1
|
Huerta A, Xiccato G, Bordignon F, Birolo M, Boskovic Cabrol M, Pirrone F, Trocino A. Dietary fat content and supplementation with sodium butyrate: effects on growth performance, carcass traits, meat quality, and myopathies in broiler chickens. Poult Sci 2024; 103:104199. [PMID: 39197337 PMCID: PMC11399674 DOI: 10.1016/j.psj.2024.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to evaluate the effects of the dietary inclusion of microencapsulated sodium butyrate (Na-butyrate; 0, 150, and 300 mg Na-butyrate/kg diet) and dietary fat reduction (7.7% vs. 6.7% in the grower diet; 8.9% vs. 7.7% in the finisher diet) in 792 (half male and half female) broiler chickens on growth performance, carcass traits, and meat quality and the occurrence of wooden breast (WB), white striping (WS), and spaghetti meat (SM). Dietary supplementation with Na-butyrate did not affect the growth performance, carcass traits, meat quality traits, or myopathy rates. Dietary fat reduction did not influence feed intake (FI) but decreased average daily gain (ADG); increased feed conversion ratio (FCR) (P < 0.001); and decreased the occurrence of WS (-38%; P < 0.01), WB (-48%; P < 0.05), and SM (-90%; P < 0.01). Dietary fat reduction also increased cold carcass weight (P < 0.01), carcass yield (P < 0.05), and pectoralis major yield (P < 0.05), whereas meat quality was not affected. Compared to females, males had high body weight, ADG, and FI and low FCR (P < 0.001) at the end of the trial. Moreover, cold carcass weight and hind leg yield were higher in males than in females (P < 0.001), whereas females had higher carcass, breast, and p. major yields (P < 0.001). Males showed a higher rate of WB (P < 0.001) and a lower rate of SM (P < 0.01) than females, whereas WS occurrence did not differ between sexes. In conclusion, Na-butyrate supplementation did not affect growth performance, carcass traits, or meat quality. Conversely, the reduction in dietary fat greatly decreased myopathy occurrence, whereas moderately impaired growth performance.
Collapse
Affiliation(s)
- A Huerta
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - G Xiccato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - F Bordignon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - M Birolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - M Boskovic Cabrol
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - F Pirrone
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - A Trocino
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy; Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Padova, Italy.
| |
Collapse
|
2
|
Park S, Sun S, Kovanda L, Sokale AO, Barri A, Kim K, Li X, Liu Y. Effects of monoglyceride blend on systemic and intestinal immune responses, and gut health of weaned pigs experimentally infected with a pathogenic Escherichia coli. J Anim Sci Biotechnol 2024; 15:141. [PMID: 39396043 PMCID: PMC11479547 DOI: 10.1186/s40104-024-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/09/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Monoglycerides have emerged as a promising alternative to conventional practices due to their biological activities, including antimicrobial properties. However, few studies have assessed the efficacy of monoglyceride blend on weaned pigs and their impacts on performance, immune response, and gut health using a disease challenge model. Therefore, this study aimed to investigate the effects of dietary monoglycerides of short- and medium-chain fatty acids on the immunity and gut health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli F18. RESULTS Pigs supplemented with high-dose zinc oxide (ZNO) had greater (P < 0.05) growth performance than other treatments, but no difference was observed in average daily feed intake between ZNO and monoglycerides groups during the post-challenge period. Pigs in ZNO and antibiotic groups had lower (P < 0.05) severity of diarrhea than control, but the severity of diarrhea was not different between antibiotic and monoglycerides groups. Pigs fed with monoglycerides or ZNO had lower (P < 0.05) serum haptoglobin on d 2 or 5 post-inoculation than control. Pigs in ZNO had greater (P < 0.05) goblet cell numbers per villus, villus area and height, and villus height:crypt depth ratio (VH:CD) in duodenum on d 5 post-inoculation than pigs in other treatments. Pigs supplemented with monoglycerides, ZNO, or antibiotics had reduced (P < 0.05) ileal crypt depth compared with control on d 5 post-inoculation, contributing to the increase (P = 0.06) in VH:CD. Consistently, pigs in ZNO expressed the lowest (P < 0.05) TNFa, IL6, IL10, IL12, IL1A, IL1B, and PTGS2 in ileal mucosa on d 5 post-inoculation, and no difference was observed in the expression of those genes between ZNO and monoglycerides. Supplementation of ZNO and antibiotic had significant impacts on metabolic pathways in the serum compared with control, particularly on carbohydrate and amino acid metabolism, while limited impacts on serum metabolites were observed in monoglycerides group when compared with control. CONCLUSIONS The results suggest that supplementation of monoglyceride blend may enhance disease resistance of weaned pigs by alleviating the severity of diarrhea and mitigating intestinal and systemic inflammation, although the effectiveness may not be comparable to high-dose zinc oxide.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Shuhan Sun
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | | | | | - Kwangwook Kim
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA, 95616, USA.
- BASF Corporation, Florham Park, 07932, USA.
| |
Collapse
|
3
|
John FA, Gaghan C, Liu J, Wolfenden R, Kulkarni RR. Screening and selection of eubiotic compounds possessing immunomodulatory and anti-Clostridium perfringens properties. Poult Sci 2024; 103:103911. [PMID: 38909503 PMCID: PMC11253676 DOI: 10.1016/j.psj.2024.103911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Eubiotics are water and/or feed additives used in poultry to promote gut health and control enteric burden of pathogens, including Clostridium perfringens. While several eubiotic compounds (ECs) are being introduced commercially, it is essential to devise an in vitro model to screen these compounds to assess their immunomodulatory and antimicrobial properties prior to their testing in vivo. A chicken macrophage cell-line (MQ-NCSU) was used to develop an in vitro model to screen the immunological and anti-C. perfringens properties of 10 ECs: monobutyrin, monolaurin, calcium butyrate, tributyrin, carvacrol, curcumin, green tea extract, rosemary extract, monomyristate, and tartaric acid. An optimal concentration for each EC was selected by measuring the effect on viability of MQ-NCSU cells. Cells were then treated with ECs for 6, 12, and 24 h. and expression of interferon-gamma (IFNγ), interleukin (IL)-1β, IL-6, IL-10, transforming growth factor-beta (TGFβ) and cluster of differentiation (CD40) genes, as well as major histocompatibility complex (MHC)-II protein were evaluated. At 6 h post-stimulation, monobutyrin, calcium butyrate, and green tea extract treatments induced a significant downregulation of IFNγ, IL-6, or IL-1β gene transcription and MHC-II expression, while the IL-10 or TGFβ gene expression in these treatments as well as those receiving rosemary extract and tartaric acid was significantly upregulated, when compared to control, suggesting immunomodulatory properties of these ECs. Finally, pretreatment of macrophages with these selected 5 ECs for 24 h followed by C. perfringens infection showed that monobutyrin, green tea extract, rosemary extract, and calcium butyrate treatments can inhibit bacterial growth significantly at 12 and/or 24 h post-infection, when compared to the control. Collectively, our findings show that ECs possessing immunomodulatory and anti-C. perfringens properties can be selected using an in vitro avian macrophage cell-based model so that such ECs can further be tested in vivo for their disease prevention efficacy.
Collapse
Affiliation(s)
- Feba Ann John
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jundi Liu
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, USA
| | - Ross Wolfenden
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Khemgaew R, Hori K, Sasaki S, Misawa N, Taniguchi T. The growth-stimulating factor of Treponema phagedenis from bovine digital dermatitis lesions. Anaerobe 2024; 88:102882. [PMID: 39029736 DOI: 10.1016/j.anaerobe.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Bovine digital dermatitis (BDD) is an infectious skin disease of the hoof characterized by painful ulcerations that cause lameness in dairy cattle. Cell-free supernatants (CFS) of Falsiporphyromonas endometrii predominantly isolated from BDD lesions had the highest growth-stimulating effect on Treponema phagedenis among BDD-associated bacteria. Butyric acid was detected at a concentration of 45.4 mM in CFS of F. endometrii, and the growth of T. phagedenis was significantly promoted by butyric acid supplementation.
Collapse
Affiliation(s)
- Rathanon Khemgaew
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-kiyotakecho, Miyazaki 889-1692, Japan; Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Kaoru Hori
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-kiyotakecho, Miyazaki 889-1692, Japan; Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Satomi Sasaki
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Naoaki Misawa
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Takako Taniguchi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
5
|
Akram MZ, Sureda EA, Comer L, Corion M, Everaert N. Assessing the impact of hatching system and body weight on the growth performance, caecal short-chain fatty acids, and microbiota composition and functionality in broilers. Anim Microbiome 2024; 6:41. [PMID: 39049129 PMCID: PMC11271025 DOI: 10.1186/s42523-024-00331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Variations in body weight (BW) remain a significant challenge within broiler flocks, despite uniform management practices. Chicken growth traits are influenced by gut microbiota, which are in turn shaped by early-life events like different hatching environments and timing of first feeding. Chicks hatched in hatcheries (HH) experience prolonged feed deprivation, which could adversely impact early microbiota colonization. Conversely, hatching on-farm (HOF) allows early feeding, potentially fostering a more favorable gut environment for beneficial microbial establishment. This study investigates whether BW differences among broilers are linked to the disparities in gut microbiota characteristics and whether hatching systems (HS) impact the initial microbial colonization of broilers differing in BW, which in turn affects their growth patterns. Male Ross-308 chicks, either hatched in a hatchery or on-farm, were categorized into low (LBW) and high (HBW) BW groups on day 7, making a two-factorial design (HS × BW). Production parameters were recorded periodically. On days 7, 14, and 38, cecal volatile fatty acid (VFA) and microbiota composition and function (using 16 S rRNA gene sequencing and PICRUSt2) were examined. RESULTS HOF chicks had higher day 1 BW, but HH chicks caught up within first week, with no further HS-related performance differences. The HBW chicks remained heavier attributed to higher feed intake rather than improved feed efficiency. HBW group had higher acetate concentration on day 14, while LBW group exhibited higher isocaproate on day 7 and isobutyrate on days 14 and 38. Microbiota analyses revealed diversity and composition were primarily influenced by BW than by HS, with HS having minimal impact on BW-related microbiota. The HBW group on various growth stages was enriched in VFA-producing bacteria like unclassified Lachnospiraceae, Alistipes and Faecalibacterium, while the LBW group had higher abundances of Lactobacillus, Akkermansia and Escherichia-Shigella. HBW microbiota presented higher predicted functional potential compared to the LBW group, with early colonizers exhibiting greater metabolic activity than late colonizers. CONCLUSIONS Despite differences in hatching conditions, the effects of HS on broiler performance were transient, and barely impacting BW-related microbiota. BW variations among broilers are likely linked to differences in feed intake, VFA profiles, and distinct microbiota compositions and functions.
Collapse
Affiliation(s)
- Muhammad Zeeshan Akram
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, Heverlee, 3000, Belgium
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Ester Arévalo Sureda
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, Heverlee, 3000, Belgium
| | - Luke Comer
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, Heverlee, 3000, Belgium
| | - Matthias Corion
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, Heverlee, 3000, Belgium
| | - Nadia Everaert
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, Heverlee, 3000, Belgium.
| |
Collapse
|
6
|
Belloumi D, García-Rebollar P, Calvet S, Francino MP, Reyes-Prieto M, González-Garrido J, Piquer L, Jiménez-Belenguer AI, Bermejo A, Cano C, Cerisuelo A. Impact of including two types of destoned olive cakes in pigs' diets on fecal bacterial composition and study of the relationship between fecal microbiota, feed efficiency, gut fermentation, and gaseous emissions. Front Microbiol 2024; 15:1359670. [PMID: 38946909 PMCID: PMC11211982 DOI: 10.3389/fmicb.2024.1359670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
The microbial population in the pig's gastrointestinal tract can be influenced by incorporating fibrous by-products into the diets. This study investigated the impact of including two types of dried olive cake (OC) in pigs' diets on fecal bacterial composition. The correlation between fecal microbiota and growth performance, nutrient digestibility, gut fermentation pattern and slurry gas emissions was also evaluated. Thirty male Pietrain x (Landrace x Large white) pigs (47.9 ± 4.21 kg) were assigned to three groups: a control group (C), a group fed a diet with 20% partially defatted OC (20PDOC), and a group fed a diet with 20% cyclone OC (20COC) for 21 days. Fecal samples collected before and after providing the experimental diets were analyzed for the V3-V4 region of the 16S rRNA gene. Pigs were weighed, and feed intake was recorded throughout the study. Potential ammonia and methane emissions from slurry were measured. No significant differences in alpha diversity indexes were found. The taxonomic analysis revealed that Firmicutes and Bacteroidota phyla were dominant at the phylum level across all groups. Differential abundance analysis using ALDEx showed significant differences among groups for various bacteria at the phylum, genus, and species levels at the end of the experiment. Pigs from 20PDOC and 20COC groups exhibited increased abundances of health-promoting bacteria, such as Plactomycetota at the phylum level and Allisonella and an unidentified genus from the Eggerthellaceae family at the genus level. These changes influenced short-chain fatty acids' (SCFA) concentration in slurries, leading to greater acetic, butyric, caproic and heptanoic acids in OC-fed groups, especially 20COC pigs. A volatility analysis revealed significant positive correlations (p < 0.05) between Uncultured_Bacteroidales and Unculured_Selenomonadaceae and energy digestibility. Monoglobus and Desulfovibrio showed a positive significant (p < 0.05) correlation with total SCFA, indicating a high impact on gut fermentation. However, growth performance parameters and potential gas emission displayed no significant correlations with a specific bacterial genus. In conclusion, our results suggest that OC inclusion into pig diets could positively modulate and contribute to the gut microbiota's favorable composition and functionality. Also, nutrient digestibility and gut fermentation patterns can be associated with specific microbial populations.
Collapse
Affiliation(s)
- Dhekra Belloumi
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Segorbe, Spain
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - Paloma García-Rebollar
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Salvador Calvet
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - M. Pilar Francino
- FISABIO-Public Health, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - Mariana Reyes-Prieto
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Valencia, Spain
| | - Jorge González-Garrido
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Valencia, Spain
| | - Laia Piquer
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Segorbe, Spain
| | | | - Almudena Bermejo
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Carmen Cano
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Segorbe, Spain
| | - Alba Cerisuelo
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Segorbe, Spain
| |
Collapse
|
7
|
Zhang H, Zhang Y, Gong Y, Zhang J, Li D, Tian Y, Han R, Guo Y, Sun G, Li W, Zhang Y, Zhao X, Zhang X, Wang P, Kang X, Jiang R. Fasting-Induced Molting Impacts the Intestinal Health by Altering the Gut Microbiota. Animals (Basel) 2024; 14:1640. [PMID: 38891687 PMCID: PMC11171271 DOI: 10.3390/ani14111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Fasting-induced molting (FIM) is a common method used to improve the laying performance of aged laying hens. Nevertheless, this approach may impose various stresses on chickens, such as disruptions in intestinal flora and inflammation issues within the intestines. However, the impact of an imbalance in intestinal flora on intestinal health during the FIM process remains elusive. Therefore, intestinal injury, the microbiome, and the metabolome were analyzed individually and integrated to elucidate the impact of the intestinal flora on intestinal health during the FIM process. The findings indicated that fasting resulted in a notable reduction in villus height and villus/crypt ratio, coupled with elevated levels of intestinal inflammation and permeability. During the fasting period, microbiota compositions changed. The abundance of Escherichia_Shigella increased, while the abundance of Ruminococcaceae_UCG-013 and Lactobacillus decreased. Escherichia_Shigella was positively correlated with Citrinin and Sterobilin, which lead to intestinal inflammation. Ruminococcaceae_UCG-013 and Lactobacillus exhibited positive correlations with Lanthionine and reduced Glutathione, thereby reducing intestinal inflammation. This study screened the intestinal probiotics, Ruminococcaceae UCG-013 and Lactobacillus, that influence gut health during the fasting period, providing an experimental basis for improving gut microbiota and reducing intestinal inflammation during the FIM process.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yihui Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Jun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Xinlong Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Xiaoran Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Pengyu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| |
Collapse
|
8
|
Brame JE, Liddicoat C, Abbott CA, Edwards RA, Robinson JM, Gauthier NE, Breed MF. The macroecology of butyrate-producing bacteria via metagenomic assessment of butyrate production capacity. Ecol Evol 2024; 14:e11239. [PMID: 38694752 PMCID: PMC11057059 DOI: 10.1002/ece3.11239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Butyrate-producing bacteria are found in many outdoor ecosystems and host organisms, including humans, and are vital to ecosystem functionality and human health. These bacteria ferment organic matter, producing the short-chain fatty acid butyrate. However, the macroecological influences on their biogeographical distribution remain poorly resolved. Here we aimed to characterise their global distribution together with key explanatory climatic, geographical and physicochemical variables. We developed new normalised butyrate production capacity (BPC) indices derived from global metagenomic (n = 13,078) and Australia-wide soil 16S rRNA (n = 1331) data, using Geographic Information System (GIS) and modelling techniques to detail their ecological and biogeographical associations. The highest median BPC scores were found in anoxic and fermentative environments, including the human (BPC = 2.99) and non-human animal gut (BPC = 2.91), and in some plant-soil systems (BPC = 2.33). Within plant-soil systems, roots (BPC = 2.50) and rhizospheres (BPC = 2.34) had the highest median BPC scores. Among soil samples, geographical and climatic variables had the strongest overall effects on BPC scores (variable importance score range = 0.30-0.03), with human population density also making a notable contribution (variable importance score = 0.20). Higher BPC scores were in soils from seasonally productive sandy rangelands, temperate rural residential areas and sites with moderate-to-high soil iron concentrations. Abundances of butyrate-producing bacteria in outdoor soils followed complex ecological patterns influenced by geography, climate, soil chemistry and hydrological fluctuations. These new macroecological insights further our understanding of the ecological patterns of outdoor butyrate-producing bacteria, with implications for emerging microbially focused ecological and human health policies.
Collapse
Affiliation(s)
- Joel E. Brame
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- School of Public HealthThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Catherine A. Abbott
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Robert A. Edwards
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | | | - Martin F. Breed
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
9
|
Wilms JN, Kleinveld N, Ghaffari MH, Sauerwein H, Steele MA, Martín-Tereso J, Leal LN. Fat composition of milk replacer influences postprandial and oxidative metabolisms in dairy calves fed twice daily. J Dairy Sci 2024; 107:2818-2831. [PMID: 37923211 DOI: 10.3168/jds.2023-23972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Milk replacers (MR) for calves contain alternative fat sources as substitute for milk fat. This substitution leads to differences in fat properties, such as the fatty acid profile and the triglyceride structure. This study evaluated how fat composition in MR affects gastrointestinal health, blood redox parameters, and postprandial metabolism in calves fed twice daily. Forty-five individually housed male Holstein-Friesian calves (2.3 ± 0.85 d of age) were assigned to 1 of 15 blocks based on the age and the day of arrival. Within each block, calves were randomly assigned to 1 of 3 experimental diets and received their respective diet from arrival until 35 d after arrival. The 3 experimental diets (n = 15 per treatment group) consisted of an MR with a blend of vegetable fats containing rapeseed and coconut (VG), an MR with only animal fats from lard and dairy cream (AN), and an MR containing a mixture of animal and vegetable fats including lard and coconut (MX). The fatty acid profile of each MR was formulated to resemble that of bovine milk fat while using only 2 fat sources. All MR were isoenergetic, with 30% fat (% DM), 24% crude protein, and 36% lactose. Chopped straw and water were available ad libitum from arrival onward but no starter feed was provided. Daily milk allowances were 6.0 L from d 1 to 5, 7.0 L from d 6 to 9, and 8.0 L from d 10 to 35, divided into 2 equal meals and prepared at 135 g/L (13.5% solids). Fecal appearance was scored daily; calves were weighed and blood was drawn on arrival and weekly thereafter. Urine and feces were collected over a 24-h period at wk 3 and 5 to determine apparent total-tract digestibility and assess gastrointestinal permeability using indigestible markers. Postprandial metabolism was evaluated at wk 4 by sequential blood sampling over 7.5 h, and the abomasal emptying rate was determined by acetaminophen appearance in blood. Fat composition in MR did not affect growth, MR intake, gastrointestinal permeability, nor nutrient digestibility. The percentage of calves with abnormal fecal scores was lower at wk 2 after arrival in calves fed VG than MX, whereas AN did not differ from the other treatments. Calves fed AN and MX had higher thiobarbituric acid reactive substances measured in serum than VG, whereas plasma ferric-reducing ability was greater in calves fed MX than VG. Postprandial acetaminophen concentrations did not differ across treatment groups, but the area under the curve was smaller in calves fed VG than in the other 2 treatments, which is indicative of a slower abomasal emptying. Postprandial serum triglyceride concentration was greater in calves fed AN than VG, whereas MX did not differ from the other treatments. Based on these outcomes, all 3 fat blends can be considered suitable for inclusion in MR for calves.
Collapse
Affiliation(s)
- J N Wilms
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2.
| | - N Kleinveld
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Animal Nutrition Group, Wageningen University, 6700 AH, Wageningen, the Netherlands
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| | - L N Leal
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
10
|
Xiong S, Zhang Q, Zhang K, Wang J, Bai S, Zeng Q, Peng H, Xuan Y, Mu Y, Ding X. Effects of Long-Term Coated Sodium Butyrate Supplementation on the Intestinal Health and Colonization of Cecal Salmonella of Laying Hens Infected with Salmonella enteritidis. Animals (Basel) 2024; 14:1356. [PMID: 38731359 PMCID: PMC11083467 DOI: 10.3390/ani14091356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Salmonella enterica ser. Enteritidis (S. Enteritidis) is widely found in chickens and eggs, and it can potentially induce human illness. The investigation in this study centers on the impacts of long-term dietary supplementation with coated sodium butyrate (CSB) on intestinal well-being and the colonization of cecum Salmonella in laying hens infected with S. Enteritidis. We segregated a total of 120 Lohmann laying hens aged 51 weeks into four treatment categories: 0 (CON), 300 (CSB1), 500 (CSB2), and 800 (CSB3) mg/kg of CSB, supplemented with CSB from the first day of the experiment. A 24-week observation process was carried out for each laying hen. The S. Enteritidis was orally administered to all chickens on the morning of the first and third days of week 22 of the trial. After the S. Enteritidis challenge, egg production decreased the most in the CON group. Compared to the CON group, the three doses of CSB significantly improved egg production after the S. Enteritidis challenge (PANOVA < 0.05). S. Enteritidis challenge increased plasma DAO activity, but CSB supplementation reduced plasma DAO activity (Plinear < 0.05). The S. Enteritidis challenge disrupted intestinal villi morphology; compared to the CON group, the three dosages of CSB resulted in an increase in villus height (VH) and the ratio of villus height to crypt depth (V/C) in the duodenum, jejunum, and ileum of infected laying hens (Plinear < 0.05), with a significant increase in jejunal villus height (PANOVA < 0.05). A decrease in ileal crypt depth was also observed (Plinear < 0.05). CSB2 and CSB3 markedly increased the content of butyric acid in the cecum (PANOVA < 0.05). Additionally, in contrast to those in the CON group, the propionic acid content in the CSB supplementation group increased (Plinear < 0.05). Compared with those in the CON group, mRNA relative expression of the IL-6 and IL-1β in jejunum (Plinear < 0.05) and mRNA relative expression of the IL-1β in ileum (PANOVA < 0.05) were significantly lower, and mRNA relative expression of the IL-10 in ileum (Plinear < 0.05) were significantly higher in the CSB group. In addition, in contrast to the CON group, the CSB supplementation group significantly upregulated mRNA relative expression of the ZO-1 and CLDN1 (PANOVA < 0.05). Additionally, CSB supplementation reduced the number of Salmonella and increased the number of Lactobacilli in the cecum (Plinear < 0.05) and tended to increase the total bacteria count (Plinear = 0.069) and reduce the E. coli count (Plinear = 0.081). In conclusion, long-term dietary supplementation with coated sodium butyrate can alleviate intestinal injury and the colonization of cecum Salmonella in laying hens infected with S. Enteritidis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xuemei Ding
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| |
Collapse
|
11
|
Dai W, Leng H, Li J, Li A, Li Z, Zhu Y, Li X, Jin L, Sun K, Feng J. The role of host traits and geography in shaping the gut microbiome of insectivorous bats. mSphere 2024; 9:e0008724. [PMID: 38509042 PMCID: PMC11036801 DOI: 10.1128/msphere.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, including Miniopterus fuliginosus, Aselliscus stoliczkanus, Myotis laniger, Rhinolophus episcopus, Rhinolophus osgoodi, Rhinolophus ferrumequinum, Rhinolophus affinis, and Rhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCE The gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat's gut microbiome together and provides a study case on host-microbe interactions in wildlife.
Collapse
Affiliation(s)
- Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Aoqiang Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongle Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yue Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
12
|
Ficagna CA, Galli GM, Zatti E, Zago I, do Amaral MAFD, de Vitt MG, Paiano D, da Silva AS. Addition of Butyric Acid and Lauric Acid Glycerides in Nursery Pig Feed to Replace Conventional Growth Promoters. Animals (Basel) 2024; 14:1174. [PMID: 38672322 PMCID: PMC11047760 DOI: 10.3390/ani14081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/17/2023] [Indexed: 04/28/2024] Open
Abstract
(1) Background: This study determined whether adding butyric acid and lauric acid glycerides in nursing pigs' feed would improve growth performance, proteinogram, biochemical parameters, and antioxidant status. (2) Methods: Ninety male pigs were divided into five groups with six repetitions per group: NC, negative control (no additive); TRI-BUT, addition of tributyrin in the basal ration; MDT-BUT, addition of mono-, di-, and triglycerides of butyric acid in the basal feed; MDT-LAU, the addition of mono-, di-, and triglycerides of lauric acid in the basal feed; and PC, positive control (addition of gentamicin in the basal feed). (3) Results: PC, TRI-BUT, and MDT-LAU resulted in a high average daily WG from days 1 to 39 (p < 0.01). MDT-LAU, MDT-BUT, and PC resulted in a greater feed:gain from days 1 to 39 than the NC (p = 0.03). Great concentrations of the gamma globulin fraction in all groups were observed than in the NC (p = 0.01). Ceruloplasmin, haptoglobin, and C-reactive protein concentrations were lower in all groups than in the NC (p < 0.05). Higher serum glutathione S-transferase activity was observed in the TRI-BUT and MDT-BUT than in the PC (p = 0.04). (4) Conclusions: The addition of butyric acid and lauric acid glycerides in the diet of pigs in the nursery phase can replace growth promoters since the products improve the growth performance, reduce acute-phase proteins, and increase gamma globulin concentrations.
Collapse
Affiliation(s)
- Cássio Antônio Ficagna
- Graduate Program and Animal Science, University of Santa Catarina State (UDESC), Rua Beloni Trombeta Zanini, nº 680, Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil; (C.A.F.); (E.Z.); (I.Z.); (M.A.F.D.d.A.); (M.G.d.V.); (D.P.)
| | - Gabriela Miotto Galli
- Graduate Program in Animal Science, Federal University of Rio Grande do Sul (UFRGS), Avenida Paulo Gama, nº 110, Farroupilha, Porto Alegre 90010-150, RS, Brazil;
| | - Emerson Zatti
- Graduate Program and Animal Science, University of Santa Catarina State (UDESC), Rua Beloni Trombeta Zanini, nº 680, Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil; (C.A.F.); (E.Z.); (I.Z.); (M.A.F.D.d.A.); (M.G.d.V.); (D.P.)
| | - Isadora Zago
- Graduate Program and Animal Science, University of Santa Catarina State (UDESC), Rua Beloni Trombeta Zanini, nº 680, Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil; (C.A.F.); (E.Z.); (I.Z.); (M.A.F.D.d.A.); (M.G.d.V.); (D.P.)
| | - Marco Aurélio Fritzen Dias do Amaral
- Graduate Program and Animal Science, University of Santa Catarina State (UDESC), Rua Beloni Trombeta Zanini, nº 680, Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil; (C.A.F.); (E.Z.); (I.Z.); (M.A.F.D.d.A.); (M.G.d.V.); (D.P.)
| | - Maksuel Gatto de Vitt
- Graduate Program and Animal Science, University of Santa Catarina State (UDESC), Rua Beloni Trombeta Zanini, nº 680, Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil; (C.A.F.); (E.Z.); (I.Z.); (M.A.F.D.d.A.); (M.G.d.V.); (D.P.)
| | - Diovani Paiano
- Graduate Program and Animal Science, University of Santa Catarina State (UDESC), Rua Beloni Trombeta Zanini, nº 680, Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil; (C.A.F.); (E.Z.); (I.Z.); (M.A.F.D.d.A.); (M.G.d.V.); (D.P.)
| | - Aleksandro Schafer da Silva
- Graduate Program and Animal Science, University of Santa Catarina State (UDESC), Rua Beloni Trombeta Zanini, nº 680, Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil; (C.A.F.); (E.Z.); (I.Z.); (M.A.F.D.d.A.); (M.G.d.V.); (D.P.)
| |
Collapse
|
13
|
Hou J, Lu L, Lian L, Tian Y, Zeng T, Ma Y, Li S, Chen L, Xu W, Gu T, Li G, Liu X. Effects of coated sodium butyrate on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and intestinal microbiota of broiler chickens. Front Microbiol 2024; 15:1368736. [PMID: 38650870 PMCID: PMC11033381 DOI: 10.3389/fmicb.2024.1368736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction This study examined the impact of adding coated sodium butyrate (CSB) to the diet on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broiler chickens. Methods In this study, 240 yellow-feathered broiler chickens at 26 days old were divided into two groups: the control group (CON group) received a standard diet, and the experimental group (CSB group) received a diet with 0.5 g/kg of a supplement called CSB. Each group had 6 replicates, with 20 chickens in each replicate, and the experiment lasted for 36 days. Results Compared to the CON group, the CSB group showed a slight but insignificant increase in average daily weight gain during the 26-62 day period, while feed intake significantly decreased. The CSB group exhibited significant increases in serum superoxide dismutase, catalase, and total antioxidant capacity. Additionally, the CSB group had significant increases in total protein and albumin content, as well as a significant decrease in blood ammonia levels. Compared to the CON group, the CSB group had significantly increased small intestine villus height and significantly decreased jejunal crypt depth. The abundance of Bacteroidetes and Bacteroides in the cecal microbiota of the CSB group was significantly higher than that of the CON group, while the abundance of Proteobacteria, Deferribacteres, and Epsilonbacteraeota was significantly lower than that of the CON group. Conclusion These results suggest that adding CSB to the diet can improve the growth performance and antioxidant capacity of yellow-feathered broiler chickens while maintaining intestinal health.
Collapse
Affiliation(s)
- Jinwang Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lina Lian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanfen Ma
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sisi Li
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Liu
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
14
|
Zhao M, Zhang Y, Li Y, Liu K, Bao K, Li G. Impact of Pediococcus acidilactici GLP06 supplementation on gut microbes and metabolites in adult beagles: a comparative analysis. Front Microbiol 2024; 15:1369402. [PMID: 38633690 PMCID: PMC11021720 DOI: 10.3389/fmicb.2024.1369402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
There is growing interest in the potential health benefits of probiotics for both humans and animals. The study aimed to investigate the effects of feeding the canine-derived probiotic Pediococcus acidilactici GLP06 to adult beagles by analysing the microbiome and metabolome. Twenty-four healthy adult beagles were randomly assigned to four groups. The CK group received a standard diet, while the three probiotic groups, the LG group (2 × 108 CFU/day/dog), MG group (2 × 109 CFU/day/dog), and HG group (2 × 1010 CFU/day/dog), received the standard diet supplemented with varying amounts of probiotics. The results show that, compared to the CK group, total antioxidant capacity was significantly increased in the MG and HG groups (p < 0.05), and superoxide dismutase and catalase were significantly increased in the HG group (p < 0.05). Compared to the CK group, malondialdehyde and blood urea nitrogen content were significantly decreased in the MG and HG groups (p < 0.05). Additionally, secretory immunoglobulin A activity was significantly increased in the HG group compared to the CK and LG groups (p < 0.05), and immunoglobulin G activity was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). In addition, compared with the CK group, the abundance of Faecalitalea and Collinsella increased in the LG group, and the relative abundance of Tyzzerella and Parasutterella increased in the MG group. The α diversity and the relative abundances of beneficial bacteria (Faecalibacterium, Lachnospiraceae_NK4A1316, and Ruminococcaceae_UCG-005) were higher in the HG group than in the CK group. Furthermore, acetic acid content was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). Butyric acid, isobutyric acid, and the total SCFA content were significantly increased in the HG group compared to the CK group (p < 0.05). Moreover, metabolome analysis revealed 111 upregulated and 171 downregulated metabolites in the HG group. In conclusion, this study presents evidence that supplementing with P. acidilactici GLP06 can have a positive impact on antioxidant activity, immunoproteins, SCFAs, and gut microbiota in adult beagles. These findings highlight the potential of probiotics as a dietary intervention to enhance gut health and overall wellbeing in companion animals.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kun Bao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Li X, Lin X, Chen W, Leng X. Dietary sodium butyrate positively modulated intestinal microbial community, but did not promote growth of largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:745-755. [PMID: 38261258 DOI: 10.1007/s10695-024-01303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
This study investigated the effects of dietary sodium butyrate (NaB) on growth, serum biochemical indices, intestine histology, and gut microbiota of largemouth bass (Micropterus salmoides). A basal diet was formulated and used as the control diet (Con), and five additional diets were prepared by supplementing NaB (50%) in the basal diet at 2.0, 4.0, 8.0, 12.0, and 16.0 g/kg inclusion (NaB-2, NaB-4, NaB-8, NaB-12, and NaB-16 diets). Then, the six diets were fed to triplicate groups of largemouth bass juveniles (2.4 ± 0.1 g) for 8 weeks. NaB supplementation linearly and quadratically affected weight gain (WG) and feed intake (FI) (P < 0.05). The NaB-16 group displayed lower WG (- 6.8%) and FI than the Con group (P < 0.05), while no differences were found in WG and feed conversion ratio between the other NaB groups and Con group (P > 0.05). Serum alkaline phosphatase and lysozyme activities were higher in the NaB groups (P < 0.05), and D-lactate content was lower in the NaB-12 group (P < 0.05) than the control. Intestinal lipase activity in NaB-2, NaB-4 group, and villi width in NaB-8 group were also higher than those in the Con group (P < 0.05). Compared to the Con group, the intestinal abundances of Firmicutes and Mycoplasma were increased and the abundances of Proteobacteria, Achromobacter and Plesiomonas were decreased in NaB-4 and NaB-16 groups (P < 0.05). In conclusion, dietary NaB did not promote the growth of juvenile largemouth bass, but positively modulated the intestinal microbial community.
Collapse
Affiliation(s)
- Xiaoqin Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Xia Lin
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenjie Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - XiangJun Leng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
16
|
Yamamoto M, Ogura H, Kuda T, Xia Y, Nakamura A, Takahashi H, Inoue J, Takayanagi S. Detection of typical indigenous gut bacteria related to kanpyo Lagenaria siceraria var. hispida powder in murine caecum and human faecal cultures. 3 Biotech 2024; 14:118. [PMID: 38524237 PMCID: PMC10959864 DOI: 10.1007/s13205-024-03960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
Kanpyo (KP) is an edible dried product produced by peeling the fruit of the gourd Lagenaria siceraria var. hispida; it is used in the traditional Japanese cuisine. The health functionality of KP due to its rich dietary fibre is expected to include a possible combined effect of KP-responsive indigenous gut bacteria (KP-RIB). However, its effect on the gut microbiota is unclear. To determine the effects of the KP on the gut microbiota and their host, Institute of Cancer Research mice were fed a high-sucrose diet containing no fibre (NF) or 5% (w/w) KP for 14 days, and their caecal microbiota was analysed by 16S rRNA (V4) amplicon sequencing. Higher faecal frequency and weight and lower spleen weight and spleen tumour necrosis factor-α levels were observed in KP-fed mice than in NF-fed mice (p < 0.05). KP increased and decreased the abundance of short-chain fatty acid producer Lachnospiraceae and obesity-inflammation related Allobaculum species, respectively. In the case of human faecal cultures, stool samples from five healthy volunteers were inoculated and incubated at 37 °C for 24 h anaerobically; 3.2% (w/v) KP suppressed putrefactive compounds (indole, phenol, and ammonia). KP increased butyrate-producer Faecalibacterium, acetate/lactate-producer Bifidobacterium, and Lachnospira. Furthermore, KP cultures showed high antioxidant and RAW264.7 macrophage cell activation capacities. These results suggest that KP-RIB and KP intake may synergistically affect host health. However, further studies are required to clarify the synergistic effects of KP and KP-RIB.
Collapse
Affiliation(s)
- Mahiro Yamamoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Hikaru Ogura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Yumeng Xia
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Junji Inoue
- AHJIKAN Co., Ltd., 7-3-9, Shoko Center, Nishiku, Hiroshima-City, Hiroshima, 733-8677 Japan
| | - Shu Takayanagi
- AHJIKAN Co., Ltd., 7-3-9, Shoko Center, Nishiku, Hiroshima-City, Hiroshima, 733-8677 Japan
| |
Collapse
|
17
|
Majka Z, Zapala B, Krawczyk A, Czamara K, Mazurkiewicz J, Stanek E, Czyzynska-Cichon I, Kepczynski M, Salamon D, Gosiewski T, Kaczor A. Direct oral and fiber-derived butyrate supplementation as an anti-obesity treatment via different targets. Clin Nutr 2024; 43:869-880. [PMID: 38367596 DOI: 10.1016/j.clnu.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND & AIMS Butyric (one of the short-chain fatty acids), a major byproduct of the fermentation of non-digestible carbohydrates (e.g. fiber), is supposed to have anti-obesity and anti-inflammatory properties. However, butyrate's potential and mechanism in preventing obesity and the efficient form of administration remain to be clarified. METHODS Hence, we studied the effect of oral supplementation with 5% (w/w) sodium butyrate and 4% (w/w) β-glucan (fiber) on young male mice (C57BL/6J) with high-fat diet-induced obesity (HFD: 60 kcal% of fat + 1% of cholesterol). Six weeks old mice were fed diets based on HFD or control (AIN-93G) diet with/without supplements for 4 weeks. The unique, interdisciplinary approach combining several Raman-based techniques (including Raman microscopy and fiber optic Raman spectroscopy) and next-generation sequencing was used to ex vivo analyze various depots of the adipose tissue (white, brown, perivascular) and gut microbiome, respectively. RESULTS The findings demonstrate that sodium butyrate more effectively prevent the pathological increase in body weight caused by elevated saturated fatty acids influx linked to a HFD in comparison to β-glucan, thereby entirely inhibiting diet-induced obesity. Moreover, butyrate significantly affects the white adipose tissue (WAT) reducing the epididymal WAT mass in comparison to HFD without supplements, and decreasing lipid saturation in the epididymal WAT and perivascular adipose tissue of the thoracic aorta. Contrarily, β-glucan significantly changes the composition and diversity of the gut microbiome, reversing the HFD effect, but shows no effect on the epididymal WAT mass and therefore the weight gain inhibition is not as effective as with sodium butyrate. CONCLUSIONS Here, oral supplementation with sodium butyrate and β-glucan (fiber) has been proven to have an anti-obesity effect through two different targets. Administration-dependent effects that butyrate imposes on the adipose tissue (oral administration) and microbiome (fiber-derived) make it a promising candidate for the personalized treatment of obesity.
Collapse
Affiliation(s)
- Zuzanna Majka
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., Krakow 30-387, Poland
| | - Barbara Zapala
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 8 Skawinska Str., Krakow 31-066, Poland
| | - Agnieszka Krawczyk
- Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., Krakow 31-121, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland
| | - Joanna Mazurkiewicz
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., Krakow 30-387, Poland
| | - Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., Krakow 30-387, Poland
| | - Dominika Salamon
- Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., Krakow 31-121, Poland
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., Krakow 31-121, Poland.
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., Krakow 30-387, Poland.
| |
Collapse
|
18
|
Zhang X, Xu H, Gong L, Wang J, Fu J, Lv Z, Zhou L, Li X, Liu Q, Xia P, Guo Y. Mannanase improves the growth performance of broilers by alleviating inflammation of the intestinal epithelium and improving intestinal microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:376-394. [PMID: 38371477 PMCID: PMC10874740 DOI: 10.1016/j.aninu.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 02/20/2024]
Abstract
This experiment aimed to discuss and reveal the effect and mechanism of mannanase on intestinal inflammation in broilers triggered by a soybean meal diet. In this experiment, 384 Arbor Acres broilers at 1 d old were randomly divided into 3 treatment groups. The broilers were fed a corn-soybean meal basal diet, a low-energy diet (metabolizable energy reduced by 50 kcal/kg), and a low-energy diet supplemented with 100 mg/kg mannanase for 42 d. The low-energy diet increased feed conversion ratio from 0 to 42 d, reduced ileal villus height and villus height-to-crypt depth ratio and upregulated the expression of nuclear factor kappa B (NF-κB) in the ileum (P < 0.05). It also reduced cecal short-chain fatty acids (SCFA), such as acetic acid (P < 0.05). Compared with low-energy diets, the addition of mannanase increased body weight at 42 d, promoted the digestibility of nutrients, and maintained the morphology and integrity of the intestinal epithelium of broilers (P < 0.05). In addition, mannanase upregulated the expression of claudin-1 (CLDN1) and zonula occludens-1 (ZO-1) in the jejunum at 21 d, downregulated the expression of ileal NF-κB, and increased the content of isobutyric acid in the cecum of broilers (P < 0.05). The results for the ileal microbiota showed that a low-energy diet led to a decrease in the relative abundance of Lactobacillus reuteri in the ileum of broilers. The addition of mannanase increased the relative abundance of Lactobacillus-KC45b and Lactobacillus johnsonii in broilers. Furthermore, a low-energy diet reduced the relative abundance of Butyricicoccus in the intestine of broilers and inhibited oxidative phosphorylation and phosphoinositol metabolism. Mannanase increased the relative abundance of Odoribacter, promoted energy metabolism and N-glycan biosynthesis, and increased the activities of GH3 and GH18. It is concluded that mannanase could improve the growth performance of broilers by reducing the expression of NF-κB in the ileum, increasing the production of SCFA in the cecum, suppressing intestinal inflammation, balancing the intestinal microbiota, reducing damage to the intestinal barrier, and improving the efficiency of nutrient utilization to alleviate the adverse effects caused by the decrease in dietary energy level.
Collapse
Affiliation(s)
- Xiaodan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huiping Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liangjuan Zhou
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Xuejun Li
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Qiong Liu
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Pingyu Xia
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Gerunova LK, Gerunov TV, P'yanova LG, Lavrenov AV, Sedanova AV, Delyagina MS, Fedorov YN, Kornienko NV, Kryuchek YO, Tarasenko AA. Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review. J Vet Sci 2024; 25:e23. [PMID: 38568825 PMCID: PMC10990906 DOI: 10.4142/jvs.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.
Collapse
Affiliation(s)
- Lyudmila K Gerunova
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Taras V Gerunov
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Lydia G P'yanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Alexander V Lavrenov
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Anna V Sedanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Maria S Delyagina
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation.
| | - Yuri N Fedorov
- Laboratory of Immunology, All-Russian Research and Technological Institute of Biological Industry, pos. Biokombinata, Shchelkovskii Region, Moscow Province 141142, Russian Federation
| | - Natalia V Kornienko
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Yana O Kryuchek
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Anna A Tarasenko
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| |
Collapse
|
20
|
Nhara RB, Marume U, Nantapo CWT. Potential of Organic Acids, Essential Oils and Their Blends in Pig Diets as Alternatives to Antibiotic Growth Promoters. Animals (Basel) 2024; 14:762. [PMID: 38473146 DOI: 10.3390/ani14050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Over the years, the use of management and feeding strategies to enhance pig productivity while minimizing the use of antibiotic growth promoters has grown. Antibiotic growth promoters have been widely used as feed additives to reduce diet-related stress and improve pig performance. However, increasing concern about the consequences of long-term and increased use of antibiotic growth promoters in animal production has led to a paradigm shift towards the use of natural organic alternatives such as plant essential oils and organic acids in pig nutrition to enhance growth. Antibiotic growth promoters endanger human health by allowing multidrug-resistant genes to be transferred horizontally from non-pathogenic to pathogenic bacteria, as well as directly between animals and humans. Scientific research shows that alternative growth promoters such as essential oils and organic acids appear to improve pigs' ability to prevent pathogenic bacteria from colonizing the intestinal system, stabilizing the gut microflora and promoting eubiosis, as well as improving immunity and antioxidant stability. The purpose of this review was to provide an in-depth review of organic acids and essential oils as growth promoters in pig production, as well as their effects on productivity and meat quality. Organic acids and essential oils in pig diets are a safe way to improve pig performance and welfare while producing antibiotic-free pork.
Collapse
Affiliation(s)
- Rumbidzai Blessing Nhara
- Department of Animal Sciences, School of Agriculture Science, Faculty of Natural and Agricultural Science, North-West University, P Bag X 2046, Mmabatho 2735, South Africa
- Department of Livestock, Wildlife and Fisheries, Great Zimbabwe University, Masvingo P.O. Box 1235, Zimbabwe
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, P Bag X 2046, Mmabatho 2735, South Africa
| | - Upenyu Marume
- Department of Animal Sciences, School of Agriculture Science, Faculty of Natural and Agricultural Science, North-West University, P Bag X 2046, Mmabatho 2735, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, P Bag X 2046, Mmabatho 2735, South Africa
| | - Carlos Wyson Tawanda Nantapo
- Department of Animal Sciences, School of Agriculture Science, Faculty of Natural and Agricultural Science, North-West University, P Bag X 2046, Mmabatho 2735, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, P Bag X 2046, Mmabatho 2735, South Africa
| |
Collapse
|
21
|
Chang KC, Nagarajan N, Gan YH. Short-chain fatty acids of various lengths differentially inhibit Klebsiella pneumoniae and Enterobacteriaceae species. mSphere 2024; 9:e0078123. [PMID: 38305176 PMCID: PMC10900885 DOI: 10.1128/msphere.00781-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The gut microbiota is inextricably linked to human health and disease. It can confer colonization resistance against invading pathogens either through niche occupation and nutrient competition or via its secreted metabolites. Short-chain fatty acids (SCFA) are the primary metabolites in the gut as a result of dietary fiber fermentation by the gut microbiota. In this work, we demonstrate that the interaction of single-species gut commensals on solid media is insufficient for pathogen inhibition, but supernatants from monocultures of these commensal bacteria enriched in acetate confer inhibition against anaerobic growth of the enteric pathogen Klebsiella pneumoniae. The three primary SCFAs (acetate, propionate, and butyrate) strongly inhibit the intestinal commensal Escherichia coli Nissle as well as a panel of enteric pathogens besides K. pneumoniae at physiological pH of the cecum and ascending colon. This inhibition was significantly milder on anaerobic gut commensals Bacteroides thetaiotaomicron and Bifidobacterium adolescentis previously demonstrated to be associated with microbiota recovery after antibiotic-induced dysbiosis. We describe a general suppression of bacterial membrane potential by these SCFAs at physiological cecum and ascending colonic pH. Furthermore, the strength of bacterial inhibition increases with increasing alkyl chain length. Overall, the insights gained in this study shed light on the potential therapeutic use of SCFAs for conferring colonization resistance against invading pathogens in a dysbiotic gut.IMPORTANCERising antimicrobial resistance has made treatment of bacterial infections increasingly difficult. According to the World Health Organization, it has become a burgeoning threat to hospital and public health systems worldwide. This threat is largely attributed to the global rise of carbapenem-resistant Enterobacteriaceae in recent years, with common hospital-acquired pathogens growing increasingly resistant to last-line antibiotics. Antibiotics disrupt the homeostatic balance of the gut microbiota, resulting in the loss of colonization resistance against enteric pathogens. This work describes the ability of short-chain fatty acids (SCFAs) produced by gut microbiota to be effective against a wide panel of enteric pathogens without major impact on common gut commensal species. We also demonstrate a previously undescribed link between alkyl chain length and antibacterial effects of SCFAs. SCFAs, thus, hold promise as an alternative therapeutic option leveraging on the antimicrobial activity of these endogenously produced gut metabolites without disrupting gut microbiota homeostasis.
Collapse
Affiliation(s)
- Kai Chirng Chang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Liu L, Wei C, Li Y, Wang M, Mao Y, Tian X. A Comparative Study on Effects of Three Butyric Acid-Producing Additives on the Growth Performance, Non-specific Immunity, and Intestinal Microbiota of the Sea Cucumber Apostichopus japonicus. AQUACULTURE NUTRITION 2024; 2024:6973951. [PMID: 38404622 PMCID: PMC10894051 DOI: 10.1155/2024/6973951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
The providers of butyric acid, Clostridium butyricum (CB), sodium butyrate (SB), and tributyrin (TB), have been extensively studied as aquafeed additives in recent years. However, no comparative study has been reported on the probiotic effects of CB, SB, and TB as feed additives on sea cucumber (Apostichopus japonicus). A 63-day feeding trial was performed to assess the effects of dietary live cells of C. butyricum (CB group, the basal diet supplemented with 1% CB), sodium butyrate (SB group, the basal diet supplemented with 1% SB), and tributyrin (TB group, the basal diet supplemented with 1% TB) on the growth, non-specific immunity, and intestinal microbiota of A. japonicus with a basal diet group as the control. Results indicated that all three additives considerably increased A. japonicus growth, with dietary CB having the optimal growth-promoting effect. Of the seven non-specific enzyme parameters measured in coelomocytes of A. japonicus (i.e., the activities of phagocytosis, respiratory burst, superoxide dismutase, alkaline phosphatase, acid phosphatase, catalase, and lysozyme), dietary CB, SB, and TB considerably increased the activities of six, five, and six of them, respectively. The immune genes (Aj-p105, Aj-p50, Aj-rel, and Aj-lys) expression in the mid-intestine tissues of A. japonicus was significantly increased by all three additives. The CB group had the highest expression of all four genes. Additionally, the relative expression of Aj-p105, Aj-p50, and Aj-lys genes was significantly up-regulated in the three additive groups after stimulation with inactivated Vibrio splendidus. Dietary CB enhanced the intestinal microbial diversity and richness in A. japonicus while dietary TB decreased them. Meanwhile, dietary CB, SB, and TB significantly enhanced the abundance of Firmicutes, unclassified_f_Rhodobacteraceae, and Proteobacteria, respectively, while dietary CB and SB reduced the abundance of Vibrio. Dietary CB and SB improved the stability of microbial ecosystem in the intestine of A. japonicus. In contrast, dietary TB appeared to have a negative effect on the stability of intestinal microbial ecosystem. All three additives improved the intestinal microbial functions associated with energy production and immunity regulation pathways, which may contribute directly to growth promotion and non-specific immunity enhancement in A. japonicus. Collectively, in terms of enhancing growth and non-specific immunity, as well as improving intestinal microbiota, dietary live cells of C. butyricum exhibited the most effective effects in A. japonicus.
Collapse
Affiliation(s)
- Longzhen Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Cong Wei
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yongmei Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Mingyang Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yuze Mao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiangli Tian
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
23
|
Gracia MI, Vazquez P, Ibáñez-Pernía Y, Pos J, Tawde S. Performance Evaluation of a Novel Combination of Four- and Five-Carbon [Butyric and Valeric] Short-Chain Fatty Acid Glyceride Esters in Broilers. Animals (Basel) 2024; 14:617. [PMID: 38396585 PMCID: PMC10885893 DOI: 10.3390/ani14040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
A novel combination of Butyric and Valeric acid glycerol esters with oregano oil in a dry powder form was evaluated for performance improvements in broilers. The dosing regimen (500 g/Ton feed in starter and grower; 250 g/Ton in finisher feed) was considered low compared to conventional practices using non-esterified Butyric and Valeric short-chain fatty acids (SCFA). Six trials were conducted at various trial facilities in Italy, United Kingdom, Spain, and Poland. Supplemented broilers weighed significantly more than the control birds at 28 days of age (+3.4%; 1459 g vs. 1412 g; p = 0.0006) and at 42 days of age (+2.5%; 2834 g vs. 2763 g; p = 0.0030). Supplementation significantly reduced mortality from 1.9% to 0.8% during the finisher phase (from 29 to 42 days of age); however, average mortality was 3.2% for the whole 42-day growth period and was not affected. Further, supplemented broilers grew more (66.4 vs. 64.5 g/day; p = 0.0005), ate more feed (104.7 vs. 103.1 g/day; p = 0.0473), converted feed significantly more efficiently (1.58 vs. 1.60; p = 0.0072), leading to better EPEF value (410 vs. 389; p = 0.0006) than the control broilers. Meta-analysed trial performance data for novel SCFA formulations such as these are not commonly available, and serve to facilitate efficacy determination from an end-user perspective. The use of short- and medium-chain fatty acid esters in optimal low-dose combinations to reliably augment gut health and performance appears promising in commercial broiler production, and may lead to further improvements in industry practices and reduced antibiotic use.
Collapse
Affiliation(s)
- Marta I. Gracia
- Imasde Agroalimentaria, S.L. C/Nápoles 3, 28224 Pozuelo de Alarcón, Spain; (P.V.); (Y.I.-P.)
| | - Patricia Vazquez
- Imasde Agroalimentaria, S.L. C/Nápoles 3, 28224 Pozuelo de Alarcón, Spain; (P.V.); (Y.I.-P.)
| | - Yolanda Ibáñez-Pernía
- Imasde Agroalimentaria, S.L. C/Nápoles 3, 28224 Pozuelo de Alarcón, Spain; (P.V.); (Y.I.-P.)
| | - Jeroen Pos
- Perstorp Animal Nutrition, Perstorp Waspik BV, 5165 NH Waspik, The Netherlands; (J.P.); (S.T.)
| | - Snehal Tawde
- Perstorp Animal Nutrition, Perstorp Waspik BV, 5165 NH Waspik, The Netherlands; (J.P.); (S.T.)
| |
Collapse
|
24
|
Wu D, Zhang Z, Song Q, Jia Y, Qi J, Xu M. Modulating Gastrointestinal Microbiota in Preweaning Dairy Calves: Dose-Dependent Effects of Milk-Based Sodium Butyrate Supplementation. Microorganisms 2024; 12:333. [PMID: 38399737 PMCID: PMC10893347 DOI: 10.3390/microorganisms12020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Sodium butyrate (SB), an essential nutritional additive for livestock, has drawn notable interest for its potential for enhancing microbiota development in ruminant animals. This study aimed to assess SB's effects on ruminal and intestinal microbiota when added to milk for preweaning dairy calves nearing 45 days old. We administered SB in the calves' milk at four levels: 0 g/d (control), 4.4 g/d (low), 8.8 g/d (medium), and 17.6 g/d (high). After a six-week trial with ten replicates per group, ruminal fluid and fecal samples were collected for 16S rRNA sequencing, specifically targeting the V3-V4 regions to analyze microbiota. The results indicated an enhancement in ruminal microbiota, particularly in community richness, with low-level SB supplementation but minimal benefits from medium and high levels of supplementation. Increasing the level of SB supplementation had a negative impact on intestinal microbiota, affecting community richness and some potentially beneficial bacterial genera. However, low SB supplementation could positively adjust the communication between ruminal and intestinal microbiota. Overall, this study suggests feeding milk supplemented with a low level of SB to suckling calves close to an older age to promote ruminal microbiota development.
Collapse
Affiliation(s)
- Donglin Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (D.W.); (Z.Z.); (Y.J.)
| | - Zhanhe Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (D.W.); (Z.Z.); (Y.J.)
| | - Qifan Song
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (D.W.); (Z.Z.); (Y.J.)
| | - Yang Jia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (D.W.); (Z.Z.); (Y.J.)
- National Center of Technology Innovation for Dairy, Hohhot 010080, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (D.W.); (Z.Z.); (Y.J.)
- National Center of Technology Innovation for Dairy, Hohhot 010080, China
| | - Ming Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (D.W.); (Z.Z.); (Y.J.)
- National Center of Technology Innovation for Dairy, Hohhot 010080, China
| |
Collapse
|
25
|
Al Amaz S, Chaudhary A, Mahato PL, Jha R, Mishra B. Pre-hatch thermal manipulation of embryos and post-hatch baicalein supplementation mitigated heat stress in broiler chickens. J Anim Sci Biotechnol 2024; 15:8. [PMID: 38246989 PMCID: PMC10802028 DOI: 10.1186/s40104-023-00966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND High environmental temperatures induce heat stress in broiler chickens, affecting their health and production performance. Several dietary, managerial, and genetics strategies have been tested with some success in mitigating heat stress (HS) in broilers. Developing novel HS mitigation strategies for sustaining broiler production is critically needed. This study investigated the effects of pre-hatch thermal manipulation (TM) and post-hatch baicalein supplementation on growth performance and health parameters in heat-stressed broilers. RESULTS Six hundred fertile Cobb 500 eggs were incubated for 21 d. After candling on embryonic day (ED) 10, 238 eggs were thermally manipulated at 38.5 °C with 55% relative humidity (RH) from ED 12 to 18, then transferred to the hatcher (ED 19 to 21, standard temperature) and 236 eggs were incubated at a controlled temperature (37.5 °C) till hatch. After hatch, 180-day-old chicks from both groups were raised in 36 pens (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) control heat stress (CHS), 4) thermal manipulation heat stress (TMHS), 5) control heat stress supplement (CHSS), and 6) thermal manipulation heat stress supplement (TMHSS). All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32-33 °C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22-24 °C) environment was maintained in the Control and TM groups. RH was constant (50% ± 5%) throughout the trial. All the data were analyzed using one-way ANOVA in R and GraphPad software at P < 0.05 and are presented as mean ± SEM. Heat stress significantly decreased (P < 0.05) the final body weight and ADG in CHS and TMHS groups compared to the other groups. Embryonic TM significantly increased (P < 0.05) the expression of heat shock protein-related genes (HSP70, HSP90, and HSPH1) and antioxidant-related genes (GPX1 and TXN). TMHS birds showed a significant increment (P < 0.05) in total cecal volatile fatty acid (VFA) concentration compared to the CHS birds. The cecal microbial analysis showed significant enrichment (P < 0.05) in alpha and beta diversity and Coprococcus in the TMHSS group. CONCLUSIONS Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens' growth performance, upregulate favorable gene expression, increase VFA production, and promote gut health by increasing beneficial microbial communities.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Prem Lal Mahato
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
26
|
Belli AL, Coelho SG, Campolina JP, Neves LFM, Neto HCD, Silva CS, Machado FS, Pereira LGR, Tomich TR, Carvalho WA, Costa SDF, M. Campos M. Effects of Supplementing Milk Replacer with Sodium Butyrate on Dairy Calves. Animals (Basel) 2024; 14:277. [PMID: 38254446 PMCID: PMC10812747 DOI: 10.3390/ani14020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Diarrhea and respiratory diseases pose significant challenges in the rearing of pre-weaned calves, motivating the investigation of tools to improve gastrointestinal tract development, health, and overall performance in young calves. Consequently, the primary objective of this study was to assess the effectiveness of an additive incorporated into milk replacer to promote the development and health of the animals. Forty-six dairy calves were randomly assigned into two treatments: control (CON, n = 23; with 15 females and 8 males), and sodium butyrate (SB, n = 23; with 15 females and 8 males). The calves in the SB treatment group were supplemented with 4 g/d of unprotected sodium butyrate (Adimix, Adisseo, China), added to the milk replacer from 4 to 60 days of age. Water and starter were fed ad libitum. The study evaluated several parameters, including feed intake, nutrient digestibility, ruminal pH, ammonia and volatile fatty acids, blood metabolites (glucose, insulin-like growth factor type 1, urea, β-hydroxybutyrate), hemogram, health scores, performance, and feed efficiency. Bull calves were euthanized at 60 days of age for organ comparison, while heifer calves were assessed for carryover effects up to 90 days of age. Data were analyzed independently using linear mixed models using the nlme package in R, and the Artools package for non-parametric categorical outcomes. Although the feed intake and performance variables exhibited differences within weeks, no divergence was observed between treatment groups. Notably, a positive treatment-by-week interaction was identified for starter feed intake (p = 0.02) and total dry matter intake (p = 0.04) during pre-weaning for CON animals. Ruminal parameters, blood metabolites, and hemogram values such as glucose, urea, insulin-like growth factor type 1, mean corpuscular value, lymphocytes, and neutrophils displayed differences within weeks during the pre-weaning stage, but similar results within groups. No differences between supplemented and non-supplemented calves were found across nutrient digestibility, organ development, and histology. Regarding health scores, differences were noted within weeks for fecal and respiratory scores during the pre-weaning stage, and only the respiratory score during the post-weaning stage. Consequently, butyrate supplementation did not elicit improvements or negative effects in the body development or health status of dairy calves.
Collapse
Affiliation(s)
- Anna Luiza Belli
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (A.L.B.); (S.G.C.); (J.P.C.); (L.F.M.N.); (H.C.D.N.)
| | - Sandra G. Coelho
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (A.L.B.); (S.G.C.); (J.P.C.); (L.F.M.N.); (H.C.D.N.)
| | - Joana P. Campolina
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (A.L.B.); (S.G.C.); (J.P.C.); (L.F.M.N.); (H.C.D.N.)
| | - Luiz F. M. Neves
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (A.L.B.); (S.G.C.); (J.P.C.); (L.F.M.N.); (H.C.D.N.)
| | - Hilton C. Diniz Neto
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (A.L.B.); (S.G.C.); (J.P.C.); (L.F.M.N.); (H.C.D.N.)
| | - Camila S. Silva
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| | - Fernanda S. Machado
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| | - Luiz Gustavo R. Pereira
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| | - Thierry R. Tomich
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| | - Wanessa A. Carvalho
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| | - Suely de Fátima Costa
- Departmento de Medicina Veterinária Preventiva, Universidade Federal de Lavras, Lavras 37203-202, MG, Brazil;
| | - Mariana M. Campos
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| |
Collapse
|
27
|
Zou Y, Zhang Y, Wu D, Lu Z, Xiao J, Huang H, Fu Q, Guo Z. Multi-omics analysis revealed the differences in lipid metabolism of the gut between adult and juvenile yellowfin tuna ( Thunnus albacares). Front Microbiol 2024; 14:1326247. [PMID: 38274759 PMCID: PMC10808786 DOI: 10.3389/fmicb.2023.1326247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Tuna has a cost-effective energy supply to support the regional endothermic and high-speed swimming performance. The gut symbiotic microbiotas and their metabolites play essential roles in tuna's diet digestion, absorption, and energy acquirement, which are often highly related to the ontogenetic development of tuna. Methods We compared gut microbial compositions and metabolites, as well as mRNA expression of the intestine between juvenile and adult yellowfin tuna using 16S rRNA sequencing, metabolomic and transcriptomic, respectively. Results and discussion The results revealed that adults had a significantly higher microbial diversity and abundance of Acinetobacter than juveniles. Regarding the gut microbiota-derived metabolites, fatty acids, especially glycerophospholipid and sphingolipid, were significantly enriched in adults than in juveniles. Moreover, the short-chain fatty acid (butyrate and isobutyrate) contents were significantly higher in adults than in juveniles. To find the relationship between gut microbiotas and host physiology, intestinal transcriptome analysis demonstrated that the enriched pathways of differential expression genes (DEGs) in adult tuna were the lipid metabolism pathway, including "fat digestion and absorption," "cholesterol metabolism," "steroid hormone biosynthesis," "glycerolipid metabolism," and "glycerophospholipid metabolism." However, protein digestion and absorption and pancreatic secretion pathways were significantly enriched in the juveniles. The conjoint analysis indicated that the enriched pathways of both differential metabolites (DMs) and DEGs were remarkably related to the regulation of glycerophospholipids metabolism in adult tunas. This study highlights the role of gut microbiotas in fish nutrition metabolism. These findings provide new insights into the view of ontogenetic shifts of gut microbiotas and their metabolites on host health and gut function in endothermic and high-speed swimming marine fish species.
Collapse
Affiliation(s)
- Ying Zou
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Yanjie Zhang
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Di Wu
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhiyuan Lu
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Juan Xiao
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
| | - Qiongyao Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Zhiqiang Guo
- School of Life and Health Sciences, School of Marine Science and Engineering, School of Food Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
28
|
Corsato Alvarenga I, Lierz R, Chen Y, Lu A, Lu N, Aldrich CG. Processing of corn-based dog foods through pelleting, baking and extrusion and their effect on apparent total tract digestibility and colonic health of adult dogs. J Anim Sci 2024; 102:skae067. [PMID: 38553986 PMCID: PMC11005766 DOI: 10.1093/jas/skae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Different food processing parameters may alter starch granule structure and its cooking degree. With lower thermomechanical energy, more resistant starch (RS) is retained in the food, which may benefit gastrointestinal (GI) health. The objective of this study was to determine the effect of food processing on dietary utilization and dog gut health. Experimental diets containing 56% corn as the sole starch source were produced through pelleting, baking, and extrusion and compared to a baked control diet in which the corn was replaced with dextrose. The extruded diet resulted in the highest level (P < 0.05) of in vitro starch cook and lowest RS, while baked was intermediate and pelleted had the lowest starch cook and highest RS. To evaluate the in vivo effects of these treatments, 12 dogs were adapted to foods for 9 d, and feces were collected for 5 d in a replicated 4 × 4 Latin square design. Feces were scored for consistency using an ordinal scale, and parametric data included apparent digestibility (ATTD), parameters indicative of gut health, and the microbial composition, which was centered log-ratio transformed before operational taxonomic unit (OTU) analyses. Fecal scores were analyzed by ordinal logistic regression, and parametric data were analyzed as mixed models. Overall ATTD was greater (P < 0.05) in extruded, followed by baked and pelleted. Dogs fed the control had osmotic diarrhea, whereas dogs fed the other treatments had mostly acceptable fecal scores, with extrusion leading to the best fecal quality. The control also led to high fecal pH and low SCFAs, indicating dysbiosis. All corn foods had similar (P > 0.05) fecal SCFAs and extruded tended (P = 0.055) to promote higher fecal butyrate than baked and pelleted. The microbiome of dogs fed the corn foods had similar α diversity indices, and OTUs at the species and phyla levels were mostly alike and different from the control. In conclusion, the higher levels of in vitro RS did not translate into a better in vivo fermentation profile, and extruded kibble performed best regarding fecal quality, ATTD, and fecal SCFAs.
Collapse
Affiliation(s)
| | - Ryan Lierz
- The J.M. Smucker Company, Orrville, Ohio 44667, USA
| | - Youhan Chen
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 60523, USA
| | - Andrea Lu
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66502, USA
| | - Nanyan Lu
- KSU Bioinformatics Center, Kansas State University, Manhattan, Kansas 66506, USA
| | - Charles G Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 60523, USA
| |
Collapse
|
29
|
Li D, Lin Q, Luo F, Wang H. Insights into the Structure, Metabolism, Biological Functions and Molecular Mechanisms of Sialic Acid: A Review. Foods 2023; 13:145. [PMID: 38201173 PMCID: PMC10779236 DOI: 10.3390/foods13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Sialic acid (SA) is a kind of functional monosaccharide which exists widely in edible bird's nest (EBN), milk, meat, mucous membrane surface, etc. SA is an important functional component in promoting brain development, anti-oxidation, anti-inflammation, anti-virus, anti-tumor and immune regulation. The intestinal mucosa covers the microbial community that has a significant impact on health. In the gut, SA can also regulate gut microbiota and metabolites, participating in different biological functions. The structure, source and physiological functions of SA were reviewed in this paper. The biological functions of SA through regulating key signaling pathways and target genes were discussed. In summary, SA can modulate gut microbiota and metabolites, which affect gene expressions and exert its biological activities. It is helpful to provide scientific reference for the further investigation of SA in the functional foods.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Hanqing Wang
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
30
|
Asare PT, Greppi A, Geirnaert A, Pennacchia A, Babst A, Lacroix C. Glycerol and reuterin-producing Limosilactobacillus reuteri enhance butyrate production and inhibit Enterobacteriaceae in broiler chicken cecal microbiota PolyFermS model. BMC Microbiol 2023; 23:384. [PMID: 38053034 PMCID: PMC10696668 DOI: 10.1186/s12866-023-03091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Administering probiotic strains of Limosilactobacillus reuteri to poultry has been shown to improve poultry performance and health. Some strains of L. reuteri taxa can produce reuterin, a broad-spectrum antimicrobial compound from glycerol conversion, with high inhibitory activity against enterobacteria. However, little is known about the metabolism of glycerol in the complex chicken cecal microbiota nor the effect of glycerol, either alone or combined with L. reuteri on the microbiota. In this study, we investigated the effect of L. reuteri PTA5_F13, a high-reuterin-producing chicken strain and glycerol, alone or combined, on broiler chicken cecal microbiota composition and activity using the continuous PolyFermS model recently developed to mimic chicken cecal fermentation. METHODS Three independent PolyFermS chicken cecal microbiota models were inoculated with immobilized cecal microbiota from different animals and operated continuously. The effects of two additional levels of glycerol (50 and 100 mM) with or without daily supplementation of chicken-derived L. reuteri PTA5_F13 (107 CFU/mL final concentration) were tested in parallel second-stage reactors continuously inoculated with the same microbiota. We analyzed the complex chicken gut microbiota structure and dynamics upon treatment using 16S rRNA metabarcoding and qPCR. Microbiota metabolites, short-chain and branched-chain fatty acids, and glycerol and reuterin products were analyzed by HPLC in effluent samples from stabilized reactors. RESULTS Supplementation with 100 mM glycerol alone and combined with L. reuteri PTA5_F13 resulted in a reproducible increase in butyrate production in the three modelled microbiota (increases of 18 to 25%). Glycerol alone resulted also in a reduction of Enterobacteriaceae in two of the three microbiota, but no effect was detected for L. reuteri alone. When both treatments were combined, all microbiota quantitatively inhibited Enterobacteriaceae, including in the last model that had very high initial concentrations of Enterobacteriaceae. Furthermore, a significant 1,3-PDO accumulation was measured in the effluent of the combined treatment, confirming the conversion of glycerol via the reuterin pathway. Glycerol supplementation, independent of L. reuteri addition, did not affect the microbial community diversity. CONCLUSIONS Glycerol induced a stable and reproducible butyrogenic activity for all tested microbiota and induced an inhibitory effect against Enterobacteriaceae that was strengthened when reuterin-producing L. reuteri was spiked daily. Our in vitro study suggests that co-application of L. reuteri PTA5_F13 and glycerol could be a useful approach to promote chicken gut health by enhancing metabolism and protection against Enterobacteriaceae.
Collapse
Affiliation(s)
- Paul Tetteh Asare
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
- Present address: Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Anna Greppi
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Annelies Geirnaert
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Alessia Pennacchia
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Angela Babst
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Christophe Lacroix
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland.
| |
Collapse
|
31
|
Papa A, Santini P, De Lucia SS, Maresca R, Porfidia A, Pignatelli P, Gasbarrini A, Violi F, Pola R. Gut dysbiosis-related thrombosis in inflammatory bowel disease: Potential disease mechanisms and emerging therapeutic strategies. Thromb Res 2023; 232:77-88. [PMID: 37951044 DOI: 10.1016/j.thromres.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Patients with inflammatory bowel disease (IBD) have an increased risk of developing venous thromboembolic events, which have a considerable impact on morbidity and mortality. Chronic inflammation plays a crucial role in the pathogenesis of thrombotic events in patients with IBD. However, many unresolved questions remain, particularly regarding the mechanisms that determine the persistent inflammatory state independent of disease activity. This review explored the role of gut microbiota dysbiosis and intestinal barrier dysfunction, which are considered distinctive features of IBD, in determining pro-thrombotic tendencies. Gut-derived endotoxemia due to the translocation of bacterial lipopolysaccharides (LPS) from the intestine to the bloodstream and the bacterial metabolite trimethylamine-N-oxide (TMAO) are the most important molecules involved in gut dysbiosis-related thrombosis. The pathogenic prothrombotic pathways linked to LPS and TMAO have been discussed. Finally, we present emerging therapeutic approaches that can help reduce LPS-mediated endotoxemia and TMAO, such as restoring intestinal eubiosis, normalizing intestinal barrier function, and counterbalancing the effects of LPS and TMAO.
Collapse
Affiliation(s)
- Alfredo Papa
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Agostino Gemelli University Polyclinic Foundation IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy.
| | - Paolo Santini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy; Thrombosis Clinic, Agostino Gemelli University Polyclinic Foundation IRCCS, Rome, Italy
| | - Sara Sofia De Lucia
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Agostino Gemelli University Polyclinic Foundation IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Rossella Maresca
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Agostino Gemelli University Polyclinic Foundation IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Angelo Porfidia
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy; Thrombosis Clinic, Agostino Gemelli University Polyclinic Foundation IRCCS, Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy; Mediterranea Cardiocentro-Napoli, Naples, Italy
| | - Antonio Gasbarrini
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Agostino Gemelli University Polyclinic Foundation IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Francesco Violi
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy; Mediterranea Cardiocentro-Napoli, Naples, Italy
| | - Roberto Pola
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy; Thrombosis Clinic, Agostino Gemelli University Polyclinic Foundation IRCCS, Rome, Italy
| |
Collapse
|
32
|
Lal S, Sayeed Akhtar M, Faiyaz Khan M, Aldosari SA, Mukherjee M, Sharma AK. Molecular basis of phytochemical-gut microbiota interactions. Drug Discov Today 2023; 28:103824. [PMID: 37949428 DOI: 10.1016/j.drudis.2023.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Dysbiosis-associated molecular pathology is significantly involved in developing and perpetuating metabolic disorders, disrupting host energy regulation, and triggering inflammatory signaling cascades, insulin resistance, and metabolic dysfunction. Concurrently, numerous phytoconstituents are able to interact with the gut microbiota and produce bioactive metabolites that influence host cellular pathways, inflammation, and metabolic processes. These effects include improved insulin sensitivity, lipid metabolism regulation, and suppression of chronic inflammation, highlighting the therapeutic potential of phytoconstituents against metabolic abnormalities. Understanding this symbiotic relationship and the underlying molecular cascades offers innovative strategies for tailored interventions and promising therapeutic approaches to address the growing burden of metabolic disease.
Collapse
Affiliation(s)
- Samridhi Lal
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India.
| |
Collapse
|
33
|
Gong X, Geng H, Yang Y, Zhang S, He Z, Fan Y, Yin F, Zhang Z, Chen GQ. Metabolic engineering of commensal bacteria for gut butyrate delivery and dissection of host-microbe interaction. Metab Eng 2023; 80:94-106. [PMID: 37717646 DOI: 10.1016/j.ymben.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
An overwhelming number of studies have reported the correlation of decreased abundance of butyrate-producing commensals with a wide range of diseases. However, the molecular-level mechanisms whereby gut butyrate causally affects the host mucosal immunity and pathogenesis were poorly understood, hindered by the lack of efficient tools to control intestinal butyrate. Here we engineered a facultative anaerobic commensal bacterium to delivery butyrate at the intestinal mucosal surface, and implemented it to dissect the causal role of gut butyrate in regulating host intestinal homeostasis in a model of murine chronic colitis. Mechanistically, we show that gut butyrate protected against colitis and preserved intestinal mucosal homeostasis through its inhibiting effect on the key pyroptosis executioner gasdermin D (GSDMD) of colonic epithelium, via functioning as an HDAC3 inhibitor. Overall, our work presents a new avenue to build synthetic living delivery bacteria to decode causal molecules at the host-microbe interface with molecular-level insights.
Collapse
Affiliation(s)
- Xu Gong
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, 100191, PR China; Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, 100191, PR China
| | - Hongwei Geng
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, 100191, PR China; Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, 100191, PR China
| | - Yun Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, 100191, PR China; Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, 100191, PR China.
| | - Shuyi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China; Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Zilong He
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, 100191, PR China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, 100191, PR China
| | - Fengyi Yin
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, 100191, PR China
| | - Zhifa Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, 100191, PR China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China; MOE Key Lab of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
34
|
Jaye K, Alsherbiny MA, Chang D, Li CG, Bhuyan DJ. Mechanistic Insights into the Anti-Proliferative Action of Gut Microbial Metabolites against Breast Adenocarcinoma Cells. Int J Mol Sci 2023; 24:15053. [PMID: 37894734 PMCID: PMC10606851 DOI: 10.3390/ijms242015053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiota undergoes metabolic processes to produce by-products (gut metabolites), which play a vital role in the overall maintenance of health and prevention of disease within the body. However, the use of gut metabolites as anticancer agents and their molecular mechanisms of action are largely unknown. Therefore, this study evaluated the anti-proliferative effects of three key gut microbial metabolites-sodium butyrate, inosine, and nisin, against MCF7 and MDA-MB-231 breast adenocarcinoma cell lines. To determine the potential mechanistic action of these gut metabolites, flow cytometric assessments of apoptotic potential, reactive oxygen species (ROS) production measurements and proteomics analyses were performed. Sodium butyrate exhibited promising cytotoxicity, with IC50 values of 5.23 mM and 5.06 mM against MCF7 and MDA-MB-231 cells, respectively. All three metabolites were found to induce apoptotic cell death and inhibit the production of ROS in both cell lines. Nisin and inosine indicated a potential activation of cell cycle processes. Sodium butyrate indicated the possible initiation of signal transduction processes and cellular responses to stimuli. Further investigations are necessary to ascertain the effective therapeutic dose of these metabolites, and future research on patient-derived tumour spheroids will provide insights into the potential use of these gut metabolites in cancer therapy.
Collapse
Affiliation(s)
- Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (K.J.); (M.A.A.); (D.C.); (C.-G.L.)
| | - Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (K.J.); (M.A.A.); (D.C.); (C.-G.L.)
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Innovation Centre, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (K.J.); (M.A.A.); (D.C.); (C.-G.L.)
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (K.J.); (M.A.A.); (D.C.); (C.-G.L.)
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (K.J.); (M.A.A.); (D.C.); (C.-G.L.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
35
|
Daneshmand A, Sharma NK, Kheravii SK, Hall L, Wu SB. Buffered formic acid and a monoglyceride blend improve performance and modulate gut bacteria and immunity gene expression in broilers under necrotic enteritis challenge. Poult Sci 2023; 102:102978. [PMID: 37598553 PMCID: PMC10458320 DOI: 10.1016/j.psj.2023.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Due to the removal of antibiotics from animal feed, alternatives have been sought to control necrotic enteritis (NE) in broilers. The current study investigated the effects of buffered formic acid (Amasil NA) and monoglycerides of short- and medium-chain fatty acids (Balangut LS P) on the performance and gut health of broilers challenged with NE. A total of 816 as-hatched 1-d-old chicks (Cobb 500) were randomly assigned to 6 treatments with 8 replicates. Treatments were: T1) nonchallenged control; T2) NE challenged control; T3) Amasil NA (challenge plus Amasil NA, 0.3% throughout all phases); T4) Balangut LS P (challenge plus Balangut LS P, 0.5%, 0.3%, and 0.2% in the starter, grower and finisher phases, respectively; T5) Combined (challenge plus combination of T3 and T4); T6) Antibiotic (challenge plus Zn bacitracin, 0.05 % throughout all phases). Birds were orally gavaged with live Eimeria vaccine species (d 9) and with Clostridium perfringens (d 14 and 15). On d 16, birds were sampled to evaluate gut permeability, microbiota, and mRNA abundance in the jejunum. The data were analyzed in JMP software using one-way ANOVA with Tukey's test to separate means, and Kruskal-Wallis test was used for non-normally-distributed parameters. Results showed that Balangut LS P decreased (P<0.05) feed conversion ratio compared to nonchallenged ones at the end of the study. Balangut LS P reduced (P < 0.05) the level of cecal Bacteriods compared to nonchallenged group, whereas Amasil NA shifted the levels of ileal Bifidobacteria, Enterobacteriaceae, and Lactobacillus towards nonchallenged control (P > 0.05). NE challenge upregulated (P < 0.001) the expression of IL-21R, zeta chain of T cell receptor (ZAP70), and dual specificity phosphatase 4 (DUSP4) compared to nonchallenged birds, whereas Balangut LS P showed an intermediate (P > 0.05) expression pattern of these genes towards nonchallenged and antibiotic groups. In conclusion, combination of Balangut LS P and Amasil NA has the potential to be used as an additive to improve the performance and gut health of broiler chickens, especially under challenging conditions such as NE infections.
Collapse
Affiliation(s)
- Ali Daneshmand
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Nishchal K Sharma
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Leon Hall
- BASF Australia Ltd, 12/28 Freshwater Place, Southbank, VIC 3006, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia.
| |
Collapse
|
36
|
Bawish BM, Zahran MFS, Ismael E, Kamel S, Ahmed YH, Hamza D, Attia T, Fahmy KNE. Impact of buffered sodium butyrate as a partial or total dietary alternative to lincomycin on performance, IGF-1 and TLR4 genes expression, serum indices, intestinal histomorphometry, Clostridia, and litter hygiene of broiler chickens. Acta Vet Scand 2023; 65:44. [PMID: 37770986 PMCID: PMC10540366 DOI: 10.1186/s13028-023-00704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Sodium butyrate (SB) is a short-chain fatty acid and a safe antibiotic alternative. During 35 days, this study compared the impact of coated SB (Butirex C4) and lincomycin (Lincomix) on broiler growth, gut health, and litter hygiene in 1200 one-day-old Ross-308 broiler chicks that were randomly assigned into 5-dietary groups with 5-replications each. Groups divided as follows: T1: Basal diet (control), T2: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds), T3: Basal diet with 100 g/ton lincomycin, T4: Basal diet with buffered SB (0.5 kg/ton starter feed, 0.25 kg/ton grower-finisher feeds) + 50 g/ton lincomycin, and T5: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds) + 50 g/ton lincomycin. Birds were housed in a semi-closed deep litter house, where feed and water were available ad libitum. Results were statistically analyzed using ANOVA and Tukey's post hoc tests. RESULTS Combined dietary supplementation with SB and lincomycin (T4 and T5) significantly enhanced body weights, weight gains, feed conversion ratio, and profitability index. Also, carcasses in T4 and T5 exhibited the highest dressing, breast, thigh, and liver yields. T5 revealed the best blood biochemical indices, while T3 showed significantly elevated liver and kidney function indices. T4 and T5 exhibited the highest expression levels of IGF-1 and TLR4 genes, the greatest villi length of the intestinal mucosa, and the lowest levels of litter moisture and nitrogen. Clostridia perfringens type A alpha-toxin gene was confirmed in birds' caeca, with the lowest clostridial counts defined in T4. CONCLUSIONS Replacing half the dose of lincomycin (50 g/ton) with 0.5 or 1 kg/ton coated SB as a dietary supplement mixture showed the most efficient privileges concerning birds' performance and health.
Collapse
Affiliation(s)
- Basma Mohamed Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, 12211, Egypt
| | | | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, 12211, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Taha Attia
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Sadat City, Minoufiya, 23897, Egypt
| | - Khaled Nasr Eldin Fahmy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
37
|
Wang MX, Shandilya UK, Wu X, Huyben D, Karrow NA. Assessing Larval Zebrafish Survival and Gene Expression Following Sodium Butyrate Exposure and Subsequent Lethal Bacterial Lipopolysaccharide (LPS) Endotoxin Challenge. Toxins (Basel) 2023; 15:588. [PMID: 37888619 PMCID: PMC10610854 DOI: 10.3390/toxins15100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
As aquaculture production continues to grow, producers are looking for more sustainable methods to promote growth and increase fish health and survival. Butyrate is a short-chain fatty acid (SCFA) with considerable benefits to gut health, and in recent years, butyrate has been commonly used as an alternative to antimicrobials in livestock production. In this study, we aimed to assess the protective effects of sodium butyrate (NaB) on larval zebrafish subjected to a lethal Pseudomonas aeruginosa lipopolysaccharide (LPS) endotoxin challenge and to elucidate potential protective mechanisms of action. Larval zebrafish were pre-treated with 0, 3000, or 6000 μM NaB for 24 h at 72 h post-fertilization (hpf), then immune challenged for 24 h with 60 μg/mL of LPS at 96 hpf. Our results demonstrate that larval zebrafish pre-treated with 6000 μM of NaB prior to lethal LPS challenge experienced significantly increased survival by 40%, and this same level of NaB significantly down-regulated the expression of pro-inflammatory Tumor Necrosis Factor α (TNF-alpha). Findings from this study are consistent with the beneficial effects of NaB on other vertebrate species and support the potential use of NaB in aquaculture.
Collapse
Affiliation(s)
- Mary X Wang
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Umesh K Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Xiang Wu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
38
|
Arczewska-Włosek A, Świątkiewicz S, Tomaszewska E, Muszyński S, Dobrowolski P, Józefiak D. Effects of Anticoccidial Vaccination and Taraxacum officinale Extract on the Growth Performance, Biochemical Parameters, Immunity, and Intestinal Morphology of Eimeria-Challenged Chickens. Life (Basel) 2023; 13:1927. [PMID: 37763330 PMCID: PMC10532845 DOI: 10.3390/life13091927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
A total of 160 Ross 308 male chickens were used in a 2 × 2 factorial design to examine the effects of anticoccidial vaccination (ACV; lack or 1× dose recommended by the manufacturer) and dietary supplementation with Taraxacum officinale (dandelion) extract (DE; with or without) on growth performance, immunity, biochemical parameters, and intestinal morphology in broiler chickens challenged with Eimeria spp. At 20 days of age, all birds were challenged with a 25× dose of ACV, including Eimeria acervulina, E. maxima, E. mitis, and E. tenella. No interaction between ACV and DE was observed in terms of growth performance. Vaccinated birds showed increased feed intake (FI) and feed conversion ratio (FCR) during the 11-20 day period. Meanwhile, DE supplementation led to decreased FI and body weight gain (BWG) during the 1-10 day period. ACV effectively induced immunity against Eimeria, as evidenced by reduced oocyst shedding and less intestinal lesions, decreased levels of pro-inflammatory interleukin-6, and improved BWG during both the post infection (PI) period (21-35 days) and the entire growth period. DE supplementation lowered FCR and increased BWG during the 35-42 day period, increased the concentration of butyric acid in the cecal digesta, and lowered oocyst shedding PI. In vaccinated birds, DE elevated levels of plasma total protein and immunoglobulin M, and influenced tight junction proteins zonula occludens-1 and claudin-3, indicating a more robust epithelial barrier. DE also lowered alanine aminotransferase activity in unvaccinated birds. Both ACV and DE independently improved intestinal morphology in the jejunum, decreasing crypt depth and increasing the villus height-to-crypt ratio. These findings suggest that both ACV and DE could be effective strategies for managing coccidiosis in broiler chickens.
Collapse
Affiliation(s)
- Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland;
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Damian Józefiak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, 60-637 Poznań, Poland;
| |
Collapse
|
39
|
Gao J, Dong J, Sun Z, Wang T, Guan Y, Sun Y, Qin G, Zhang X, Zhen Y. Effects of antimicrobial peptide and tributyrin on fecal microflora and blood indices of female calves. Food Sci Nutr 2023; 11:5248-5257. [PMID: 37701190 PMCID: PMC10494653 DOI: 10.1002/fsn3.3483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
This study evaluated the effects of antimicrobial peptide (AMP) and tributyrin (TB) on dairy calves in terms of growth performance, immunity, oxidative stress, and intestinal microflora. A total of 40 female calves were divided into four treatment groups (n = 10): basal diet +0.015% essential oil, basal diet +0.03% AMP, basal diet +0.15% TB, and basal diet +0.03% AMP + 0.15% TB. AMP and TB supplementation increased the average daily gain (ADG) and weaning weight, while reducing diarrhea occurrence. Additionally, AMP and TB supplementation reduced the levels of reactive oxygen species (ROS) and malonaldehyde (MDA), while increasing superoxide dismutase (SOD) levels and serum immunoglobulin M (IgM) levels. However, the combined use of AMP and TB did not significantly affect the average daily feed intake, ADG, weaning weight, or diarrhea incidence but decreased ROS levels, while increasing SOD levels as well as MDA and IgM levels. Moreover, AMP and TG supplementation increased the relative abundance of several beneficial fiber- and mucin-degrading bacteria in the gut, in contrast to combined AMP and TB supplementation. The 16S rRNA results showed that AMP supplementation significantly increased the relative abundance of Rikenellaceae_RC9_gut_group, Ruminococcaceae_UCG-014 and [Eubacterium]_coprostanoligenes group (p < .01), and significantly decreased the relative abundance of Ruminococcaceae_UCG-005 and Christensenellaceae_R-7_group (p < .01). The TB supplementation significantly increased the abundances of Rikenellaceae_RC9_gut_group and Ruminococcaceae_UCG-005 (p < .01), and significantly decreased the relative abundances of Ruminococcaceae_UCG-014, [Eubacterium]_coprostanoligenes group and Christensenellaceae_R-7_group (p < .01). The combined use of AMP and TB significantly increased the relative abundance of Rikenellaceae_RC9_gut_group and Bacteroides (p < .01), and significantly decreased the relative abundance of Ruminococcaceae_UCG-014, [Eubacterium]_coprostanoligenes group and Christensenellaceae_R-7_group (p < .01). In summary, diets supplemented with either AMP or TB improved the intestinal microflora, growth performance, and health of weaned calves, but combined use was detrimental to calf performance.
Collapse
Affiliation(s)
- Junling Gao
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Jianan Dong
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Zhe Sun
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., LtdChangchunChina
- College of Life Science, Jilin Agricultural UniversityChangchunChina
| | - Tao Wang
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., LtdChangchunChina
| | - Yanling Guan
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., LtdChangchunChina
| | - Yue Sun
- Institute of Animal Husbandry and Special Animal ScienceHeilongjiang Academy of Land Reclamation SciencesHarbinChina
| | - Guixin Qin
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Xuefeng Zhang
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., LtdChangchunChina
| | - Yuguo Zhen
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., LtdChangchunChina
| |
Collapse
|
40
|
Nishihara K, van Niekerk J, He Z, Innes D, Guan LL, Steele M. Reduction in mucosa thickness is associated with changes in immune function in the colon mucosa during the weaning transition in Holstein bull dairy calves. Genomics 2023; 115:110680. [PMID: 37454938 DOI: 10.1016/j.ygeno.2023.110680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
This study aims to characterize changes in the structure and the molecules related to immune function in the colon mucosa in dairy calves during the weaning transition (weaned at week 6 of age). Colon mucosa thickness, measured at week 5 to 8 and 12 of age, decreased for 2 weeks after weaning, but then recovered. Colon mucosa's transcriptome profiling at week 5, 7, and 12 of age was obtained using RNA-sequencing. Functional analysis showed that pathways related to immune function were up-regulated postweaning. A weighted gene co-expression network analysis identified 17 immune function related genes, expressed higher postweaning, which were negatively correlated with colon mucosa thickness, suggesting that these genes may be involved in colon mucosa inflammation and recovery from mucosa thickness decrement during the weaning transition. As such, it is important to determine the function of immune cells in the colon mucosa during the weaning transition in dairy calves.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Jolet van Niekerk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - David Innes
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada.
| |
Collapse
|
41
|
Barone M, Ramayo-Caldas Y, Estellé J, Tambosco K, Chadi S, Maillard F, Gallopin M, Planchais J, Chain F, Kropp C, Rios-Covian D, Sokol H, Brigidi P, Langella P, Martín R. Gut barrier-microbiota imbalances in early life lead to higher sensitivity to inflammation in a murine model of C-section delivery. MICROBIOME 2023; 11:140. [PMID: 37394428 PMCID: PMC10316582 DOI: 10.1186/s40168-023-01584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Most interactions between the host and its microbiota occur at the gut barrier, and primary colonizers are essential in the gut barrier maturation in the early life. The mother-offspring transmission of microorganisms is the most important factor influencing microbial colonization in mammals, and C-section delivery (CSD) is an important disruptive factor of this transfer. Recently, the deregulation of symbiotic host-microbe interactions in early life has been shown to alter the maturation of the immune system, predisposing the host to gut barrier dysfunction and inflammation. The main goal of this study is to decipher the role of the early-life gut microbiota-barrier alterations and its links with later-life risks of intestinal inflammation in a murine model of CSD. RESULTS The higher sensitivity to chemically induced inflammation in CSD mice is related to excessive exposure to a too diverse microbiota too early in life. This early microbial stimulus has short-term consequences on the host homeostasis. It switches the pup's immune response to an inflammatory context and alters the epithelium structure and the mucus-producing cells, disrupting gut homeostasis. This presence of a too diverse microbiota in the very early life involves a disproportionate short-chain fatty acids ratio and an excessive antigen exposure across the vulnerable gut barrier in the first days of life, before the gut closure. Besides, as shown by microbiota transfer experiments, the microbiota is causal in the high sensitivity of CSD mice to chemical-induced colitis and in most of the phenotypical parameters found altered in early life. Finally, supplementation with lactobacilli, the main bacterial group impacted by CSD in mice, reverts the higher sensitivity to inflammation in ex-germ-free mice colonized by CSD pups' microbiota. CONCLUSIONS Early-life gut microbiota-host crosstalk alterations related to CSD could be the linchpin behind the phenotypic effects that lead to increased susceptibility to an induced inflammation later in life in mice. Video Abstract.
Collapse
Affiliation(s)
- M. Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Y. Ramayo-Caldas
- INRAE, AgroParisTech, GABI, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - J. Estellé
- INRAE, AgroParisTech, GABI, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - K. Tambosco
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - S. Chadi
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - F. Maillard
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - M. Gallopin
- CNRS, CEA, l’Institut de Biologie Intégrative de La Cellule (I2BC), Paris-Saclay University, 91405 Orsay, France
| | - J. Planchais
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - F. Chain
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - C. Kropp
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - D. Rios-Covian
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - H. Sokol
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Gastroenterology Department, Centre de Recherche Saint-Antoine, Centre de Recherche Saint-Antoine, CRSA, AP-HP, INSERM, Saint Antoine Hospital, Sorbonne Université, 75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - P. Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - P. Langella
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - R. Martín
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| |
Collapse
|
42
|
Bikker P, Jansman AJM. Review: Composition and utilisation of feed by monogastric animals in the context of circular food production systems. Animal 2023; 17 Suppl 3:100892. [PMID: 37479667 DOI: 10.1016/j.animal.2023.100892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
Food production has a major impact on environmental emissions, climate change and land-use. To reduce this impact, the circularity of future food production systems is expected to become increasingly important. In a circular food system, crop land is primarily used for plant-based food production, while low-opportunity cost feed materials (LCF), i.e. crop residues, co-products of the food industry, grass from marginal land and food waste form the basis of future, animal feeds. Animal diets thus contain much less cereals and soybean meal and include a higher proportion of diverse co-products, residues and novel human-inedible ingredients. These diets are characterised by a lower starch content, and a higher content of fibre, protein, fat, and phytate compared to present diets. In this review, possible consequences of the development towards a more circular food system for the type, volume and nutritional characteristics of feed materials and complete feeds are addressed and related research questions in the area of animal nutrition, physiology and metabolism are discussed. Additional attention is given to possible effects on intestinal health and gut functionality and to (bio)technological processing of LCF to improve their suitability for feeding farm animals, with a focus on the effects in pigs and poultry. It is concluded that an increased use of LCF may limit the use of presently used criteria for the efficiency of animal production and nutrient utilisation. Development of characteristics that reflect the efficacy and efficiency of the net contribution of animal production in a circular food system is required. Animal scientists can have an important role in the development of more circular food production systems by focussing on the optimal use of LCF in animal diets for the production of animal-source food, while minimising the use of human-edible food in animal feed.
Collapse
Affiliation(s)
- P Bikker
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - A J M Jansman
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
43
|
Rattigan R, Lawlor PG, Cormican P, Crespo-Piazuelo D, Cullen J, Phelan JP, Ranjitkar S, Crispie F, Gardiner GE. Maternal and/or post-weaning supplementation with Bacillus altitudinis spores modulates the microbial composition of colostrum, digesta and faeces in pigs. Sci Rep 2023; 13:8900. [PMID: 37264062 DOI: 10.1038/s41598-023-33175-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/08/2023] [Indexed: 06/03/2023] Open
Abstract
This study examined the effects of maternal and/or post-weaning Bacillus altitudinis supplementation on the microbiota in sow colostrum and faeces, and offspring digesta and faeces. Sows (n = 12/group) were assigned to: (1) standard diet (CON), or (2) CON supplemented with probiotic B. altitudinis spores (PRO) from day (d)100 of gestation to weaning (d26 of lactation). At weaning, offspring were assigned to CON or PRO for 28d, resulting in: (1) CON/CON, (2) CON/PRO, (3) PRO/CON, and (4) PRO/PRO, after which all received CON. Samples were collected from sows and selected offspring (n = 10/group) for 16S rRNA gene sequencing. Rothia was more abundant in PRO sow colostrum. Sow faeces were not impacted but differences were identified in offspring faeces and digesta. Most were in the ileal digesta between PRO/CON and CON/CON on d8 post-weaning; i.e. Bacteroidota, Alloprevotella, Prevotella, Prevotellaceae, Turicibacter, Catenibacterium and Blautia were more abundant in PRO/CON, with Firmicutes and Blautia more abundant in PRO/PRO compared with CON/CON. Lactobacillus was more abundant in PRO/CON faeces on d118 post-weaning. This increased abundance of polysaccharide-fermenters (Prevotella, Alloprevotella, Prevotellaceae), butyrate-producers (Blautia) and Lactobacillus likely contributed to previously reported improvements in growth performance. Overall, maternal, rather than post-weaning, probiotic supplementation had the greatest impact on intestinal microbiota.
Collapse
Affiliation(s)
- Ruth Rattigan
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, Waterford, Ireland
| | - Peadar G Lawlor
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul Cormican
- Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Daniel Crespo-Piazuelo
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - James Cullen
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, Waterford, Ireland
| | - John P Phelan
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, Waterford, Ireland
| | - Samir Ranjitkar
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Gillian E Gardiner
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, Waterford, Ireland.
| |
Collapse
|
44
|
Du Y, Tu Y, Zhou Z, Hong R, Yan J, Zhang GW. Effects of organic and inorganic copper on cecal microbiota and short-chain fatty acids in growing rabbits. Front Vet Sci 2023; 10:1179374. [PMID: 37275607 PMCID: PMC10235478 DOI: 10.3389/fvets.2023.1179374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Copper (Cu) is an essential trace element for the growth of rabbits. This study aimed to investigate the effects of different Cu sources on intestinal microorganisms and short-chain fatty acids (SCFAs) in growing rabbits. Methods The experimental animals were randomly divided into four experimental groups, each group comprised eight replicates, with six rabbits (half male and half female) per replicate. And they were fed diets was composed by mixing the basal diet with 20 mg/kg Cu from one of the two inorganic Cu (cupric sulfate and dicopper chloride trihydroxide) or two organic Cu (cupric citrate and copper glycinate). Cecal contents of four rabbits were collected from four experimental groups for 16S rDNA gene amplification sequencing and gas chromatography analysis. Results Our results indicate that the organic Cu groups were less variable than the inorganic Cu groups. Compared with the inorganic Cu groups, the CuCit group had a significantly higher relative abundance of Rikenella Tissierella, Lachnospiraceae_NK3A20_group, Enterococcus, and Paeniclostridium, while the relative abundance of Novosphingobium and Ruminococcus were significantly lower (p < 0.05). The SCFAs level decreased in the organic Cu groups than in the inorganic Cu groups. Among the SCFAs, the butyric acid level significantly decreased in the CuCit group than in the CuSO4 and CuCl2 groups. The relative abundance of Rikenella and Turicibacter genera was significantly negatively correlated with the butyric acid level in the CuCit group compared with both inorganic Cu groups. These results revealed that the organic Cu (CuCit) group had an increased abundance of Rikenella, Enterococcus, Lachnospiraceae_NK3A20_group, and Turicibacter genera in the rabbit cecum. Discussion In summary, this study found that organic Cu and inorganic Cu sources had different effects on cecal microbiota composition and SCFAs in rabbits. The CuCit group had the unique higher relative abundance of genera Rikenella and Lachnospiraceae_NK3A20_group, which might be beneficial to the lower incidence of diarrhea in rabbits.
Collapse
Affiliation(s)
- Yanan Du
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Tu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Rui Hong
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiayou Yan
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Okada S, Inabu Y, Miyamoto H, Suzuki K, Kato T, Kurotani A, Taguchi Y, Fujino R, Shiotsuka Y, Etoh T, Tsuji N, Matsuura M, Tsuboi A, Saito A, Masuya H, Kikuchi J, Nagasawa Y, Hirose A, Hayashi T, Ohno H, Takahashi H. Estimation of silent phenotypes of calf antibiotic dysbiosis. Sci Rep 2023; 13:6359. [PMID: 37076584 PMCID: PMC10115819 DOI: 10.1038/s41598-023-33444-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Reducing antibiotic usage among livestock animals to prevent antimicrobial resistance has become an urgent issue worldwide. This study evaluated the effects of administering chlortetracycline (CTC), a versatile antibacterial agent, on the performance, blood components, fecal microbiota, and organic acid concentrations of calves. Japanese Black calves were fed with milk replacers containing CTC at 10 g/kg (CON group) or 0 g/kg (EXP group). Growth performance was not affected by CTC administration. However, CTC administration altered the correlation between fecal organic acids and bacterial genera. Machine learning (ML) methods such as association analysis, linear discriminant analysis, and energy landscape analysis revealed that CTC administration affected populations of various types of fecal bacteria. Interestingly, the abundance of several methane-producing bacteria at 60 days of age was high in the CON group, and the abundance of Lachnospiraceae, a butyrate-producing bacterium, was high in the EXP group. Furthermore, statistical causal inference based on ML data estimated that CTC treatment affected the entire intestinal environment, potentially suppressing butyrate production, which may be attributed to methanogens in feces. Thus, these observations highlight the multiple harmful impacts of antibiotics on the intestinal health of calves and the potential production of greenhouse gases by calves.
Collapse
Affiliation(s)
- Shunnosuke Okada
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, 878-0201, Japan
| | - Yudai Inabu
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, 878-0201, Japan
| | - Hirokuni Miyamoto
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8501, Japan.
- RIKEN Integrated Medical Science Center, Yokohama, Kanagawa, 230-0045, Japan.
- Japan Eco-Science (Nikkan Kagaku) Co., Ltd., Chiba, 260-0034, Japan.
- Sermas, Co., Ltd., Chiba, 271-8501, Japan.
| | - Kenta Suzuki
- RIKEN BioResource Research Center, Ibaraki, 305-0074, Tsukuba, Japan
| | - Tamotsu Kato
- RIKEN Integrated Medical Science Center, Yokohama, Kanagawa, 230-0045, Japan
| | - Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yutaka Taguchi
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, 878-0201, Japan
| | - Ryoichi Fujino
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, 878-0201, Japan
| | - Yuji Shiotsuka
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, 878-0201, Japan
| | - Tetsuji Etoh
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, 878-0201, Japan
| | | | - Makiko Matsuura
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8501, Japan
- Sermas, Co., Ltd., Chiba, 271-8501, Japan
| | - Arisa Tsuboi
- Japan Eco-Science (Nikkan Kagaku) Co., Ltd., Chiba, 260-0034, Japan
- Sermas, Co., Ltd., Chiba, 271-8501, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Akira Saito
- Feed-Livestock and Guidance Department, Dairy Technology Research Institute, The National Federation of Dairy Co-operative Associations (ZEN-RAKU-REN), Fukushima, 969-0223, Japan
| | - Hiroshi Masuya
- RIKEN BioResource Research Center, Ibaraki, 305-0074, Tsukuba, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuya Nagasawa
- Pathology and Production Disease Group, Division of Hygiene Management, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, 062-0045, Japan
| | - Aya Hirose
- Pathology and Production Disease Group, Division of Hygiene Management, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, 062-0045, Japan
| | - Tomohito Hayashi
- Pathology and Production Disease Group, Division of Hygiene Management, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, 062-0045, Japan
| | - Hiroshi Ohno
- RIKEN Integrated Medical Science Center, Yokohama, Kanagawa, 230-0045, Japan.
| | - Hideyuki Takahashi
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, 878-0201, Japan.
| |
Collapse
|
46
|
Arapovic L, Huang Y, Manell E, Verbeek E, Keeling L, Sun L, Landberg R, Lundh T, Lindberg JE, Dicksved J. Age Rather Than Supplementation with Oat β-Glucan Influences Development of the Intestinal Microbiota and SCFA Concentrations in Suckling Piglets. Animals (Basel) 2023; 13:ani13081349. [PMID: 37106912 PMCID: PMC10135274 DOI: 10.3390/ani13081349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of early supplementation with oat β-glucan during the suckling period on piglet gut microbiota composition, concentrations of short-chain fatty acids, and gut physiological markers were assessed. Fifty piglets from five litters, balanced for sex and birth weight, were divided within litters into two treatment groups: β-glucan and control. Piglets in the β-glucan group received the supplement three times/week from day 7 of age until weaning. Rectal swab samples were collected from 10 piglets per treatment group (balanced across litters) from week 1 to week 4, and plasma samples were collected at 1, 3, and 4 weeks of age. Additional samples of intestinal tissues and jugular and portal vein plasma were collected from 10 animals at weaning (one per treatment group and litter). The concentrations of short-chain fatty acids in plasma and the microbiota composition in rectal swabs were mainly influenced by piglet age, rather than the supplement. There were significant differences in microbiota composition between litters and several correlations between concentrations of short-chain fatty acids in plasma and specific microbial taxa in rectal swabs. Overall, β-glucan supplementation did not have any clear impact on the gut environment in suckling piglets, whereas a clear age-related pattern emerged.
Collapse
Affiliation(s)
- Lidija Arapovic
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Yi Huang
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
- Department of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Elin Manell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Else Verbeek
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Linda Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Li Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Jan Erik Lindberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
47
|
Michiels J, Truffin D, Majdeddin M, Van Poucke M, Van Liefferinge E, Van Noten N, Vandaele M, Van Kerschaver C, Degroote J, Peelman L, Linder P. Gluconic acid improves performance of newly weaned piglets associated with alterations in gut microbiome and fermentation. Porcine Health Manag 2023; 9:10. [PMID: 37016456 PMCID: PMC10074721 DOI: 10.1186/s40813-023-00305-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/23/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Weaning is a critical phase in the pigs' life and gut health might be compromised. Gluconic acid was shown to be poorly absorbed but readily fermented to butyrate in the gut which in turn can improve gut function. Hence, a total of 144 weaning pigs were fed the experimental diets for 42 days. Three treatments were replicated in 8 pens with 6 piglets each: control; low dietary dose of gluconic acid, 9 g/kg; and high dietary dose of gluconic acid, 18 g/kg. After 21 days, one piglet from each pen was sampled for blood haematology and biochemistry, fore- and hindgut digesta characteristics and microbiota, and distal small intestinal histo-morphological indices and gene expression. RESULTS Feeding gluconic acid enhanced performance in period d 0-14 post-weaning, in particular feed intake was increased (P = 0.028), though the high dose did not show benefits over the low dose. Regarding d 0-42, feed intake was elevated (P = 0.026). At d 21, piglets fed 18 g/kg gluconic acid showed a trend for lower number of total white blood cells (P = 0.060), caused by particularly lower numbers of lymphocytes as compared to control (P = 0.028). Highly reduced plasma urea was found for groups fed gluconic acid, it amounted to 2.6 and 2.6 mmol/L for the 9 and 18 g/kg level, respectively, as compared to 3.8 mmol/L in control (P = 0.003). Feeding gluconic acid promoted the relative abundance of lactic-acid-producing and acid-utilizing bacteria. In distal small intestine, Lactobacillus amylovorus increased substantially from 11.3 to 82.6% for control and gluconic acid 18 g/kg, respectively (P < 0.05). In mid-colon, the butyrate producers Faecalibacterium prausnitzii (P > 0.05) and Megasphaera elsdenii (P < 0.05) showed highest abundance in gluconic acid 18 g/kg. Consequently, in caecum and mid-colon, increased relative molar percentage of butyrate were found, e.g., 10.0, 12.9 et 14.7% in caecum for gluconic acid at 0, 9, and 18 g/kg, respectively (P = 0.046). Elevated mRNA anti-inflammatory cytokine and survival signalling levels in distal small intestinal mucosa were found by feeding gluconic acid which might be mediated by butyrate. CONCLUSIONS Gluconic acid may have potential to alleviate the postweaning growth-check in pigs by altering microbiota composition and fermentation in the gut.
Collapse
Affiliation(s)
- Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, 9000, Ghent, Belgium.
| | - Damien Truffin
- Roquette Frères, 1 rue de La Haute Loge, 62136, Lestrem, France
| | - Maryam Majdeddin
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, 9000, Ghent, Belgium
| | - Mario Van Poucke
- Department of Veterinary and Biosciences, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Elout Van Liefferinge
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, 9000, Ghent, Belgium
| | - Noémie Van Noten
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, 9000, Ghent, Belgium
| | - Mario Vandaele
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, 9000, Ghent, Belgium
| | - Céline Van Kerschaver
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, 9000, Ghent, Belgium
| | - Jeroen Degroote
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Coupure Links 653, 9000, Ghent, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Pierre Linder
- Roquette Frères, 1 rue de La Haute Loge, 62136, Lestrem, France
| |
Collapse
|
48
|
Serebrinsky-Duek K, Barra M, Danino T, Garrido D. Engineered Bacteria for Short-Chain-Fatty-Acid-Repressed Expression of Biotherapeutic Molecules. Microbiol Spectr 2023; 11:e0004923. [PMID: 36939337 PMCID: PMC10101121 DOI: 10.1128/spectrum.00049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Short-chain fatty acids (SCFA) such as propionate and butyrate are critical metabolites produced by the gut microbiota. Microbiome dysbiosis resulting in altered SCFA profiles is associated with certain diseases, including inflammatory bowel diseases (IBD), characterized by a reduction in butyrate concentration and active intestinal inflammation. There is an increasing interest in the use of engineered bacteria as diagnostic and therapeutic tools for gut diseases. In this study, we developed genetic circuits capable of sensing SCFA concentrations to build biosensors that express a response protein (superfolder green fluorescent protein [sfGFP]) in amounts inversely proportional to the SCFA concentration. We also built biotherapeutics expressing the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) using the same logic. The propionate biotherapeutic expressed larger amounts of mouse GM-CSF in the absence of propionate. The butyrate biotherapeutics presented the expected behavior only at the beginning of the kinetics and an accelerated response in the absence of butyrate. Overall, these genetic systems may function as complementary diagnostic tools for measuring SCFAs and as delivery vehicles for biotherapeutic molecules. IMPORTANCE Short-chain fatty acids are key molecules produced by the gut microbiome. Their concentrations are altered in certain diseases. Here, we created molecular biosensors that quantify the absence of propionate and butyrate, using logic "NOT" gates and bacterial promoters. Finally, we show that these genetic systems could be useful for the delivery of therapeutic molecules in the gut, in the absence of these acids.
Collapse
Affiliation(s)
- Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria Barra
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
49
|
Kim JE, Tun HM, Bennett DC, Leung FC, Cheng KM. Microbial diversity and metabolic function in duodenum, jejunum and ileum of emu (Dromaius novaehollandiae). Sci Rep 2023; 13:4488. [PMID: 36934111 PMCID: PMC10024708 DOI: 10.1038/s41598-023-31684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 03/20/2023] Open
Abstract
Emus (Dromaius novaehollandiae), a large flightless omnivorous ratite, are farmed for their fat and meat. Emu fat can be rendered into oil for therapeutic and cosmetic use. They are capable of gaining a significant portion of its daily energy requirement from the digestion of plant fibre. Despite of its large body size and low metabolic rate, emus have a relatively simple gastroinstetinal (GI) tract with a short mean digesta retention time. However, little is known about the GI microbial diversity of emus. The objective of this study was to characterize the intraluminal intestinal bacterial community in the different segments of small intestine (duodenum, jejunum, and ileum) using pyrotag sequencing and compare that with the ceca. Gut content samples were collected from each of four adult emus (2 males, 2 females; 5-6 years old) that were free ranged but supplemented with a barley-alfalfa-canola based diet. We amplified the V3-V5 region of 16S rRNA gene to identify the bacterial community using Roche 454 Junior system. After quality trimming, a total of 165,585 sequence reads were obtained from different segments of the small intestine (SI). A total of 701 operational taxonomic units (OTUs) were identified in the different segments of small intestine. Firmicutes (14-99%) and Proteobacteria (0.5-76%) were the most predominant bacterial phyla in the small intestine. Based on species richness estimation (Chao1 index), the average number of estimated OTUs in the small intestinal compartments were 148 in Duodenum, 167 in Jejunum, and 85 in Ileum, respectively. Low number of core OTUs identified in each compartment of small intestine across individual birds (Duodenum: 13 OTUs, Jejunum: 2 OTUs, Ileum: 14 OTUs) indicated unique bacterial community in each bird. Moreover, only 2 OTUs (Escherichia and Sinobacteraceae) were identified as core bacteria along the whole small intestine. PICRUSt analysis has indicated that the detoxification of plant material and environmental chemicals seem to be performed by SI microbiota, especially those in the jejunum. The emu cecal microbiome has more genes than SI segments involving in protective or immune response to enteric pathogens. Microbial digestion and fermentation is mostly in the jejunum and ceca. This is the first study to characterize the microbiota of different compartments of the emu intestines via gut samples and not fecal samples. Results from this study allow us to further investigate the influence of the seasonal and physiological changes of intestinal microbiota on the nutrition of emus and indirectly influence the fatty acid composition of emu fat.
Collapse
Affiliation(s)
- Ji Eun Kim
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hein M Tun
- School of Public Health, Li Ka Shing, Faculty of Medicine, HKU-Pasteur Research Pole, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- JC School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Darin C Bennett
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Kimberly M Cheng
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
50
|
Zeng T, Sun H, Huang M, Guo R, Gu T, Cao Y, Li C, Tian Y, Chen L, Li G, Lu L. Dietary supplementation of coated sodium butyrate improves growth performance of laying ducks by regulating intestinal health and immunological performance. Front Immunol 2023; 14:1142915. [PMID: 36969242 PMCID: PMC10034168 DOI: 10.3389/fimmu.2023.1142915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionThis study was conducted to assess the effects of dietary supplementation of coated sodium butyrate (CSB) on the growth performance, serum antioxidant, immune performance, and intestinal microbiota of laying ducks.MethodsA total of 120 48-week-old laying ducks were randomly divided into 2 treatment groups: the control group (group C fed a basal diet) and the CSB-treated group (group CSB fed the basal diet + 250 g/t of CSB). Each treatment consisted of 6 replicates, with 10 ducks per replicate, and the trial was conducted for 60 days.ResultsCompared with the group C, the group CSB showed a significant increase in the laying rate (p<0.05) of the 53-56 week-old ducks. Additionally, the serum total antioxidant capacity, superoxide dismutase activity and immunoglobulin G level were significantly higher (p<0.05), while the serum malondialdehyde content and tumor necrosis factor (TNF)-a level were significantly lower (p<0.05) in the serum of the group CSB compared to the group C. Moreover, the expression of IL-1b and TNF-a in the spleen of the group CSB was significantly lower (p<0.05) compared to that of the group C. In addition, compared with the group C, the expression of Occludin in the ileum and the villus height in the jejunum were significantly higher in the group CSB (p<0.05). Furthermore, Chao1, Shannon, and Pielou-e indices were higher in the group CSB compared to the group C (p<0.05). The abundance of Bacteroidetes in the group CSB was lower than that in the group C (p<0.05), while the abundances of Firmicutes and Actinobacteria were higher in the group CSB compared to the group C (p<0.05).ConclusionsOur results suggest that the dietary supplementation of CSB can alleviate egg-laying stress in laying ducks by enhancing immunity and maintaining the intestinal health of the ducks.
Collapse
Affiliation(s)
- Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Manman Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongbing Guo
- College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengfeng Li
- Hubei Shendan Health Food Co., Ltd., Xiaogan, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Lizhi Lu,
| |
Collapse
|