1
|
Hu Y, Zhang W, Yang K, Lin X, Liu HC, Odle J, See MT, Cui X, Li T, Wang S, Liao X, Zhang L, Li S, Hu Y, Luo X. Dietary Zn proteinate with moderate chelation strength alleviates heat stress-induced intestinal barrier function damage by promoting expression of tight junction proteins via the A20/NF-κB p65/MMP-2 pathway in the jejunum of broilers. J Anim Sci Biotechnol 2024; 15:115. [PMID: 39217350 PMCID: PMC11366149 DOI: 10.1186/s40104-024-01075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength (Zn-Prot M) can alleviate heat stress (HS)-induced intestinal barrier function damage of broilers. A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers. Under high temperature (HT), a 1 (Control, HT-CON) + 2 (Zn source) × 2 (added Zn level) factorial arrangement of treatments was used. The 2 added Zn sources were Zn-Prot M and Zn sulfate (ZnS), and the 2 added Zn levels were 30 and 60 mg/kg. Under normal temperature (NT), a CON group (NT-CON) and pair-fed group (NT-PF) were included. RESULTS The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1, occludin, junctional adhesion molecule-A (JAMA), zonula occludens-1 (ZO-1) and zinc finger protein A20 (A20) in the jejunum, and HS also remarkably increased serum fluorescein isothiocyanate dextran (FITC-D), endotoxin and interleukin (IL)-1β contents, serum diamine oxidase (DAO) and matrix metalloproteinase (MMP)-2 activities, nuclear factor kappa-B (NF-κB) p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum. However, dietary supplementation with Zn, especially organic Zn as Zn-Prot M at 60 mg/kg, significantly decreased serum FITC-D, endotoxin and IL-1β contents, serum DAO and MMP-2 activities, NF-κB p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers, and notably promoted mRNA and protein expression levels of claudin-1, ZO-1 and A20. CONCLUSIONS Our results suggest that dietary Zn, especially 60 mg Zn/kg as Zn-Prot M, can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.
Collapse
Affiliation(s)
- Yangyang Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Ke Yang
- Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Miles Todd See
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Shengchen Wang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sufen Li
- Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
2
|
Koch F, Reyer H, Görs S, Hansen C, Wimmers K, Kuhla B. Heat stress and feeding effects on the mucosa-associated and digesta microbiome and their relationship to plasma and digesta fluid metabolites in the jejunum of dairy cows. J Dairy Sci 2024; 107:5162-5177. [PMID: 38431250 DOI: 10.3168/jds.2023-24242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
The intestinal microbiota plays a pivotal role in digestive processes and maintains gut health and intestinal homeostasis. These functions may be compromised by increased environmental heat, which in turn reduces feed intake and gut integrity and activates the intestinal immune system. It remains unknown whether high ambient temperatures, which cause heat stress (HS) in dairy cows, disturb the eubiosis of the microbial community, and if so, to which extent the reduction in feed intake and the impairment of circulating and intestinal metabolites account for the alterations of the jejunal microbiota. To address these questions, jejunal digesta, mucosa, and plasma samples were collected from cows exposed to heat stress (HS; 28°C, temperature-humidity index [THI] = 76, n = 10), control conditions (CON; 16°C, THI = 60, n = 10), or pair-fed (PF; 16°C, THI = 60, n = 10) for 7 d. Digesta fluids were examined for pH, acetate, nonesterified fatty acids (NEFA), glucose, and lactate, and plasma samples were analyzed for glucose, lactate, BHB, triglycerides, NEFA, creatinine, and urea. The microbiota of the digesta and mucosa samples were analyzed by 16S rRNA sequencing. The α-diversity was higher in mucosa than digesta but was not affected by high ambient temperatures. However, the mucosa-associated microbiota appeared more responsive to ambient heat than the digesta microbiome. The adaptive responses under HS conditions comprised an increased mucosal abundance of Bifidobacteriaceae, Succinivibrionaceae UCG-001, Clostridia and Lactobacillus. In the digesta, HS has exerted effects on microbial abundance of Colidextribacter, and Lachnospiraceae UCG-008. Several correlations between plasma or intestinal metabolites and microbiota were elucidated, including Methanobacteriaceae correlating positively with plasma BHB and digesta glucose concentrations. Moreover, the reduction in feed intake during HS had non-negligible effects on microbial diversity and the abundance of certain taxa, underpinning the importance of nutrient supply on maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Franziska Koch
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Christiane Hansen
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Institute of Livestock Farming, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
3
|
Li H, Zhang G, Liu Y, Gao F, Ye X, Lin R, Wen M. Hypoxia-inducible factor 1α inhibits heat stress-induced pig intestinal epithelial cell apoptosis through eif2α/ATF4/CHOP signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171649. [PMID: 38485018 DOI: 10.1016/j.scitotenv.2024.171649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Unstoppable global warming and increased frequency of extreme heat leads to human and animals easier to suffer from heat stress (HS), with gastrointestinal abnormalities as one of the initial clinical symptoms. HS induces intestinal mucosal damage owing to intestinal hypoxia and hyperthermia. Hypoxia-inducible factor 1α (HIF-1α) activates numerous genes to mediate cell hypoxic responses; however, its role in HS-treated intestinal mucosa is unknown. This work aimed to explore HIF-1α function and regulatory mechanisms in HS-treated pig intestines. We assigned 10 pigs to control and moderate HS groups. Physical signs, stress, and antioxidant levels were detected, and the intestines were harvested after 72 h of HS treatment to study histological changes and HIF-1α, heat shock protein 90 (HSP90), and prolyl-4-hydroxylase 2 (PHD-2) expression. In addition, porcine intestinal columnar epithelial cells (IPEC-J2) underwent HS treatment (42 °C, 5 % O2) to further explore the functions and regulatory mechanism of HIF-1α. The results of histological examination revealed HS caused intestinal villi damage and increased apoptotic epithelial cell; the expression of HIF-1α and HSP90 increased while PHD-2 showed and opposite trend. Transcriptome sequencing analysis revealed that HS activated HIF-1 signaling. To further explore the role of HIF-1α on HS induced IPEC-J2 apoptosis, the HIF-1α was interfered and overexpression respectively, and the result confirmed that HIF-1α could inhibited cell apoptosis under HS. Furthermore, HS-induced apoptosis depends on eukaryotic initiation factor 2 alpha (eif2α)/activating transcription factor 4 (ATF4)/CCAAT-enhancer-binding protein homologous protein (CHOP) pathway, and HIF-1α can inhibit this pathway to alleviate IPEC-J2 cell apoptosis. In conclusion, this study suggests that HS can promote intestinal epithelial cell apoptosis and cause pig intestinal mucosal barrier damage; the HIF-1α can alleviate cell apoptosis by inhibiting eif2α/ATF4/CHOP signaling. These results indicate that HIF-1α plays a protective role in HS, and offers a potential target for HS prevention and mitigation.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| | - Gang Zhang
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Yongqing Liu
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Fan Gao
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Xinyue Ye
- College of Agriculture, Guizhou University, Guiyang 550000, PR China
| | - Rutao Lin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| |
Collapse
|
4
|
Roy S, Saha P, Bose D, Trivedi A, More M, Lin C, Wu J, Oakes M, Chatterjee S. Periodic heat waves-induced neuronal etiology in the elderly is mediated by gut-liver-brain axis: a transcriptome profiling approach. Sci Rep 2024; 14:10555. [PMID: 38719902 PMCID: PMC11079080 DOI: 10.1038/s41598-024-60664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Heat stress exposure in intermittent heat waves and subsequent exposure during war theaters pose a clinical challenge that can lead to multi-organ dysfunction and long-term complications in the elderly. Using an aged mouse model and high-throughput sequencing, this study investigated the molecular dynamics of the liver-brain connection during heat stress exposure. Distinctive gene expression patterns induced by periodic heat stress emerged in both brain and liver tissues. An altered transcriptome profile showed heat stress-induced altered acute phase response pathways, causing neural, hepatic, and systemic inflammation and impaired synaptic plasticity. Results also demonstrated that proinflammatory molecules such as S100B, IL-17, IL-33, and neurological disease signaling pathways were upregulated, while protective pathways like aryl hydrocarbon receptor signaling were downregulated. In parallel, Rantes, IRF7, NOD1/2, TREM1, and hepatic injury signaling pathways were upregulated. Furthermore, current research identified Orosomucoid 2 (ORM2) in the liver as one of the mediators of the liver-brain axis due to heat exposure. In conclusion, the transcriptome profiling in elderly heat-stressed mice revealed a coordinated network of liver-brain axis pathways with increased hepatic ORM2 secretion, possibly due to gut inflammation and dysbiosis. The above secretion of ORM2 may impact the brain through a leaky blood-brain barrier, thus emphasizing intricate multi-organ crosstalk.
Collapse
Affiliation(s)
- Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Christina Lin
- Genomics Research and Technology Hub, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Jie Wu
- Genomics Research and Technology Hub, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Melanie Oakes
- Genomics Research and Technology Hub, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA.
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Long Beach VA Medical Center, Long Beach, CA, 90822, USA.
| |
Collapse
|
5
|
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol 2024; 100:fiae058. [PMID: 38653719 PMCID: PMC11067971 DOI: 10.1093/femsec/fiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
6
|
Li B, Wu K, Duan G, Yin W, Lei M, Yan Y, Ren Y, Zhang C. Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress. Animals (Basel) 2024; 14:998. [PMID: 38612237 PMCID: PMC11010938 DOI: 10.3390/ani14070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this study was to investigate if the supplementation of folic acid and taurine can relieve the adverse effects of different levels of heat stress (HS) on growth performance, physiological indices, antioxidative capacity, immunity, rumen fermentation and microbiota. A total of 24 Dorper × Hu crossbred lambs (27.51 ± 0.96 kg) were divided into four groups: control group (C, 25 °C), moderate HS group (MHS, 35 °C), severe HS group (SHS, 40 °C), and the treatment group, under severe HS (RHS, 40 °C, 4 and 40 mg/kg BW/d coated folic acid and taurine, respectively). Results showed that, compared with Group C, HS significantly decreased the ADG of lambs (p < 0.05), and the ADG in the RHS group was markedly higher than in the MHS and SHS group (p < 0.05). HS had significant detrimental effects on physiological indices, antioxidative indices and immune status on the 4th day (p < 0.05). The physiological indices, such as RR and ST, increased significantly (p < 0.05) with the HS level and were significantly decreased in the RHS group, compared to the SHS group (p < 0.05). HS induced the significant increase of MDA, TNF-α, and IL-β, and the decrease of T-AOC, SOD, GPx, IL-10, IL-13, IgA, IgG, and IgM (p < 0.05). However, there was a significant improvement in these indices after the supplementation of folic acid and taurine under HS. Moreover, there were a significant increase in Quinella and Succinivibrio, and an evident decrease of the genera Rikenellaceae_RC9_gut_group and Asteroleplasma under HS (p < 0.05). The LEfSe analysis showed that the genera Butyrivibrio, Eubacterium_ventriosum_group, and f_Bifidobacteriaceae were enriched in the MHS, SHS and RHS groups, respectively. Correlated analysis indicated that the genus Rikenellaceae_RC9_gut_group was positively associated with MDA, while it was negatively involved in IL-10, IgA, IgM, and SOD (p < 0.05); The genus Anaeroplasma was positively associated with the propionate and valerate, while the genus Succinivibrio was negatively involved in TNF-α (p < 0.05). In conclusion, folic acid and taurine may alleviate the adverse effects of HS on antioxidant capacity, immunomodulation, and rumen fermentation of lambs by inducing changes in the microbiome that improve animal growth performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China; (B.L.); (K.W.); (G.D.); (W.Y.); (M.L.); (Y.Y.)
| | - Chunxiang Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China; (B.L.); (K.W.); (G.D.); (W.Y.); (M.L.); (Y.Y.)
| |
Collapse
|
7
|
Wang B, Liu S, Lin L, Xu W, Gong Z, Xiao W. The protective effect of L-theanine on the intestinal barrier in heat-stressed organisms. Food Funct 2024; 15:3036-3049. [PMID: 38414417 DOI: 10.1039/d3fo04459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heat stress caused by heatwaves, extreme temperatures, and other weather can damage the intestinal barrier of organisms. L-Theanine (LTA) attenuates heat stress-induced oxidative stress, inflammatory responses, and impaired immune function, but its protective effect on the intestinal barrier of heat-stressed organisms is unclear. In this study, low (100 mg kg-1 d-1), medium (200 mg kg-1 d-1), and high (400 mg kg-1 d-1) dosages of LTA were used in the gavage of C57BL/6J male mice that were experimented on for 50 d. These mice were subjected to heat stress for 2 h d-1 at 40 ± 1 °C and 60 ± 5% RH in the last 7 d. LTA attenuated the heat stress-induced decreases in body mass and feed intake, and the destruction of intestinal villi and crypt depth; reduced the serum levels of FITC-dextran and D-LA, as well as the DAO activity; and upregulated the colonic tissues of Occludin, Claudin-1, and ZO-1 mRNA and occludin protein expression. The number of goblet cells in the colon tissue of heat-stressed organisms increased in the presence of LTA, and the expression levels of Muc2, Muc4 mRNA, and Muc2 protein were upregulated. LTA increased the abundance of Bifidobacterium and Turicibacter, and decreased the abundance of Enterorhabdus and Desulfovibrio in the intestinal tract of heat-stressed organisms and restored gut microbiota homeostasis. LTA promoted the secretion of IL-4, IL-10, and sIgA and inhibited the secretion of TNF-α and IFN-γ in the colon of heat-stressed organisms. The expressions of Hsf1, Hsp70, Hsph1, TLR4, P38 MAPK, p-P65 NF-κB, MLCK mRNA, and proteins were downregulated by LTA in the colon of heat-stressed organisms. These results suggest that LTA protects the intestinal barrier in heat-stressed organisms by modulating multiple molecular pathways. Therefore, this study provides evidence on how tea-containing LTA treatments could be used to prevent and relieve intestinal problems related to heat stress.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Sha Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Liu S, Wang B, Lin L, Xu W, Gong ZH, Xiao WJ. L-Theanine alleviates heat stress through modulation of gut microbiota and immunity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2059-2072. [PMID: 37917744 DOI: 10.1002/jsfa.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Heat stress (HS) damages the intestines, disrupting gut microbiota and immune balance. l-Theanine (LTA), found in tea, alleviates oxidative stress and cell apoptosis under HS; however, its effects on gut microbiota and immunity under HS remain unclear. To investigate this, we administered LTA doses of 100, 200, and 400 mg·kg-1 ·d-1 to C57BL/6J mice. On day 44, the model group and LTA intervention group were subjected to continuous 7-day HS treatment for 2 h per day. RESULTS The results demonstrated that LTA intervention improved food intake, body weight, and intestinal epithelium, and reduced the water intake of heat-stressed mice. It increased the abundance of Turicibacter, Faecalibaculum, Bifidobacterium, and norank_f_Muribaculaceae, while reducing that of Lachnoclostridium and Desulfovibrio. LTA intervention also increased the concentrations of amino acid and lipid metabolites, regulated macrophage differentiation stimulated by gut microbiota and metabolites, reduced the antigen presentation by macrophages to the specific immune system, promoted B-cell differentiation and sIgA secretion, inhibited pro-inflammatory factors, and enhanced intestinal defense. Mechanistically, LTA downregulated heat shock protein 70 expression and the TLR4/NF-κB/p38 MAPK signaling pathway, restoring gut microbiota and immune balance. CONCLUSION We suggest that LTA can alleviate HS by modulating gut microbiota, metabolites, and immunity, indicating its potential as a natural active ingredient for anti-HS food products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sha Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Bin Wang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Zhi-Hua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Wen-Jun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|
9
|
Hu X, Zhen W, Bai D, Zhong J, Zhang R, Zhang H, Zhang Y, Ito K, Zhang B, Ma Y. Effects of dietary chlorogenic acid on cecal microbiota and metabolites in broilers during lipopolysaccharide-induced immune stress. Front Microbiol 2024; 15:1347053. [PMID: 38525083 PMCID: PMC10957784 DOI: 10.3389/fmicb.2024.1347053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Aims The aim of this study was to investigate the effects of chlorogenic acid (CGA) on the intestinal microorganisms and metabolites in broilers during lipopolysaccharide (LPS)-induced immune stress. Methods A total of 312 one-day-old Arbor Acres (AA) broilers were randomly allocated to four groups with six replicates per group and 13 broilers per replicate: (1) MS group (injected with saline and fed the basal diet); (2) ML group (injected with 0.5 mg LPS/kg and fed the basal diet); (3) MA group (injected with 0.5 mg LPS/kg and fed the basal diet supplemented with 1,000 mg/kg CGA); and (4) MB group (injected with saline and fed the basal diet supplemented with 1,000 mg/kg CGA). Results The results showed that the abundance of beneficial bacteria such as Bacteroidetes in the MB group was significantly higher than that in MS group, while the abundance of pathogenic bacteria such as Streptococcaceae was significantly decreased in the MB group. The addition of CGA significantly inhibited the increase of the abundance of harmful bacteria such as Streptococcaceae, Proteobacteria and Pseudomonas caused by LPS stress. The population of butyric acid-producing bacteria such as Lachnospiraceae and Coprococcus and beneficial bacteria such as Coriobacteriaceae in the MA group increased significantly. Non-targeted metabonomic analysis showed that LPS stress significantly upregulated the 12-keto-tetrahydroleukotriene B4, riboflavin and mannitol. Indole-3-acetate, xanthurenic acid, L-formylkynurenine, pyrrole-2-carboxylic acid and L-glutamic acid were significantly down-regulated, indicating that LPS activated inflammation and oxidation in broilers, resulting in intestinal barrier damage. The addition of CGA to the diet of LPS-stimulated broilers significantly decreased 12-keto-tetrahydro-leukotriene B4 and leukotriene F4 in arachidonic acid metabolism and riboflavin and mannitol in ABC transporters, and significantly increased N-acetyl-L-glutamate 5-semialdehyde in the biosynthesis of amino acids and arginine, The presence of pyrrole-2-carboxylic acid in D-amino acid metabolism and the cecal metabolites, indolelactic acid, xanthurenic acid and L-kynurenine, indicated that CGA could reduce the inflammatory response induced by immune stress, enhance intestinal barrier function, and boost antioxidant capacity. Conclusion We conclude that CGA can have a beneficial effect on broilers by positively altering the balance of intestinal microorganisms and their metabolites to inhibit intestinal inflammation and barrier damage caused by immune stress.
Collapse
Affiliation(s)
- Xiaodi Hu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jiale Zhong
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ruilin Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haojie Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Science & Technology Innovation Center for Completed Set Equipment, Luoyang, China
| |
Collapse
|
10
|
Shuai He, Zhang KH, Jin QY, Wang QJ, Huang J, Li JJ, Guo Y, Liu P, Liu ZY, Liu D, Geng SX, Li Q, Li MY, Liu M, Wu ZH. The effects of ambient temperature and feeding regimens on cecum bacteria composition and circadian rhythm in growing rabbits. Front Microbiol 2024; 15:1344992. [PMID: 38476945 PMCID: PMC10927733 DOI: 10.3389/fmicb.2024.1344992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Seasonal environmental shifts and improper eating habits are the important causes of diarrhea in children and growing animals. Whether adjusting feeding time at varying temperatures can modify cecal bacterial structure and improve diarrhea remains unknown. Three batches growing rabbits with two groups per batch were raised under different feeding regimens (fed at daytime vs. nighttime) in spring, summer and winter separately, and contents were collected at six time points in 1 day and used 16S rRNA sequencing to investigate the effects of feeding regimens and season on the composition and circadian rhythms of cecum bacteria. Randomized forest regression screened 12 genera that were significantly associated with seasonal ambient temperature changes. Nighttime feeding reduced the abundance of the conditionally pathogenic bacteria Desulfovibrio and Alistipes in summer and Campylobacter in winter. And also increases the circadian rhythmic Amplicon Sequence Variants in the cecum, enhancing the rhythm of bacterial metabolic activity. This rhythmic metabolic profile of cecum bacteria may be conducive to the digestion and absorption of nutrients in the host cecum. In addition, this study has identified 9 genera that were affected by the combination of seasons and feeding time. In general, we found that seasons and feeding time and their combinations affect cecum composition and circadian rhythms, and that daytime feeding during summer and winter disrupts the balance of cecum bacteria of growing rabbits, which may adversely affect cecum health and induce diarrhea risk.
Collapse
Affiliation(s)
- Shuai He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ke-Hao Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiong-Yu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang-Jun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jie Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jun-Jiao Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Handan Livestock Technology Extension Station, Handan, China
| | - Yao Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong-Ying Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shi-Xia Geng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Yong Li
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao, China
| | - Man Liu
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao, China
| | - Zhong-Hong Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Fan MZ, Cheng L, Wang M, Chen J, Fan W, Jashari F, Wang W. Monomodular and multifunctional processive endocellulases: implications for swine nutrition and gut microbiome. Anim Microbiome 2024; 6:4. [PMID: 38308359 PMCID: PMC10837961 DOI: 10.1186/s42523-024-00292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
Poor efficiency of dietary fibre utilization not only limits global pork production profit margin but also adversely affects utilization of various dietary nutrients. Poor efficiency of dietary nutrient utilization further leads to excessive excretion of swine manure nutrients and results in environmental impacts of emission of major greenhouse gases (GHG), odor, nitrate leaching and surface-water eutrophication. Emission of the major GHG from intensive pork production contributes to global warming and deteriorates heat stress to pigs in tropical and sub-tropical swine production. Exogenous fibre enzymes of various microbial cellulases, hemicellulases and pectinases have been well studied and used in swine production as the non-nutritive gut modifier feed enzyme additives in the past over two decades. These research efforts have aimed to improve growth performance, nutrient utilization, intestinal fermentation as well as gut physiology, microbiome and health via complementing the porcine gut symbiotic microbial fibrolytic activities towards dietary fibre degradation. The widely reported exogenous fibre enzymes include the singular use of respective cellulases, hemicellulases and pectinases as well as their multienzyme cocktails. The currently applied exogenous fibre enzymes are largely limited by their inconsistent in vivo efficacy likely due to their less defined enzyme stability and limited biochemical property. More recently characterized monomodular, multifunctional and processive endoglucanases have the potential to be more efficaciously used as the next-generation designer fibre biocatalysts. These newly emerging multifunctional and processive endoglucanases have the potential to unleash dietary fibre sugar constituents as metabolic fuels and prebiotics, to optimize gut microbiome, to maintain gut permeability and to enhance performance in pigs under a challenged environment as well as to parallelly unlock biomass to manufacture biofuels and biomaterials.
Collapse
Affiliation(s)
- Ming Z Fan
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada.
- One Health Institute, University of Guelph, N1G 2W1, Guelph, ON, Canada.
| | - Laurence Cheng
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Min Wang
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Jiali Chen
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Wenyi Fan
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
- Transpharmation LTD, N1M 2W3, Fergus, ON, Canada
| | - Fatmira Jashari
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
- Department of Human Health and Nutritional Sciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Weijun Wang
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
- The Canadian Food Inspection Agency Ontario Operation, N1G 4S9, Guelph, ON, Canada
| |
Collapse
|
12
|
Yu Z, Cantet JM, Paz HA, Kaufman JD, Orellano MS, Ipharraguerre IR, Ríus AG. Heat stress-associated changes in the intestinal barrier, inflammatory signals, and microbiome communities in dairy calves. J Dairy Sci 2024; 107:1175-1196. [PMID: 37730180 DOI: 10.3168/jds.2023-23873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Recent studies indicate that heat stress pathophysiology is associated with intestinal barrier dysfunction, local and systemic inflammation, and gut dysbiosis. However, inconclusive results and a poor description of tissue-specific changes must be addressed to identify potential intervention targets against heat stress illness in growing calves. Therefore, the objective of this study was to evaluate components of the intestinal barrier, pro- and anti-inflammatory signals, and microbiota community composition in Holstein bull calves exposed to heat stress. Animals (mean age = 12 wk old; mean body weight = 122 kg) penned individually in temperature-controlled rooms were assigned to (1) thermoneutral conditions (constant room temperature at 19.5°C) and restricted offer of feed (TNR, n = 8), or (2) heat stress conditions (cycles of room temperatures ranging from 20 to 37.8°C) along with ad libitum offer of feed (HS, n = 8) for 7 d. Upon treatment completion, sections of the jejunum, ileum, and colon were collected and snap-frozen immediately to evaluate gene and protein expression, cytokine concentrations, and myeloperoxidase activity. Digesta aliquots of the ileum, colon, and rectum were collected to assess bacterial communities. Plasma was harvested on d 2, 5, and 7 to determine cytokine concentrations. Overall, results showed a section-specific effect of HS on intestinal integrity. Jejunal mRNA expression of TJP1 was decreased by 70.9% in HS relative to TNR calves. In agreement, jejunal expression of heat shock transcription factor-1 protein, a known tight junction protein expression regulator, decreased by 48% in HS calves. Jejunal analyses showed that HS decreased concentrations of IL-1α by 36.6% and tended to decrease the concentration of IL-17A. Conversely, HS elicited a 3.5-fold increase in jejunal concentration of anti-inflammatory IL-36 receptor antagonist. Plasma analysis of pro-inflammatory cytokines showed that IL-6 decreased by 51% in HS relative to TNR calves. Heat stress alteration of the large intestine bacterial communities was characterized by increased genus Butyrivibrio_3, a known butyrate-producing organism, and changes in bacteria metabolism of energy and AA. A strong positive correlation between the rectal temperature and pro-inflammatory Eggerthii spp. was detected in HS calves. In conclusion, this work indicates that HS impairs the intestinal barrier function of jejunum. The pro- and anti-inflammatory signal changes may be part of a broader response to restore intestinal homeostasis in jejunum. The changes in large intestine bacterial communities favoring butyrate-producing organisms (e.g., Butyrivibrio spp.) may be part of a successful response to maintain the integrity of the colonic mucosa of HS calves. The alteration of intestinal homeostasis should be the target for heat stress therapies to restore biological functions, and, thus highlights the relevance of this work.
Collapse
Affiliation(s)
- Z Yu
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996
| | - J M Cantet
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996
| | - H A Paz
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205; Arkansas Children's Nutrition Center, Little Rock, AR 72202
| | - J D Kaufman
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996
| | - M S Orellano
- Centro de Investigaciones y Transferencia de Villa María, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Villa María, Villa María, Córdoba 5900, Argentina
| | - I R Ipharraguerre
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel 24118, Germany
| | - A G Ríus
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996.
| |
Collapse
|
13
|
Cheng Q, Wang K, Lu R, Xiong Y, Luo X, Li X, Liu W, Wang J, Li Y, Yan J. Effect of white jade snail secretion on antioxidant capacity and intestinal microbial diversity in mouse model of acute gastric ulcer. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1723-1731. [PMID: 37851602 DOI: 10.1002/jsfa.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND In the present work, acute gastric ulcer models were constructed by administering hydrochloric acid/ethanol. The mice ingested white jade snail secretion (WJSS) through gastric infusion. Ulcer areas in gastric tissue were recorded, and malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Notably, high-throughput 16S rDNA analysis of intestinal flora and determination of amino acid composition in feces were performed to understand the effect of WJSS on model mice. RESULTS Compared with the control group, the ulcer area in the WJSS low-, medium- and high-concentration groups declined by 28.02%, 39.57% and 77.85%, respectively. MDA content decreased by 24.71%, 49.58% and 64.25%, and SOD relative enzyme activity fell by 28.19%, 43.37% and 9.60%, respectively. The amounts of amino acids in the low-, medium- and high-concentration groups were slightly lower, and probiotic bacteria such as Bacteroidetes and Lactobacillales increased in different-concentration WJSS groups. Adding WJSS contributes to the establishment of beneficial intestinal flora and the absorption of amino acids. CONCLUSION Our results showed that WJSS has a beneficial effect on inhibiting hydrochloric acid-ethanolic gastric ulcers, suggesting that WJSS has excellent potential as a novel anti-ulcer agent. Combined with ulcer area, MDA content, SOD content, gut probiotics and other indicators, a high concentration of WJSS had the best protective effect on acute gastric ulcer. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian Cheng
- Medical College, Guangxi University, Nanning, China
| | - Kaidi Wang
- Medical College, Guangxi University, Nanning, China
| | - Rui Lu
- Medical College, Guangxi University, Nanning, China
| | - Yi Xiong
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Xianqing Luo
- Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi, Nanning, China
| | - Xian Li
- Medical College, Guangxi University, Nanning, China
| | - Wei Liu
- Medical College, Guangxi University, Nanning, China
| | - Jiayu Wang
- Medical College, Guangxi University, Nanning, China
| | - Yixiang Li
- Medical College, Guangxi University, Nanning, China
| | - Jianhua Yan
- Medical College, Guangxi University, Nanning, China
| |
Collapse
|
14
|
Huau G, Liaubet L, Gourdine JL, Riquet J, Renaudeau D. Multi-tissue metabolic and transcriptomic responses to a short-term heat stress in swine. BMC Genomics 2024; 25:99. [PMID: 38262957 PMCID: PMC10804606 DOI: 10.1186/s12864-024-09999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Heat stress (HS) is an increasing threat for pig production with a wide range of impacts. When submitted to high temperatures, pigs will use a variety of strategies to alleviate the effect of HS. While systemic adaptations are well known, tissue-specific changes remain poorly understood. In this study, thirty-two pigs were submitted to a 5-day HS at 32 °C. RESULTS Transcriptomic and metabolomic analyses were performed on several tissues. The results revealed differentially expressed genes and metabolites in different tissues. Specifically, 481, 1774, 71, 1572, 17, 164, and 169 genes were differentially expressed in muscle, adipose tissue, liver, blood, thyroid, pituitary, and adrenal glands, respectively. Regulatory glands (pituitary, thyroid, and adrenal) had a lower number of regulated genes, perhaps indicating an earlier sensitivity to HS. In addition, 7, 8, 2, and 8 metabolites were differentially produced in muscle, liver, plasma, and urine, respectively. The study also focused on the oxidative stress pathway in muscle and liver by performing a correlation analysis between genes and metabolites. CONCLUSIONS This study has identified various adaptation mechanisms in swine that enable them to cope with heat stress (HS). These mechanisms include a global decrease in energetic metabolism, as well as changes in metabolic precursors that are linked with protein and lipid catabolism and anabolism. Notably, the adaptation mechanisms differ significantly between regulatory (pituitary, thyroid and adrenal glands) and effector tissues (muscle, adipose tissue, liver and blood). Our findings provide new insights into the comprehension of HS adaptation mechanisms in swine.
Collapse
Affiliation(s)
- Guilhem Huau
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | | | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | | |
Collapse
|
15
|
Hudson J, Egan S. Marine diseases and the Anthropocene: Understanding microbial pathogenesis in a rapidly changing world. Microb Biotechnol 2024; 17:e14397. [PMID: 38217393 PMCID: PMC10832532 DOI: 10.1111/1751-7915.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
Healthy marine ecosystems are paramount for Earth's biodiversity and are key to sustaining the global economy and human health. The effects of anthropogenic activity represent a pervasive threat to the productivity of marine ecosystems, with intensifying environmental stressors such as climate change and pollution driving the occurrence and severity of microbial diseases that can devastate marine ecosystems and jeopardise food security. Despite the potentially catastrophic outcomes of marine diseases, our understanding of host-pathogen interactions remains an understudied aspect of both microbiology and environmental research, especially when compared to the depth of information available for human and agricultural systems. Here, we identify three avenues of research in which we can advance our understanding of marine disease in the context of global change, and make positive steps towards safeguarding marine communities for future generations.
Collapse
Affiliation(s)
- Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
16
|
Yuan L, Zhu C, Gu F, Zhu M, Yao J, Zhu C, Li S, Wang K, Hu P, Zhang Y, Cai D, Liu HY. Lactobacillus johnsonii N5 from heat stress-resistant pigs improves gut mucosal immunity and barrier in dextran sodium sulfate-induced colitis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:210-224. [PMID: 38033603 PMCID: PMC10685162 DOI: 10.1016/j.aninu.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 12/02/2023]
Abstract
Developing effective strategies to prevent diarrhea and associated-gut disorders in mammals has gained great significance. Owing to the many health benefits provided by the commensal microbiota of the intestinal tract, such as against environmental perturbation, we explored the host phenotype-associated microbes and their probiotic potential. Based on the observations that the chronic heat stress-exposed weaned piglets present as heat stress-susceptible (HS-SUS) or heat stress-resistant (HS-RES) individuals, we confirmed the phenotypic difference between the two on growth performance (P < 0.05), diarrhea index (P < 0.001), intestinal heat shock protein 70 (HSP70) regulation (P < 0.01), and inflammatory responses (P < 0.01). By comparing the gut microbiome using 16S rRNA gene sequencing and KEGG functional analysis, we found that Lactobacillus johnsonii exhibited significantly higher relative abundance in the HS-RES piglets than in the HS-SUS ones (P < 0.05). Further experiments using a mouse model for chemical-induced inflammation and intestinal injury demonstrated that oral administration of a representative L. johnsonii N5 (isolated from the HS-RES piglets) ameliorated the clinical and histological signs of colitis while suppressing intestinal pro-inflammatory cytokines TNF-α and IL-6 production (P < 0.05). We found that N5 treatment enhanced tight junction proteins ZO-1 and occludin and cytoprotective HSP70 levels under physiological condition and restored their mucosal expressions in colitis (P < 0.05). In support of the high production of the anti-inflammatory cytokine IL-10, N5 promoted the intestinal Peyer's patches MHCII+ and CD103+ dendritic cell populations (P < 0.05), increased the regulatory T (Treg) cell numbers (P < 0.05), and decreased the Th17 population and its IL-17a production under physiological condition and during colitis (P < 0.01). Our results shed light on understanding the interaction between commensal Lactobacillus and the host health, and provide L. johnsonii N5 as an alternative to antibiotics for preventing diarrhea and intestinal diseases.
Collapse
Affiliation(s)
- Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiacheng Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kun Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yunzeng Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Cao KX, Deng ZC, Liu M, Huang YX, Yang JC, Sun LH. Heat Stress Impairs Male Reproductive System with Potential Disruption of Retinol Metabolism and Microbial Balance in the Testis of Mice. J Nutr 2023; 153:3373-3381. [PMID: 37923224 DOI: 10.1016/j.tjnut.2023.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Heat stress (HS) has a harmful impact on the male reproductive system, primarily by reducing the sperm quality. The testicular microenvironment plays an important role in sperm quality. OBJECTIVES This study aimed to explore the underlying mechanism by which HS impairs the male reproductive system through the testicular microenvironment. METHODS Ten-week-old male mice (n = 8 mice/group) were maintained at a normal temperature (25°C, control) or subjected to HS (38°C for 2 h each day, HS) for 2 wk. The epididymides and testes were collected at week 2 to determine sperm quality, histopathology, retinol concentration, the expression of retinol metabolism-related genes, and the testicular microbiome. The testicular microbiome profiles were analyzed using biostatistics and bioinformatics; other data were analyzed using a 2-sided Student's t test. RESULTS Compared with the control, HS reduced (P < 0.05) sperm count (42.4%) and motility (97.7%) and disrupted the integrity of the blood-testis barrier. Testicular microbial profiling analysis revealed that HS increased the abundance of the genera Asticcacaulis, Enhydrobacter, and Stenotrophomonas (P < 0.05) and decreased the abundance of the genera Enterococcus and Pleomorphomonas (P < 0.05). Notably, the abundance of Asticcacaulis spp. showed a significant negative correlation with sperm count (P < 0.001) and sperm motility (P < 0.001). Moreover, Asticcacaulis spp. correlated significantly with most blood differential metabolites, particularly retinol (P < 0.05). Compared with the control, HS increased serum retinol concentrations (25.3%) but decreased the testis retinol concentration by 23.7%. Meanwhile, HS downregulated (P < 0.05) the expression of 2 genes (STRA6 and RDH10) and a protein (RDH10) involved in retinol metabolism by 27.3%-36.6% in the testis compared with the control. CONCLUSIONS HS reduced sperm quality, mainly because of an imbalance in the testicular microenvironment potentially caused by an increase in Asticcacaulis spp. and disturbed retinol metabolism. These findings may offer new strategies for improving male reproductive capacity under HS.
Collapse
Affiliation(s)
- Ke-Xin Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhang-Chao Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Wang J, Chen Y, Li M, Xia S, Zhao K, Fan H, Ni J, Sun W, Jia X, Lai S. The effects of differential feeding on ileum development, digestive ability and health status of newborn calves. Front Vet Sci 2023; 10:1255122. [PMID: 37745216 PMCID: PMC10514501 DOI: 10.3389/fvets.2023.1255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Pre-weaning is the most important period for the growth and development of calves. Intestinal morphology, microbial community and immunity are initially constructed at this stage, and even have a lifelong impact on calves. Early feeding patterns have a significant impact on gastrointestinal development and microbial communities. This study mainly analyzed the effects of three feeding methods on the gastrointestinal development of calves, and provided a theoretical basis for further improving the feeding mode of calves. it is very important to develop a suitable feeding mode. In this study, we selected nine newborn healthy Holstein bull calves were randomly selected and divided into three groups (n = 3), which were fed with starter + hay + milk (SH group), starter + milk (SF group), total mixed ration + milk (TMR group). After 80 days of feeding Feeding to 80 days of age after, the ileum contents and blood samples were collected, and the differences were compared and analyzed by metagenomic analysis and serum metabolomics analysis. Results show that compared with the other two groups, the intestinal epithelium of the SH group was more complete and the goblet cells developed better. The feeding method of SH group was more conducive to the development of calves, with higher daily gain and no pathological inflammatory reaction. The intestinal microbial community was more conducive to digestion and absorption, and the immunity was stronger. These findings are helpful for us to explore better calf feeding patterns. In the next step, we will set up more biological replicates to study the deep-seated reasons for the differences in the development of pre-weaning calves. At the same time, the new discoveries of neuro microbiology broaden our horizons and are the focus of our future attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Le HH, Zhao W, Furness JB, Shakeri M, DiGiacomo K, Roura E, Renaudeau D, Gabler NK, Leury BJ, Dunshea FR, Wijffels G, Cottrell JJ. Using Recombinant Superoxide Dismutase to Control Oxidative Stress in the Gastrointestinal Tract of Cyclic Heat-Stressed Pigs. Animals (Basel) 2023; 13:2681. [PMID: 37627472 PMCID: PMC10451771 DOI: 10.3390/ani13162681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Climate change is associated with an increased frequency and intensity of heat waves, posing a threat of heat stress to pig production. Heat stress compromises the efficiency of pig production partly due to causing oxidative stress, intestinal dysfunction, and inflammatory responses. Superoxide dismutase is an antioxidant enzyme reported to reduce oxidative stress and inflammation. Therefore, this experiment aimed to investigate whether recombinant superoxide dismutase (rSOD) could ameliorate oxidative stress and inflammatory responses in heat-stressed grower pigs. Sixty-four female pigs (Large White × Landrace, 27.8 ± 1.65 kg, mean ± SD) were randomly allocated to a control diet (standard grower feed, CON) or the control diet supplemented with 50 IU recombinant superoxide dismutase (rSOD) for 14 days. After acclimation to the diet, pigs were then housed under thermoneutral (TN, 20 °C, 35-50% relative humidity) or cyclic heat stress conditions (CHS, at 35 °C: 9 a.m. to 5 p.m. and 28 °C: 5 p.m. to 9 a.m., 35-50% relative humidity) for 3 days. Heat stress increased respiration rate (RR), skin and rectal temperature (RR and RT) (p < 0.001 for all), and reduced plasma thyroid hormone concentration (p < 0.001). The amount of oxidized glutathione (GSH:GSSG) was increased in the jejunum and ileum of CHS pigs. In the jejunum, rSOD also increased the amount of oxidized glutathione in both TN and CHS pigs, without any change in endogenous SOD activity. In the ileum, rSOD prevented increases in oxidized glutathione formation in the CHS pigs only. Taken together, this may reflect increased oxidative stress in both the jejunum and ileum in CHS pigs. Alternatively, rSOD increased the conversion of reduced to oxidized glutathione independently of CHS, possibly reflecting an increased overall SOD activity due to the addition of exogenous SOD. In conclusion, the use of in-feed SOD enzymes at a dose of 50 IU/kg may be a useful strategy for preventing oxidative stress in pigs.
Collapse
Affiliation(s)
- Hieu Huu Le
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.H.L.); (W.Z.); (M.S.); (K.D.); (B.J.L.); (F.R.D.)
- Faculty of Animal Sciences, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Weicheng Zhao
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.H.L.); (W.Z.); (M.S.); (K.D.); (B.J.L.); (F.R.D.)
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85719, USA
| | - John Barton Furness
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia;
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Majid Shakeri
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.H.L.); (W.Z.); (M.S.); (K.D.); (B.J.L.); (F.R.D.)
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Kristy DiGiacomo
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.H.L.); (W.Z.); (M.S.); (K.D.); (B.J.L.); (F.R.D.)
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - David Renaudeau
- PEGASE, INRAE, Agrocampus Ouest, 16 Le Clos Domaine de la Prise, 35590 Saint-Gilles, France;
| | | | - Brian Joseph Leury
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.H.L.); (W.Z.); (M.S.); (K.D.); (B.J.L.); (F.R.D.)
| | - Frank Rowland Dunshea
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.H.L.); (W.Z.); (M.S.); (K.D.); (B.J.L.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Gene Wijffels
- CSIRO Agriculture and Food, St. Lucia, QLD 4067, Australia;
| | - Jeremy James Cottrell
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.H.L.); (W.Z.); (M.S.); (K.D.); (B.J.L.); (F.R.D.)
| |
Collapse
|
20
|
Li K, Abdelsattar MM, Gu M, Zhao W, Liu H, Li Y, Guo P, Huang C, Fang S, Gan Q. The Effects of Temperature and Humidity Index on Growth Performance, Colon Microbiota, and Serum Metabolome of Ira Rabbits. Animals (Basel) 2023; 13:1971. [PMID: 37370481 DOI: 10.3390/ani13121971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigates the effects of different THI values on growth performance, intestinal microbes, and serum metabolism in meat rabbits. The results showed that there were significant differences in THI in different location regions of the rabbit house. The high-THI group (HG) could significantly reduce average daily gain and average daily feed intake in Ira rabbits (p < 0.05). The low-THI group (LG) significantly increased the relative abundance of Blautia (p < 0.05). The HG significantly increased the relative abundance of Lachnospiraceae NK4A136 group and reduced bacterial community interaction (p < 0.05). The cytokine-cytokine receptor interactions, nuclear factor kappa B signaling pathway, and toll-like receptor signaling pathway in each rabbit's gut were activated when the THI was 26.14 (p < 0.05). Metabolic pathways such as the phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolisms were activated when the THI was 27.25 (p < 0.05). Meanwhile, the TRPV3 and NGF genes that were associated with heat sensitivity were significantly upregulated (p < 0.05). In addition, five metabolites were found to be able to predict THI levels in the environment with an accuracy of 91.7%. In summary, a THI of 26.14 is more suitable for the growth of meat rabbits than a THI of 27.25, providing a reference for the efficient feeding of meat rabbits.
Collapse
Affiliation(s)
- Keyao Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mahmoud M Abdelsattar
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Mingming Gu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoyu Liu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yafei Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pingting Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoming Fang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianfu Gan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Qin S, Peng Y, She F, Zhang J, Li L, Chen F. Positive effects of selenized-oligochitosan on zearalenone-induced intestinal dysfunction in piglets. Front Vet Sci 2023; 10:1184969. [PMID: 37261113 PMCID: PMC10228365 DOI: 10.3389/fvets.2023.1184969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
This paper assessed the positive effects of selenized-oligochitosan (SOC) on zearalenone(ZEN)-induced intestinal dysfunction in piglets. Sixty piglets were randomly divided into 4 groups. Group C was fed the basal diet as a control and Group Z was supplemented with 2 μg/g ZEN in the basal diet; Group ZS1 and ZS2 were supplemented with 0.3 or 0.5 μg/g SOC (calculated by selenium), in addition to 2 μg/g ZEN in the basal diet. After 42 days, ileal mucosal structure, digestive enzyme activities, tight junction protein mRNA expressions, plasma D-lactate and D-xylose contents, and plasma diamine oxidase activities were determined. Compare with Group C, ileal villus height, value of villus height/crypt depth, trypsin, lipase and α-amylase activities, occluding, claudin-1 and ZO-1 mRNA expressions, and plasma D-xylose levels were significantly decreased (p < 0.01) in piglets of group Z; while compare to Group C, ileal crypt depth, plasma D-lactate contents and diamine oxidase activities were significantly increased in piglets of group Z (p < 0.01 or p < 0.05). Compare with Group Z, ileal villus height, lipase and α-amylase activities, occluding, claudin-1 and ZO-1 mRNA expressions, and plasma D-xylose levels were significantly elevated in piglets of group ZS1 and ZS2 (p < 0.01); while compare to Group Z, plasma D-lactate and diamine oxidase contents were significantly reduced in piglets of group ZS1 and ZS2 (p < 0.01 or p < 0.05). Compare with Group Z, value of villus height/crypt depth and trypsin activity were significantly promoted in piglets of group ZS2 (p < 0.01); whereas ileal crypt depth was significantly reduced in piglets of group ZS2 (p <0.01).Thus, SOC can mitigate ZEN-induced intestinal dysfunction in piglets.
Collapse
Affiliation(s)
- Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
- Department of Agricultural Science and Technology, Hotan Vocational and Technical College, Hotan, People's Republic of China
| | - Yukai Peng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Jianbin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Szabó C, Kachungwa Lugata J, Ortega ADSV. Gut Health and Influencing Factors in Pigs. Animals (Basel) 2023; 13:ani13081350. [PMID: 37106913 PMCID: PMC10135089 DOI: 10.3390/ani13081350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The gastrointestinal tract (GIT) is a complex, dynamic, and critical part of the body, which plays an important role in the digestion and absorption of ingested nutrients and excreting waste products of digestion. In addition, GIT also plays a vital role in preventing the entry of harmful substances and potential pathogens into the bloodstream. The gastrointestinal tract hosts a significant number of microbes, which throughout their metabolites, directly interact with the hosts. In modern intensive animal farming, many factors can disrupt GIT functions. As dietary nutrients and biologically active substances play important roles in maintaining homeostasis and eubiosis in the GIT, this review aims to summarize the current status of our knowledge on the most important areas.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - James Kachungwa Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Arth David Sol Valmoria Ortega
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| |
Collapse
|
23
|
Jinno C, Wong B, Klünemann M, Htoo J, Li X, Liu Y. Effects of supplementation of Bacillus amyloliquefaciens on performance, systemic immunity, and intestinal microbiota of weaned pigs experimentally infected with a pathogenic enterotoxigenic E. coli F18. Front Microbiol 2023; 14:1101457. [PMID: 37007512 PMCID: PMC10050357 DOI: 10.3389/fmicb.2023.1101457] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary supplementation of Bacillus (B.) amyloliquefaciens on growth performance, diarrhea, systemic immunity, and intestinal microbiota of weaned pigs experimentally infected with F18 enterotoxigenic Escherichia coli (ETEC). A total of 50 weaned pigs (7.41 ± 1.35 kg BW) were individually housed and randomly allotted to one of the following five treatments: sham control (CON-), sham B. amyloliquefaciens (BAM-), challenged control (CON+), challenged B. amyloliquefaciens (BAM+), and challenged carbadox (AGP+). The experiment lasted 28 days, with 7 days of adaptation and 21 days after the first ETEC inoculation. ETEC challenge reduced (P < 0.05) average daily gain (ADG) of pigs. Compared with CON+, AGP+ enhanced (P < 0.05) ADG, while B. amyloliquefaciens supplementation tended (P < 0.10) to increase ADG in pigs from days 0 to 21 post-inoculation (PI). The ETEC challenge increased (P < 0.05) white blood cell (WBC) count on days 7 and 21 PI, while BAM+ pigs tended (P < 0.10) to have low WBC on day 7 PI and had lower (P < 0.05) WBC on day 21 PI compared with CON+. In comparison to AGP+ fecal microbiota, BAM+ had a lower (P < 0.05) relative abundance of Lachnospiraceae on day 0 and Clostridiaceae on day 21 PI, but a higher (P < 0.05) relative abundance of Enterobacyeriaceae on day 0. In ileal digesta, the Shannon index was higher (P < 0.05) in BAM+ than in AGP+. Bray-Curtis PCoA displayed a difference in bacterial community composition in ileal digesta collected from sham pigs vs. ETEC-infected pigs on day 21 PI. Pigs in BAM+ had a greater (P < 0.05) relative abundance of Firmicutes, but a lower (P < 0.05) relative abundance of Actinomycetota and Bacteroidota in ileal digesta than pigs in AGP+. Ileal digesta from AGP+ had a greater (P < 0.05) abundance of Clostridium sensu stricto 1 but lower (P < 0.05) Bifidobacterium than pigs in BAM+. In conclusion, supplementation of B. amyloliquefaciens tended to increase ADG and had limited effects on the diarrhea of ETEC-infected pigs. However, pigs fed with B. amyloliquefaciens exhibit milder systemic inflammation than controls. B. amyloliquefaciens differently modified the intestinal microbiota of weaned pigs compared with carbadox.
Collapse
Affiliation(s)
- Cynthia Jinno
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Braden Wong
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | | | - John Htoo
- Evonik Operations GmbH, Hanau, Germany
| | - Xunde Li
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu
| |
Collapse
|
24
|
Dang G, Wen X, Zhong R, Wu W, Tang S, Li C, Yi B, Chen L, Zhang H, Schroyen M. Pectin modulates intestinal immunity in a pig model via regulating the gut microbiota-derived tryptophan metabolite-AhR-IL22 pathway. J Anim Sci Biotechnol 2023; 14:38. [PMID: 36882874 PMCID: PMC9993796 DOI: 10.1186/s40104-023-00838-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Pectin is a heteropolysaccharide that acts as an intestinal immunomodulator, promoting intestinal development and regulating intestinal flora in the gut. However, the relevant mechanisms remain obscure. In this study, pigs were fed a corn-soybean meal-based diet supplemented with either 5% microcrystalline cellulose (MCC) or 5% pectin for 3 weeks, to investigate the metabolites and anti-inflammatory properties of the jejunum. RESULT The results showed that dietary pectin supplementation improved intestinal integrity (Claudin-1, Occludin) and inflammatory response [interleukin (IL)-10], and the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) was down-regulated in the jejunum. Moreover, pectin supplementation altered the jejunal microbiome and tryptophan-related metabolites in piglets. Pectin specifically increased the abundance of Lactococcus, Enterococcus, and the microbiota-derived metabolites (skatole (ST), 3-indoleacetic acid (IAA), 3-indolepropionic acid (IPA), 5-hydroxyindole-3-acetic acid (HIAA), and tryptamine (Tpm)), which activated the aryl hydrocarbon receptor (AhR) pathway. AhR activation modulates IL-22 and its downstream pathways. Correlation analysis revealed the potential relationship between metabolites and intestinal morphology, intestinal gene expression, and cytokine levels. CONCLUSION In conclusion, these results indicated that pectin inhibits the inflammatory response by enhancing the AhR-IL22-signal transducer and activator of transcription 3 signaling pathway, which is activated through tryptophan metabolites.
Collapse
Affiliation(s)
- Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chong Li
- The Key Laboratory of Feed Biotechnology of Ministry of Agriculture, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| |
Collapse
|
25
|
Shi L, Li Y, Liu Y, Jia H. Alterations of gut microbiota and cytokines in elevated serum diamine oxidase disorder. Medicine (Baltimore) 2022; 101:e31966. [PMID: 36550793 PMCID: PMC9771309 DOI: 10.1097/md.0000000000031966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to explore gut microbiota alterations and host cytokine responses in a population with elevated serum diamine oxidase (DAO) disorder. A total of 53 study participants were included in this study, segregated into 2 groups: subjects with high-level DAO (DAO-H, n = 22) subjects with normal DAO level (DAO-N, n = 31). We investigated the clinical and demographic parameters of study participants. The fecal bacterial communities and serum cytokines in 2 groups were assessed by 16S ribosomal RNA gene sequencing and immunoassay. High-pressure liquid chromatography was used to determine hemoglobin Alc. Flow cytometry was used to find the cytokine level in the blood serum. There is no difference in age, total cholesterol (TCHO), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), hemoglobin Alc, fasting plasma glucose (FPG) and homocysteine between the 2 groups. No significant difference were found in α-diversity between the 2 groups, however, the gut microbiota of subjects in DAO-H were characterized by marked interindividual differences, decreased abundance of Phocaeicola, Lachnospira, Bacteroides, Alistipes, Agathobacter, Lachnospira and Bactetoides and increased abundances of Mediterraneibacter, Blautia, Faecallibacterium, Agathobacter, and Parasutterella. Furthermore, the cytokines were no related to the DAO level in both groups and exhibited no significant differences between DAO-H and DAO-N. This study adds a new dimension to our understanding of the DAO and gut microbiota, and revealed that an increase in the DAO level in the intestinal mucosa could alter the gut microbiota composition, which can cause gut-related complications. Research is needed to extensively evaluate downstream pathways and provide possible protective or treatment measures pertaining to relevant disorders.
Collapse
Affiliation(s)
- Lintao Shi
- Department of Special Service Health Management, PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, China
| | - Yerong Li
- Department of Special Service Health Management, PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, China
| | - Yu Liu
- Department of Special Service Health Management, PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, China
| | - Haiying Jia
- Department of Special Service Health Management, PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, China
- * Correspondence: Haiying Jia, Department of Special Service Health Management, PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, China (e-mail: )
| |
Collapse
|
26
|
Paeoniflorin alleviates inflammatory response in IBS-D mouse model via downregulation of the NLRP3 inflammasome pathway with involvement of miR-29a. Heliyon 2022; 8:e12312. [PMID: 36590561 PMCID: PMC9800317 DOI: 10.1016/j.heliyon.2022.e12312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Paeoniflorin has been traditionally used to treat pain and immunologic derangement in China. However, its detailed mechanism remains to be illuminated. We investigated the mechanism by which paeoniflorin alleviates the inflammatory response in a mouse model of irritable bowel syndrome with predominant diarrhea (IBS-D). C57BL/6 wild type (WT) and miR-29a knockout (KO) mice were randomly divided into control, model, rifaximin, and paeoniflorin groups (n = 7). IBS-D model was induced by single intracolonic instillation of 0.1 mL trinitro-benzene-sulfonic acid (TNBS, 50 mg/mL) combined with restraint stress for seven consecutive days. The treatment groups received rifaximin (100 mg/kg) and paeoniflorin (50 mg/kg) via intragastric administration for seven days, respectively. The results showed that the fecal water content, fecal pellet output, visceral sensitivity, and histopathological score after paeoniflorin treatment were lower than those of the model group in both WT and miR-29a KO mice (P < 0.05). In both lineage mice, damage was observed in the colon tissues of model group, while paeoniflorin treatment partially ameliorated the tissue damage. Serum levels of DAO, DLA, IL-1β, IL-18, TNF-α, and MPO were decreased after paeoniflorin treatment (P < 0.05), with miR-29a KO mice in a lower level compared with that of WT mice. RT-PCR showed that the relative expression of miR-29a, NF-κB (p65), NLRP3, ASC, caspase-1, IL-1β, and TNF-α was downregulated while NKRF was upregulated after paeoniflorin treatment (P < 0.05). Immunohistochemistry showed that intestinal epithelial protein levels of NLRP3, ASC, and caspase-1 decreased while those of Claudin-1 and ZO-1 increased in the paeoniflorin treatment group (P < 0.05). In general, compared with WT mice, NLRP3 inflammasome pathway targets was in much lower expression level than miR-29a KO mice. In conclusion, paeoniflorin could inhibit abnormal activation of the NLRP3 inflammasome pathway by inhibiting miR-29a in IBS-D, thereby relieving the inflammatory response of the intestinal mucosa and reconstructing the intestinal epithelial barrier.
Collapse
|
27
|
Heat stress in pigs and broilers: role of gut dysbiosis in the impairment of the gut-liver axis and restoration of these effects by probiotics, prebiotics and synbiotics. J Anim Sci Biotechnol 2022; 13:126. [PMCID: PMC9673442 DOI: 10.1186/s40104-022-00783-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractHeat stress is one of the most challenging stressors for animal production due to high economic losses resulting from impaired animal’s productivity, health and welfare. Despite the fact that all farm animal species are susceptible to heat stress, birds and pigs are particularly sensitive to heat stress due to either lacking or non-functional sweat glands. Convincing evidence in the literature exists that gut dysbiosis, a term used to describe a perturbation of commensal gut microbiota, develops in broilers and pigs under heat stress. Owing to the protective role of commensal bacteria for the gut barrier, gut dysbiosis causes a disruption of the gut barrier leading to endotoxemia, which contributes to the typical characteristics of heat stressed broilers and growing and growing-finishing pigs, such as reduced feed intake, decreased growth and reduced lean carcass weight. A substantial number of studies have shown that feeding of probiotics, prebiotics and synbiotics is an efficacious strategy to protect broilers from heat stress-induced gut barrier disruption through altering the gut microbiota and promoting all decisive structural, biochemical, and immunological elements of the intestinal barrier. In most of the available studies in heat stressed broilers, the alterations of gut microbiota and improvements of gut barrier function induced by feeding of either probiotics, prebiotics or synbiotics were accompanied by an improved productivity, health and/or welfare when compared to non-supplemented broilers exposed to heat stress. These findings indicate that the restoration of gut homeostasis and function is a key target for dietary interventions aiming to provide at least partial protection of broilers from the detrimental impact of heat stress conditions. Despite the fact that the number of studies dealing with the same feeding strategy in heat stressed pigs is limited, the available few studies suggest that feeding of probiotics might also be a suitable approach to enhance productivity, health and welfare in pigs kept under heat stress conditions.
Collapse
|
28
|
Tang S, Li M, Sun Y, Liao Y, Wu X, Zhong R, Chen L, Zhang H. Effects of chronic heat stress on the immunophenotyping of lymphocytes in immune organs of growing pigs. J Anim Sci 2022; 100:skac317. [PMID: 36198005 PMCID: PMC9671119 DOI: 10.1093/jas/skac317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effects of chronic heat stress on the immunophenotyping of lymphocytes in immune organs of growing pigs. A single-factor randomized block design was used, and 15 healthy growing large white barrows (5 litters, 3 pigs/litter) with similar body weight (40.8 kg) were assigned into 3 groups (5 pigs in each group). Groups were: control group (Con, in 23 °C environmental control chamber, fed ad libitum), heat stress group (HS, in 33 °C environmental control chamber, fed ad libitum), and pair-fed group (PF, in 23 °C environmental control chamber, fed diets according to the feed intake of HS group). After a 7-d adaption, the experiment lasted for 21 d. The results showed as follows: (1) activated T cells in the thymus of HS pigs were higher than those in PF pigs (P < 0.05). Monocytes and dendritic cells in the thymus of HS pigs were significantly higher than that in Con and PF pigs (P < 0.05), while the proportions of these 2 lymphocytes in the thymus of Con pigs did not differ from PF pigs (P > 0.05). Compared with Con pigs, the proportion of CD4+ (P < 0.05) and CD8+ T cells (P < 0.10) in the thymus was increased in HS pigs, while the proportion of CD4+ and CD8+ T cells in PF pigs did not differ from Con pigs (P > 0.05). (2) Compared with Con pigs, significantly decreased T cells, increased B cells and monocytes were found in the spleen of pigs exposed to heat stress (P < 0.05); the proportions of these 3 types of lymphocytes were not significantly different between Con and PF pigs (P > 0.05). The proportions of CD4+ T cells and Treg cells in the spleen of pigs exposed to heat stress tended to be lower than those in the Con pigs (P < 0.10). (3) The proportion of lymphocytes in the tonsils of pigs exposed to heat stress did not differ from Con pigs (P > 0.05); compared with PF pigs, the proportion of Treg cells was significantly decreased in HS pigs (P < 0.05). In conclusion, chronic heat stress stimulates the development and maturation of T cells in the pig thymus toward CD4+ and CD8+ T cells and increases the proportion of monocytes and dendritic cells; under the condition of chronic heat stress, the immune response process in the spleen of pigs is enhanced, but chronic heat stress impairs the survival of CD4+ T cells in the spleen.
Collapse
Affiliation(s)
- Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Meijing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yue Sun
- Beijing Animal Husbandry Station, Beijing 100020, PR China
| | - Yuanyuan Liao
- Hubei Bangzhide Animal Husbandry Technology Co., Ltd, Wuhan 430061, PR China
| | - Xiaofeng Wu
- Hubei Bangzhide Animal Husbandry Technology Co., Ltd, Wuhan 430061, PR China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| |
Collapse
|
29
|
Liu Y, Li C, Huang X, Zhang X, Deng P, Jiang G, Dai Q. Dietary rosemary extract modulated gut microbiota and influenced the growth, meat quality, serum biochemistry, antioxidant, and immune capacities of broilers. Front Microbiol 2022; 13:1024682. [PMID: 36338103 PMCID: PMC9626529 DOI: 10.3389/fmicb.2022.1024682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
After the legislative ban on the utilization of antibiotics in animal feed, phytochemical substances gained increasing attention as alternatives to antibiotics because of their bioactivities and safety for animals. The present study aimed to investigate the influence of dietary rosemary extract (RE) on growth performance, meat quality, serum biochemistry, antioxidant and immune capacities, and gut microbiota composition of broilers. By exploring connections among RE, physiological characteristics of broilers, and key microbiota, we sought to provide evidence for the utilization of RE in poultry feed. A total of 280 1-d-old female AA broilers were randomly separated into five groups, and were fed a basal diet supplemented with 0, 250, 500, 750, and 1,000 mg/kg of RE, respectively. Results showed that with regard to growth performance, both 500 and 750 mg/kg RE reduced the broiler feed-to-gain ratio from 1 to 21 d (P = 0.018). Regarding meat quality, all compositions of dietary RE reduced cooking loss of breast muscle (P < 0.01), and 500 and 1,000 mg/kg RE reduced the cooking loss of thigh muscle (P = 0.045). Regarding serum biochemical indexes, 500 mg/kg RE reduced ALB, TCHO, HDL-C, and LDL-C, and 750 mg/kg RE reduced GLU, TP, ALB, UA, TG, TCHO, HDL-C, and LDL-C (P < 0.01). Regarding antioxidant and immune capacities, 250, 500, 750, and 1,000 mg/kg RE increased T-AOC, GSH-Px, SOD, CAT, IL-2, IgA, IgG, and IgM levels (P < 0.01), and decreased serum MDA level (P < 0.01). RE at 750 mg/kg showed similar effects on growth performance, meat quality, and antioxidative and immune capacities, but a better influence on serum biochemical indexes of broilers compared with 500 mg/kg. Further analysis was conducted to investigate the effect of 750 mg/kg dietary RE on the gut microbial composition of broilers, and the results showed that 750 mg/kg RE reduced the relative abundance of g_Lachnoclostridium, g_Escherichia_Shigella, and g_Marvinbryantia (P <0.05, LDA score >2), which were negatively correlated to antioxidative and immune-associated parameters (P < 0.05). In conclusion, 750 mg/kg dietary RE was shown to have certain beneficial effects on growth performance and meat quality, and hypolipidemic and hypoglycemic effects on broilers. Furthermore, dietary RE improved antioxidant and immune capacities, which was partially attributed to the reduced abundance of certain pathogenic bacteria in broilers.
Collapse
|
30
|
Wang M, Huang X, Liu Y, Zeng J. Effects of Macleaya cordata Extract on Blood Biochemical Indices and Intestinal Flora in Heat-Stressed Mice. Animals (Basel) 2022; 12:ani12192589. [PMID: 36230331 PMCID: PMC9558519 DOI: 10.3390/ani12192589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress (HS) leads to disturbance of homeostasis and gut microbiota. Macleaya cordata extract (MCE) has anti-inflammatory, antibacterial, and gut health maintenance properties. Still, the specific effects of MCE on blood biochemical indices and gut microbiota homeostasis in heat-stressed mice are not entirely understood. This study aimed to investigate the impact of MCE on blood biochemical indices and gut microbiota in heat-stressed mice. A control group (CON) (25 °C, n = 6) and HS group (42 °C, n = 6) were gavaged with normal saline 0.2 mL/g body weight/day, and HS plus MCE group (HS-MCE) (42 °C, n = 6) was gavaged with 5 mg MCE/kg/day. HS (2 h/d) on 8–14 d. The experiment lasted 14 days. The results showed that HS increased mice’ serum aspartate transaminase, alanine transferase activities, heat shock protein 70 level, and malondialdehyde concentrations, and decreased serum catalase and superoxide dismutase activities. HS also disrupted microbiota diversity and community structure in mice, increasing the Bacteroidetes and decreasing Firmicutes and Lactobacillus; however, MCE can alleviate the disturbance of biochemical indicators caused by HS and regulate the flora homeostasis. Furthermore, MCE was able to moderate HS-induced metabolic pathways changes in gut microbiota. The Spearman correlation analysis implied that changes in serum redox status potentially correlate with gut microbiota alterations in HS-treated mice.
Collapse
Affiliation(s)
- Mingcan Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Xiuqiong Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Jianguo Zeng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
- Correspondence: ; Tel.: +86-731-84686560
| |
Collapse
|
31
|
Xu S, Jiang X, Jia X, Jiang X, Che L, Lin Y, Zhuo Y, Feng B, Fang Z, Li J, Wang J, Ren Z, Wu D. Silymarin Modulates Microbiota in the Gut to Improve the Health of Sow from Late Gestation to Lactation. Animals (Basel) 2022; 12:ani12172202. [PMID: 36077922 PMCID: PMC9454421 DOI: 10.3390/ani12172202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory responses reduce milk production in lactating sows. Silymarin may modulate inflammatory reactions. Here, we aimed to verify whether dietary silymarin supplementation could alleviate inflammatory responses in lactating sows through microbiota change in the gut. We also investigated how silymarin impacts inflammatory response in lactating sows. One hundred and ten sows were randomly assigned to a control diet (basal diet) or treatment diet (basal diet and 40 g/d silymarin) from the 108th day of gestation to weaning. Blood, milk, and feces from sows were collected for analysis. It was shown in the results that dietary silymarin supplementation decreased the level of pro-inflammatory cytokine IL-1β (p < 0.05) on the 18th day of lactation in the blood of the sows. Dietary silymarin supplementation tended to decrease (p = 0.06) somatic cell count in the colostrum of sows. Dietary silymarin supplementation reduced the gut bacterial community and the richness of the gut microbial community (p < 0.01) using 16S rRNA gene sequencing. The fecal microbes varied at different taxonomic levels in the lactating sows with silymarin supplementation. The most representative changes included an increase in the relative abundance of Fibrobacteres and Actinobacteria (p < 0.05) and tended to reduce the relative abundance of Spirochaetaes and Tenericutes (p = 0.09, 0.06) at the phylum level. It is suggested that dietary silymarin supplementation in late gestation until lactation has anti-inflammatory effects in lactation sow, which could be associated with the modulation of gut microbiota.
Collapse
Affiliation(s)
- Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (S.X.); (D.W.)
| | - Xiaojun Jiang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinlin Jia
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (S.X.); (D.W.)
| |
Collapse
|
32
|
Tang S, Xie J, Fang W, Wen X, Yin C, Meng Q, Zhong R, Chen L, Zhang H. Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs. ANIMAL NUTRITION 2022; 11:228-241. [PMID: 36263409 PMCID: PMC9556788 DOI: 10.1016/j.aninu.2022.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
|
33
|
The Effect of Dietary Leucine Supplementation on Antioxidant Capacity and Meat Quality of Finishing Pigs under Heat Stress. Antioxidants (Basel) 2022; 11:antiox11071373. [PMID: 35883864 PMCID: PMC9312205 DOI: 10.3390/antiox11071373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
This study examined the effects of dietary leucine supplements on antioxidant capacity and meat quality in growing-finishing pigs. A total of 24 crossbred (Duroc × Landrace × Yorkshire) pigs with an average initial weight of 68.33 ± 0.97 kg were randomly allotted to three treatment groups. All pigs were exposed to constant heat stress. Each group of pigs was fed a basal diet, or a diet supplemented with increasing levels of leucine (0.25% or 0.50%). The results showed that leucine intake could improve average daily gain and reduce feed/gain of finishing pigs under heat stress (p < 0.05). The supplementation of leucine could improve the carcass slant length (p = 0.09), and dramatically increased loin-eye area of the finishing pigs (p < 0.05) but had no significant effect on other carcass traits. Compared with the control group, 0.50% leucine markedly reduced drip loss and shear force of longissimus dorsi muscle, and increased pH value at 24 h after slaughter (p < 0.05). Dietary supplementation of 0.25% leucine increased the contents of inosine monophosphate and intramuscular fat in biceps femoris muscle (p < 0.05). Supplementation of 0.25% or 0.50% leucine significantly stimulated the activities of antioxidant enzymes while reduced the level of MDA in serum, liver and longissimus dorsi muscle (p < 0.05). Compared with the control group, 0.50% leucine supplementation markedly modulated the relative mRNA expression levels of genes related to muscle fiber type and mitochondrial function in longissimus dorsi muscle and the gene relative antioxidant in the liver (p < 0.05). In conclusion, dietary leucine supplementation could improve the growth performance and meat quality of the finishing pigs under heat stress, and the pathway of Keap1-NRF2 and PGC-1α-TFAM might be involved.
Collapse
|
34
|
Wang J, Jia R, Celi P, Zhuo Y, Ding X, Zeng Q, Bai S, Xu S, Yin H, Lv L, Zhang K. Resveratrol Alleviating the Ovarian Function Under Oxidative Stress by Alternating Microbiota Related Tryptophan-Kynurenine Pathway. Front Immunol 2022; 13:911381. [PMID: 35911670 PMCID: PMC9327787 DOI: 10.3389/fimmu.2022.911381] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress (OS) is a key factor regulating the systemic pathophysiological effects and one of the fundamental mechanisms associated with aging and fertility deterioration. Previous studies revealed that resveratrol (RV) exhibits a preventive effect against oxidative stress in the ovary. However, it remains unknown whether gut microbiota respond to resveratrol during an OS challenge. In Exp. 1, layers received intraperitoneal injection of tert-butyl hydroperoxide (tBHP) (0 or 800 μmol/kg BW) or received resveratrol diets (0 or 600 mg/kg) for 28 days. In Exp. 2, the role of intestinal microbiota on the effects of resveratrol on tBHP-induced oxidative stress was assessed through fecal microbiota transplantation (FMT). The OS challenge reduced the egg-laying rate and exhibited lower pre-hierarchical follicles and higher atretic follicles. Oral RV supplementation ameliorated the egg-laying rate reduction and gut microbiota dysbiosis. RV also reversed the tryptphan-kynurenine pathway, upregulated nuclear factor E2-related factor 2 (Nrf2) and silent information regulator 1(SIRT1) levels, and decreased the expression of forkhead box O1 (FoxO1) and P53. These findings indicated that the intestinal microbiota-related tryptophan-kynurenine pathway is involved in the resveratrol-induced amelioration of ovary oxidative stress induced by tBHP in the layer model, while SIRT1-P53/FoxO1 and Nrf2-ARE signaling pathway were involved in this process.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Jianping Wang,
| | - Ru Jia
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Yong Zhuo
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Ding
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huadong Yin
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Lv
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
35
|
Liu WC, Huang MY, Balasubramanian B, Jha R. Heat Stress Affects Jejunal Immunity of Yellow-Feathered Broilers and Is Potentially Mediated by the Microbiome. Front Physiol 2022; 13:913696. [PMID: 35677094 PMCID: PMC9168313 DOI: 10.3389/fphys.2022.913696] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
In the perspective of the global climate change leading to increasing temperature, heat stress (HS) has become a severe issue in broiler production, including the indigenous yellow-feathered broilers. The present study aimed to investigate the effects of HS on jejunal immune response, microbiota structure and their correlation in yellow-feathered broilers. A total of forty female broilers (56-days-old) were randomly and equally divided into normal treatment group (NT group, 21.3 ± 1.2°C, 24 h/day) and HS group (32.5 ± 1.4°C, 8 h/day) with five replicates of each for 4 weeks feeding trial. The results showed that HS exposure increased the contents of TNF-α, IL-1β, and IL-6 in jejunal mucosa (p < 0.05). The HS exposure up-regulated the relative fold changes of NF-κB, TNF-α, IL-1β, and IL-6 (p < 0.01) while down-regulated the relative fold change of IFN-γ in jejunal mucosa (p < 0.05). Meanwhile, HS had no significant impacts on alpha diversity of jejunal microbiota such as Simpson, Chao1 richness estimator (Chao 1), abundance-based coverage estimators (ACE), and Shannon index (p > 0.10). Broilers exposed to HS reduced the jejunal microbial species number at the class and order level (p < 0.05). Moreover, HS decreased the relative abundance of Ruminococcus, Bdellovibrio, and Serratia at the genus level in jejunum (p < 0.05). At the phylum level, four species of bacteria (Bacteroidetes, Cyanobacteria, Thermi, and TM7) were significantly associated with immune-related genes expression (p < 0.05). At the genus level, ten species of bacteria were significantly correlated with the expression of immune-related genes (p < 0.05), including Caulobacteraceae, Actinomyces, Ruminococcaceae, Thermus, Bdellovibrio, Clostridiales, Sediminibacterium, Bacteroides, Sphingomonadales and Ruminococcus. In particular, the microbial with significantly different abundances, Ruminococcus and Bdellovibrio, were negatively associated with pro-inflammatory cytokines expression (p < 0.05). These findings demonstrated that HS exposure promoted the production of pro-inflammatory cytokines in yellow-feathered broilers’ jejunum. The detrimental effects of HS on jejunal immune response might be related to dysbiosis, especially the reduced levels of Ruminococcus and Bdellovibrio.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Meng-Yi Huang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Balamuralikrishnan Balasubramanian
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- *Correspondence: Balamuralikrishnan Balasubramanian, ; Rajesh Jha,
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
- *Correspondence: Balamuralikrishnan Balasubramanian, ; Rajesh Jha,
| |
Collapse
|
36
|
Garskaya N, Peretyatko L, Pozyabin S, Tresnitskiy S, Tresnitskiy A. Influence of heat stress on the reproduction rates of sows of the Poltava meat breed, depending on the genotype. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224201026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The article deals with the issues of the influence of heat stress that occurs in the summer on the indicators characterizing the reproductive qualities. Purebred sows of tested Poltava meat breed of different genotypes were investigated: Group I - individuals-offspring obtained by the method of introductory crossing using the blood of early maturing meat breed (blood content 12.5 %), Group II - individuals obtained by the method of introductory crossing using the blood of the Finnish Landrace (blood content of 12.5 %). It was found that in sows of the Poltava meat breed with the blood of early maturing meat breed, the number of live piglets at birth significantly exceeds the indices of sows with the blood of the Finnish Landrace by 8.27 % at p≤0.05. According to the analysis of Cv, these natural and technological conditions had the greatest influence on the duration of the service period in sows of Group I. Wherein, the least influence of these natural and technological conditions was found for the indicator of the duration of pregnancy. Animals with the blood of an early maturing meat breed were more adaptable to these natural and technological conditions.
Collapse
|