1
|
Coja T, Adriaanse P, Choi J, Finizio A, Giraudo M, Kuhl T, Metruccio F, McVey E, Paparella M, Pieper S, Scanziani E, Teodorovic I, Van der Brink P, Wilks M, Marinovich M, Ferilli F, Gobbi A, Panzarea M, Vianello G, Lava R. Statement concerning the review of the approval of the basic substances chitosan and chitosan hydrochloride when used in plant protection. EFSA J 2025; 23:e9318. [PMID: 40182011 PMCID: PMC11966830 DOI: 10.2903/j.efsa.2025.9318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
The European Commission asked EFSA to provide an opinion according to Article 23(6) of Regulation (EC) No 1107/2009, in conjunction with Article 29 of Regulation (EC) No 178/2002, regarding the approved plant protection uses of chitosan and chitosan hydrochloride as basic substances. The Panel on Plant Protection Products and their Residues (PPR) was not provided with new dossiers but collated available scientific and technical knowledge and used a weight of evidence approach and experts' judgement for its appraisal. The statement has considered the possibility for extrapolation of the toxicological properties between chitosan and chitosan hydrochloride, and whether both substances can be expected to be of no toxicological concern; a comparison between the estimated levels of chitosan and chitosan hydrochloride resulting from the approved uses as basic substances and the level of chitosan expected to naturally occur in the environment. This last comparison served to verify whether the approved uses as basic substances might lead to an exceedance of the expected natural background levels in any of the environmental compartments (quantitative for the soil compartment and (semi)quantitative for the freshwater compartment); and accordingly, whether there was a need to advise on the safety of chitosan and chitosan hydrochloride to non-target species occurring in the impacted environmental compartments. Overall, the PPR Panel concluded that toxicological properties can be extrapolated between chitosan and chitosan hydrochloride and that no toxicological concerns were identified. The estimated levels of chitosan and chitosan hydrochloride in the environment following application in accordance with their approved uses as basic substances would be within the same range, or below, the expected natural background exposure levels in soil and freshwaters. Considering the available ecotoxicological data and the environmental fate assessment, further consideration in relation to the safety to non-target organisms was considered not necessary. Missing information alongside related uncertainties have been identified and considered in the overall weight of the evidence.
Collapse
|
2
|
El-Zaiat HM, Al-Marzooqi W, Al-Kharousi K. Effects of Chitosan-Based Additive on Rumen Fermentation and Microbial Community, Nutrients Digestibility and Lactation Performance in Goats. J Anim Physiol Anim Nutr (Berl) 2025; 109:338-349. [PMID: 39392209 DOI: 10.1111/jpn.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Recently, the potential of using chitosan (CHI) as a feed additive to enhance ruminal fermentation and improve animal performance has gained increasing attention in ruminant nutrition. This study was undertaken to investigate the effect of dietary supplementation with increasing doses of CHI on rumen fermentation attributes and microbial composition, digestibility and milk performance in Dhofari goats. Twenty-four lactating goats (27 ± 1.8 kg of initial live body weight) were fed a control diet comprising of Rhodes grass hay plus a concentrate feed mixture. Goats were assigned to one of three experimental treatments (n = 8 per treatment) as: (1) control diet with no supplement (CTRL), (2) control diet with 0.300 g/day CHI (CHI0.3) and (3) control diet supplemented with 0.600 g/day CHI (CHI0.6) for a 45-day experimental period. Dietary supplementation with increasing doses of CHI decreased (p < 0.05) linearly ruminal pH (p = 0.023), total short chain fatty acids concentrations (p = 0.011), acetate (p = 0.013) and butyrate (p = 0.042) proportions, acetate to propionate ratio (p < 0.001), estimated methane (CH4) production (p < 0.001), ammonia nitrogen concentrations (p = 0.003) and protozoa abundance (p = 0.003). However, the ruminal propionate proportion augmented (p = 0.002) linearly with increasing doses of CHI in the diet. Increasing doses of CHI linearly increased the abundance of the ruminal propionate-producing bacteria, while diminished acetate and CH4-producing bacteria (p < 0.05). Serum total protein (p = 0.037) and glucose (p = 0.042) levels linearly increased as CHI doses increased in the diet. However, serum UREA levels decreased linearly (p = 0.002) by 21% with increasing CHI amounts in the diet. The digestibility of organic matter, crude protein and neutral detergent fibre increased linearly with the increasing CHI doses (p < 0.05). Neither linear nor quadratic responses (p > 0.05) were observed in daily milk yield and feed efficiency by supplementing the diet with CHI. In conclusion, supplementing the diet with CHI at a dose of 0.600 g/day as a feed additive for dairy goats reduced estimated CH4 generation and improved fibre and protein digestion, with no influence on feed intake, milk yield or composition.
Collapse
Affiliation(s)
- Hani M El-Zaiat
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Waleed Al-Marzooqi
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Kaadhia Al-Kharousi
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
3
|
Ogundare WO, Beckett LM, Reis LG, Stansberry MC, Roberts SN, Anele UY, Schinckel AP, Casey TM, Minor RC. The impact of cooling and Moringa supplementation on oxidative stress in serum and milk, including milk cytokines, in heat stressed lactating sows and their litters. Transl Anim Sci 2024; 9:txae156. [PMID: 39844792 PMCID: PMC11751637 DOI: 10.1093/tas/txae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/09/2024] [Indexed: 01/24/2025] Open
Abstract
Heat stress (HS) poses a significant challenge to the United States swine industry. Sows and their piglets are particularly vulnerable to HS, as the periparturient phase is characterized by heightened metabolism and increased oxidative stress and inflammation. The study examined the effects of using conductive electronic cooling pads (ECP) and dietary supplementation with 4% Moringa (M) leaf powder on controlling oxidative stress and inflammation caused by HS in sows and their piglets. Forty-eight late gestation sows were assigned to four treatment groups: HS-fed corn-soybean meal (HS + CS), ECP-fed corn-soybean meal (ECP + CS), HS + M, and ECP + M. Blood was collected from sows on gestation (G) day 112, and lactation (L) day 14 and L20, and from piglets (2 males and 2 females) in each litter on postnatal (PN) day 1 and PN20. Colostrum was collected within 2h of birth of the first neonate, and mature milk was collected on L14. Piglet fecal samples were collected on PN14 to measure calprotectin concentration as a marker of intestinal inflammation. Biological antioxidant potential (BAP), derivatives of reactive oxygen metabolites (dROMs). and oxidative stress index (OSi) were measured in blood and milk samples using a Free Radical Elective Evaluator. Milk samples pooled by day of lactation and treatment group were analyzed using cytokine array. Levels of inflammatory cytokines in colostrum were affected by Moringa supplementation and cooling, but not mature milk. Notably, the anti-inflammatory cytokines interleukin (IL)-10 and IL-1ra were 2.14 and 1.57 Log2 higher in the colostrum of HS + M compared to other groups. The OSi of colostrum was higher (P = 0.0002) than mature milk. Level of BAP in sow serum was greater in ECP + CS and HS + M (P = 0.0291) compared to other groups. Moringa had an overall effect of increasing dROMs (P = 0.0035) and levels of OSi were lowest in ECP + CS (P = 0.0296) sow serum. Treatments did not affect piglet serum oxidative index (P > 0.05) or calprotectin levels (P > 0.05). Findings support further studies to investigate the efficacy of using ECP and Moringa supplementation to mitigate inflammation and oxidative stress imposed by heat stress conditions in lactating sows.
Collapse
Affiliation(s)
| | - Linda M Beckett
- Department of Animal Sciences, West Lafayette, IN 47907, USA
| | - Leriana G Reis
- Department of Animal Sciences, West Lafayette, IN 47907, USA
| | | | | | | | | | - Theresa M Casey
- Department of Animal Sciences, West Lafayette, IN 47907, USA
| | - Radiah C Minor
- Department of Animal Sciences, Greensboro, NC, 27411, USA
| |
Collapse
|
4
|
Li SY, Tong MM, Li L, Hui F, Meng FZ, Zhao YL, Guo YM, Guo XY, Shi BL, Yan SM. Rectal microbiomes and serum metabolomics reveal the improved effect of Artemisia ordosica crude polysaccharides on the lactation performance, antioxidant status, and immune responses of lactating donkeys. J Dairy Sci 2024; 107:6696-6716. [PMID: 38608958 DOI: 10.3168/jds.2023-24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 04/14/2024]
Abstract
This study is aimed at investigating the effects of dietary supplementation with Artemisia ordosica crude polysaccharides (AOCP) on lactation performance, antioxidant status, and immune status of lactating donkeys and analyzing rectal microbiomes and serum metabolomes. Fourteen lactating Dezhou donkeys with similar age (6.16 ± 0.67 yr of BW ± SD), weight (250.06 ± 25.18 kg), DIM (39.11 ± 7.42 d), and average parity of 3 were randomly allocated into 2 treatments: a control group (CON, basal diet) and an AOCP group (AOCP, basal diet with 1.0 g/kg DM AOCP). Ten weeks were allotted for the experiment, 2 wk for adaptation, and 8 wk for collecting data and samples. The results showed that supplementation of donkey diets with AOCP increased lactation performance, including DMI, milking yield, estimated milk yield, solids-corrected milk, ECM, milk fat yield, milk protein yield, milk lactose yield, milk TS yield, and milk SNF yield. The digestibility of DM, CP, ADF, and NDF was increased in the AOCP group compared with the CON group. The AOCP group increased the concentrations of IgA, IgG, and IgM, the activities of the superoxide dismutase, catalase, and total antioxidant capacity in the serum. Artemisia ordosica crude polysaccharides decreased the concentrations of tumor necrosis factor-α, nitric oxide, reactive oxygen species, and malondialdehyde in the serum. Compared with the CON group, AOCP increased propionate, butyrate, isovalerate, and total VFA concentrations in rectal feces (P < 0.05). The addition of AOCP to increased diversity (Shannon index) and altered structure of the rectal microflora. As a result of AOCP supplementation, there has been a significant improvement in the colonization of beneficial bacteria, including Lactobacillus, Unclassified_f_Prevotellacea, Ruminococcus, and Fibrobacter genera. In contrast, a decrease in the colonization of the Clostridium_sensu_stricto_1 bacterial genus and other pathogenic bacteria was observed. Meanwhile, metabolomics analysis found that AOCP supplementation upregulated metabolites l-tyrosine content while downregulating 9(S)-HODE, choline, sucrose, lysophosphatidylcholine (LysoPC) (18:0), LysoPC (18:1(9Z)), and LysoPC (20:2(11Z,14Z)) concentrations. These altered metabolites were involved in the PPAR signaling pathway, prolactin signaling pathway, glycerophospholipid metabolism, carbohydrate digestion and absorption, and tyrosine metabolism pathways, which were mainly related to antioxidant capacity, immune responses, and protein metabolism in the lactating donkeys. As a consequence of feeding AOCP diets, beneficial bacteria were abundant, and antioxidant and protein metabolism-related pathways were enriched, which may enhance lactation performance in donkeys. Therefore, supplementing AOCP diets is a desirable dietary strategy to improve donkey health and lactation performance.
Collapse
Affiliation(s)
- S Y Li
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - M M Tong
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - L Li
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - F Hui
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - F Z Meng
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Y L Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Y M Guo
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - X Y Guo
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - B L Shi
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - S M Yan
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China.
| |
Collapse
|
5
|
Zhang Q, Xie Y, Tang J, Meng L, Huang E, Liu D, Tong T, Liu Y, Guo Z. Effects of Dietary Chitosan on Growth Performance, Serum Biochemical Indices, Antioxidant Capacity, and Immune Response of Juvenile Tilapia ( Oreochromis niloticus) under Cadmium Stress. Animals (Basel) 2024; 14:2259. [PMID: 39123784 PMCID: PMC11311066 DOI: 10.3390/ani14152259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The objective of this study was to examine the effects of varying levels of dietary chitosan supplementation on mitigating cadmium stress and its influence on growth performance, serum biochemical indices, antioxidant capacity, immune response, inflammatory response, and the expression of related genes in juvenile Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus). Five groups of juvenile tilapias (initial body weight 21.21 ± 0.24 g) were fed five diets with different levels (0%, 0.5%, 1.0%, 1.5%, and 2.0%) of chitosan supplementation for 60 days under cadmium stress (0.2 mg/L Cd2+). The findings indicated that, compared with the 0% chitosan group, dietary chitosan could significantly increase (p < 0.05) the final weight (Wf), weight gain rate (WGR), specific growth rate (SGR), daily growth index (DGI), and condition factor (CF), while the feed conversion ratio (FCR) expressed the opposite trend in juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of cholinesterase (CHE), albumin (ALB), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), acid phosphatase (ACP), and lysozyme (LZM), while glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), and complement 3 (C3) in the serum of juvenile GIFT expressed the opposite trend. Dietary chitosan could significantly increase (p < 0.05) the activities of superoxide dismutase (SOD) and catalase (CAT) and significantly decrease (p < 0.05) the activities (contents) of glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in the serum of juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of CAT, GST, GSH-Px, and total antioxidant capacity (T-AOC) and significantly decrease (p < 0.05) the contents of MDA in the liver of juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of SOD, GSH-Px, T-AOC, Na+-K+-ATPase, and Ca2+-ATPase and significantly decrease (p < 0.05) the activities (contents) of CAT, GST, and MDA in the gills of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of cat, sod, gst, and gsh-px in the liver of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of interferon-γ (inf-γ) in the gills and spleen and significantly down-regulate (p < 0.05) the gene expression of inf-γ in the liver and head kidney of juvenile GIFT. Dietary chitosan could significantly down-regulate (p < 0.05) the gene expression of interleukin-6 (il-6), il-8, and tumor necrosis factor-α (tnf-α) in the liver, gills, head kidney, and spleen of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of il-10 in the liver, gills, head kidney, and spleen of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of transforming growth factor-β (tgf-β) in the liver and significantly down-regulate (p < 0.05) the gene expression of tgf-β in the head kidney and spleen of juvenile GIFT. In conclusion, dietary chitosan could mitigate the impact of cadmium stress on growth performance, serum biochemical indices, antioxidant capacity, immune response, inflammatory response, and related gene expression in juvenile GIFT. According to the analysis of second-order polynomial regression, it was found that the optimal dietary chitosan levels in juvenile GIFT was approximately 1.42% to 1.45%, based on its impact on Wf, WGR, SGR, and DGI.
Collapse
Affiliation(s)
- Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Yi Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Jiaqiong Tang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Liuqing Meng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Enhao Huang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Dongsheng Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Tong Tong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Yongqiang Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, 158 University Road, Nanning 530008, China; (Q.Z.); (Y.X.); (J.T.); (L.M.); (E.H.); (D.L.); (T.T.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Science, 8 Qingshan Road, Nanning 530021, China
| |
Collapse
|
6
|
Rey J, Díaz de Otálora X, Atxaerandio R, Mandaluniz N, García-Rodríguez A, González-Recio O, López-García A, Ruiz R, Goiri I. Effect of Chitosan on Ruminal Fermentation and Microbial Communities, Methane Emissions, and Productive Performance of Dairy Cattle. Animals (Basel) 2023; 13:2861. [PMID: 37760261 PMCID: PMC10525946 DOI: 10.3390/ani13182861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to expand the knowledge about the activity and mode of action of CHI on methanogenesis and rumen microbial populations in vivo. A total of 16 lactating dairy cows were distributed in two groups, one of them receiving 135 mg CHI/kg body weight daily. The effect on productive performance, milk composition, fermentation efficiency, methane emissions, microbial protein synthesis, and ruminal microbial communities was determined. Supplementation with CHI did not affect rumen microbial diversity but increased the relative abundance (RA) of the bacteria Anaeroplasma and decreased those of rumen ciliates and protozoa resulting in a shift towards a lower acetic to propionic ratio. However, no effect on milk yield or methane intensity was observed. In conclusion, supplementing 135 mg CHI/kg body weight increased the RA of Anaeroplasma and decreased those of rumen ciliates and protozoa, both being related to fiber degradation in the rumen in different ways and resulted in a shift of ruminal fermentation towards more propionate proportions, without affecting CH4 emissions, milk yield, or milk composition. Further research with higher doses would be necessary to assess the potential use of this additive as a methane inhibitor.
Collapse
Affiliation(s)
- Jagoba Rey
- NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Department of Animal Production, Campus Agroalimentario de Arkaute s/n, 01192 Arcaute, Spain (X.D.d.O.); (R.A.); (N.M.); (A.G.-R.); (R.R.)
| | - Xabier Díaz de Otálora
- NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Department of Animal Production, Campus Agroalimentario de Arkaute s/n, 01192 Arcaute, Spain (X.D.d.O.); (R.A.); (N.M.); (A.G.-R.); (R.R.)
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department of Technology Assessment and Substance Cycles, Max-Eyth-Allee 100, 14469 Postdam, Germany
| | - Raquel Atxaerandio
- NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Department of Animal Production, Campus Agroalimentario de Arkaute s/n, 01192 Arcaute, Spain (X.D.d.O.); (R.A.); (N.M.); (A.G.-R.); (R.R.)
| | - Nerea Mandaluniz
- NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Department of Animal Production, Campus Agroalimentario de Arkaute s/n, 01192 Arcaute, Spain (X.D.d.O.); (R.A.); (N.M.); (A.G.-R.); (R.R.)
| | - Aser García-Rodríguez
- NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Department of Animal Production, Campus Agroalimentario de Arkaute s/n, 01192 Arcaute, Spain (X.D.d.O.); (R.A.); (N.M.); (A.G.-R.); (R.R.)
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. La Coruña km 7.5, 28040 Madrid, Spain; (O.G.-R.); (A.L.-G.)
| | - Adrián López-García
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. La Coruña km 7.5, 28040 Madrid, Spain; (O.G.-R.); (A.L.-G.)
| | - Roberto Ruiz
- NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Department of Animal Production, Campus Agroalimentario de Arkaute s/n, 01192 Arcaute, Spain (X.D.d.O.); (R.A.); (N.M.); (A.G.-R.); (R.R.)
| | - Idoia Goiri
- NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Department of Animal Production, Campus Agroalimentario de Arkaute s/n, 01192 Arcaute, Spain (X.D.d.O.); (R.A.); (N.M.); (A.G.-R.); (R.R.)
| |
Collapse
|
7
|
Role of Chitin and Chitosan in Ruminant Diets and Their Impact on Digestibility, Microbiota and Performance of Ruminants. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The slow progress in the development of the subsector, particularly of alternative feed sources such as agro-industrial byproducts and unconventional feed resources, has deepened the gap in the availability of and accessibility to animal feed. Production of animal feed is highly resource demanding. Recently, it has been shown that increasing climate change, land degradation, and the recurrence of droughts have worsened the feed gap. In the backdrop of these challenges, there has been attention to food-not-feed components, which have great potential to substitute human-edible components in livestock feeding. Chitosan, a non-toxic polyglucosamine, is widely distributed in nature and used as a feed additive. Chitosan is obtained from the de-acetylation process of the chitin and is mostly present in shrimp, crabs, and insect exoskeletons, and has antimicrobial and anti-inflammatory, anti-oxidative, antitumor, and immune-stimulatory hypo-cholesterolemic properties. This review article discusses the results of recent studies focusing on the effects of chitosan and chitin on the performance of dairy cows, beef steers, sheep, and goats. In addition, the effects of chitosan and chitin on feed intake, feed digestibility, rumen fermentation, and microbiota are also discussed. Available evidence suggests that chitosan and chitin used as a feed additive for ruminants including dairy cows, beef steers, sheep, goats, and yaks have useful biological effects, including immune-modulatory, antimicrobial, and other important properties. These properties of chitosan and chitin are different from the other feed additives and have a positive impact on production performance, feed digestibility, rumen fermentation, and bacterial population in dairy cows, beef steers, sheep, goats, and yaks. There is promising evidence that chitosan and chitin can be used as additives in livestock feed and that well-designed feeding interventions focusing on these compounds in ruminants are highly encouraged.
Collapse
|
8
|
Harahap RP, Suharti S, Ridla M, Laconi EB, Nahrowi N, Irawan A, Kondo M, Obitsu T, Jayanegara A. Meta-analysis of dietary chitosan effects on performance, nutrient utilization, and product characteristics of ruminants. Anim Sci J 2022; 93:e13676. [PMID: 35028997 DOI: 10.1111/asj.13676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/11/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
Chitosan (CHI) has been used as a feed additive in ruminant diets, but the effects obtained to date have been varied. This study aimed to evaluate the dietary addition of CHI on performance, nutrient utilization, and product characteristics of ruminants by using a meta-analysis approach. A total of 15 articles that composed of 21 studies and 57 data points were included in the database. Number of articles reported the effects of dietary CHI addition were six on beef cattle, seven on dairy cows, and two papers on sheep. Data analysis was based on the mixed model methodology, in which CHI addition levels were considered as fixed effects whereas different studies were treated as random effects. Results revealed that, across various studies, CHI decreased ruminal acetate proportion (p < 0.05) and increased propionate proportion (p < 0.01). Dry matter and crude protein digestibility were elevated due to CHI addition (p < 0.05). CHI decreased blood cholesterol level (p < 0.05) and increased monounsaturated fatty acid proportion in the milk (p < 0.05). However, CHI addition had no effect on dry matter intake, milk production, and milk efficiency of ruminants. In conclusion, CHI is able to modify rumen fermentation towards a favorable direction, but it limitedly affects performance of ruminants.
Collapse
Affiliation(s)
- Rakhmad P Harahap
- Study Program of Animal Science, Faculty of Agriculture, Tanjungpura University, Pontianak, Indonesia.,Animal Feed and Nutrition Modelling Research Group (AFENUE), Faculty of Animal Science, IPB University, Bogor, Indonesia.,Graduate Study Program of Nutrition and Feed Science, Graduate School of IPB University, Bogor, Indonesia
| | - Sri Suharti
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Muhammad Ridla
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Erika B Laconi
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Nahrowi Nahrowi
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Agung Irawan
- Animal Feed and Nutrition Modelling Research Group (AFENUE), Faculty of Animal Science, IPB University, Bogor, Indonesia.,Vocational Program in Animal Husbandry, Vocational School, Universitas Sebelas Maret, Surakarta, Indonesia.,Department of Animal and Rangeland Science, Oregon State University, Corvallis, Oregon, USA
| | - Makoto Kondo
- Department of Bioresources, Mie University, Tsu, Japan
| | - Taketo Obitsu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling Research Group (AFENUE), Faculty of Animal Science, IPB University, Bogor, Indonesia.,Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| |
Collapse
|
9
|
Lee C, Copelin JE, Rebelo LR, Weiss WP. Effects of feeding a diet with reduced dietary cation and anion difference to lactating cows on production, nutrient digestibility, and ammonia emissions from manure. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|