1
|
Westhoff TA, Borchardt S, Mann S. Invited review: Nutritional and management factors that influence colostrum production and composition in dairy cows. J Dairy Sci 2024; 107:4109-4128. [PMID: 38246551 DOI: 10.3168/jds.2023-24349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Colostrum is a rich source of nutritional and non-nutritional components and is recognized as essential to transfer passive immunity to newborn calves. Because of the individual and seasonal variability in colostrum yield and composition, maintaining an adequate supply of high-quality colostrum year-round remains a challenge for commercial dairy producers. In this narrative review, we described the individual, seasonal, and herd-level variability of colostrum production and summarized the association between individual animal factors such as parity, sex of the calf, calf birth weight, as well as indicators of the cow's metabolic status and the yield and composition of colostrum. Further, we reviewed the current knowledge on the influence of prepartum nutrition and management strategies on colostrum production. Research on the metabolizable energy and protein supplied in the prepartum diet as well as on the inclusion and source of vitamins, minerals, and feed additives suggests prepartum nutrition influences the yield, quality, and composition of colostrum. Furthermore, the prepartum environment and dry period length remain influential factors in the production of colostrum. However, additional research is needed to understand the mechanisms by which prepartum nutrition and management affect colostrum production. Finally, time from calving to colostrum harvest and oxytocin administration as well as the current knowledge on the effect of heat treatment and colostrum storage strategies on colostral components were discussed. To conclude, we identify critical gaps in knowledge for future focus of investigation in colostrum research.
Collapse
Affiliation(s)
- T A Westhoff
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - S Borchardt
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universitaet Berlin, 14163 Berlin, Germany
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
2
|
Riva F, Draghi S, Inglesi A, Filipe J, Cremonesi P, Lavazza A, Cavadini P, Vigo D, Agradi S, Menchetti L, Di Giancamillo A, Aidos L, Modina SC, Fehri NE, Pastorelli G, Serra V, Balzaretti CM, Castrica M, Severgnini M, Brecchia G, Curone G. Bovine Colostrum Supplementation in Rabbit Diet Modulates Gene Expression of Cytokines, Gut-Vascular Barrier, and Red-Ox-Related Molecules in the Gut Wall. Animals (Basel) 2024; 14:800. [PMID: 38473185 DOI: 10.3390/ani14050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Rabbits, pivotal in the EU as livestock, pets, and experimental animals, face bacterial infection challenges, prompting a quest for alternatives to curb antibiotic resistance. Bovine colostrum (BC), rich in immunoregulatory compounds, antimicrobial peptides, and growth factors, is explored for disease treatment and prevention. This study assesses BC diet supplementation effects on rabbit intestines, examining gene expression. Thirty female New Zealand White rabbits at weaning (35 days) were divided into three experimental groups: control (commercial feed), 2.5% BC, and 5% BC. The diets were administered until slaughtering (81 days). BC-upregulated genes in the jejunum included IL-8, TGF-β, and CTNN-β1 at 5% BC, while PLVAP at 2.5% BC. Antioxidant-related genes (SOD1, GSR) were downregulated in the cecum and colon with 2.5% BC. BC 5% promoted IL-8 in the jejunum, fostering inflammation and immune cell migration. It also induced genes regulating inflammatory responses (TGF-β) and gastrointestinal permeability (CTNN-β1). BC 5% enhanced antioxidant activity in the cecum and colon, but no significant impact on anti-myxo antibody production was observed. These results suggest that BC has significant effects on the rabbit gastrointestinal tract's inflammatory and antioxidant response, but further research is required to fully understand its histological and physiological impact.
Collapse
Affiliation(s)
- Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Susanna Draghi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Alessia Inglesi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Paola Cremonesi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), National Research Council (CNR), Via Einstein, 26900 Lodi, Italy
| | - Antonio Lavazza
- Virology Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| | - Patrizia Cavadini
- Virology Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93-95, 62024 Matelica, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Nour Elhouda Fehri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Grazia Pastorelli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Valentina Serra
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Claudia Maria Balzaretti
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Marta Castrica
- Dipartimento di Biomedicina Comparata e Alimentazione-BCA, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies (ITB), National Research Council (CNR), Via Fratelli Cervi 93, 20090 Segrate, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
3
|
Agradi S, González-Cabrera M, Argüello A, Hernández-Castellano LE, Castro N, Menchetti L, Brecchia G, Vigo D, Tuccia E, Curone G. Colostrum Quality in Different Goat Breeds Reared in Northern Italy. Animals (Basel) 2023; 13:3146. [PMID: 37835753 PMCID: PMC10571944 DOI: 10.3390/ani13193146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to characterize the colostrum quality in three different local goat breeds of Northern Italy (i.e., Frisa Valtellinese, Orobica, and Lariana) and a cosmopolitan one (i.e., Camosciata delle Alpi) (n = 30 per breed), reared under traditional semi-extensive and intensive systems, respectively. Lariana showed the highest percentage of fat (10.18 ± 3.14%) and total solids (30.73 ± 4.89%) but the lowest percentage of lactose (1.87 ± 0.82%; p < 0.05); Orobica had the lowest percentage of fat (7.13 ± 2.48%), total solids (24.11 ± 5.48%), and protein (10.77 ± 4.53%) but the highest percentage of lactose (3.16 ± 0.73%; p < 0.05). This suggests that breeds which have a more pronounced meat aptitude (i.e., Frisa and Lariana) have a higher concentration of components than breeds with more dairy aptitude (i.e., Orobica and Camosciata). Uni- and multivariate analyses showed that IgG is the parameter that best differentiates local breeds from cosmopolitan ones (p < 0.01). Colostrum from Frisa goats showed the highest IgG concentration (100.90 ± 8.11 mg/mL), while the lowest concentration was in the Camosciata breed (74.75 ± 20.16 mg/mL). Finally, the highest lactoferrin concentration was in Frisa (1781.3 ± 892.6 µg/mL) and the lowest in Camosciata and Lariana (763.1 ± 357.9 and 1148.0 ± 858.6 µg/mL, respectively; p < 0.05). Differences between Camosciata and local breeds could be due to the different farming systems, in addition to the genetic characteristics. The higher quality of colostrum produced by some local goats could be an adaptive characteristic that helps the growth and survival of the kids.
Collapse
Affiliation(s)
- Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.V.); (G.C.)
| | - Marta González-Cabrera
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Campus Montaña Cardones, s/n, 35413 Arucas, Spain; (M.G.-C.); (A.A.); (L.E.H.-C.); (N.C.)
| | - Anastasio Argüello
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Campus Montaña Cardones, s/n, 35413 Arucas, Spain; (M.G.-C.); (A.A.); (L.E.H.-C.); (N.C.)
| | - Lorenzo Enrique Hernández-Castellano
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Campus Montaña Cardones, s/n, 35413 Arucas, Spain; (M.G.-C.); (A.A.); (L.E.H.-C.); (N.C.)
| | - Noemí Castro
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Campus Montaña Cardones, s/n, 35413 Arucas, Spain; (M.G.-C.); (A.A.); (L.E.H.-C.); (N.C.)
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.V.); (G.C.)
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.V.); (G.C.)
| | - Edoardo Tuccia
- ET Dairy Veterinary Services, Via Magenta 14, 26900 Lodi, Italy;
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (S.A.); (D.V.); (G.C.)
| |
Collapse
|
4
|
Bahadori-Moghaddam M, Kargar S, Kanani M, Zamiri MJ, Arefi-Oskouie A, Albenzio M, Caroprese M, Ciliberti MG, Ghaffari MH. Effects of extended transition milk feeding on blood metabolites of female Holstein dairy calves at 3 weeks of age: a liquid chromatography with tandem mass spectrometry-based metabolomics approach. Animal 2023; 17:100844. [PMID: 37263134 DOI: 10.1016/j.animal.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Transition milk (TRM) is a rich source of bioactive components that promotes intestinal development and growth, and reduces the susceptibility to diarrhoea in calves. The objective of this study was to characterise the effects of replacing pasteurised waste milk (none-saleable milk containing antibiotic and/or drug residues) with pasteurised TRM for 3 wk on blood metabolites of dairy calves at 21 d of age. A total of 84 healthy newborn female Holstein calves was blocked by birth order and assigned randomly to four treatment groups with partial replacement of pasteurised waste milk by TRM (second milking after parturition) at 0 (0 L/day TRM + 6 L/day milk), 0.5 (0.5 L/day TRM + 5.5 L/day milk), 1 (1 L/day TRM + 5 L/day milk), or 2 L (2 L/day TRM + 4 L/day milk) for a 21-day period. Serum metabolome was determined by liquid chromatography with tandem mass spectrometry-based metabolomics analysis on a subset of 26 randomly selected individuals from calves fed pasteurised waste milk (CON, 6 L/d milk; n = 13) or TRM (2 L/d TRM + 4 L/d milk; n = 13) at 21 d of age. The identified metabolites (194 out of 265) were categorised according to chemical class and the number of metabolites per class in the serum, amongst which glycerophospholipids 16% (n = 43), fatty acyls 7% (n = 19), organic acids 7% (n = 18), organic heterocyclic compounds 5% (n = 13), benzenoids 5% (n = 12), sphingolipids 5% (n = 12), organic oxygen compounds 4% (n = 11), and nucleic acids 3% (n = 9), were the predominant types. Significant differences in metabolites were determined by the volcano plot. Applying the volcano plot, only two metabolites (ceramide and phosphatidylserine) were significantly different between CON and TRM. Overall, our results suggested that prolonged TRM feeding for 3 wk had little effect on the serum metabolome of the dairy calves. We speculate that the potential effects of feeding TRM for 3 wk compared with waste milk were spatially limited to affect the composition of the local gut microbial community and the growth or function of the intestinal epithelium, not allowing detection of the likely effects in the serum through a metabolomic approach.
Collapse
Affiliation(s)
- M Bahadori-Moghaddam
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - S Kargar
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - M Kanani
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - M J Zamiri
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - A Arefi-Oskouie
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19716-53313, Iran
| | - M Albenzio
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - M Caroprese
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - M G Ciliberti
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
5
|
Li C, Li S, Yang C, Ding Y, Zhang Y, Wang X, Zhou X, Su Z, Ming W, Zeng L, Ma Y, Shi Y, Kang X. Blood transcriptome reveals immune and metabolic-related genes involved in growth of pasteurized colostrum-fed calves. Front Genet 2023; 14:1075950. [PMID: 36814903 PMCID: PMC9939824 DOI: 10.3389/fgene.2023.1075950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The quality of colostrum is a key factor contributing to healthy calf growth, and pasteurization of colostrum can effectively reduce the counts of pathogenic microorganisms present in the colostrum. Physiological changes in calves fed with pasteurized colostrum have been well characterized, but little is known about the underlying molecular mechanisms. In this study, key genes and functional pathways through which pasteurized colostrum affects calf growth were identified through whole blood RNA sequencing. Our results showed that calves in the pasteurized group (n = 16) had higher body height and daily weight gain than those in the unpasteurized group (n = 16) in all months tested. Importantly, significant differences in body height were observed at 3 and 4 months of age (p < 0.05), and in daily weight gain at 2, 3, and 6 months of age (p < 0.05) between the two groups. Based on whole blood transcriptome data from 6-months old calves, 630 differentially expressed genes (DEGs), of which 235 were upregulated and 395 downregulated, were identified in the pasteurized compared to the unpasteurized colostrum groups. Most of the DEGs have functions in the immune response (e.g., CCL3, CXCL3, and IL1A) and metabolism (e.g., PTX3 and EXTL1). Protein-protein interaction analyses of DEGs revealed three key subnetworks and fifteen core genes, including UBA52 and RPS28, that have roles in protein synthesis, oxidative phosphorylation, and inflammatory responses. Twelve co-expression modules were identified through weighted gene co-expression network analysis. Among them, 17 genes in the two modules that significantly associated with pasteurization were mainly involved in the tricarboxylic acid cycle, NF-kappa B signaling, and NOD-like receptor signaling pathways. Finally, DEGs that underwent alternative splicing in calves fed pasteurized colostrum have roles in the immune response (SLCO4A1, AKR1C4, and MED13L), indicative of potential roles in immune regulation. Results from multiple analytical methods used suggest that differences in calf growth between the pasteurized and unpasteurized groups may be due to differential immune activity. Our data provide new insights into the impact of pasteurization on calf immune and metabolic-related pathways through its effects on gene expression.
Collapse
|
6
|
Zhou H, Liu Y, Fan J, Huang H, Deng J, Tan B. Feeding Rainbow Trout with Different Types of Non-Starch Polysaccharides: Impacts on Serum Metabolome and Gut Microbiota. Metabolites 2022; 12:metabo12121167. [PMID: 36557205 PMCID: PMC9787720 DOI: 10.3390/metabo12121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
A 70-day feeding trial investigated the effects of dietary inclusion of different types of non-starch polysaccharides (NSPs) on gut microbiota and serum metabolome of rainbow trout. Four practical feeds (42% crude protein, 17% crude lipid) were prepared with 8% insoluble NSP (INSP, cellulose), 16.8% soluble NSP (SNSP, composed of 1.12% β-glucan, 1.28% mannan, 4.8% arabinoxylan, and 9.6% pectin), 24.8% NSPs (8% INSP + 16.8% SNSP), or no NSPs inclusion, respectively. Dietary NSPs inclusion had no significant influence on the Shannon, Simpson, ACE, and Chao1 indices of gut microbiota but induced a significant increase in the abundance of Pseudomonas aeruginosa and Photobacterium kishitanii, and a decrease in Firmicutes and Alistipes finegoldii. Besides, dietary SNSP upregulated the carnitine synthesis metabolic pathway. Our data suggest that dietary NSPs are detrimental to gut microbiota homeostasis and the health of rainbow trout, and dietary SNSP exhibit a stronger ability to interfere with physiological metabolism of rainbow trout than INSP. Therefore, the physiological effects of dietary NSPs, especially SNSP, should be carefully considered when designing the commercial feed formulations of rainbow trout.
Collapse
Affiliation(s)
- Hang Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Yu Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Jiongting Fan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Huajing Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (J.D.); (B.T.)
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (J.D.); (B.T.)
| |
Collapse
|
7
|
Stutz H. Advances and applications of electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review. J Pharm Biomed Anal 2022; 222:115089. [DOI: 10.1016/j.jpba.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
8
|
An updated and comprehensive review on the composition and preservation strategies of bovine colostrum and its contributions to animal health. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Ceniti C, Costanzo N, Morittu VM, Tilocca B, Roncada P, Britti D. Review: Colostrum as an Emerging food: Nutraceutical Properties and Food Supplement. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2034165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlotta Ceniti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Nicola Costanzo
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| |
Collapse
|
10
|
Wang S, Wu P, Wang K, Ji X, Chen D, Liu Y, Ding J, Xu X, Tang G. Comparative metabolome profiling of serum and urine from sows with a high prevalence of piglet mummification and normal sows at different stages of pregnancy. Theriogenology 2022; 183:10-25. [DOI: 10.1016/j.theriogenology.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 11/25/2022]
|
11
|
Poonia A, Shiva. Bioactive compounds, nutritional profile and health benefits of colostrum: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022; 4:26. [PMCID: PMC9592540 DOI: 10.1186/s43014-022-00104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bovine colostrum is defined as first milk by milching animals responsible for providing the innate immunity to the neonatal and possess many immunoglobulins for preventing the calf from diseases. Colostrum consist of many bioactive compounds like proteins, enzymes, growth factors, immunoglobulins and nucleotides that provides several benefits to human health. Numerous clinical and pre-clinical studies have demonstrated the therapeutic benefits of the bovine colostrum. This review focusses on bioactive compounds, their health benefits, potential of colostrum for developing several health foods and prevention of respiratory and gastrointestinal tract disorders. Processing can also be done to extend shelf-life and extraction of bioactive constituents either as encapsulated or as extracts. The products derived from bovine colostrum are high-end supplements possessing high nutraceutical value.
Collapse
Affiliation(s)
- Amrita Poonia
- grid.411507.60000 0001 2287 8816Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Shiva
- grid.411507.60000 0001 2287 8816Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
12
|
Gomes RD, Anaya K, Galdino AB, Oliveira JP, Gama MA, Medeiros CA, Gavioli EC, Porto ALF, Rangel AH. Bovine colostrum: A source of bioactive compounds for prevention and treatment of gastrointestinal disorders. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|