1
|
Wang Q, Wang L, Li L, Sun M, Li P, Yu Y, Zhang Y, Xu Z, Gao P, Ma J, Liu X. Effects of dietary supplementation of fermented Artemisia argyi on growth performance, slaughter performance, and meat quality in broilers. Poult Sci 2024; 103:103545. [PMID: 38387294 PMCID: PMC10899031 DOI: 10.1016/j.psj.2024.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Artemisia argyi (AA) is promising as a potential feed additive. Microbial fermentation is beneficial to the degradation of cell walls and the better release of bioactive compounds of AA. However, there are few reports on the application of fermented AA as a feed additive for broilers. The present study intended to evaluate the application value of fermented AA as a feed additive for broilers by examining the effects of the dietary supplementation of Aspergillus niger-fermented AA and unfermented AA on growth performance, slaughter performance, and meat quality of brokers. A total of 360 newly hatched (1-day-old) broilers with similar body weight were randomly divided into the following 5 groups: basal diet group as control (C) group, basal diet +3% unfermented AA (E1) group, basal diet + 1% fermented AA (E2) group, basal diet + 3% fermented AA (E3) group, basal diet + 5% fermented AA (E4) group. Each group included 6 replicates with 12 broilers per replicate, and the feeding trail lasted for 48 d. Body weight and feed intake were recorded every 2 wk, and the feed gain ratio was calculated to assess growth performance. At 42 d, 6 broilers from each group were slaughtered, and the carcass traits were calculated. The results showed that compared with the control group, Aspergillus Niger could effectively destroy AA fiber, which contributed to better release of AA bioactive compounds. Moreover, dietary supplementation with AA could improve the growth performance of broilers (P < 0.05), and the effect of fermented AA was better than unfermented AA, especially 3% fermented AA. From 28 to 42 d, compared with the control group, the average daily gain of broilers in the group supplementation with 3% fermented AA was significantly increased (P < 0.05), and the feed-to-gain ratio was decreased (P < 0.05). At 42 d, the dressing percentage, half-eviscerated carcass percentage, eviscerated carcass percentage, and breast muscle percentage of broilers in the groups of 1, 3, and 5% fermented AA diets were significantly improved (P < 0.05), and the thigh muscle percentage of broilers in the group with 3% fermented AA diets was significantly improved (P < 0.05). Meanwhile, the meat quality of broilers in the group with fermented AA diets was also significantly improved. Birds in AA groups had higher a* value and lower shear force of breast muscle, especially the group supplementation with 3% fermented AA (P < 0.05). In conclusion, fermented AA has good application value as a potential feed additive for broilers, dietary supplementation of fermented AA can improve the production performance and meat quality of broiler chickens, of which 3% fermented AA is more effective.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Li Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Lingwei Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Mengqiao Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Peng Li
- College of Life Science, Xinxiang University, Xinxiang 453003, Henan, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Xingyou Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; College of Life Science, Xinxiang University, Xinxiang 453003, Henan, China.
| |
Collapse
|
2
|
Mozhiarasi V, Karunakaran R, Raja P, Radhakrishnan L. Effects of Zinc Oxide Nanoparticles Supplementation on Growth Performance, Meat Quality and Serum Biochemical Parameters in Broiler Chicks. Biol Trace Elem Res 2024; 202:1683-1698. [PMID: 37460779 DOI: 10.1007/s12011-023-03759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/28/2023] [Indexed: 02/13/2024]
Abstract
The zinc oxide nanoparticles (ZnONPs) have attracted exhilarating research interest due to their novel distinguishing characteristics such as size, shape, high surface activity, large surface area and biocompatibility. Being highly bioavailable and exerting a superior efficacy than conventional zinc sources, ZnONPs is emerging as an alternative feed supplement for poultry. The present study involves the synthesis of ZnONPs through a cost effective and eco-friendly method using planetary ball milling technique and characterized for its size, shape, optical property, functional group and elemental concentration using particle size analyzer, Transmission Electron Microscopy, X-Ray Diffraction analysis, Fourier Transform Infra-Red spectroscopy, UV-Vis spectroscopy and Inductively Coupled Plasma-Mass Spectroscopy. In vitro cytotoxicity study using Baby Hamster kidney (BHK-21) cells, Vero cells and primary chick liver culture cells revealed that ZnONPs can be safely incorporated in the broiler chick's feed up to the concentration of 100 mg/kg. To investigate the effects of ZnONPs on production performances in broiler chicks, a feeding trial was carried out using 150-day-old broiler chicks randomly allotted in five treatment groups. The dietary treatment groups were: T1 (80 mg/kg of zinc oxide), T2 (60 mg/kg of zinc methionine) and T3, T4 and T5 received 60, 40 and 20 mg/kg of ZnONPs respectively. The results showed a significant improvement (p < 0.05) in the body weight gain and feed conversion ratio of broiler chicks supplemented with 20 and 40 mg/kg of ZnONPs. The ZnONPs supplementation significantly (p < 0.05) increased the dressing percentage in addition to significant (p < 0.05) reduction in the meat pH compared to inorganic and organic zinc supplementation. Overall, an eco-friendly method for ZnONPs synthesis was demonstrated and the optimum dietary level (20 mg/kg) of ZnONPs could enhance the growth, the meat quality and Zn uptake without any negative effects on selected serum biochemical parameters in the broiler chicks.
Collapse
Affiliation(s)
- V Mozhiarasi
- Department of Animal Nutrition, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600 007, India
| | - R Karunakaran
- Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600 007, India.
| | - P Raja
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600 007, India
| | - L Radhakrishnan
- Institute of Animal Nutrition, Kattupakkam, Potheri, Tamil Nadu, 603 203, India
| |
Collapse
|
3
|
Xiao C, Comer L, Pan X, Everaert N, Schroyen M, Song Z. Zinc glycinate alleviates LPS-induced inflammation and intestinal barrier disruption in chicken embryos by regulating zinc homeostasis and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116111. [PMID: 38350216 DOI: 10.1016/j.ecoenv.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 02/15/2024]
Abstract
The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1β (IL-1β) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1β and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.
Collapse
Affiliation(s)
- Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Luke Comer
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
4
|
Zhang Q, Zhang H, Jiang Y, Wang J, Wu D, Wu C, Che L, Lin Y, Zhuo Y, Luo Z, Nie K, Li J. Chromium propionate supplementation to energy- and protein-reduced diets reduces feed consumption but improves feed conversion ratio of yellow-feathered male broilers in the early period and improves meat quality. Poult Sci 2024; 103:103260. [PMID: 38096665 PMCID: PMC10762463 DOI: 10.1016/j.psj.2023.103260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 01/06/2024] Open
Abstract
Growth performance and carcass traits may be retarded by low nutrient density diets. Organic chromium propionate (CrProp) can improve growth, carcass traits, and meat quality in farmed lambs, white broilers, and fish. Limited data regarding CrProp's impacts on yellow-feathered broilers are available. Eight hundred yellow-feathered male broilers (1-day old) were randomly allocated to 4 dietary groups and reared for 56 d. The trial was a 2 (dietary nutrient density) ×2 (CrProp) factorial arrangement with 4 diets: regular nutrient diet and low nutrient density (LND, reduction in metabolizable energy by 81 kcal and crude protein by 0.43%) diet supplemented with or without 200 mg/kg CrProp. Broilers were euthanized at d 56 after blood collection. The results indicated that the LND diet led to greater average daily feed intake (ADFI) from d 1 to 42 and feed conversion ratio (FCR) from d 22 to 42 (P < 0.05). Supplementation of CrProp improved body weight (BW) from d 1 to 56, average daily gain (ADG), and FCR during d 1 to 42 but reduced ADFI during d 1 to 21, as well as lowered abdominal fat percentage (P < 0.05). Supplementation with CrProp to regular and LND diets reduced ADFI but improved FCR from d 1 to 21 (P < 0.05). The LND diet lowered total antioxidant capacity (T-AOC) concentration and total superoxide dismutase (T-SOD) activity in the jejunal mucosa. CrProp elevated T-AOC levels and glutathione peroxidase activity (GSH-Px, P < 0.05). Dietary CrProp upregulated (P < 0.05) the expression of fatty acid transporter (FABP1) gene and peptide transporter (Pept1) gene. CrProp administration increased jejunal FABP1 expression and lowered cooking loss of breast meat (P < 0.05) in the LND group while reducing shear force (P = 0.009) of broilers treated by regular diet. In summary, CrProp administration to the LND diet can improve growth performance in the starter period and meat quality on d 56, possibly through upregulated nutrient transporter gene expression in the jejunum and enhanced antioxidant capability.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Animal Resources and Science, Dankook University, Cheonan 31116, South Korea; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongtao Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yukun Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Caimei Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Luo
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | - Kangkang Nie
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Spears JW, Lloyd KE, Flores K, Krafka K, Hyda J, Grimes JL. Chromium propionate in turkeys: effect on performance and animal safety. Poult Sci 2024; 103:103195. [PMID: 38039937 PMCID: PMC10698664 DOI: 10.1016/j.psj.2023.103195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 12/03/2023] Open
Abstract
Two hundred eighty-eight male Nicholas Large White turkey poults were used to determine the effect of supplementing turkeys with chromium propionate (Cr Prop) from 1 to 84 d of age on performance and animal safety. Treatments consisted of Cr prop supplemented to provide 0, 0.2, or 1.0 mg Cr/kg diet. One mg of supplemental Cr is 5 times (x) the minimal concentration of Cr Prop that enhanced insulin sensitivity in turkeys. Each treatment consisted of 8 floor pens with 12 poults per pen. Turkeys were individually weighed initially, and at the end of the starter 1 (d 21), starter 2 (d 42), grower 1 (d 63), and grower 2 phase (d 84). On d 85, blood was collected from the wing vein in heparinized tubes from 2 turkeys per pen for plasma chemistry measurements. A separate blood sample was collected from the same turkeys in tubes containing K2EDTA for hematology measurements. Turkey performance was not affected by treatment during the starter 1 phase. Gain was greater (P = 0.024) and feed/gain lower (P = 0.030) for turkeys supplemented with Cr compared with controls during the starter 2 phase. Over the entire 84-d study turkeys supplemented with Cr had greater (P = 0.005) ADG and tended (P = 0.074) to gain more efficiently than controls. Gain (P = 0.180) and feed/gain (P = 0.511) of turkeys supplemented with 0.2 mg Cr/kg did not differ from those receiving 1.0 mg Cr/kg over the entire 84-d study. Feed intake was not affected by treatment. Body weights of turkeys supplemented with Cr were heavier (P = 0.005) than controls by d 84. Chromium supplementation did not affect hematological measurements and had minimal effect on plasma chemistry variables. Results of this study indicates that Cr Prop supplementation can improve turkey performance, and is safe when supplemented to turkey diets at 5x the minimal concentration that enhanced insulin sensitivity.
Collapse
Affiliation(s)
- J W Spears
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - K E Lloyd
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - K Flores
- Prestage Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - K Krafka
- Kemin Agrifoods North America, Inc., Des Moines, IA 50317, USA
| | - J Hyda
- Kemin Agrifoods North America, Inc., Des Moines, IA 50317, USA
| | - J L Grimes
- Prestage Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7608, USA.
| |
Collapse
|
6
|
Kazakova T, Marshinskaia O. Effects of the combined use of a probiotic and chromium methionine chelate on the functional state of broiler chickens. Vet World 2023; 16:2358-2365. [PMID: 38152259 PMCID: PMC10750736 DOI: 10.14202/vetworld.2023.2358-2365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/20/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aim An increase in the productivity of broiler chickens is possible when creating an optimal food base that provides birds with all of the nutrients and biologically active substances required for the fullest realization of their genetic potential. In this regard, we examined the effects of the addition of a water-based probiotic and a chelated form of chromium (Cr) to the diet of birds. Materials and Methods Sixty 14-day-old male Arbor Acres broilers were used in this study. The birds were assigned to two groups of 30 birds according to their body weights. The control broilers received distilled water with the basal diet, and the experimental group received a probiotic preparation in drinking water and Cr methionine chelate (Cr-Met) in the diet. The feeding period lasted 28 days. Growth performance indices were measured throughout the experiment. At the end of the experiment, blood sampling was performed to assess blood biochemical parameters, antioxidant system indicators, and trace elements. Results We found that the introduction of a probiotic preparation and a chelated form of Cr into the diet of broiler chickens had a positive effect on meat productivity, which was characterized by a 17% increase in the average daily gain of birds (p = 0.05) and a 14% increase in body weight (p = 0.01). Consequently, the yield of the slaughtered carcass increased by 5.8% (p = 0.05). Against the background of the consumption of the developed diet, broiler chickens exhibited a 14% decrease in feed conversion accompanied by an increase in the level of digestibility of dietary nutrients. In addition, glucose levels were decreased by 20% (p = 0.03) against the background of a 76% increase in the total protein concentration (p = 0.01). Superoxide dismutase and glutathione peroxidase activities were increased by 13% (p = 0.02) and 7.5% (p = 0.03), respectively. Elemental analysis of blood serum revealed a 99% decrease in the Fe level versus the control (p = 0.02) and a 31% increase in the Zn level (p = 0.02). Conclusion We conclude that feeding broiler chickens is a multicomponent probiotic supplement combined with Cr-Met promotes growth and nutrient absorption, and optimizes metabolic processes.
Collapse
Affiliation(s)
- Tatiana Kazakova
- Federal Research Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Olga Marshinskaia
- Federal Research Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
7
|
An W, Huang Z, Mao Z, Qiao T, Jia G, Zhao H, Liu G, Chen X. Dietary Taurine Supplementation Improves the Meat Quality, Muscle Fiber Type, and Mitochondrial Function of Finishing Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15331-15340. [PMID: 37801406 DOI: 10.1021/acs.jafc.3c01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This study investigated the effects of dietary supplementation with taurine (TAU) on the meat quality, muscle fiber type, and mitochondrial function of finishing pigs. The results demonstrated that TAU significantly increased the a* value while decreasing b*45 min, L*24 h, and drip loss24 h and drip loss48 h in the longissimus dorsi (LD) muscle. Dietary supplemented with TAU reduced the content of lactate and the glycolytic potential (GP) in the LD muscle. Dietary supplemented with TAU enhanced the oxidative fiber-related gene expression as well as increased succinic dehydrogenase and malate dehydrogenase activities while reducing lactate dehydrogenase activity. Furthermore, dietary supplementation with TAU increased the contents of mtDNA and ATP and mitochondrial function-related gene expression. Moreover, TAU enhanced the mRNA expressions of calcineurin (CaN) and nuclear factor of activated T cells c1 (NFATc1) and protein expressions of CNA and NFATc1. The results indicate that dietary TAU supplementation improves meat quality and mitochondrial biogenesis and function and promotes muscle fiber-type conversion from the glycolytic fiber to the oxidative fiber via the CaN/NFATc1 pathway.
Collapse
Affiliation(s)
- Wenting An
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Tianlei Qiao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
8
|
Sánchez-Villalba E, Corral-March EA, Valenzuela-Melendres M, Zamorano-García L, Celaya-Michel H, Ochoa-Meza A, González-Ríos H, Barrera-Silva MÁ. Chromium Methionine and Ractopamine Supplementation in Summer Diets for Grower-Finisher Pigs Reared under Heat Stress. Animals (Basel) 2023; 13:2671. [PMID: 37627462 PMCID: PMC10451215 DOI: 10.3390/ani13162671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to determine the effects of the dietary supplementation of chromium methionine (CrMet) and ractopamine (RAC) on pigs in the growing-finishing stage under heat stress. The parameters evaluated included productive behavior, blood components, carcass characteristics, organ weight, and meat quality. This study was conducted during the summer season in Sonora, Mexico. The treatments included: (1) control diet (CON), a base diet (BD) formulated to satisfy the nutritional requirements of pigs; (2) RAC, BD plus 10 ppm RAC supplemented during the last 34 days of the study; (3) CrMet-S, BD supplemented with 0.8 ppm of Cr from CrMet during the last 34 days; and (4) CrMet-L, BD supplemented with 0.8 ppm of Cr from CrMet for an 81 d period. RAC supplementation improved the productive behavior and main carcass characteristics of the pigs compared with CON. However, RAC and CrMet supplementation during the last 34 days showed similar results in terms of weight gain, carcass quality, blood components, organ weight, and meat quality. The addition of CrMet-S had a moderate (although not significant) increase in productive performance and carcass weight. These findings are encouraging, as they suggest that CrMet may be a potential alternative for growth promotion. However, more research is needed.
Collapse
Affiliation(s)
- Esther Sánchez-Villalba
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| | - Eileen Aglahe Corral-March
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Libertad Zamorano-García
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Hernán Celaya-Michel
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| | - Andrés Ochoa-Meza
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| | - Humberto González-Ríos
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Miguel Ángel Barrera-Silva
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| |
Collapse
|
9
|
Adams JRG, Mehat J, La Ragione R, Behboudi S. Preventing bacterial disease in poultry in the post-antibiotic era: a case for innate immunity modulation as an alternative to antibiotic use. Front Immunol 2023; 14:1205869. [PMID: 37469519 PMCID: PMC10352996 DOI: 10.3389/fimmu.2023.1205869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
The widespread use of antibiotics in the poultry industry has led to the emergence of antibiotic-resistant bacteria, which pose a significant health risk to humans and animals. These public health concerns, which have led to legislation limiting antibiotic use in animals, drive the need to find alternative strategies for controlling and treating bacterial infections. Modulation of the avian innate immune system using immunostimulatory compounds provides a promising solution to enhance poultry immune responses to a broad range of bacterial infections without the risk of generating antibiotic resistance. An array of immunomodulatory compounds have been investigated for their impact on poultry performance and immune responses. However, further research is required to identify compounds capable of controlling bacterial infections without detrimentally affecting bird performance. It is also crucial to determine the safety and effectiveness of these compounds in conjunction with poultry vaccines. This review provides an overview of the various immune modulators known to enhance innate immunity against avian bacterial pathogens in chickens, and describes the mechanisms involved.
Collapse
Affiliation(s)
- James R. G. Adams
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Avian Immunology, The Pirbright Institute, Woking, United Kingdom
| | - Jai Mehat
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
10
|
Effects of Dietary Supplementation of Chinese Yam Polysaccharide on Carcass Composition, Meat Quality, and Antioxidant Capacity in Broilers. Animals (Basel) 2023; 13:ani13030503. [PMID: 36766389 PMCID: PMC9913201 DOI: 10.3390/ani13030503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The study aimed to evaluate the influences of the dietary supplementation of Chinese yam polysaccharide (CYP) on the carcass performance, antioxidant capacity, and meat quality of broilers. Three hundred and sixty healthy 1-day-old broilers with similar body weight (39 ± 1 g, gender balanced) were randomly divided into four groups (control, CYP1, CYP2, and CYP3 groups). In the control group, broilers were fed a basal diet with CYP, and the CYP1, CYP2, and CYP3 groups were fed diets supplemented with 250, 500, and 1000 mg/kg CYP, respectively. There were three replicates in each group, 30 birds in each replicate, and the feeding trial lasted for 48 days. Statistical analysis was performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA) by one-way analysis of variance. The results showed that compared with the control group, dietary supplementation with 500 mg/kg CYP can improve live weight, half-eviscerated carcass percentage, eviscerated carcass percentage, and thigh muscle percentage. Moreover, dietary supplementation with 500 mg/kg CYP can improve the contents of total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GPX), and glutathione s-transferase (GST) in serum (p < 0.05). Meanwhile, the mRNA expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), quinone oxidoreductase (NQO1), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), and catalase (CAT) in the liver; the mRNA expression levels of HO-1, NQO1, GPX1, and CAT in the breast muscle; and the mRNA expression levels of NQO1, SOD1, and CAT in the thigh muscle of broilers in the CYP2 group were significantly increased (p < 0.05). In addition, the yellowness and shear force of the thigh and breast muscles and the content of malondialdehyde (MDA) in the serum of broilers in the control group were higher than that in the CYP2 groups (p < 0.05). The results demonstrated that the CYP2 group had the best effect on improving meat quality. In conclusion, dietary supplementation with 500 mg/kg CYP can improve the meat quality of broilers by improving carcass quality, meat color, shear force, and antioxidant capacity.
Collapse
|
11
|
Pederiva S, Avolio R, Marchis D, Abete MC, Squadrone S. Preliminary Data on Essential and Non-essential Element Occurrence in Processed Animal Proteins from Insects. Biol Trace Elem Res 2022:10.1007/s12011-022-03462-6. [PMID: 36352299 DOI: 10.1007/s12011-022-03462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Insects represent a valuable and environmentally friendly protein alternative in food and feed. The Farm to Fork strategy encouraged the reintroduction of animal by-products in feed production to optimise recycling and to valorise under-used resources. In order to grant safe and valuable feed products, this study investigated the black soldier fly (BSF) (Hermetia illucens) chemical risk. Samples collected in different steps of production (8 samples of substrate for culturing, 7 samples of larvae, 15 samples of protein meal, 18 samples of spent substrate) were analysed for microessential elements (chromium, copper, iron, nickel, selenium and zinc) and inorganic contaminants (aluminium, arsenic, cadmium, lead, tin and vanadium) by Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Microessential elements were found in the following order: Fe > Zn > Cu > Ni > Se > Cr (mg kg-1). Non-essential element concentrations were found lower than the set limits according to the European Union Regulations. The growing demand for alternative protein sources for feed production could be partially compensated by black soldier fly (BSF) (Hermetia illucens) meal, as it appears a good source for high-quality proteins and microessential elements which play a pivotal role in animal growth. In the foreseeable future the current legislation and the official monitoring plans may be implemented and broaden, to focus and assess limits for upcoming matrices, and to ensure feed and food safety.
Collapse
Affiliation(s)
- Sabina Pederiva
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
- Italian National Reference Laboratory of Animal Proteins in Feed, Turin, Italy
| | - Rosa Avolio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy.
| | - Daniela Marchis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
- Italian National Reference Laboratory of Animal Proteins in Feed, Turin, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| |
Collapse
|
12
|
Xin X, Han M, Wu Y, Dong Y, Miao Z, Zhang J, Song X, Jia R, Su Y, Liu C, Bai R, Li J. Dietary Supplemental Chromium Yeast Improved the Antioxidant Capacity, Immunity and Liver Health in Broilers under High Stocking Density. Animals (Basel) 2022; 12:ani12172216. [PMID: 36077936 PMCID: PMC9454686 DOI: 10.3390/ani12172216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to investigate the effects of different levels of yeast chromium on growth performance, organ index, antioxidant capacity, immune performance and liver health of broilers under high stocking density. A total of 684 1-day-old Arbor Acres broilers were selected and fed a common diet from 1 to 22 days of age. At the end of 22 days, broilers with similar weight were randomly divided into six treatments, with six replications in each treatment. The broilers in control groups were fed with a control diet and raised at low stocking density of broilers (14 broilers/m2, LSD) and high stocking density (20 broilers/m2, HSD). The broilers in treatment groups were fed with diets supplemented with 200, 400, 800 and 1600 µg Cr/kg chromium yeast (Cr-yeast) under HSD, respectively. The experimental period was 23~42 days. Compared with the LSD group, the HSD group significantly decreased the liver index (ratio of liver weight to live weight of broilers) of broilers (p < 0.05), the HSD group significantly increased the content of corticosterone (CORT) and the activities of alanine aminotransferase (ALT) and alkaline phosphatase (ALP) and decreased the prealbumin (PA) level in the serum (p < 0.05). HSD decreased the total antioxidant capacity (T-AOC) contents in the serum, liver and breast, serum glutathione peroxidase (GSH-Px) activities, breast total superoxide dismutase (T-SOD) activities and liver catalase (CAT) activities of broilers (p < 0.05). The HSD group significantly increased the total histopathological score (p < 0.05). Compared with the HSD group, adding 200, 400, and 1600 Cr-yeast significantly increased the liver index of broilers (p < 0.05), all HSD + Cr-yeast groups decreased the ALT activities (p < 0.05), and the HSD + 800 group significantly decreased the CORT contents and the ALP activities of the serum (p < 0.05); the HSD + 400, 800 and 1600 groups increased the PA contents of the serum (p < 0.05); HSD + 800 group significantly reduced the tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β) contents of the serum (p < 0.05); moreover, the HSD + 400 group increased the GSH-Px activities of the serum (p < 0.05), the T-AOC and the T-SOD activities of the breast (p < 0.05) and the T-AOC and CAT activities of the liver (p < 0.05). Adding 800 Cr-yeast significantly decreased the total histopathological score (degree of hepatocyte edema and inflammatory cell infiltration) under HSD (p < 0.05). In summary, Cr-yeast can improve the antioxidant capacity and immune traits, and liver health of broilers under HSD. Based on the results of the linear regression analysis, the optimal supplementation of Cr-yeast in antioxidant capacity, immunity ability and liver health were at the range of 425.00−665.00, 319.30−961.00, and 800.00−1531.60 µg Cr/kg, respectively.
Collapse
|
13
|
Pederiva S, Crescio MI, Ingravalle F, Abete MC, Marchis D, Squadrone S. Processed animal proteins (PAPs) in animal nutrition: Assessment of the chemical risk of essential and non-essential elements. J Trace Elem Med Biol 2022; 71:126959. [PMID: 35248975 DOI: 10.1016/j.jtemb.2022.126959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Processed animal products (PAPs) could be a great alternative to common protein supplements and represent a good example of recycling and valorization of by-products. Due to the reintroduction of certain types of PAPs in feed, a deeper knowledge of these heterogeneous matrices is needed. Thus, the aim of this study is to evaluate the levels of essential elements and inorganic contaminants in 55 PAPs considered as potential alternatives to common protein supplements. METHODS PAPs samples were analysed for essential (cobalt, nickel, chromium, copper, zinc, iron and manganese) and non-essential elements (arsenic, cadmium, lead and mercury) by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Graphite Furnace Atomization Atomic Absorption Spectrometer (GF-AAS) and dual cell Direct Mercury Analyzer spectrometer (DMA-80). RESULTS Essential elements were found with the following decreasing order iron>zinc>copper>manganese>chromium>nickel>cobalt (mg kg-1). Only one sample was found non-compliant to lead concentration according to the European Union Regulation while negligible values of others non-essential elements were found. CONCLUSIONS This study suggests that PAPs could be a useful supplement for animal diet due to their natural content of essential elements. A careful monitoring of chemical elements should be required and eventually guidelines have to be drafted for a correct use of PAPs to ensure a safe and sustainable feed production.
Collapse
Affiliation(s)
- Sabina Pederiva
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Chemistry Department, CReAA, via Bologna 148, Turin, Italy
| | - Maria Ines Crescio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Chemistry Department, CReAA, via Bologna 148, Turin, Italy
| | - Francesco Ingravalle
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Chemistry Department, CReAA, via Bologna 148, Turin, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Chemistry Department, CReAA, via Bologna 148, Turin, Italy
| | - Daniela Marchis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Chemistry Department, CReAA, via Bologna 148, Turin, Italy
| | - Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Chemistry Department, CReAA, via Bologna 148, Turin, Italy.
| |
Collapse
|
14
|
Saracila M, Untea AE, Panaite TD, Varzaru I, Oancea A, Turcu RP, Vlaicu PA. Creeping Wood Sorrel and Chromium Picolinate Effect on the Nutritional Composition and Lipid Oxidative Stability of Broiler Meat. Antioxidants (Basel) 2022; 11:antiox11040780. [PMID: 35453465 PMCID: PMC9031108 DOI: 10.3390/antiox11040780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
The study investigates the efficacy of Cr in broilers, aiming to evaluate the effects of Chromium picolinate (CrPic) in association with creeping wood sorrel powder (CWS) on the proximate composition, fatty acids profile, bioactive nutrients and lipid oxidative stability of broiler meat. A total of 120 Cobb 500 chickens were assigned into three treatments: a control diet (C) and two test diets, including 200 µg/kg diet CrPic (E1), and 200 µg/kg diet CrPic +10 g CWS/kg diet (E2). Dietary supplementation with Cr + CWS significantly improved the concentration of n − 3 polyunsaturated fatty acids (PUFAs), while its n − 6/n − 3 ratio decreased in comparison to the group receiving Cr and the conventional diet. The concentration of docosahexaenoic acid (DHA) significantly increased in the breast meat collected from the E2 group than that from the C group. Dietary administration of Cr and CWS improved lutein and zeaxanthin content, decreased Fe and Zn levels of the breast, and increased Zn deposition in the thigh samples. Malondialdehyde (MDA) concentration decreased more in the thigh meat of the supplemental groups (E1, E2) than in that from the C group. In conclusion, the current study suggests that Cr together with CWS can be a viable option as antioxidant sources for broiler diets, promoting the nutritional quality of meat.
Collapse
Affiliation(s)
- Mihaela Saracila
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (A.O.); (R.P.T.)
- Correspondence: or
| | - Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (A.O.); (R.P.T.)
| | - Tatiana Dumitra Panaite
- Nutrition Physiology Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (T.D.P.); (P.A.V.)
| | - Iulia Varzaru
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (A.O.); (R.P.T.)
| | - Alexandra Oancea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (A.O.); (R.P.T.)
| | - Raluca Paula Turcu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (A.O.); (R.P.T.)
| | - Petru Alexandru Vlaicu
- Nutrition Physiology Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (T.D.P.); (P.A.V.)
| |
Collapse
|
15
|
Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022; 13:4923-4938. [PMID: 35164635 PMCID: PMC8973695 DOI: 10.1080/21655979.2022.2037273] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Industrial effluents/wastewater are the main sources of hexavalent chromium (Cr (VI)) pollutants in the environment. Cr (VI) pollution has become one of the world’s most serious environmental concerns due to its long persistence in the environment and highly deadly nature in living organisms. To its widespread use in industries Cr (VI) is highly toxic and one of the most common environmental contaminants. Cr (VI) is frequently non-biodegradable in nature, which means it stays in the environment for a long time, pollutes the soil and water, and poses substantial health risks to humans and wildlife. In living things, the hexavalent form of Cr is carcinogenic, genotoxic, and mutagenic. Physico-chemical techniques currently used for Cr (VI) removal are not environmentally friendly and use a large number of chemicals. Microbes have many natural or acquired mechanisms to combat chromium toxicity, such as biosorption, reduction, subsequent efflux, or bioaccumulation. This review focuses on microbial responses to chromium toxicity and the potential for their use in environmental remediation. Moreover, the research problem and prospects for the future are discussed in order to fill these gaps and overcome the problem associated with bacterial bioremediation’s real-time applicability.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur India
| | - Sheetal Kishor Parakh
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
16
|
Li A, Ding J, Shen T, Han Z, Zhang J, Abadeen ZU, Kulyar MFEA, Wang X, Li K. Environmental hexavalent chromium exposure induces gut microbial dysbiosis in chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112871. [PMID: 34649138 DOI: 10.1016/j.ecoenv.2021.112871] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/12/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Hexavalent chromium [Cr (VI)] is a hazardous heavy metal that pollutes soil, water and crops. Moreover, its prolonged exposure can harm the gastrointestinal system, liver and respiratory tract in different species, but knowledge regarding Cr (VI) influence on gut microbiota in chickens remains scarce. Therefore, this study was performed to investigate the impact of Cr (VI) on gut microbiota in chickens. Results revealed that the gut microbiota in Cr (VI)-induced chickens exhibited a distinct reduction in alpha diversity, accompanied by significant shifts in microbial composition. Specifically, Firmicutes and Bacteroidetes were the most dominant phyla in the control chickens, whereas Firmicutes and Actinobacteria were observed to be predominant in the Cr (VI)-induced populations. Moreover, the types and relative abundances of predominant bacterial genus in control and Cr (VI)-induced chickens were also different. Bacterial taxonomic analysis revealed that the relative abundances of 3 phyla and 7 genera obviously increased, whereas 8 phyla and 30 genera dramatically decreased during Cr (VI) induction. Among them, 1 phylum (Deferribacteres) and 5 genera (Butyricicoccus, Butyricimonas, Intestinimonas, Lachnospiraceae_FCS020_group and Ruminococcaceae_V9D2013_group) even could not be found in the gut microbial community of Cr (VI)-induced chickens. Taken together, our study indicated that the long-term exposure to Cr (VI) dramatically alter the gut microbial diversity and composition in chickens. Notably, it represents a breakthrough in understanding the impact of Cr (VI) on the intestinal microbiota of chickens.
Collapse
Affiliation(s)
- Aoyun Li
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong 276005, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinxue Ding
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ting Shen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhaoqing Han
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong 276005, PR China
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zain Ul Abadeen
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, 38040 Faisalabad, Pakistan
| | | | - Xin Wang
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong 276005, PR China.
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
17
|
Zhao Y, Balasubramanian B, Guo Y, Qiu SJ, Jha R, Liu WC. Dietary Enteromorpha Polysaccharides Supplementation Improves Breast Muscle Yield and Is Associated With Modification of mRNA Transcriptome in Broiler Chickens. Front Vet Sci 2021; 8:663988. [PMID: 33937385 PMCID: PMC8085336 DOI: 10.3389/fvets.2021.663988] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023] Open
Abstract
The present study evaluated the effects of dietary supplementation of Enteromorpha polysaccharides (EP) on carcass traits of broilers and potential molecular mechanisms associated with it. This study used RNA-Sequencing (RNA-Seq) to detect modification in mRNA transcriptome and the cognate biological pathways affecting the carcass traits. A total of 396 one-day-old male broilers (Arbor Acres) were randomly assigned to one of six dietary treatments containing EP at 0 (CON), 1000 (EP_1000), 2500 (EP_2500), 4000 (EP_4000), 5500 (EP_5500), and 7000 (EP_7000) mg/kg levels for a 35-d feeding trial with 6 replicates/treatment. At the end of the feeding trial, six birds (one bird from each replicate cage) were randomly selected from each treatment and slaughtered for carcass traits analysis. The results showed that the dietary supplementation of EP_7000 improved the breast muscle yield (p < 0.05). Subsequently, six breast muscle samples from CON and EP_7000 groups (three samples from each group) were randomly selected for RNA-Seq analysis. Based on the RNA-Seq results, a total of 154 differentially expressed genes (DEGs) were identified (p < 0.05). Among the DEGs, 112 genes were significantly upregulated, whereas 42 genes were significantly down-regulated by EP_7000 supplementation. Gene Ontology enrichment analysis showed that the DEGs were mainly enriched in immune-related signaling pathways, macromolecule biosynthetic, DNA-templated, RNA biosynthetic, and metabolic process (p < 0.05). Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the DEGs were enriched in signaling pathways related to viral infectious diseases and cell adhesion molecules (p < 0.05). In conclusion, dietary inclusion of EP_7000 improves the breast muscle yield, which may be involved in improving the immunity and the cell differentiation of broilers, thus promoting the muscle growth of broilers. These findings could help understand the molecular mechanisms that enhance breast muscle yield by dietary supplementation of EP in broilers.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | | | - Yan Guo
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sheng-Jian Qiu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|