1
|
Eslam-Aghdam T, Hassanpour S, Zendehdel M. Role of the intracerebroventricular injection α- klotho on food intake in broiler chicken: a novel study. Poult Sci 2024; 103:104166. [PMID: 39214054 PMCID: PMC11402046 DOI: 10.1016/j.psj.2024.104166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
This novel study investigated the effects of intracerebroventricular (ICV) injection α- klotho and its interaction with neuropeptide Y (NPY) receptors on food intake in broiler chicken. This study included 4 experiments with 4 groups in each with 11 replicates per group. Birds were feed deprived 3 h prior injection, following injection returned to their cage and food provided. In experiment 1, group 1 received ICV injection of the saline and groups 2 to 4 received ICV injection of the α-klotho (1, 2, and 4 µg), respectively. In experiment 2, chicken received ICV injection of the saline, B5063 (NPY1 receptor antagonist, 1.25 µg), α-klotho (4 µg) and co-injection of the B5063 + α-klotho. In experiments 3 and 4, SF22 (NPY2 receptor antagonist, 1.25 µg), and SML0891 (NPY5 receptor antagonist, 1.25 µg) were injected instead of the B5063. Then consumed food was measured at 30, 60, and 120 min post the injection. Based on results, ICV injection of the α-klotho (2 and 4 µg) significantly decreased food intake (P < 0.05). Co-injection of the B5063 + α-klotho significantly amplified hypophagic effect of the α-klotho (P < 0.05). α-klotho-induced hypophagia was not influenced by SF22 or SML0891. These results suggest that α-klotho-induced hypophagia is mediated via NPY1 receptors in broiler chicken.
Collapse
Affiliation(s)
- Tahereh Eslam-Aghdam
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iran
| |
Collapse
|
2
|
Hemanth M, Venugopal S, Devaraj C, Shashank CG, Ponnuvel P, Mandal PK, Sejian V. Comparative assessment of climate resilient potential in four poultry genotypes reared in hot-humid tropical environment: a preliminary evaluation. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2267-2279. [PMID: 39085661 DOI: 10.1007/s00484-024-02744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
The general objective of this study is to comparatively assess the climate-resilient potential of four different poultry genotypes-Giriraja (n = 8), Country chicken (n = 8), Naked neck (n = 8), and Kadaknath (n = 8)-reared in a hot-humid tropical environment. Birds from all genotypes had ad libitum access to feed and water and were exposed to identical environmental temperatures in the experimental shed. Diurnal meteorological data were recorded inside and outside the shed daily. Blood biochemical, hormonal, and endocrine variables were monitored monthly until the birds reached 12 weeks of age. Significant variations (P < 0.01) were observed at different intervals in variables, including total protein, albumin, globulin, triglycerides, and cholesterol. Genotype-specific differences were noted in triglycerides (P < 0.01), albumin (P < 0.01), total protein (P < 0.05), and cholesterol (P < 0.05). Inter-genotype variations (P < 0.05) were also observed in serum cortisol, T3, and T4 levels. Distinct variations (P < 0.05) were also observed during specific intervals, particularly in cortisol and T3 levels. The study of hepatic mRNA expression of HSPs and HSF-1 revealed a significant breed difference (P < 0.05) in the expression pattern of HSP60, HSP70, HSP90, and HSP110, while no difference was observed between genotypes for HSP40 and HSF-1. The study highlights the Naked Neck breed as an exemplar of resilience, showcasing its distinctive ability to maintain homeostasis under heat stress compared to other genotypes. The genetic and physiological insights gained from this investigation offer prospective pathways for aligning sustainable poultry farming with environmental exigencies.
Collapse
Affiliation(s)
- M Hemanth
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - S Venugopal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - C Devaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, 560030, India
| | - C G Shashank
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, 560030, India
| | - P Ponnuvel
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - P K Mandal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - V Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India.
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, 560030, India.
| |
Collapse
|
3
|
Hashemitabar SH, Hosseinian SA. The comparative effects of probiotics on growth, antioxidant indices and intestinal histomorphology of broilers under heat stress condition. Sci Rep 2024; 14:23471. [PMID: 39379397 PMCID: PMC11461668 DOI: 10.1038/s41598-024-66301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 10/10/2024] Open
Abstract
Heat stress adversely affects both the productivity and well-being of chickens. Probiotics offer beneficial impacts on the health and growth performance of broilers. The current study investigates the influence of administering of Bacillus (including B. subtilis, B. licheniformis, B. coagulans, and B. indicus) and Lactobacillus (consisting of L. acidophilus, L. plantarum, L. buchneri, and L. rhamnosus) probiotics via drinking water, either singular or combined, on various aspects including growth performance, oxidative stress markers, carcass characteristics, fecal microbial composition, intestinal structure, and intestinal pH in broilers exposed to chronic heat stress. A total of 150 one-day-old broiler chicks were divided into 5 groups: (1) NC, negative control; (2) HS, birds exposed to chronic heat stress; (3) HSpBacil, exposed to chronic heat stress and received Bacillus probiotic; (4) HSpLAB, subjected to chronic heat stress and provided with Lactobacillus probiotic; (5) HSpMix, subjected to chronic heat stress and administered a combined probiotic from Bacillus and Lactobacillus. The HS group exhibited significantly reduced levels of growth performance, carcass traits, and notably affected oxidative stress indices, as well as intestinal pH and histomorphology in the birds. Additionally, the administered probiotics led to increased weight of lymphoid organs, enhanced body weight gain, and improved intestinal histomorphology. Furthermore, the probiotics decreased malondialdehyde and increased total antioxidant capacity in broilers. In conclusion, Bacillus and Lactobacillus probiotics, as single or multi-species, particularly Lactobacillus and combined probiotic, demonstrated potential in alleviating the adverse effects of heat stress in broiler chickens. They could serve as beneficial feed additives and growth enhancers.
Collapse
Affiliation(s)
- Seyed Hamidreza Hashemitabar
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran
| | - Seyedeh Alemeh Hosseinian
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran.
| |
Collapse
|
4
|
Mohammadizad T, Taherpour K, Ghasemi HA, Shirzadi H, Tavakolinasab F, Nazaran MH. Potential benefits of advanced chelate-based trace minerals in improving bone mineralization, antioxidant status, immunity, and gene expression modulation in heat-stressed broilers. PLoS One 2024; 19:e0311083. [PMID: 39356694 PMCID: PMC11446444 DOI: 10.1371/journal.pone.0311083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Organic sources of trace minerals (TM) in broiler diets are more bioavailable and stable than inorganic sources, making them particularly beneficial during challenging periods such as heat stress (HS) conditions. A 42-d study investigated the effects of using advanced chelate technology-based TM (ACTM) or adding varying amounts of ACTM to broiler diets during HS conditions. The study involved 672 male broiler chickens in 7 treatment groups, including a thermoneutral control (TNC) group and six HS treatments. There were 8 replicate pens per treatment and 12 birds per replicate. The six HS treatments included birds exposed to a cyclic HS environment (34°C) for 8 h and were as follows: HSC, which consisted of the same basal diet with the recommended ITM levels; ACTM50 and ACTM100, which replaced the basal diet with 50% and 100% ACTM instead of ITM; ITM+ACTM12.5 and ITM+ACTM25, which involved adding extra ACTM to the ITM basal diet at 12.5% and 25%, respectively; and ITM125, which used 125% of the recommended levels of ITM in the basal diet. Compared with the HSC treatment, the TNC, ACTM100, and ITM+ACTM25 treatments resulted in increased (P < 0.05) body weight; tibia weight; tibia ash, phosphorus, iron, and manganese contents; secondary antibody titers; and serum TAC and SOD values but decreased (P < 0.05) serum MDA concentrations and the expression levels of the hepatic genes IL-1β, IL-6, and INF-γ. The TNC and ACTM100 groups also showed greater (P < 0.05) feed efficiency, tibia length, tibia zinc content, and hepatic SOD1 expression but exhibited reduced (P < 0.05) hepatic NF-kB expression. Significant increases (P < 0.05) in primary anti-NDV titers, serum GPx1 activity, and Nrf2 and GPx1 gene expression levels were also detected in the ACTM100, ITM+ACTM12.5, and ITM+ACTM25 groups. In conclusion, the findings suggest that replacing ITM with ACTM or adding ACTM to ITM diets, especially at a 25% higher dose, can effectively protect broilers from heat stress by promoting growth, reducing inflammation, and increasing the expression of antioxidant proteins.
Collapse
Affiliation(s)
- Taher Mohammadizad
- Faculty of Agriculture, Department of Animal Science, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Faculty of Agriculture, Department of Animal Science, Ilam University, Ilam, Iran
| | - Hossein Ali Ghasemi
- Faculty of Agriculture and Environment, Department of Animal Science, Arak University, Arak, Iran
| | - Hassan Shirzadi
- Faculty of Agriculture, Department of Animal Science, Ilam University, Ilam, Iran
| | | | | |
Collapse
|
5
|
Ncho CM, Berdos JI, Gupta V, Rahman A, Mekonnen KT, Bakhsh A. Abiotic stressors in poultry production: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39132861 DOI: 10.1111/jpn.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
In modern animal husbandry, stress can be viewed as an automatic response triggered by exposure to adverse environmental conditions. This response can range from mild discomfort to severe consequences, including mortality. The poultry industry, which significantly contributes to human nutrition, is not exempt from this issue. Although genetic selection has been employed for several decades to enhance production output, it has also resulted in poor stress resilience. Stress is manifested through a series of physiological reactions, such as the identification of the stressful stimulus, activation of the sympathetic nervous system and the adrenal medulla, and subsequent hormonal cascades. While brief periods of stress can be tolerated, prolonged exposure can have more severe consequences. For instance, extreme fluctuations in environmental temperature can lead to the accumulation of reactive oxygen species, impairment of reproductive performance, and reduced immunity. In addition, excessive noise in poultry slaughterhouses has been linked to altered bird behaviour and decreased production efficiency. Mechanical vibrations have also been shown to negatively impact the meat quality of broilers during transport as well as the egg quality and hatchability in hatcheries. Lastly, egg production is heavily influenced by light intensity and regimens, and inadequate light management can result in deficiencies, including visual anomalies, skeletal deformities, and circulatory problems. Although there is a growing body of evidence demonstrating the impact of environmental stressors on poultry physiology, there is a disproportionate representation of stressors in research. Recent studies have been focused on chronic heat stress, reflecting the current interest of the scientific community in climate change. Therefore, this review aims to highlight the major abiotic stressors in poultry production and elucidate their underlying mechanisms, addressing the need for a more comprehensive understanding of stress in diverse environmental contexts.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Janine I Berdos
- Department of Animal Science, College of Agriculture and Forestry, Tarlac Agricultural University, Malacampa, Tarlac, Philippines
| | - Vaishali Gupta
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju-si, Republic of Korea
| | - Attaur Rahman
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kefala Taye Mekonnen
- Department of Animal Science, College of Agriculture and Environmental Science, Arsi University, Asella, Oromia, Ethiopia
| | - Allah Bakhsh
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
6
|
Yu Z, Cantet JM, Nair MRR, Ríus AG. Dexamethasone administration restored growth in dairy calves exposed to heat stress. J Dairy Sci 2024:S0022-0302(24)01058-0. [PMID: 39122148 DOI: 10.3168/jds.2024-25076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024]
Abstract
Recent evidence indicates that the heat stress loss on the growth performance of calves is associated with the diversion of nutrients to control enteritis and systemic inflammation. In this study, we investigated the impact of heat stress on markers of inflammation, feed use-efficiency, and growth of dairy calves. We hypothesized that dexamethasone, which is known for its immunosuppressive and anti-inflammatory properties, would reduce inflammation and restore the growth of calves exposed to heat stress. Thirty-two Holstein bull calves (body weight (BW) 68.5 ± 1.37 kg; age 3.5 ± 0.5-week-old; mean ± SD) were housed in individual pens in climate-controlled rooms at constant ambient temperature and allowed to adjust to facilities for 5 d before the start of treatments. Calves were randomly assigned to one of 4 treatments (n = 8/treatment) in a 2 × 2 factorial arrangement of environment (ENV, thermoneutral or heat stress) and intervention (INT, saline or dexamethasone) imposed for 5 d as follow: 1) thermoneutral (constant ambient temperature of 20°C 24 h/d) and administration of saline, 2) thermoneutral (constant ambient temperature of 20°C 24 h/d) and administration of dexamethasone, 3) cyclic heat stress (40°C ambient temperature, from 0800 to 1900 h/d) and administration of saline, 4) cyclic heat stress (40°C ambient temperature, from 0800 to 1900 h/d) and administration of dexamethasone. Dexamethasone (0.05 mg/kg BW), or saline (1.2 mL) was administered intramuscularly on d 1 and 3. Upon completion of treatments, calves were euthanized on d 5 to obtain jejunum mucosa samples. Commercial milk replacer, starter grain, and water were offered, and intake was monitored daily. Rectal temperature and respiratory rate were monitored 3 times daily. Blood samples were collected on d 1, 3, and 5 to determine serum pro-inflammatory cytokine concentrations. A section of the jejunum was collected and snap-frozen to determine the concentration of pro-inflammatory markers. Statistical analyses included a mixed model, fixed effects of ENV, INT, consecutive measurements taken over time (d, h, or both), replica, and random effects of calf and error (SAS version 9.4, SAS Institute Inc., Cary, NC). The measurements collected immediately before treatment allocation were included as covariates in the model. An ENV effect showed that heat stress increased rectal temperature (38.72 vs. 39.21°C), respiratory rate (36 vs. 108 breaths/min), and water intake (3.2 vs. 6.6 L/d). The treatments did not affect dry matter intake. An ENV × INT interaction showed that heat stress with saline decreased average daily gain (ADG) by 35% and tended to decrease feed use-efficiency by 36%, but the use of dexamethasone to treat heat stress restored ADG and feed use-efficiency comparable to their basal levels. An ENV × INT interaction revealed that heat stress with saline increased jejunal interleukin (IL)-6 concentration 2-fold, but dexamethasone treatment of heat stress restored jejunal IL-6 concentration to basal levels. The bioenergetic cost of the heat stress-immune pro-inflammatory response ranged between 1.18 and 1.50 Mcal of ME. Overall, the administration of dexamethasone reduced the jejunal concentration of a pro-inflammatory marker and restored the heat stress-associated reduction in growth and feed use-efficiency. The immunomodulation and anti-inflammatory effects of dexamethasone could be part of a homeorhetic change that results in a shift from maintenance functions to support growth on calves exposed to heat stress.
Collapse
Affiliation(s)
- Z Yu
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - J M Cantet
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - M R R Nair
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - A G Ríus
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
7
|
Oluwagbenga EM, Bergman M, Ajuwon KM, Fraley GS. Sex differences in intestinal morphology and increase in diencephalic neuropeptide Y gene expression in female but not male Pekin ducks exposed to chronic heat stress. J Neuroendocrinol 2024:e13424. [PMID: 38960698 DOI: 10.1111/jne.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
The impact of heat stress (HS) on production is intricately linked with feed intake. We investigated the effects of HS on intestines and diencephalic genes in Pekin ducks. One hundred and sixty adult ducks were allocated to two treatment rooms. The control room was maintained at 22°C and the HS room at 35°C for the first 10 h of the day then reduced to 29.5°C. After 3 weeks, 10 hens and 5 drakes were euthanized from each room and jejunum and ileum collected for histology. Brains were collected for gene expression analysis using qRT-PCR. Intestinal morphology data were analyzed with two-way ANOVA and diencephalic gene data were analyzed with Kruskal-Wallis test. There was an increase in villi width in the ileum (p = .0136) and jejunum (p = .0019) of HS hens compared to controls. HS drakes showed a higher crypt depth (CD) in the jejunum (p = .0198) compared to controls. There was an increase in crypt goblet cells (GC) count in the ileum (p = .0169) of HS drakes compared to HS hens. There was higher villi GC count (p = .07) in the jejunum of HS drakes compared to controls. There was an increase in the crypt GC density (p = .0054) in the ileum, not jejunum, of HS drakes compared to HS hens. Further, there were no differences in the proopiomelanocortin gene expression in either sex but there was an increase in the expression of neuropeptide Y (NPY) gene in HS hens (p = .031) only and a decrease in the corticotropin releasing hormone gene in the HS drakes (p = .037) compared to controls. These data show that there are sex differences in the effect of HS on gut morphology while the upregulation in NPY gene may suggest a role in mediating response to chronic HS.
Collapse
Affiliation(s)
- E M Oluwagbenga
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - M Bergman
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - K M Ajuwon
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
8
|
Yehia M, Alfonso-Avila AR, Prus JMA, Ouellet V, Alnahhas N. The potential of in ovo-fed amino acids to alleviate the effects of heat stress on broiler chickens: effect on performance, body temperature, and oxidative status during the finisher phase. Poult Sci 2024; 103:103821. [PMID: 38823160 PMCID: PMC11179241 DOI: 10.1016/j.psj.2024.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
The aim of the current study was to investigate the potential of in ovo-fed amino acids (AA) to reduce the effects of heat stress on finishing broiler chickens. To achieve this, a total of 1,400 fertile hatching eggs were randomly distributed into 5 groups (n = 280/group) and injected with one of the following in ovo treatments on embryonic day 18: 52 µL of sterile diluent/egg (CTRL), CTRL + 1.0 mg of L-Leucine (T1), CTRL + 0.45 mg of leucine + 1.15 mg of methionine (T2), CTRL + 3.0 mg of methionine + 2.0 mg of cysteine (T3), and CTRL + 0.40 mg of leucine + 1.60 mg of methionine + 1.60 mg of cysteine (T4). After hatch, chicks were allocated according to a complete randomized block design comprising 2 thermal conditions: thermoneutral (24°C, 45% RH) and heat stress (34°C, 55-60% RH) with 5 pens/group/condition. The cyclical heat stress regimen (10 h/d) was then applied from d 29 to d 34. Compared to the CTRL group, T3 and T4 exhibited a higher BW during the starter phase (P < 0.001). T4 also had a lower feed conversion ratio (FCR) than CTRL during this same phase (P = 0.03). During the grower phase, males of all treatment groups consistently exhibited higher BW compared to the CTRL group, which was not observed among female birds (PSex × TRT = 0.005). During the finisher phase, the in ovo treatment effect on performance was not significant. However, heat-stressed birds from treatment group T3 and T4 exhibited lower facial temperatures (Pday × TRT < 0.001) as well as lower plasma (Pcondition x TRT = 0.039) and liver (Pcondition x TRT < 0.001) malonaldehyde concentrations compared to the CTRL group. In conclusion, in ovo-fed AA have the potential to modulate the effects of heat stress on finishing broiler chickens by limiting its detrimental consequences, including increased body temperature and oxidative damage.
Collapse
Affiliation(s)
- Moustafa Yehia
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada
| | | | | | - Véronique Ouellet
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada
| | - Nabeel Alnahhas
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada; Swine and Poultry Infectious Diseases Research Center, Université de Montréal, Saint-Hyacinthe J2S 2M2, Quebec, Canada.
| |
Collapse
|
9
|
Anas MA, Aprianto MA, Akit H, Muhlisin, Kurniawati A, Hanim C. Black soldier fly larvae oil (Hermetia illucens L.) calcium salt enhances intestinal morphology and barrier function in laying hens. Poult Sci 2024; 103:103777. [PMID: 38713986 PMCID: PMC11091524 DOI: 10.1016/j.psj.2024.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024] Open
Abstract
This study aimed to determine the influence of black soldier fly larvae oil calcium salt (BSFLO-SCa) supplementation on performance, jejunal histomorphology and gene expression of tight junctions and inflammatory cytokines in laying hens. A total of 60 ISA Brown laying hens (40 wk of age) were divided into 3 treatment groups, including a control group fed a basal diet (T0) and basal diets supplemented with 1% (T1) and 2% (T2) of BSFLO-SCa. Each treatment group consisted of 5 replicates with 4 laying hens each. Results showed that 1% and 2% BSFLO-SCa supplementation significantly reduced (P < 0.05) feed conversion ratio (FCR), while egg weight (EW) increased (P < 0.05). The inclusion with 2% increased (P < 0.05) both egg production (HDA) and mass (EM). The addition of 1% and 2% BSFLO-SCa significantly increased (P < 0.05) villus height (VH) and villus width (VW), while crypt depth (CD) significantly increased (P < 0.05) with 2% BSFLO-SCa. The tight junction and gene expression of claudin-1 (CLDN-1), junctional adhesion molecules-2 (JAM-2), and occludin (OCLN) were significantly upregulated (P < 0.05) with 2% BSFLO-SCa. The pro-inflammatory cytokines and gene expression of interleukin-6 (IL-6) was significantly downregulated (P < 0.05) with the addition of BSFLO-SCa, while gene expression of interleukin-18 (IL-18), toll-like receptor 4 (TLR-4), and tumor necrosis factor-α (TNF-α) were downregulated with 2% BSFLO-SCa. On the other hand, the anti-inflammatory cytokines and gene expression of interleukin-13 (IL-13) and interleukin-10 (IL-10) were significantly upregulated (P < 0.05) at 2% BSFLO-SCa. In conclusion, dietary supplementation with 2% BSFLO-SCa improved productivity, intestinal morphology and integrity by upregulating tight junction-related protein of gene expression of laying hens. In addition, supplementation with BSFLO-SCa enhanced intestinal immune responses by upregulating anti-inflammatory and downregulating pro-inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Muhsin Al Anas
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Muhammad Anang Aprianto
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Henny Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhlisin
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Asih Kurniawati
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Chusnul Hanim
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
10
|
Hemanth M, Venugopal S, Devaraj C, Shashank CG, Ponnuvel P, Mandal PK, Sejian V. Comparative assessment of growth performance, heat resistance and carcass traits in four poultry genotypes reared in hot-humid tropical environment. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 38825837 DOI: 10.1111/jpn.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
This study investigated the impact of heat stress on growth and carcass traits in four poultry genotypes-Giriraja, Country chicken, Naked Neck and Kadaknath reared in a hot and humid tropical environment. Birds from all genotypes had ad libitum access to feed and water while being challenged with consistently high environmental temperatures in the experimental shed. Daily diurnal meteorological data were recorded inside and outside the shed. The study specifically examined growth variables and carcass characteristics. Significant differences (p < 0.01) were observed in body weight and average daily gain at various intervals. Notably, feed intake showed significant differences (p < 0.01) across weeks, indicating interactions between genotypes and time intervals. The feed conversion ratio (FCR) varied significantly (p < 0.01), with the highest FCR recorded in the Kadaknath breed. Livability percentages were similar across groups, except for Giriraja, which had significantly lower livability (p < 0.01). Carcass traits, including dressing, wings, feathers and giblet percentages, showed significant differences among genotypes (p < 0.01). Hepatic mRNA expression of growth-related genes revealed numerical variations, with Naked Neck displaying the highest (p < 0.05) fold change in IGF-1 expression compared to other genotypes. The study recognized in the Naked Neck genotype to possess higher resilience in maintaining homoeostasis and uncompromised growth under heat stress, providing valuable insights for sustainable poultry farming in challenging environmental conditions.
Collapse
Affiliation(s)
- M Hemanth
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - S Venugopal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - C Devaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| | - C G Shashank
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| | - P Ponnuvel
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - P K Mandal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - V Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Lyte JM, Eckenberger J, Keane J, Robinson K, Bacon T, Assumpcao ALFV, Donoghue AM, Liyanage R, Daniels KM, Caputi V, Lyte M. Cold stress initiates catecholaminergic and serotonergic responses in the chicken gut that are associated with functional shifts in the microbiome. Poult Sci 2024; 103:103393. [PMID: 38320392 PMCID: PMC10851224 DOI: 10.1016/j.psj.2023.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024] Open
Abstract
Climate change is one of the most significant challenges facing the sustainability of global poultry production. Stress resulting from extreme temperature swings, including cold snaps, is a major concern for food production birds. Despite being well-documented in mammals, the effect of environmental stress on enteric neurophysiology and concomitant impact on host-microbiome interactions remains poorly understood in birds. As early life stressors may imprint long-term adaptive changes in the host, the present study sought to determine whether cold temperature stress, a prominent form of early life stress in chickens, elicits changes in enteric stress-related neurochemical concentrations that coincide with compositional and functional changes in the microbiome that persist into the later life of the bird. Chicks were, or were not, subjected to cold ambient temperature stress during the first week post-hatch and then remained at normal temperature for the remainder of the study. 16S rRNA gene and shallow shotgun metagenomic analyses demonstrated taxonomic and functional divergence between the cecal microbiomes of control and cold stressed chickens that persisted for weeks following cessation of the stressor. Enteric concentrations of serotonin, norepinephrine, and other monoamine neurochemicals were elevated (P < 0.05) in both cecal tissue and luminal content of cold stressed chickens. Significant (P < 0.05) associations were identified between cecal neurochemical concentrations and microbial taxa, suggesting host enteric neurochemical responses to environmental stress may shape the cecal microbiome. These findings demonstrate for the first time that early life exposure to environmental temperature stress can change the developmental trajectory of both the chicken cecal microbiome and host neuroendocrine enteric physiology. As many neurochemicals serve as interkingdom signaling molecules, the relationships identified here could be exploited to control the impact of climate change-driven stress on avian enteric host-microbe interactions.
Collapse
Affiliation(s)
- Joshua M Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA.
| | - Julia Eckenberger
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | | | - Kelsy Robinson
- Poultry Research Unit, Agricultural Research Service, United States Department of Agriculture Mississippi State, MS 39762, USA
| | - Tyler Bacon
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | | | - Annie M Donoghue
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | - Rohana Liyanage
- Statewide Mass Spectrometry Lab, University of Arkansas, Fayetteville, AR 72701, USA
| | - Karrie M Daniels
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Saracila M, Untea AE, Varzaru I, Panaite TD, Vlaicu PA. Comparative Effects on Using Bilberry Leaves in Broiler Diet Reared under Thermoneutral Conditions vs. Heat Stress on Performance, Health Status and Gut Microbiota. Life (Basel) 2023; 14:39. [PMID: 38255654 PMCID: PMC10821394 DOI: 10.3390/life14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
The study aims to investigate the impact of dietary bilberry leaves on the performance, health status, and gut microbiota of broilers reared in both thermoneutral conditions and under heat stress. Sixty Cobb 500 broiler chicks were divided into two groups (C-TN, BL-TN) and reared in thermoneutral conditions for the first trial. For the second trial, two other groups (C-HS and BL-HS) were reared in heat stress (32 °C), with 30 chickens in each group. The experimental diets were supplemented with 1% bilberry leaves compared to the control diets. The broilers fed a diet with bilberry leaves had lower levels of cholesterol compared to the control birds. At the end of the experiment, six broilers per group were slaughtered, and intestinal contents were collected for bacteriological analyses. The results revealed that bilberry leaves increased body weight and average daily feed intake in the BL-TN group compared to the C-HS group. However, the broilers fed a bilberry leaves diet and reared in heat stress had a significantly lower average daily feed intake and average daily weight gain than the C-TN group. Additionally, the number of staphylococci colonies decreased significantly in the group fed with a BL-supplemented diet and reared in TN compared to C-TN, while lactobacilli increased significantly in BL-TN compared to C-TN. In summary, bilberry leaves can be used as a natural supplement in a broiler's diet to regulate serum cholesterol in heat stress and maintain the health of intestinal microflora in thermoneutral conditions.
Collapse
Affiliation(s)
- Mihaela Saracila
- Food and Feed Quality Department, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (P.A.V.)
| | - Arabela Elena Untea
- Food and Feed Quality Department, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (P.A.V.)
| | - Iulia Varzaru
- Food and Feed Quality Department, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (P.A.V.)
| | - Tatiana Dumitra Panaite
- Nutrition Physiology Department, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Romania;
| | - Petru Alexandru Vlaicu
- Food and Feed Quality Department, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (P.A.V.)
| |
Collapse
|
13
|
Li S, Li X, Wang K, Li Y, Nagaoka K, Li C. Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic 5-HT pathway. J Anim Sci Biotechnol 2023; 14:159. [PMID: 38129919 PMCID: PMC10734199 DOI: 10.1186/s40104-023-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Broilers have a robust metabolism and high body temperature, which make them less tolerant to high-temperature (HT) environments and more susceptible to challenges from elevated temperatures. Gut microbes, functioning as symbionts within the host, possess the capacity to significantly regulate the physiological functions and environmental adaptability of the host. This study aims to investigate the effects of gut microbial intervention on the body temperature and thermogenesis of broilers at different ambient temperatures, as well as the underlying mechanism involving the "gut-brain" axis. METHODS Broilers were subjected to gut microbiota interference with or without antibiotics (control or ABX) starting at 1 day of age. At 21 day of age, they were divided into 4 groups and exposed to different environments for 7 d: The control and ABX groups at room temperature (RT, 24 ± 1 °C, 60% relative humidity (RH), 24 h/d) and the control-HT and ABX-HT groups at high temperature (HT, 32 ± 1 °C, 60% RH, 24 h/d). RESULTS : The results demonstrated that the antibiotic-induced gut microbiota intervention increased body weight and improved feed conversion in broiler chickens (P < 0.05). Under HT conditions, the microbiota intervention reduced the rectal temperature of broiler chickens (P < 0.05), inhibited the expression of avUCP and thermogenesis-related genes in breast muscle and liver (P < 0.05), and thus decreased thermogenesis capacity. Furthermore, the gut microbiota intervention blunted the hypothalamic‒pituitary‒adrenal axis and hypothalamic-pituitary-thyroid axis activation induced by HT conditions. By analyzing the cecal microbiota composition of control and ABX chickens maintained under HT conditions, we found that Alistipes was enriched in control chickens. In contrast, antibiotic-induced gut microbiota intervention resulted in a decrease in the relative abundance of Alistipes (P < 0.05). Moreover, this difference was accompanied by increased hypothalamic 5-hydroxytryptamine (5-HT) content and TPH2 expression (P < 0.05). CONCLUSIONS These findings underscore the critical role of the gut microbiota in regulating broiler thermogenesis via the gut-brain axis and suggest that the hypothalamic 5-HT pathway may be a potential mechanism by which the gut microbiota affects thermoregulation in broilers.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Oluwagbenga EM, Fraley GS. Heat stress and poultry production: a comprehensive review. Poult Sci 2023; 102:103141. [PMID: 37852055 PMCID: PMC10591017 DOI: 10.1016/j.psj.2023.103141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
The impact of global warming on poultry production has gained significant attention over the years. However, our current knowledge and understanding of the mechanisms through which heat stress (HS) resulting from global warming affects the welfare, behavior, immune response, production performance, and even transgenerational effects in poultry are still incomplete. Further research is needed to delve deeper into these mechanisms to gain a comprehensive understanding. Numerous studies have investigated various biomarkers of stress in poultry, aiming to identify reliable markers that can accurately assess the physiological status and well-being of birds. However, there is a significant amount of variation and inconsistency in the results reported across different studies. This inconsistency highlights the need for more standardized methods and assays and a clearer understanding of the factors that influence these biomarkers in poultry. This review article specifically focuses on 3 main aspects: 1) the neuroendocrine and behavioral responses of poultry to HS, 2) the biomarkers of HS and 3) the impact of HS on poultry production that have been studied in poultry. By examining the neuroendocrine and behavioral changes exhibited by poultry under HS, we aim to gain insights into the physiological impact of elevated temperatures in poultry.
Collapse
Affiliation(s)
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, IN USA.
| |
Collapse
|
15
|
Xu F, Wu H, Xie J, Zeng T, Hao L, Xu W, Lu L. The Effects of Fermented Feed on the Growth Performance, Antioxidant Activity, Immune Function, Intestinal Digestive Enzyme Activity, Morphology, and Microflora of Yellow-Feather Chickens. Animals (Basel) 2023; 13:3545. [PMID: 38003161 PMCID: PMC10668758 DOI: 10.3390/ani13223545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
This experiment was conducted to investigate the effects of fermented feed on growth performance, antioxidant activity, immune function, intestinal digestive enzyme activity, morphology, and microflora of yellow-feather chickens. A total of 240 one-day-old female yellow-feathered (Hexi dwarf) chickens were randomly divided into two treatment groups, with six replicates per group and 20 chickens per replicate. The control group (CK) received a basal diet, whereas the experimental group was fed a basal diet of +2.00% fermented feed (FJ). The trial lasted for 22 days. Compared with the CK, (1) the growth performance was not affected (p > 0.05); (2) immunoglobin a, immunoglobin g, immunoglobin m, interleukin-1β, and interleukin-6 were affected (p < 0.05); (3) liver superoxide dismutase, glutathione peroxidase, and catalase were higher (p < 0.05); (4) trypsin activity in the duodenum and cecal Shannon index were increased (p < 0.05); (5) the relative abundance of Actinobacteriota in cecum was increased (p < 0.05); (6) the abundance of dominant microflora of Bacteroides as well as Clostridia UCG-014_norank were increased (p < 0.05). In summary, the fermented feed improved the growth performance, antioxidant activity, immune function, intestinal digestive enzyme activity, morphology, and microflora of yellow-feather chickens.
Collapse
Affiliation(s)
- Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Junan Agriculture and Rural Bureau, Linyi 276600, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiajun Xie
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310002, China
| | - Lijian Hao
- Junan Agriculture and Rural Bureau, Linyi 276600, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310002, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310002, China
| |
Collapse
|
16
|
Sumanu VO, Naidoo V, Oosthuizen M, Chamunorwa JP. A Technical Report on the Potential Effects of Heat Stress on Antioxidant Enzymes Activities, Performance and Small Intestinal Morphology in Broiler Chickens Administered Probiotic and Ascorbic Acid during the Hot Summer Season. Animals (Basel) 2023; 13:3407. [PMID: 37958162 PMCID: PMC10650450 DOI: 10.3390/ani13213407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Oxidative stress negatively affects the welfare of broiler chickens leading to poor productivity and even death. This study examined the negative effect of heat stress on antioxidant enzyme activities, small intestinal morphology and performance in broiler chickens administered probiotic and ascorbic acid during the hot summer season, under otherwise controlled conditions. The study made use of 56 broiler chickens; which were divided into control; probiotic (1 g/kg); ascorbic acid (200 mg/kg) and probiotic + ascorbic acid (1 g/kg and 200 mg/kg, respectively). All administrations were given via feed from D1 to D35 of this study. Superoxide dismutase, glutathione peroxidase and catalase activities were highly significant (p < 0.0001) in the treatment groups compared to the control. Performance indicators (water intake and body weight gain) were significantly higher (p < 0.05) in the probiotic and probiotic + ascorbic acid group. The height of duodenal, jejunal and ileal villi, and goblet cell counts of broiler chickens were significantly different in the treatment groups. In conclusion, the study showed that heat stress negatively affects the levels of endogenous antioxidant enzymes, performance and the morphology of small intestinal epithelium, while the antioxidants were efficacious in ameliorating these adverse effects.
Collapse
Affiliation(s)
- Victory Osirimade Sumanu
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria P.O. Box 14679, South Africa;
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria P.O. Box 14679, South Africa;
| | - Marinda Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria P.O. Box 14679, South Africa;
| | - Joseph Panashe Chamunorwa
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria P.O. Box 14679, South Africa;
| |
Collapse
|
17
|
Cartoni Mancinelli A, Baldi G, Soglia F, Mattioli S, Sirri F, Petracci M, Castellini C, Zampiga M. Impact of chronic heat stress on behavior, oxidative status and meat quality traits of fast-growing broiler chickens. Front Physiol 2023; 14:1242094. [PMID: 37772060 PMCID: PMC10522860 DOI: 10.3389/fphys.2023.1242094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
This research aimed to investigate, through a multifactorial approach, the relationship among some in-vivo parameters (i.e., behavior and blood traits) in broilers exposed to chronic HS, and their implications on proximate composition, technological properties, and oxidative stability of breast meat. A total of 300 Ross 308 male chickens were exposed, from 35 to 41 days of age, to either thermoneutral conditions (TNT group: 20°C; six replicates of 25 birds/each) or elevated ambient temperature (HS group: 24 h/d at 30°C; six replicates of 25 birds/each). In order to deal with thermal stress, HS chickens firstly varied the frequency of some behaviors that are normally expressed also in physiological conditions (i.e., increasing "drinking" and decreasing "feeding") and then exhibited a behavioral pattern finalized at dissipating heat, primarily represented by "roosting," "panting" and "elevating wings." Such modifications become evident when the temperature reached 25°C, while the behavioral frequencies tended to stabilize at 27°C with no further substantial changes over the 6 days of thermal challenge. The multifactorial approach highlighted that these behavioral changes were associated with oxidative and inflammatory status as indicated by lower blood γ-tocopherol and higher carbonyls level (0.38 vs. 0.18 nmol/mL, and 2.39 vs. 7.19 nmol/mg proteins, respectively for TNT and HS; p < 0.001). HS affected breast meat quality by reducing the moisture:protein ratio (3.17 vs. 3.01, respectively for TNT and HS; p < 0.05) as well as the muscular acidification (ultimate pH = 5.81 vs. 6.00, respectively; p < 0.01), resulting in meat with higher holding capacity and tenderness. HS conditions reduced thiobarbituric acid reactive substances (TBARS) concentration in the breast meat while increased protein oxidation. Overall results evidenced a dynamic response of broiler chickens to HS exposure that induced behavioral and physiological modifications strictly linked to alterations of blood parameters and meat quality characteristics.
Collapse
Affiliation(s)
- Alice Cartoni Mancinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giulia Baldi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Simona Mattioli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Welay K, Amaha N, Demeke S, Debusho LK, Girma M. Growth performance and carcass characteristics of Koekoek chickens exposed to temperature variation with supplementary Coriander seed powder. J Therm Biol 2023; 116:103674. [PMID: 37542839 DOI: 10.1016/j.jtherbio.2023.103674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Abstract
The aim of the present study was to evaluate the effects of ambient temperature and coriander seeds supplementation on growth performance and carcass characteristics of Koekoek chickens. In the experiment, chickens were exposed to two temperature rooms with a heated room of 32 ± 1.2 °C from 11:00 to16:00 h and a normal room temperature with an average maximum and minimum of 23.8 ± 3 °C and 16.6 ± 1.6 °C, respectively, and a relative humidity between 34.5 ± 4 and 44.8 ± 3%. The chickens were supplemented with 0, 5, and 10 g/kg of coriander seed powder. The results showed that the group of Koekoek chickens placed in a heated room had significantly lower (P < 0.05) feed intake and weight gain and significantly higher (P < 0.05) feed conversion ratio than the groups placed at normal room temperature. Water intake was 1.8% higher in the groups placed in a heated room than those placed at normal room temperature. Supplementation with coriander seed powder enhanced growth performance and carcass traits. The carcass weight and breast percentage were higher (P < 0.05) in the groups that received 10 g/kg coriander seed powder. The growth performance of the Koekoek groups supplemented with 10 g/kg coriander seed powder in a heated room also improved significantly compared to groups in a heated room without supplementation. This suggests that the supplementation of coriander seed improves performance, and has a positive potential effect in alleviating the negative effects of heat stress on growth performance of chickens.
Collapse
Affiliation(s)
- Kiros Welay
- African Centre of Excellence for Climate-Smart Agriculture and Biodiversity Conservation, Haramaya University, Dire Dawa, P.O. Box 138, Ethiopia.
| | - Negassi Amaha
- School of Animal and Range Sciences Haramaya University, Dire Dawa, P.O. Box 138, Ethiopia
| | - Solomon Demeke
- Jimma University, College of Agriculture and Veterinary Medicine, Ethiopia
| | - Legesse K Debusho
- Department of Statistics, University of South Africa, C/O Christiaan De Wet Road, Florida, South Africa
| | - Meseret Girma
- School of Animal and Range Sciences Haramaya University, Dire Dawa, P.O. Box 138, Ethiopia
| |
Collapse
|
19
|
Nourazaran M, Yousefi R, Moosavi-Movahedi F, Panahi F, Hong J, Moosavi-Movahedi AA. The structural and functional consequences of melatonin and serotonin on human αB-crystallin and their dual role in the eye lens transparency. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023:140928. [PMID: 37330131 DOI: 10.1016/j.bbapap.2023.140928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Crystallins are the major soluble lens proteins, and α-crystallin, the most important protective protein of the eye lens, has two subunits (αA and αB) with chaperone activity. αB-crystallin (αB-Cry) with a relatively wide tissue distribution has an innate ability to interact effectively with the misfolded proteins, preventing their aggregation. Melatonin and serotonin have also been identified in relatively high concentrations in the lenticular tissues. This study investigated the effect of these naturally occurring compounds and medications on the structure, oligomerization, aggregation, and chaperone-like activity of human αB-Cry. Various spectroscopic methods, dynamic light scattering (DLS), differential scanning calorimetry (DSC), and molecular docking have been used for this purpose. Based on our results, melatonin indicates an inhibitory effect on the aggregation of human αB-Cry without altering its chaperone-like activity. However, serotonin decreases αB-Cry oligomeric size distribution by creating hydrogen bonds, decreases its chaperone-like activity, and at high concentrations increases protein aggregation.
Collapse
Affiliation(s)
- Mona Nourazaran
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Reza Yousefi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | | | - Farhad Panahi
- Institute of Organic Chemistry, Albert-Ludwigs-University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, People's Republic of China
| | | |
Collapse
|
20
|
Effect of Glutamine on the Growth Performance, Oxidative Stress, and Nrf2/p38 MAPK Expression in the Livers of Heat-Stressed Broilers. Animals (Basel) 2023; 13:ani13040652. [PMID: 36830439 PMCID: PMC9951748 DOI: 10.3390/ani13040652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The purpose of this work was to study the effects of glutamine (Gln) on the growth performance, oxidative stress, Nrf2, and p38 MAPK pathway in the livers of heat-stressed broilers. In total, 300 broilers were divided into five groups, including a normal temperature (NT, without dietary Gln) group and four cyclic high temperature groups (HT, GHT1, GHT2, and GHT3) fed with 0%, 0.5%, 1.0%, and 1.5% Gln, respectively. High temperature conditions increased (p < 0.05) liver malonaldehyde (MDA) concentration, but decreased (p < 0.05), body weight gain (BWG), feed intake (FI), liver superoxide dismutase (SOD), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and glutathione (GSH) levels in broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were lower (p < 0.05) in the NT group than that in the HT group. However, dietary 1.5% Gln decreased (p < 0.05) liver MDA concentration, but increased (p < 0.05) BWG, FI, liver SOD, T-AOC, GSH-Px, GST, and GSH levels in heat-stressed broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were higher (p < 0.05) in the GHT3 group than that in the HT group. In summary, Gln improved oxidative damage through the activation of Nrf2 and p38 MAPK expression in the livers of heat-stressed broilers.
Collapse
|
21
|
Hosseinzadeh S, Hasanpur K. Gene expression networks and functionally enriched pathways involved in the response of domestic chicken to acute heat stress. Front Genet 2023; 14:1102136. [PMID: 37205120 PMCID: PMC10185895 DOI: 10.3389/fgene.2023.1102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Heat stress in poultry houses, especially in warm areas, is one of the main environmental factors that restrict the growth of broilers or laying performance of layers, suppresses the immune system, and deteriorates egg quality and feed conversion ratio. The molecular mechanisms underlying the response of chicken to acute heat stress (AHS) have not been comprehensively elucidated. Therefore, the main object of the current work was to investigate the liver gene expression profile of chickens under AHS in comparison with their corresponding control groups, using four RNA-seq datasets. The meta-analysis, GO and KEGG pathway enrichment, WGCNA, machine-learning, and eGWAS analyses were performed. The results revealed 77 meta-genes that were mainly related to protein biosynthesis, protein folding, and protein transport between cellular organelles. In other words, under AHS, the expression of genes involving in the structure of rough reticulum membrane and in the process of protein folding was adversely influenced. In addition, genes related to biological processes such as "response to unfolded proteins," "response to reticulum stress" and "ERAD pathway" were differentially regulated. We introduce here a couple of genes such as HSPA5, SSR1, SDF2L1, and SEC23B, as the most significantly differentiated under AHS, which could be used as bio-signatures of AHS. Besides the mentioned genes, the main findings of the current work may shed light to the identification of the effects of AHS on gene expression profiling of domestic chicken as well as the adaptive response of chicken to environmental stresses.
Collapse
|
22
|
Stress-induced immunosuppression affecting avian influenza virus vaccine immune response through miR-20a-5p/NR4A3 pathway in chicken. Vet Microbiol 2022; 273:109546. [PMID: 35994844 DOI: 10.1016/j.vetmic.2022.109546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 01/10/2023]
Abstract
Stress-induced immunosuppression is one of the most common hazards in poultry intensive production, which often leads to vaccination failure and severe economic losses. At present, there is no report about the function and mechanism of circulating miRNA on stress-induced immunosuppression affecting immune response. In this study, the changes of circulating miR-20a-5p under stress-induced immunosuppressive condition were analyzed by qRT-PCR, and the key time points, tissues and mechanisms for functional regulation of miR-20a-5p in the process of stress-induced immunosuppression affecting avian influenza virus (AIV) vaccine immune response were identified. The results showed that stress-induced immunosuppression down-regulated miR-20a-5p and further affected AIV vaccine immune response, in which 5 day post immunization (dpi) was a key time point, and the heart, lung, and proventriculus were the important tissues. The game relationship analysis between miR-20a-5p and its target nuclear receptor subfamily 4 group A member 3 (NR4A3) gene showed that "miR-20a-5p/NR4A3" pathway was the potential key mechanism of this process, especially for heart and lung. This study provides insights into the molecular mechanisms of stress-induced immunosuppression affecting immune response.
Collapse
|