1
|
Carli GC, Palma M, Satiro TM, Soares HHD, Ferrari JEC, Viegas I, Takahashi LS. The Protein/Carbohydrate Ratio in the Diet Affects Zootechnical Performance and the Regulation of Intermediary Metabolism in Juveniles Tambaqui (Colossoma macropomum). J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39465336 DOI: 10.1111/jpn.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
The use of carbohydrates in animal feed is a way to save protein in the diet. This study evaluated the effect of protein/starch ratio on the performance, hepatic metabolism, and body composition of juvenile tambaqui (Colossoma macropomum). Six isoenergetic experimental diets were formulated containing three levels of digestible protein (P: 230, 260 and 290 g kg- 1) and two levels of starch (S: 180 and 280 g kg- 1): P23S18, P23S28, P26S18, P26S28, P29S18 and P29S28. Juveniles tambaqui (N = 288; initial weight = 30.0 ± 3.8 g) were fed experimental diets for 90 days and the zootechnical performance was evaluated. Nine fish from each treatment group were sampled to determine somatic indices, blood metabolites, tissue energy reserves, body composition and activity of key hepatic enzymes. Blood triglycerides, hepatosomatic index, liver and muscle lipids, and hepatic glycogen increased significantly with starch while blood glucose, triglycerides and cholesterol, muscle lipids were significantly impacted by protein levels. Fish-fed S28 had increased feed intake (1714-1829 g; p < 0.0001) and fish-fed diet P26S18 had a higher protein efficiency rate (23.62%; p = 0.0356). Fish fed P23 had lower crude protein retention in the carcass (p = 0.0018) and high lipogenesis and lipid deposition in the muscle (p = 0.0069). These results suggest that dietary carbohydrates have a protein-sparing effect. Tambaqui adapted well to diets containing starch, even at higher levels, resulting in an overall increase in lipogenesis from S18 to S28. Thus, we recommend P26S18 as a cost-effective feed that ensures both zootechnical performance and quality of the final product.
Collapse
Affiliation(s)
| | - Mariana Palma
- TERRA Associate Laboratory, Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Thaise Mota Satiro
- São Paulo State University (Unesp), Aquaculture Center of Unesp (CAUNESP), Jaboticabal, Brazil
| | | | | | - Ivan Viegas
- TERRA Associate Laboratory, Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Leonardo Susumu Takahashi
- São Paulo State University (Unesp), Aquaculture Center of Unesp (CAUNESP), Jaboticabal, Brazil
- College of Agricultural and Technology Science, FCAT-UNESP-São Paulo State University, Dracena, Brazil
| |
Collapse
|
2
|
Thongchaitriwat S, Kumkhong S, Plagnes-Juan E, Panserat S, Marandel L, Boonanuntanasarn S. Effects of refeeding with low- or high-carbohydrate diets on intermediary carbohydrate metabolism in juvenile and adult Nile tilapia. Animal 2024; 18:101334. [PMID: 39413651 DOI: 10.1016/j.animal.2024.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024] Open
Abstract
Generally, energy expenditure and compensation according to food deprivation and refeeding often occur along the life cycle of farmed-raised fish. Fasting and refeeding are also hypothesised to modulate carbohydrate metabolism particularly for herbivorous and/or omnivorous. This study aims to investigate the effects of short-term fasting and subsequent refeeding with high or low-carbohydrate diets on the intermediary carbohydrate metabolism of juvenile and adult Nile tilapia (Oreochromis niloticus) which is known to be a good user of carbohydrate as an energy source. Fish were fasted for 4 days and subsequently refed with either a low carbohydrate and high protein (LC/HP) or high carbohydrate and low protein (HC/LP) diet for 4 days. Our results showed that 4 days of refeeding with either one of the diets could compensate for weight loss due to fasting. Thus, we investigated the effects of a 4-day-refeeding strategy and different carbohydrate-refeeding diets on plasma metabolites, nutrient composition, and glucose and its related metabolism in the liver and muscle of adult fish. Refeeding had similar effects in adults and juveniles and induced modulations to the intermediary metabolism: (1) refeeding with the HC/LP diet elevated plasma glucose levels; (2) refeeding with both diets increased triglyceride levels in the plasma, liver, and muscle, but the effect of the HC/LP diet was superior; (3) refeeding elevated plasma cholesterol levels in adults, irrespective of diet; (4) refeeding with both diets increased hepatic lipid levels in juveniles, with stronger effects observed in those fed the HC/LP diet, and refeeding with the HC/LP diet elevated hepatic lipid levels in adults; (5) refeeding with both diets increased the plasma protein content, but the effect of the LC/HP diet was superior; (6) refeeding with the LC/HP diet increased hepatic protein content in adults; and (7) refeeding with both diets increased hepatic glycogen levels, but the effect of the HC/LP diet was superior. Additionally, in juveniles and adults, refeeding with the HC/LP diet upregulated the expression of glycolytic genes in the liver and muscle, lipogenic genes in the liver, and glucose transport genes. Moreover, refeeding with the HC/LP diet downregulated the expression of gluconeogenic and amino acid catabolism genes in the liver and amino acid catabolism genes in the muscle. Collectively, the effect of short-term refeeding with a high carbohydrate diet on intermediary metabolism resembled that of long-term feeding, supporting the hypothesis that Nile tilapia, an omnivorous fish, is highly responsive to dietary carbohydrates.
Collapse
Affiliation(s)
- S Thongchaitriwat
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - S Kumkhong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - E Plagnes-Juan
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle 64310, France
| | - S Panserat
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle 64310, France
| | - L Marandel
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle 64310, France
| | - S Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
3
|
Phonsiri K, Geffroy B, Lokesh J, Goikoetxea A, Skiba-Cassy S, Panserat S. Early starvation in European seabass (Dicentrarchus labrax) larvae has no drastic effect on hepatic intermediary metabolism in juveniles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1065-1077. [PMID: 38367082 DOI: 10.1007/s10695-024-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
The present study aims to investigate nutritional programming through early starvation in the European seabass (Dicentrarchus labrax). European seabass larvae were fasted at three different developmental periods for three durations from 60 to 65 dph (F1), 81 to 87 dph (F2), and 123 to 133 dph (F3). Immediate effects were investigated by studying gene expression of npy (neuropeptide Y) and avt (Arginine vasotocin) in the head, while potential long-term effects (i.e., programming) were evaluated on intermediary metabolism later in life (in juveniles). Our findings indicate a direct effect regarding gene expression in the head only for F1, with higher avt mRNA level in fasted larved compared to controls. The early starvation periods had no long-term effect on growth performance (body weight and body length). Regarding intermediary metabolism, we analyzed related key plasma metabolites which reflect the intermediary metabolism: no differences for glucose, triglycerides, and free fatty acids in the plasma were observed in juveniles irrespective of the three early starvation stimuli. As programming is mainly linked to molecular mechanisms, we then studied hepatic mRNA levels for 23 key actors of glucose, lipid, amino acid, and energy metabolism. For many of the metabolic genes, there was no impact of early starvation in juveniles, except for three genes involved in glucose metabolism (glut2-glucose transporter and pk-pyruvate kinase) and lipid metabolism (acly-ATP citrate lyase) which were higher in F2 compared to control. Together, these results highlight that starvation between 81 to 87 dph may have more long-term impact, suggesting the existence of a developmental window for programming by starvation. In conclusion, European seabass appeared to be resilient to early starvation during larvae stages without drastic impacts on intermediary metabolism later in life.
Collapse
Affiliation(s)
- Khanakorn Phonsiri
- INRAE, Université de Pau Et Des Pays de L'Adour, NuMeA, Aquapôle, 64310, Saint-Pée-Sur-Nivelle, France
- School of School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Tambon Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Benjamin Geffroy
- MARBEC, Université de Montpellier, 34095, Montpellier Cedex 05, France
| | - Jep Lokesh
- INRAE, Université de Pau Et Des Pays de L'Adour, NuMeA, Aquapôle, 64310, Saint-Pée-Sur-Nivelle, France
| | | | - Sandrine Skiba-Cassy
- INRAE, Université de Pau Et Des Pays de L'Adour, NuMeA, Aquapôle, 64310, Saint-Pée-Sur-Nivelle, France
| | - Stephane Panserat
- INRAE, Université de Pau Et Des Pays de L'Adour, NuMeA, Aquapôle, 64310, Saint-Pée-Sur-Nivelle, France.
| |
Collapse
|
4
|
A comparative study on the tolerance of tilapia (Oreochromis niloticus) to high carbohydrate and high lipid diets. ANIMAL NUTRITION 2023; 13:160-172. [PMID: 37123615 PMCID: PMC10130080 DOI: 10.1016/j.aninu.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
A 12-wk trial was conducted to compare the tolerance of tilapia to high carbohydrate and high lipid diets. Three isonitrogenous and isoenergetic diets, whose carbohydrate and lipid levels were the following: 35.0% and 8% (control), 44.2% and 4% (D1, high carbohydrate), and 25.8% and 12% (D2, high lipid), respectively. Three hundred tilapias (27 ± 0.11 g) were fed the diets for 10 wk (4 replicates per group); 72 fish from the D1 group were continually fed the D1 (D1D1) and 72 fish from the D2 were continually fed the D2 (D2D2) diet for 2 wk (3 replicates each group) to evaluate the tilapia's capacity to tolerate high carbohydrate and high lipid diets, respectively. Another 36 fish from D1 group were continually fed D2 (D1D2) for comparison with D1D1 and D2D2 groups. In phase 1, hepatosomatic index, liver triglycerides (TG), glucose tolerance (GT) and crude protein in the whole body in D1 group were higher than those in D2 group (P < 0.05). During phase 2, D1D1 group had lower feed intake and weight gain, as well as lower serum total protein and albumin than that of D2D2 group (P < 0.05), while its liver glycogen was significantly higher than that in D1D2 and D2D2 groups (P < 0.05). Moreover, serum glucose and GT were higher in D1D1 and D1D2 groups than those in D2D2 group (P < 0.05). By contrast, D2D2 group had significantly higher intraperitoneal fat, subcutaneous adipose tissue (SCAT) and liver TG than those in D1D1 group (P < 0.05). The mRNA expression of brain npy, hepatic nrf2, gst1 and hepatic transcriptomic data showed that immune-related genes (gama, mrc2, mhc2 and cd163), were downregulated in D1D1 group compared to D2D2 and D1D2 groups. Taken together: 1) tilapia have higher tolerance to a high lipid diet than high carbohydrate diet; 2) despite retention of glucose tolerance, the continuous feeding of D1 diet impaired tilapia's appetite, weight gain rate and host immune response; 3) specific distribution of fat in intraperitoneal regions, SCAT and liver may be a risk-avoidance strategy in tilapia in response to a continuous D2 diet.
Collapse
|
5
|
Zhu J, Chen L, Huang Y, Zhang F, Pan J, Li E, Qin J, Qin C, Wang X. New insights into the influence of myo-inositol on carbohydrate metabolism during osmoregulation in Nile tilapia ( Oreochromis niloticus). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:86-98. [PMID: 35647324 PMCID: PMC9124673 DOI: 10.1016/j.aninu.2022.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
Abstract
A two-factor (2 × 3) orthogonal test was conducted to investigate the effects of dietary myo-inositol (MI) on the osmoregulation and carbohydrate metabolism of euryhaline fish tilapia (Oreochromis niloticus) under sustained hypertonic stress (20 practical salinity units [psu]). 6 diets containing either normal carbohydrate (NC, 30%) or high carbohydrate (HC, 45%) levels, with 3 levels (0, 400 and 1,200 mg/kg diet) of MI, respectively, were fed to 540 fish under 20 psu for 8 weeks. Dietary MI supplementation significantly improved growth performance and crude protein content of whole fish, and decreased the content of crude lipid of whole fish (P < 0.05). Curled, disordered gill lamella and cracked gill filament cartilage were observed in the gill of fish fed diets without MI supplementation. The ion transport capacity in gill was significantly improved in the 1,200 mg/kg MI supplementation groups compared with the 0 mg/kg MI groups (P < 0.05). Moreover, the contents of Na+, K+, Cl− in serum were markedly reduced with the dietary MI supplementation (P < 0.05). The fish fed 1,200 mg/kg MI supplementation had the highest MI content in the gills and the lowest MI content in the serum (P < 0.05). Additionally, the fish fed with 1,200 mg/kg MI supplementation had the highest MI synthesis capacity in gills and brain (P < 0.05). Dietary MI markedly promoted the ability of carbohydrate metabolism in liver (P < 0.05). Moreover, fish in the 1,200 mg/kg MI groups had the highest antioxidant capacity (P < 0.05). This study indicated that high dietary carbohydrate would intensify stress, and impair the ability of osmoregulation in tilapia under a long-term hypersaline exposure. The supplementation of MI at 1,200 mg/kg in the high carbohydrate diet could promote carbohydrate utilization and improve the osmoregulation capacity of tilapia under long-term hypertonic stress.
Collapse
Affiliation(s)
- Jiahua Zhu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fan Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jingyu Pan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Corresponding author.
| |
Collapse
|