2 g/kg BW; P = 0.038) or tended to be greater (37.4 vs. 33.2 g/kg BW; P = 0.067) than when lambs were fed single species, respectively. Intake did not differ between 2- or 3-way choice treatments (P = 0.723). Lambs preferred alfalfa over the tannin-containing legumes in a 70:30 ratio for 2-way choices, and alfalfa > sainfoin > birdsfoot trefoil in a 53:33:14 ratio for the 3-way choice. In vivo digestibility (DMD) was SF > BFT (72.0% vs. 67.7%; P = 0.012) and DMD in BFT tended to be greater than in ALF (64.6%; P = 0.061). Nevertheless, when alfalfa was offered in a choice with either sainfoin or birdsfoot trefoil (ALF-SF; ALF-BFT), DMD was greater than ALF (P < 0.001 and P = 0.007, respectively), suggesting positive associative effects. The SF treatment had lower blood urea nitrogen and greater fecal N/N intake ratios than the ALF, BFT, or ALF-BFT treatments (P < 0.05), implying a shift in the site of N excretion from urine to feces. In conclusion, offering diverse combinations of legumes to sheep enhanced intake and diet digestibility relative to feeding single species, while allowing for the incorporation of beneficial bioactive compounds like condensed tannins into the diet.
Collapse
Affiliation(s)
- Sebastian Lagrange
- Department of Wildland Resources, Quinney College of Natural Resources, Utah State University, Logan, UT
- Estación Experimental Agropecuaria Bordenave, Instituto Nacional de Tecnología Agropecuaria. Bordenave, Buenos Aires, Argentina
| | - Juan J Villalba
- Department of Wildland Resources, Quinney College of Natural Resources, Utah State University, Logan, UT
| |
Collapse
|
30
|
Characterization of the rumen and fecal microbiome in bloated and non-bloated cattle grazing alfalfa pastures and subjected to bloat prevention strategies. Sci Rep 2019; 9:4272. [PMID: 30862851 PMCID: PMC6414552 DOI: 10.1038/s41598-019-41017-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
Frothy bloat is an often fatal digestive disorder of cattle grazing alfalfa pastures. The aim of this study was to investigate ruminal and fecal microbiota dynamics associated with development of alfalfa-induced frothy bloat and to further explore how bloat prevention strategies influence the composition of these microbial communities. In a 3 × 3 crossover experiment, twelve rumen-cannulated steers were sequentially subjected to: (1) pure alfalfa pasture, (2) pure alfalfa pasture supplemented with the pluronic detergent ALFASURE, and (3) alfalfa – sainfoin mixed pasture. Eleven out of 12 steers in pure alfalfa pasture developed clinical bloat, whereas ALFASURE treatment prevented the development of bloat in all 12 steers and alfalfa – sainfoin prevented bloat in 5 out of 11 steers. Development of bloat was associated with considerable shifts in the microbiota profile of rumen contents. In particular, the microbiota of solid rumen contents from bloated steers contained higher species richness and diversity. Streptococcus, Succinivibrio and unclassified Myxococcales were enriched in the rumen microbiota of bloated steers, whereas Fibrobacter and Ruminococcus were overrepresented in the rumen contents of non-bloated steers. Our results provide novel insights into bloat-associated shifts in the composition and predicted functional properties of the rumen microbiota of cattle grazing alfalfa pasture.
Collapse
|
31
|
Huang Q, Liu X, Zhao G, Hu T, Wang Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:137-150. [PMID: 30140753 PMCID: PMC6104569 DOI: 10.1016/j.aninu.2017.09.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 11/24/2022]
Abstract
Naturally occurring plant compounds including tannins, saponins and essential oils are extensively assessed as natural alternatives to in-feed antibiotics. Tannins are a group of polyphenolic compounds that are widely present in plant region and possess various biological activities including antimicrobial, anti-parasitic, anti-viral, antioxidant, anti-inflammatory, immunomodulation, etc. Therefore, tannins are the major research subject in developing natural alternative to in-feed antibiotics. Strong protein affinity is the well-recognized property of plant tannins, which has successfully been applied to ruminant nutrition to decrease protein degradation in the rumen, and thereby improve protein utilization and animal production efficiency. Incorporations of tannin-containing forage in ruminant diets to control animal pasture bloat, intestinal parasite and pathogenic bacteria load are another 3 important applications of tannins in ruminant animals. Tannins have traditionally been regarded as "anti-nutritional factor" for monogastric animals and poultry, but recent researches have revealed some of them, when applied in appropriate manner, improved intestinal microbial ecosystem, enhanced gut health and hence increased productive performance. The applicability of plant tannins as an alternative to in-feed antibiotics depends on many factors that contribute to the great variability in their observed efficacies.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiuli Liu
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Guoqi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tianming Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxi Wang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge AB T1J 4B1, Canada
| |
Collapse
|
32
|
Poutaraud A, Michelot-Antalik A, Plantureux S. Grasslands: A Source of Secondary Metabolites for Livestock Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6535-6553. [PMID: 28704611 DOI: 10.1021/acs.jafc.7b00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The need for environmentally friendly practices in animal husbandry, in conjunction with the reduction of the use of synthetic chemicals, leads us to reconsider our agricultural production systems. In that context, grassland secondary metabolites (GSMs) could offer an alternative way to support to livestock health. In fact, grasslands, especially those with high dicotyledonous plant species, present a large, pharmacologically active reservoir of secondary metabolites (e.g., phenolic compounds, alkaloids, saponins, terpenoids, carotenoids, and quinones). These molecules have activities that could improve or deteriorate health and production. This Review presents the main families of GSMs and uses examples to describe their known impact on animal health in husbandry. Techniques involved for their study are also described. A particular focus is put on anti-oxidant activities of GSMs. In fact, numerous husbandry pathologies, such as inflammation, are linked to oxidative stress and can be managed by a diet rich in anti-oxidants. The different approaches and techniques used to evaluate grassland quality for livestock health highlight the lack of efficient and reliable technics to study the activities of this complex phytococktail. Better knowledge and management of this animal health resource constitute a new multidisciplinary research field and a challenge to maintain and valorize grasslands.
Collapse
Affiliation(s)
- Anne Poutaraud
- Laboratoire Agronomie et Environnement, INRA , UMR 1121, Colmar, 29 rue de Herrlisheim, F-68021 Colmar Cedex, France
| | - Alice Michelot-Antalik
- Laboratoire Agronomie et Environnement, Université de Lorraine , UMR 1121, 2 Avenue de la forêt de Haye - TSA 40602, F-54518 Vandœuvre-lès-Nancy Cedex, France
| | - Sylvain Plantureux
- Laboratoire Agronomie et Environnement, Université de Lorraine , UMR 1121, 2 Avenue de la forêt de Haye - TSA 40602, F-54518 Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
33
|
McCann JC, Elolimy AA, Loor JJ. Rumen Microbiome, Probiotics, and Fermentation Additives. Vet Clin North Am Food Anim Pract 2017; 33:539-553. [PMID: 28764865 DOI: 10.1016/j.cvfa.2017.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Fermentation of a variety of feedstuffs by the ruminal microbiome is the distinctive feature of the ruminant digestive tract. The host derives energy and nutrients from microbiome activity; these organisms are essential to survival. Advances in DNA sequencing and bioinformatics have redefined the rumen microbial community. Current research seeks to connect our understanding of the rumen microbiome with nutritional strategies in ruminant livestock systems and their associated digestive disorders. These efforts align with a growing number of products designed to improve ruminal fermentation to benefit the overall efficiency of ruminant livestock production and health.
Collapse
Affiliation(s)
- Joshua C McCann
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA.
| | - Ahmed A Elolimy
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
34
|
Lei Y, Hannoufa A, Yu P. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage. Int J Mol Sci 2017; 18:E298. [PMID: 28146083 PMCID: PMC5343834 DOI: 10.3390/ijms18020298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/10/2017] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.
Collapse
Affiliation(s)
- Yaogeng Lei
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada.
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
35
|
Snelling TJ, Wallace RJ. The rumen microbial metaproteome as revealed by SDS-PAGE. BMC Microbiol 2017; 17:9. [PMID: 28061817 PMCID: PMC5219685 DOI: 10.1186/s12866-016-0917-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/16/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ruminal digestion is carried out by large numbers of bacteria, archaea, protozoa and fungi. Understanding the microbiota is important because ruminal fermentation dictates the efficiency of feed utilisation by the animal and is also responsible for major emissions of the greenhouse gas, methane. Recent metagenomic and metatranscriptomic studies have helped to elucidate many features of the composition and activity of the microbiota. The metaproteome provides complementary information to these other -omics technologies. The aim of this study was to explore the metaproteome of bovine and ovine ruminal digesta using 2D SDS-PAGE. RESULTS Digesta samples were taken via ruminal fistulae and by gastric intubation, or at slaughter, and stored in glycerol at -80 °C. A protein extraction protocol was developed to maximise yield and representativeness of the protein content. The proteome of ruminal digesta taken from dairy cows fed a high concentrate diet was dominated by a few very highly expressed proteins, which were identified by LC-MS/MS to be structural proteins, such as actin and α- and β-tubulins, derived from ciliate protozoa. Removal of protozoa from digesta before extraction of proteins revealed the prokaryotic metaproteome, which was dominated by enzymes involved in glycolysis, such as glyceraldehyde-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, phosphoglycerate kinase and triosephosphate isomerase. The enzymes were predominantly from the Firmicutes and Bacteroidetes phyla. Enzymes from methanogenic archaea were also abundant, consistent with the importance of methane formation in the rumen. Gels from samples from dairy cows fed a high proportion of grass silage were consistently obscured by co-staining of humic compounds. Samples from beef cattle and fattening lambs receiving a predominantly concentrate diet produced clearer gels, but the pattern of spots was inconsistent between samples, making comparisons difficult. CONCLUSION This work demonstrated for the first time that 2D-PAGE reveals key structural proteins and enzymes in the rumen microbial community, despite its high complexity, and that taxonomic information can be deduced from the analysis. However, technical issues associated with feed material contamination, which affects the reproducibility of electrophoresis of different samples, limits its value.
Collapse
Affiliation(s)
- Timothy J Snelling
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB16 5BD, UK
| | - R John Wallace
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB16 5BD, UK.
| |
Collapse
|
36
|
Laporte-Uribe JA. The role of dissolved carbon dioxide in both the decline in rumen pH and nutritional diseases in ruminants. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Moeller L, Krieg F, Zehnsdorf A, Müller RA. How to Avoid Foam Formation in Biogas Plants by Coarse Grain Anaerobic Digestion. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Moeller L, Lehnig M, Schenk J, Zehnsdorf A. Foam formation in biogas plants caused by anaerobic digestion of sugar beet. BIORESOURCE TECHNOLOGY 2015; 178:270-277. [PMID: 25446785 DOI: 10.1016/j.biortech.2014.09.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 06/04/2023]
Abstract
The use of sugar beet in anaerobic digestion (AD) during biogas production can lead to process upsets such as excessive foaming in fermenters. In the present study, foam formation in sugar beet-fed digestates was studied in foaming tests. The increasing disintegration grade of sugar beet was observed to have a promoting effect on foaming in the digestate but did not affect the biogas yield. Chemical analysis of foam and digestate from sugar beet silage AD showed high concentrations of pectin, other carbohydrates and N-containing substances in the foam. Both pectin and sucrose showed little foaming in AD. Nevertheless, sucrose and calcium chloride had a promoting effect on foaming for pectin AD. Salts of divalent ions also enhanced the foam intensity in the case of sugar beet silage AD, whereas ammonium chloride and urea had a lessening effect on sugar beet-based foaming.
Collapse
Affiliation(s)
- Lucie Moeller
- UFZ - Helmholtz Centre for Environmental Research, Centre for Environmental Biotechnology, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Marcus Lehnig
- Leipzig University of Applied Sciences, Koburger Strasse 62, D-04416 Markkleeberg, Germany.
| | - Joachim Schenk
- Leipzig University of Applied Sciences, Koburger Strasse 62, D-04416 Markkleeberg, Germany.
| | - Andreas Zehnsdorf
- UFZ - Helmholtz Centre for Environmental Research, Centre for Environmental Biotechnology, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
39
|
Lüscher A, Mueller-Harvey I, Soussana JF, Rees RM, Peyraud JL. Potential of legume-based grassland-livestock systems in Europe: a review. GRASS AND FORAGE SCIENCE : THE JOURNAL OF THE BRITISH GRASSLAND SOCIETY 2014; 69:206-228. [PMID: 26300574 PMCID: PMC4540161 DOI: 10.1111/gfs.12124] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/15/2014] [Indexed: 05/06/2023]
Abstract
European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil-plant-animal-atmosphere system, and these are most effective in mixed swards with a legume proportion of 30-50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland-livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future.
Collapse
Affiliation(s)
- A Lüscher
- Agroscope, Institute for Sustainability Sciences Zurich, Switzerland
| | - I Mueller-Harvey
- School of Agriculture, Policy and Development, University of Reading Reading, UK
| | - J F Soussana
- INRA, Grassland Ecosystem Research Clermont-Ferrand, France
| | - R M Rees
- Scotland's Rural College Edinburgh, UK
| | | |
Collapse
|
40
|
Deckardt K, Khol-Parisini A, Zebeli Q. Peculiarities of enhancing resistant starch in ruminants using chemical methods: opportunities and challenges. Nutrients 2013; 5:1970-88. [PMID: 23736826 PMCID: PMC3725487 DOI: 10.3390/nu5061970] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/19/2013] [Accepted: 05/22/2013] [Indexed: 12/01/2022] Open
Abstract
High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA) as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS). In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants.
Collapse
Affiliation(s)
- Kathrin Deckardt
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna 1210, Austria.
| | | | | |
Collapse
|