1
|
Fayez E, Samir H, Youssef FS, Salama A, ElSayed MA. Administration of melatonin nanoparticles improves testicular blood flow, echotexture of testicular parenchyma, scrotal circumference, and levels of estradiol and nitric oxide in prepubertal ossimi rams under summer heat stress. Vet Res Commun 2024:10.1007/s11259-024-10563-1. [PMID: 39441486 DOI: 10.1007/s11259-024-10563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Environmental heat stress (HS) impairs reproductive efficiency in farm animals. This study investigated, for the first time, how the melatonin and melatonin nanoparticles treatment affected the testicular hemodynamics, testicular volume, echotexture [Pixel intensity (PIX) and integrated density (IND)], scrotal circumference, serum concentration of testosterone (T), estradiol (E2), nitric oxide (NO), and total antioxidant capacity (TAC) in prepubertal Ossimi ram lambs in hot climatic conditions. The lambs undergoing examination had a temperature humidity index (THI) of 87.05 ± 1.70, indicating severe HS condition. Fifteen prepubertal Ossimi ram lambs were exposed to a single s.c injection of either nano melatonin (nano melatonin group; 20 mg/ram; n = 5) or melatonin suspended in two ml of corn oil (melatonin group; 40 mg/ram; n = 5) or two ml of corn oil (control group; n = 5). Blood collection and ultrasonographic assessment of the testes and supratesticular arteries (STAs) were conducted immediately before treatment (W0) and once weekly for six successive weeks after nano melatonin and melatonin injection (W1-W6). Results revealed decreases (P < 0.05) in the Doppler indices (resistive index; RI and pulsatility index; PI) of the testicular arteries at most time points of the study in the nano melatonin and melatonin groups. PIX of testicular parenchyma was significantly increased (P ˂ 0.05) in the treated groups compared to the control one. IND of testicular parenchyma increased significantly in the nano melatonin group compared to the melatonin and control groups. Testicular volume and scrotal circumference significantly increased (P < 0.05) in nano melatonin and melatonin groups compared to the control one. T concentration did not significantly (P > 0.05) change in the treated groups compared to the control group. E2, NO, and TAC concentrations increased (P < 0.05) in the treated groups compared to the control one. In conclusion, this study extrapolated that administrations of melatonin or nano melatonin can ameliorate the effects of environmental HS in prepubertal Ossimi ram lambs with a more protective effect and lower dose of nano melatonin.
Collapse
Affiliation(s)
- Eman Fayez
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Fady Sayed Youssef
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ali Salama
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Ai ElSayed
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
2
|
Piri M, Mahdavi AH, Hajian M, Nasr-Esfahani MH, Soltani L, Vash NT. Effects of nano-berberine and berberine loaded on green synthesized selenium nanoparticles on cryopreservation and in vitro fertilization of goat sperm. Sci Rep 2024; 14:24171. [PMID: 39406889 PMCID: PMC11480442 DOI: 10.1038/s41598-024-75792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
After cryopreservation, reactive oxygen species (ROS) can damage sperm. Antioxidants are the primary defense against oxidative damage. Berberine is a bioactive alkaloid found in Berberis vulgaris, Curcuma longa, and Ergon grape, and is a potent antioxidant. Due to the negative effects of free radicals in oxidative stress processes, antioxidant chemicals are required to protect sperm. However, berberine has low bioavailability, making it less effective. Loading techniques on nanoparticles and nanotechnology can help overcome this limitation. Selenium nanoparticles were synthesized with barberry extract, and berberine was loaded on them. Berberine nanoparticles were then synthesized using anti-solvent precipitation with a syringe pump technique. The synthesis of nanoparticles was confirmed by EDX, UV-visible, FE-SEM, Zeta-Potential, and FTIR tests. In this experiment, we aim to investigate the impact of nano-berberine and berberine loaded on Se-NPs on goat sperm parameters after freeze-thawing. We assessed the generation of reactive oxygen species (ROS), in vitro fertility, and the subsequent embryo development of zygote with treated sperm after determining the optimal concentration of various chemicals on sperm parameters. The study found that all treatments had significant differences from the control group in terms of motility, viability, DNA and membrane integrity, ROS level, lipid peroxidation, in vitro fertility ability, and the capacity to develop inseminated oocytes (p < 0.05). The most significant outcomes were observed with berberine loaded on Se-NPs and the combination of selenium nanoparticles with berberine nanoparticles.
Collapse
Affiliation(s)
- Mehrangiz Piri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
3
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
4
|
Esin B, Kaya C, Akar M, Çevik M. Investigation of the protective effects of different forms of selenium in freezing dog semen: Comparison of nanoparticle selenium and sodium selenite. Reprod Domest Anim 2024; 59:e14652. [PMID: 38923052 DOI: 10.1111/rda.14652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to investigate the protective effects of nanoparticle selenium (SeNP) and sodium selenite (SS) on preventing oxidative stress during the freezing process of dog semen. A total of six dogs were used in the study. The ejaculate was collected from dogs three times at different times by massage method. A total of 18 ejaculates were used and each ejaculate was divided in five experimental groups. The experimental groups were designed to tris extender containing no antioxidants control, 1 μg/mL SeNP1, 2 μg/mL SeNP2, and 1 μg/mL SS1 and 2 μg/mL SS2. Extended semen were equilibrated for 1 h at 4°C, then frozen in liquid nitrogen vapour and stored in liquid nitrogen (~-196°C). After thawing, semen samples were evaluated in terms of CASA motility and kinematic parameters, spermatozoa plasma membrane integrity and viability (HE Test), spermatozoa morphology (SpermBlue) and DNA fragmentation (GoldCyto). Antioxidant enzyme activity (glutathione peroxidase; GPX, superoxide dismutase; SOD, catalase; CAT) and lipid peroxidation (malondialdehyde; MDA) were evaluated in frozen-thawed dog sperm. When the results were evaluated statistically, the progressive motility, VCL, and VAP kinematic parameters in the SeNP1 group were significantly higher than the control group after thawing (p < .05). The highest ratio of plasma membrane integrity and viable spermatozoa was observed in the SeNP1 group, but there was no statistical difference found between the groups (p > .05). Although the ratio of total morphological abnormality was observed to be lower in all groups to which different selenium forms were added, compared to the control group, no statistical difference was found. Spermatozoa tail abnormality was significantly lower in the SeNP1 group than in the control and SS2 group (p < .05). The lowest ratio of fragmented DNA was observed in the SeNP1 group, but there was no statistical difference was found between the groups (p > .05). Although there was no statistical difference between the groups in the evaluation of sperm antioxidant profile, the highest GPX, SOD and CAT values and the lowest lipid peroxidation values were obtained in the SeNP1 group. As a result, it was determined that 1 μg/mL dose of SeNP added to the tris-based extender in dog semen was beneficial on spermatological parameters, especially sperm kinematic properties and sperm morphology, and therefore nanoparticle selenium, a nanotechnology product, made a significant contribution to the freezing of dog semen.
Collapse
Affiliation(s)
- Burcu Esin
- Department of Animal Reproduction and Artificial Insemination, University of Ondokuz Mayis, Samsun, Turkey
| | - Cumali Kaya
- Department of Animal Reproduction and Artificial Insemination, University of Ondokuz Mayis, Samsun, Turkey
| | - Melih Akar
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mesut Çevik
- Department of Animal Reproduction and Artificial Insemination, University of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
5
|
Morabbi A, Karimian M. Trace and essential elements as vital components to improve the performance of the male reproductive system: Implications in cell signaling pathways. J Trace Elem Med Biol 2024; 83:127403. [PMID: 38340548 DOI: 10.1016/j.jtemb.2024.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Successful male fertilization requires the main processes such as normal spermatogenesis, sperm capacitation, hyperactivation, and acrosome reaction. The progress of these processes depends on some endogenous and exogenous factors. So, the optimal level of ions and essential and rare elements such as selenium, zinc, copper, iron, manganese, calcium, and so on in various types of cells of the reproductive system could affect conception and male fertility rates. The function of trace elements in the male reproductive system could be exerted through some cellular and molecular processes, such as the management of active oxygen species, involvement in the action of membrane channels, regulation of enzyme activity, regulation of gene expression and hormone levels, and modulation of signaling cascades. In this review, we aim to summarize the available evidence on the role of trace elements in improving male reproductive performance. Also, special attention is paid to the cellular aspects and the involved molecular signaling cascades.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
6
|
Ghorbani B, Nasiri-Foomani N, Saedi A, Hasani-Baferani A, Samadi F. Effect of selenium nanoparticles-supplemented INRA96 extender on Turkmen stallion sperm quality and lipid peroxidation during storage at 5°C. J Equine Vet Sci 2024; 136:105073. [PMID: 38642814 DOI: 10.1016/j.jevs.2024.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Oxidative damage to sperm during cooled storage is a significant issue, and selenium with antioxidant potential could be a solution. Moreover, nano-sized selenium offers more advantages compared to its ionic forms. This research aimed to assess the impact of selenium nanoparticles (SeNPs) supplemented in the INRA96 extender on the quality of Turkmen stallion sperm and lipid peroxidation during 72 h of cooled storage. A total of 25 ejaculates were treated using different concentrations of SeNPs, including no SeNPs (Control), 0.5 μM SeNPs (SeNPs 0.5), 1.0 μM SeNPs (SeNPs 1.0), and 1.5 μM SeNPs (SeNPs 1.5). The samples were then evaluated for sperm quality characteristics and lipid peroxidation. The results indicated a significant decrease (P < 0.05) in total and progressive motility, viability, and plasma membrane functionality after 48 h of cooled storage, along with an increase (P < 0.05) in spermatozoa abnormality and malondialdehyde (MDA) levels as the cooled storage time increased. However, SeNPs demonstrated an improvement (P < 0.05) in sperm total motility after 24 h of cooled storage, progressive motility throughout the entire 72-hour period, functionality of the plasma membrane after 48 hours of cooled storage, spermatozoa abnormality after 48 h of cooled storage, and semen MDA levels throughout the cooled storage (P < 0.05). In conclusion, the enrichment of the INRA96 extender with nano-sized selenium can enhance the quality of Turkmen stallion sperm during storage at 5 °C by increasing total, progressive, and curvilinear motilities, improving plasma membrane functionality, and reducing sperm abnormalities and lipid peroxidation.
Collapse
Affiliation(s)
- B Ghorbani
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran
| | - N Nasiri-Foomani
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran
| | - A Saedi
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran
| | - A Hasani-Baferani
- Agricultural Research Education and Extension Organization, Tehran, Iran
| | - F Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Golestan, Iran.
| |
Collapse
|
7
|
Ouyang Y, Lou Y, Zhu Y, Wang Y, Zhu S, Jing L, Yang T, Cui H, Deng H, Zuo Z, Fang J, Guo H. Molecular Regulatory Mechanism of Nano-Se Against Copper-Induced Spermatogenesis Disorder. Biol Trace Elem Res 2024:10.1007/s12011-024-04153-0. [PMID: 38528285 DOI: 10.1007/s12011-024-04153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Selenium nanoparticle (Nano-Se) is a new type of selenium supplement, which can improve the deficiency of traditional selenium supplements and maintain its physiological activity. Due to industrial pollution and irrational use in agriculture, Cu overexposure often occurs in animals and humans. In this study, Nano-Se alleviated CuSO4-induced testicular Cu accumulation, serum testosterone level decrease, testicular structural damage, and decrease in sperm quality. Meanwhile, Nano-Se reduced the ROS content in mice testis and enhanced the activities of T-AOC, GSH, SOD, and CAT compared with CuSO4 group. Furthermore, Nano-Se alleviated CuSO4-induced apoptosis by increasing the protein expression of Cleaved-Caspase-3, Cleaved-Caspase-9, Cleaved-Caspase-12, and Bax/Bcl-2 compared with CuSO4 group. At the same time, Nano-Se reversed CuSO4-induced increase of γ-H2AX protein expression in mice testis. In conclusion, this study confirmed that Nano-Se could alleviate oxidative stress, apoptosis, and DNA damage in the testis of mice with Cu excess, thereby protecting the spermatogenesis disorder induced by Cu.
Collapse
Affiliation(s)
- Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yanbing Lou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yihan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Song Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lin Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tingting Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
8
|
Kumar N, Thorat ST, Patole PB, Gite A, Reddy KS. Protective role of selenium and selenium-nanoparticles against multiple stresses in Pangasianodon hypophthalmus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:239-258. [PMID: 37656302 DOI: 10.1007/s10695-023-01231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Pollution and climate change pose significant threats to aquatic ecosystems, with adverse impacts on aquatic animals, including fish. Climate change increases the toxicity of metal in aquatic ecosystems. To understand the severity of metal pollution and climate change, an experiment was conducted to delineate the mitigation potential of selenium (Se) and selenium nanoparticles (Se-NPs) against lead (Pb) and high temperature stress in Pangasianodon hypophthalmus. For the experiment, five isonitrogenous and isocaloric diets were prepared, varying in selenium supplementation as Se at 0, 1, and 2 mg kg-1 diet, and Se-NPs at 1 and 2 mg kg-1 diet. The fish in stressor groups were exposed to Pb (1/20th of LC50 concentration, 4 ppm) and high temperature (34 °C) throughout the experiment. The results demonstrated that dietary supplementation of Se at 1 and 2 mg kg-1 diet, as well as Se-NPs at 1 mg kg-1 diet, significantly reduced (p < 0.01) the levels of lactate dehydrogenase and malate dehydrogenase in both liver and muscle tissues. Additionally, the levels of alanine aminotransferase and aspartate aminotransferase in both gill and liver tissues were significantly decreased (p < 0.01) with the inclusion of Se and Se-NPs in the diets. Furthermore, the enzymes glucose-6-phosphate dehydrogenase in gill and liver tissues, fructose 1,6-bisphosphatase in liver and muscle tissues, and acid phosphatase in liver tissue were remarkably reduced (p < 0.01) due to the supplementation of Se and Se-NPs. Moreover, dietary supplementation of Se and Se-NPs significantly enhanced (p < 0.01) the activity of pyruvate kinase, glucokinase, hexokinase, alkaline phosphatase, ATPase, protease, amylase, lipase, and RNA/DNA ratio in the fish. Histopathological examination of gill and liver tissues also indicated that Se and Se-NPs protected against structural damage caused by lead and high-temperature stress. Moreover, the study examined the bioaccumulation of selenium and lead in muscle, water, and diets. The aim of the study revealed that Se and Se-NPs effectively protected the fish from lead toxicity and high-temperature stress, while also improving the function of cellular metabolic enzymes in P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, 413 115, Pune, India.
| | | | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Baramati, 413 115, Pune, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Baramati, 413 115, Pune, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, 413 115, Pune, India
| |
Collapse
|
9
|
Authaida S, Ratchamak R, Boonkum W, Chankitisakul V. Increasing sperm production and improving cryosurvival of semen in aged Thai native roosters as affected by selenium supplementation. Anim Biosci 2023; 36:1647-1654. [PMID: 37402455 PMCID: PMC10623042 DOI: 10.5713/ab.23.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE Aging roosters typically exhibit subfertility with decreasing semen quality, furthermore Thai native roosters reared in rural areas are raised for a longer duration than their usual lifespan. The present study therefore aimed to assess the effect of selenium supplementation as an antioxidative substance in diets to improve the semen cryopreservation of aged roosters. METHODS Semen samples were collected from young (n = 20) and aged (n = 20) Thai native roosters (Pradu Hang Dum) at 36 and 105 weeks of age when starting the experiment, respectively. They were fed diets either non-supplemented or supplemented with selenium (0.75 ppm). Fresh semen quality and lipid peroxidation of fresh semen was evaluated before cryopreservation using the traditional liquid nitrogen vapor method. Post-thaw sperm quality and fertility potential were determined. RESULTS Advancing age is unrelated to decreasing fresh semen quality (p>0.05). However, lipid peroxidation in rooster semen depended on age, and the malondialdehyde (MDA) concentration increased in aged roosters (p<0.05). Selenium supplementation in diets significantly decreased the MDA concentration and increased the sperm concentration (p<0.05). In contrast, cryopreserved semen was affected by advancing rooster age, and selenium influenced sperm quality (p<0.05). Younger roosters had higher post-thaw sperm quality and fertility potential than aged roosters (p<0.05). Likewise, diet selenium supplements improved post-thaw sperm quality and fertility compared with the non-supplement group. CONCLUSION Rooster's age does not influence the rooster sperm quality of fresh semen, while sperm cryotolerance and fertility were greater in young roosters than in aged roosters. However, sperm of aged roosters could be improved by dietary selenium supplementation.
Collapse
Affiliation(s)
- Supakorn Authaida
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002,
Thailand
| | - Ruthaiporn Ratchamak
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002,
Thailand
- The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen 40002,
Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002,
Thailand
- The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen 40002,
Thailand
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002,
Thailand
- The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen 40002,
Thailand
| |
Collapse
|
10
|
Abedin SN, Baruah A, Baruah KK, Kadirvel G, Katiyar R, Khargharia G, Bora A, Dutta DJ, Sinha S, Tamuly S, Phookan A, Deori S. In Vitro and In Vivo Studies on the Efficacy of Zinc-Oxide and Selenium Nanoparticle in Cryopreserved Goat (Capra hircus) Spermatozoa. Biol Trace Elem Res 2023; 201:4726-4745. [PMID: 36598740 DOI: 10.1007/s12011-022-03551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Different nanoparticles (NPs) are currently being investigated for their potential role as cryoprotectant during semen cryopreservation in several mammalian species. It may be possible to improve semen quality following cryopreservation by supplementation of NPs in the freezing extenders. The present study was carried out in semen collected from four (4) Assam Hill Goat bucks (10 ejaculates per buck) to investigate the effect of supplementing zinc oxide (ZnO) and selenium (Se) NPs in Tris-citric acid-fructose yolk (TCFY) extender on in vitro sperm quality and in vivo fertility rate after freeze-thawing. The size morphology and zeta potential of ZnO and Se NPs were evaluated prior to its incorporation in the freezing extender. Qualified semen samples (> 70% progressive motility) were divided into five (5) aliquots and then diluted in TCFY extender containing ZnO and Se NP supplementation at different concentrations (T0, control; T1, 0.1 mg/mL ZnO NPs; T2, 0.5 mg/mL ZnO NPs; T3, 0.5 µg/mL Se NPs; and T4, 1 µg/mL Se NPs). Diluted semen was packed in 0.25 mL straws and then stored in liquid nitrogen. After thawing, post-thaw in vitro sperm attributes were evaluated. Finally, the effect of NPs on in vivo fertility rate was checked in heat-synched does (n = 70) by artificial insemination (AI) using straws that showed superior results during the in vitro study. Results showed that ZnO and Se NPs were poly-crystalline in nature with particle size below 100 nm (nm). The evaluated post-thaw sperm in vitro attributes were significantly (p < 0.001) higher in T1 in comparison to T0. The antioxidant enzyme activities were significantly (p < 0.001) higher in T1. Lipid peroxidation (LPO) profile was significantly (p < 0.001) lower in T1. Sperm motility and mitochondrial membrane potential (MMP) had a highly significant (r = 0.580, p < 0.05) association in T1. No significant (p > 0.05) differences in pregnancy rates were recorded after AI in the different treatments. In conclusion, extender supplemented with 0.1 mg/mL ZnO NPs improved post-thaw semen quality of goat spermatozoa consequently by increasing activities of endogenous antioxidant enzymes thereby lowering LPO levels. However, improved in vitro outcomes might not correspond to improved field fertility outcomes.
Collapse
Affiliation(s)
- Sayed Nabil Abedin
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Anubha Baruah
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Kishore Kumar Baruah
- Semen Biology Laboratory, Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Ri-Bhoi, Meghalaya, India
| | - Govindasamy Kadirvel
- Semen Biology Laboratory, Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Ri-Bhoi, Meghalaya, India
| | - Rahul Katiyar
- Semen Biology Laboratory, Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Ri-Bhoi, Meghalaya, India
| | - Gautam Khargharia
- Semen Biology Laboratory, Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Ri-Bhoi, Meghalaya, India
| | - Arundhati Bora
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Devo Jyoti Dutta
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Sudip Sinha
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Shantanu Tamuly
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Arundhati Phookan
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Sourabh Deori
- Semen Biology Laboratory, Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Ri-Bhoi, Meghalaya, India.
| |
Collapse
|
11
|
Horky P, Urbankova L, Bano I, Kopec T, Nevrkla P, Pribilova M, Baholet D, Chilala P, Slama P, Skalickova S. Selenium Nanoparticles as Potential Antioxidants to Improve Semen Quality in Boars. Animals (Basel) 2023; 13:2460. [PMID: 37570269 PMCID: PMC10417132 DOI: 10.3390/ani13152460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Selenium is an essential compound which can influence the fertility of boars by a greater margin. In past decades, research was mainly focused on a bioavailability of various selenium forms and the effect on semen quality. Recently, nanotechnology has expanded the possibilities of selenium supplementation research. Twenty-one Duroc boars (three groups with seven boars each) were included in this experiment with the first group being a control group with no selenium supplementation, and the second group being supplemented with 0.3 mg Se/kg of selenium in inorganic form of Na2SeO3. The third group was supplemented with selenium nanoparticles (100 nm) at the same dose as that of the second group. The experiment lasted for 126 days (three spermatogenesis cycles of boars) and the antioxidant parameters of boar semen were analysed at 42, 84 and 126 days, respectively. The antioxidant parameters (DPPH, FRAP, DMPD, GSH, GSSG) were not influenced by both Se2NO3 and selenium nanoparticle supplementation during this experiment. At the end of the monitored period, significantly higher (p < 0.004) antioxidant readings were observed by using the ABTS method but not the DPPH, DMPD and FRAP methods on the supplemented groups compared to the control. Moreover, selenium-nanoparticle-supplemented groups showed elevated glutathione peroxidase activity in the seminal fluid (p < 0.008). However, the selenium nanoparticle supplementation has not shown an improving effect on sperm quality. This could be considered as a safe alternative to inorganic selenium as well as having a potential to enhance the antioxidant properties of the semen of boars.
Collapse
Affiliation(s)
- Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.U.); (M.P.); (D.B.)
| | - Lenka Urbankova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.U.); (M.P.); (D.B.)
| | - Iqra Bano
- Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Nawabshah 67210, Pakistan;
| | - Tomas Kopec
- Department of Animal Breeding, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (T.K.); (P.N.)
| | - Pavel Nevrkla
- Department of Animal Breeding, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (T.K.); (P.N.)
| | - Magdalena Pribilova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.U.); (M.P.); (D.B.)
| | - Daria Baholet
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.U.); (M.P.); (D.B.)
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.U.); (M.P.); (D.B.)
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.U.); (M.P.); (D.B.)
| |
Collapse
|
12
|
El-Ratel IT, Elbasuny ME, El-Nagar HA, Abdel-Khalek AKE, El-Raghi AA, El Basuini MF, El-Kholy KH, Fouda SF. The synergistic impact of Spirulina and selenium nanoparticles mitigates the adverse effects of heat stress on the physiology of rabbits bucks. PLoS One 2023; 18:e0287644. [PMID: 37437098 DOI: 10.1371/journal.pone.0287644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Heat stress has a detrimental effect on animal fertility, particularly testicular functions, including reduced sperm output and quality, which causes an economic loss in the production of rabbits. The present trial investigated the efficacy of dietary Spirulina (SP) (Arthrospira platensis), selenium nanoparticles (SeNPs), and their combination (SP-SeNPs) on semen quality, haemato-biochemical, oxidative stress, immunity, and sperm quality of heat-stressed (HS) rabbit bucks. Sixty mature bucks (APRI line) were distributed into 6 groups of ten replicates under controlled conditions. Bucks in the 1st group (control-NC) were kept under normal conditions (11-22°C; 40-45% RH% = relative humidity), while the 2nd group (control-HS) was kept under heat stress conditions (32±0.50°C; 60-66% RH %). The control groups were fed a commercial pelleted diet and the other four heat-stressed groups were fed a commercial pelleted diet with 1 g SP, 25 mg SeNPs, 1 g SP+25 mg SeNPs, and 1 g SP+50 mg SeNPs per kg diet, respectively. The dietary inclusion of SP, SeNPs, and their combinations significantly increased hemoglobin, platelets, total serum protein, high-density lipoproteins, glutathione, glutathione peroxidase, superoxide dismutase, and seminal plasma testosterone while decreased triglycerides, total cholesterol, urea, creatinine, and malondialdehyde compared with the control-HS. Red blood cells, packed cell volume, serum albumin, and testosterone significantly increased, while SeNPs, SP+SeNPs25, and SP+SeNPs50 significantly decreased low-density lipoproteins, aspartate, and alanine amino transferees. Total antioxidant capacity substantially increased in serum and seminal plasma, while seminal plasma malondialdehyde decreased in 25 or 50 mg of SeNPs+SP/kg groups. All supplements significantly improved libido, sperm livability, concentration, intact acrosome, membrane integrity, total output in fresh semen, and sperm quality in cryopreserved semen. SP-SeNPs50 had higher synergistic effect than SP-SeNPs25 on most different variables studied. In conclusion, the dietary inclusion of SP plus SeNPs50 has a synergistic effect and is considered a suitable dietary supplement for improving reproductive efficiency, health, oxidative stress, and immunity of bucks in the breeding strategy under hot climates.
Collapse
Affiliation(s)
- Ibrahim T El-Ratel
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mawada E Elbasuny
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Hamdy A El-Nagar
- Department of Biotechnology Research, Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | | | - Ali A El-Raghi
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohammed Fouad El Basuini
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
- Faculty of Desert Agriculture, King Salman International University, South Sinai, Egypt
| | - Khaled H El-Kholy
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Sara F Fouda
- Department of Poultry Production, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Pan Z, Huang J, Hu T, Zhang Y, Zhang L, Zhang J, Cui D, Li L, Wang J, Wu Q. Protective Effects of Selenium Nanoparticles against Bisphenol A-Induced Toxicity in Porcine Intestinal Epithelial Cells. Int J Mol Sci 2023; 24:ijms24087242. [PMID: 37108405 PMCID: PMC10139072 DOI: 10.3390/ijms24087242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Bisphenol A (BPA) is widely used to harden plastics and polycarbonates and causes serious toxic effects in multiple organs, including the intestines. Selenium, as an essential nutrient element for humans and animals, exhibits a predominant effect in various physiological processes. Selenium nanoparticles have attracted more and more attention due to their outstanding biological activity and biosafety. We prepared chitosan-coated selenium nanoparticles (SeNPs) and further compared the protective effects, and investigated the underlying mechanism of SeNPs and inorganic selenium (Na2SeO3) on BPA-induced toxicity in porcine intestinal epithelial cells (IPEC-J2). The particle size, zeta potential, and microstructure of SeNPs were detected by using a nano-selenium particle size meter and a transmission electron microscope. IPEC-J2 cells were exposed to BPA alone or simultaneously exposed to BPA and SeNPs or Na2SeO3. The CCK8 assay was performed to screen the optimal concentration of BPA exposure and the optimal concentration of SeNPs and Na2SeO3 treatment. The apoptosis rate was detected by flow cytometry. Real-time PCR and Western blot methods were used to analyze the mRNA and protein expression of factors related to tight junctions, apoptosis, inflammatory responses and endoplasmic reticulum stress. Increased death and morphological damage were observed after BPA exposure, and these increases were attenuated by SeNPs and Na2SeO3 treatment. BPA exposure disturbed the tight junction function involved with decreased expression of tight junction protein Zonula occludens 1 (ZO-1), occludin, and claudin-1 proteins. Proinflammatory response mediated by the transcription factor nuclear factor-k-gene binding (NF-κB), such as elevated levels of interleukin-1β(IL-1β), interleukin-6 (IL-6), interferon-γ (IFN-γ), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) expression was induced at 6 and 24 h after BPA exposure. BPA exposure also disturbed the oxidant/antioxidant status and led to oxidative stress. IPEC-J2 cell apoptosis was induced by BPA exposure, as indicated by increased BCL-2-associated X protein (Bax), caspase 3, caspase 8, and caspase 9 expression and decreased B-cell lymphoma-2 (Bcl-2) and Bcl-xl expression. BPA exposure activated the endoplasmic reticulum stress (ERS) mediated by the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), Inositol requiring enzyme 1 (IRE1α), and activating transcription factor 6 (ATF6). We found that treatment with SeNPs and Na2SeO3 can alleviate the intestinal damage caused by BPA. SeNPs were superior to Na2SeO3 and counteracted BPA-induced tight junction function injury, proinflammatory response, oxidative stress, apoptosis, and ERS stress. Our findings suggest that SeNPs protect intestinal epithelial cells from BPA-induced damage, partly through inhibiting ER stress activation and subsequently attenuating proinflammatory responses and oxidative stress and suppressing apoptosis, thus enhancing the intestinal epithelial barrier function. Our data indicate that selenium nanoparticles may represent an effective and reliable tool for preventing BPA toxicity in animals and humans.
Collapse
Affiliation(s)
- Zaozao Pan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ting Hu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Yonghong Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Lingyu Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Jiaxi Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Defeng Cui
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| |
Collapse
|
14
|
Shalaby OE, Ahmed YH, Mekkawy AM, Mahmoud MY, Khalil HMA, Elbargeesy GA. Assessment of the neuroprotective effect of selenium-loaded chitosan nanoparticles against silver nanoparticles-induced toxicity in rats. Neurotoxicology 2023; 95:232-243. [PMID: 36822375 DOI: 10.1016/j.neuro.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND With the recent growth in the applications of silver nanoparticles (Ag-NPs), worries about their harmful effects are increasing. Selenium plays a vital role in the antioxidant defense system as well as free radical scavenging activity. OBJECTIVES This study aims to inspect the neuroprotective effect of selenium-loaded chitosan nanoparticles (CS-SeNPs) against the adverse impact of Ag-NPs on brain tissue in adult rats. DESIGN Rats were divided into four groups: group I (control) was administered distilled water (0.5 mL/kg), group II was administered Ag-NPs (100 mg/kg), group III was administered Ag-NPs (100 mg/kg) and CS- SeNPs (0.5 mg/kg) and group IV received only CS- SeNPs (0.5 mg/kg) daily by oral gavage. After 60 days, rats were subjected to behavioral assessment and then euthanized. Brain tissues were obtained for estimation of total antioxidant capacity (TAC), malondialdehyde (MDA), 8-hydroxy-2-deoxy Guanosine (8-OHdG), and Nuclear Factor Erythroid 2 Like Protein 2 (Nrf2). Also, histological examination of the brain and immunohistochemical detection of glial fibrillary acidic protein (GFAP) were investigated RESULTS: exposure to Ag-NPs induced marked neurotoxicity in the brain tissue of rats that was manifested by decreased levels of TAC and Nrf2 with increased levels of MDA and 8-OHdG. Also, various pathological lesions with an increase in the number of GFAP immunoreactive cells were detected. While brain tissue of rats received Ag-NPs plus CS-SeNPs group (III) revealed significantly fewer pathological changes. CONCLUSION Co-administration of CS-SeNPs significantly ameliorates most of the Ag-NPs-induced brain damage.
Collapse
Affiliation(s)
- Omnia E Shalaby
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Aya M Mekkawy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - G A Elbargeesy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| |
Collapse
|
15
|
An insight into biofabrication of selenium nanostructures and their biomedical application. 3 Biotech 2023; 13:79. [PMID: 36778767 PMCID: PMC9908812 DOI: 10.1007/s13205-023-03476-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Evidence shows that nanoparticles exert lower toxicity, improved targeting, and enhanced bioactivity, and provide versatile means to control the release profile of the encapsulated moiety. Among different NPs, inorganic nanoparticles (Ag, Au, Ce, Fe, Se, Te, Zn, etc.) possess a considerable place owing to their unique bioactivities in nanoforms. Selenium, an essential trace element, played a vital role in the growth and development of living organisms. It has attracted great interest as a therapeutic factor without significant adverse effects in medicine at recommended dose. Selenium nanoparticles can be fabricated by physical, biological, and chemical approaches. The biosynthesis of nanoparticles is shown an advance compared to other procedures, because it is environmentally friendly, relatively reproducible, easily accessible, biodegradable, and often results in more stable materials. The effect of size, shape, and synthesis methods on their applications in biological systems investigated by several studies. This review focused on the procedures for the synthesis of selenium nanoparticles, in particular the biogenesis of selenium nanoparticles and their biomedical characteristics, such as antibacterial, antiviral, antifungal, and antiparasitic properties. Eventually, a comprehensive future perspective of selenium nanoparticles was also presented.
Collapse
|
16
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
17
|
Saad AM, Sitohy MZ, Sultan-Alolama MI, El-Tarabily KA, El-Saadony MT. Green nanotechnology for controlling bacterial load and heavy metal accumulation in Nile tilapia fish using biological selenium nanoparticles biosynthesized by Bacillus subtilis AS12. Front Microbiol 2022; 13:1015613. [PMID: 36620021 PMCID: PMC9816870 DOI: 10.3389/fmicb.2022.1015613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
Heavy metal accumulation and pathogenic bacteria cause adverse effects on aquaculture. The active surface of selenium (Se) nanoparticles can mitigate these effects. The present study used Se-resistant Bacillus subtilis AS12 to fabricate biological Se nanoparticles (Bio-SeNPs). The double-edged Bio-SeNPs were tested for their ability to reduce the harmful effects of heavy metals and bacterial load in Nile tilapia (Oreochromis niloticus) and their respective influences on fish growth, behavior, and health. The Bio-SeNPs have a spherical shape with an average size of 77 nm and high flavonoids and phenolic content (0.7 and 1.9 g g-1 quercetin and gallic acid equivalents, respectively), resulting in considerable antioxidant and antibacterial activity. The Bio-SeNPs (3-5 μg ml-1) in the current study resolved two serious issues facing the aquaculture industry, firstly, the population of pathogenic bacteria, especially Aeromonas hydrophilia, which was reduced by 28-45% in fish organs. Secondly, heavy metals (Cd and Hg) at two levels (1 and 2 μg ml-1) were reduced by 50-87% and 57-73% in response to Bio-SeNPs (3-5 μg ml-1). Thus, liver function parameters were reduced, and inner immunity was enhanced. The application of Bio-SeNPs (3-5 μg ml-1) improved fish gut health, growth, and behavior, resulting in fish higher weight gain by 36-52% and a 40% specific growth rate, compared to controls. Furthermore, feeding and arousal times increased by 20-22% and 28-53%, respectively, while aggression time decreased by 78% compared to the control by the same treatment. In conclusion, Bio-SeNPs can mitigate the accumulation of heavy metals and reduce the bacterial load in a concentration-dependent manner, either in the fish media or fish organs.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamad I. Sultan-Alolama
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,Department of Health, Research and Innovation Center, Zayed Complex for Herbal Research and Traditional Medicine, Abu Dhabi, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates,Harry Butler Institute, Murdoch University, Murdoch, WA, Australia,*Correspondence: Khaled A. El-Tarabily,
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Singh A, Singh P, Kumar R, Kaushik A. Exploring nanoselenium to tackle mutated SARS-CoV-2 for efficient COVID-19 management. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1004729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Despite ongoing public health measures and increasing vaccination rates, deaths and disease severity caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new emergent variants continue to threaten the health of people around the world. Therefore, there is an urgent need to develop novel strategies for research, diagnosis, treatment, and government policies to combat the variant strains of SARS-CoV-2. Since the state-of-the-art COVID-19 pandemic, the role of selenium in dealing with COVID-19 disease has been widely discussed due to its importance as an essential micronutrient. This review aims at providing all antiviral activities of nanoselenium (Nano-Se) ever explored using different methods in the literature. We systematically summarize the studied antiviral activities of Nano-Se required to project it as an efficient antiviral system as a function of shape, size, and synthesis method. The outcomes of this article not only introduce Nano-Se to the scientific community but also motivate scholars to adopt Nano-Se to tackle any serious virus such as mutated SARS-CoV-2 to achieve an effective antiviral activity in a desired manner.
Collapse
|
19
|
Bhagat S, Singh S. Nanominerals in nutrition: Recent developments, present burning issues and future perspectives. Food Res Int 2022; 160:111703. [DOI: 10.1016/j.foodres.2022.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
|
20
|
Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A, Flieger J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711066. [PMID: 36078782 PMCID: PMC9518444 DOI: 10.3390/ijerph191711066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/17/2023]
Abstract
Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The advancement of nanotechnology has created another hazard to human safety through exposure to metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can enter the human body through the respiratory tract, food, skin, injection, or implantation. Once absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering with the functioning of cells, organs, and physiological systems; and leading to severe pathological dysfunctions. Over the past decades, much research has been performed on the reproductive effects of essential trace elements. The research hypothesis that disturbances in the metabolism of trace elements are one of the many causes of infertility has been unquestionably confirmed. This review examines the complex reproductive risks for men regarding the exposure to potentially harmless xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper, and molybdenum) and widely used metallic NPs on male reproduction potential.
Collapse
Affiliation(s)
| | | | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Kulczycka
- Institute of Health Sciences, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81448-7182
| |
Collapse
|
21
|
Ikokide EJ, Oyagbemi AA, Oyeyemi MO. Impacts of cadmium on male fertility: Lessons learnt so far. Andrologia 2022; 54:e14516. [PMID: 35765120 DOI: 10.1111/and.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals in the world. Globally, toxicities associated with cadmium and its attendant negative impact on humans and animals cannot be under-estimated. Cd is a heavy metal, and people are exposed to it through contaminated foods and smoking. Cd exerts its deleterious impacts on the testes (male reproductive system) by inducing oxidative stress, spermatogenic cells apoptosis, testicular inflammation, decreasing androgenic and sperm cell functions, disrupting ionic homeostasis, pathways and epigenetic gene regulation, damaging vascular endothelium and blood testes barrier. In association with other industrial by-products, Cd has been incriminated for the recent decline of male fertility rate seen in both man and animals. Understanding the processes involved in Cd-induced testicular toxicity is vital for the innovation of techniques that will help ameliorate infertility in males. In this review, we summed up recent studies on the processes of testicular toxicity and male infertility due to Cd exposure. Also, the usage of different compounds including phytochemicals, and plant extracts to manage Cd reprotoxicity will be reviewed.
Collapse
Affiliation(s)
- Emmanuel Joseph Ikokide
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
22
|
Evans EPP, Scholten JTM, Mzyk A, Reyes-San-Martin C, Llumbet AE, Hamoh T, Arts EGJM, Schirhagl R, Cantineau AEP. Male subfertility and oxidative stress. Redox Biol 2021; 46:102071. [PMID: 34340027 PMCID: PMC8342954 DOI: 10.1016/j.redox.2021.102071] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
To date 15% of couples are suffering from infertility with 45-50% of males being responsible. With an increase in paternal age as well as various environmental and lifestyle factors worsening these figures are expected to increase. As the so-called free radical theory of infertility suggests, free radicals or reactive oxygen species (ROS) play an essential role in this process. However, ROS also fulfill important functions for instance in sperm maturation. The aim of this review article is to discuss the role reactive oxygen species play in male fertility and how these are influenced by lifestyle, age or disease. We will further discuss how these ROS are measured and how they can be avoided during in-vitro fertilization.
Collapse
Affiliation(s)
- Emily P P Evans
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Jorien T M Scholten
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Aldona Mzyk
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands; Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059, Krakow, Poland
| | - Claudia Reyes-San-Martin
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Arturo E Llumbet
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands; Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile. Independencia, 1027, Independencia Santiago, Chile
| | - Thamir Hamoh
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Eus G J M Arts
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands.
| | - Astrid E P Cantineau
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
23
|
Bi SS, Jin HT, Talukder M, Ge J, Zhang C, Lv MW, Yaqoob Ismail MA, Li JL. The protective effect of nnano-selenium against cadmium-induced cerebellar injury via the heat shock protein pathway in chicken. Food Chem Toxicol 2021; 154:112332. [PMID: 34118349 DOI: 10.1016/j.fct.2021.112332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 02/09/2023]
Abstract
Cadmium (Cd) is one of the toxic environmental heavy metals that poses health hazard to animals due to its toxicity. Nano-Selenium (Nano-Se) is a Nano-composite form of Se, which has emerged as a promising therapeutic agent for its protective roles against heavy metals-induced toxicity. Heat shock proteins (HSPs) play a critical role in cellular homeostasis. However, the potential protective effects of Nano-Se against Cd-induced cerebellar toxicity remain to be illustrated. To investigate the toxic effects of Cd on chicken's cerebellum, and the protective effects of Nano-Se against Cd-induced cerebellar toxicity, a total of 80 male chicks were divided into four groups and treated as follows: (A) 0 mg/kg Cd, (B) 1 mg/kg Nano-Se (C) 140 mg/kg Cd + 1 mg/kg Nano-Se (D) 140 mg/kg Cd for 90 days. We tested heat shock protein pathway-related factors including heat shock factors (HSFs) HSF1, HSF2, HSF3 and heat shock proteins (HSPs) HSP10, HSP25, HSP27, HSP40, HSP60, HSP70 and HSP90 expressions. Histopathological results showed that Cd treatment caused degradation of Purkinje cells. In addition, HSFs and HSPs expression decreased significantly in the Cd group. Nano-Se co-treatment with Cd enhanced the expression of HSFs and HSPs. In summary, our findings explicated a potential protective effect of Nano-Se against Cd-induced cerebellar injury in chicken, suggesting that Nano-Se is a promising therapeutic agent for the treatment of Cd toxicity.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150010, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mamoon Ali Yaqoob Ismail
- College of Economics and Management, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Nano-selenium on reproduction and immunocompetence: an emerging progress and prospect in the productivity of poultry research. Trop Anim Health Prod 2021; 53:324. [PMID: 33991248 DOI: 10.1007/s11250-021-02698-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Nanotechnology, an emerging and promising technology, has been implicated to revolutionize the poultry industry. The main aspect of nanotechnology was to modify or alter the particle size into nanometers and thereby alter the physical as well as chemical features of the particular molecules. Selenium (Se), an essential trace element, can play an immense role in the maintenance of diverse physiological functions, body metabolism and cellular homeostasis, and the performance of poultry. Selenium nanoparticles (Se-NPs) are of growing importance due to its nutrients digestibility, medicinal therapy, targeted drug delivery system, and production of vaccines. Se-nanoparticles are having importance due to its high bioavailability and digestive efficiency. Se-NPs have been implicated to increase relative weights of immune-related organs (burse and thymus) to enhance immunity and thereby modulate egg production as well as the reproductive performance of birds. The present review is highlighted on the significant role of nano-selenium on reproductive performance and immunocompetence in poultry as comparative advantages over conventional sources of Se in poultry diets.
Collapse
|
25
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
26
|
Effects of Selenium on Bull’s Sperm Oxidative Stress and Viability Under in Vitro Conditions. FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The aim of this study was to determine the effects of sodium selenite on the level of oxidative stress and viability of spermatozoa in fresh bull ejaculate in in vitro conditions at different temperatures. Samples of the bull's ejaculates with a concentration of 7 × 105 spermatozoa per ml were placed into the commercial semen extender containing 0 (control), 1 (1Se), 3 (3Se) and 5 (5Se) µg.ml–1 of sodium selenite. The following analyses were performed by flow cytometry after 1, 3, 6, 8, 24, 48 and 72 hours of incubation at 4 °C and 37 °C. All analyses were carried out in triplicate. The level of oxidative stress at both temperatures were significantly lower in the experimental groups in comparison to the control group. However, a significant decline of live sperm concentration and a rise of damaged sperm concentration were recorded, especially in groups 1Se and 3Se in comparison to the control group. Only in group 5Se was there observed a positive effect on the damaged spermatozoa level in comparison with groups C, 1Se and 3Se at 4 °C. In conclusion, the applied concentrations of sodium selenite had a positive effect on the level of oxidative stress in all experimental groups, but mainly at concentration of 5 µg.ml–1 of sodium selenite, especially at 4 °C. However, the effect of selenium was not sufficient for improving the sperm viability.
Collapse
|
27
|
Gibb Z, Blanco-Prieto O, Bucci D. The role of endogenous antioxidants in male animal fertility. Res Vet Sci 2021; 136:495-502. [PMID: 33857769 DOI: 10.1016/j.rvsc.2021.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023]
Abstract
Mammalian semen is a physiological fluid composed of a cellular fraction (spermatozoa), and a liquid fraction (seminal plasma). Once delivered to the female genital tract, spermatozoa should be able to capacitate; a process which involves a plethora of biochemical and physiological changes required to fertilize the oocyte. Sperm production (spermatogenesis) occurs in the testes, whereby pluripotent spermatogonia differentiate to form the most morphologically specialized cells in the body. Further maturation of spermatozoa occurs in the epididymis, where they are stored prior to ejaculation. During this whole process, spermatozoa are exposed to different environments and cellular processes which may expose them to substantial levels of oxidative stress. To avoid damage associated with the unchecked production of reactive oxygen species (ROS), both spermatozoa, and the parts of the male genital tract in which they reside, are furnished with a suite of antioxidant molecules which are able to provide protection to these cells, thereby increasing their chance of being able to fertilize the oocyte and deliver an intact paternal genome to the future offspring. However, there are a host of reasons why these antioxidant systems may fail, including nutritional deficiencies, genetics, and disease states, and in these situations, a reduction or abolition of fertilizing capacity may result. This review paper focuses on the endogenous antioxidant defences available to spermatozoa during spermatogenesis and sperm maturation, the site of their production and their physiological role. Furthermore, we revised the causes and effects of antioxidant deficiencies (congenital or acquired during the animal's adulthood) on reproductive function in different animal species.
Collapse
Affiliation(s)
- Zamira Gibb
- Priority Research Centre in Reproductive Science, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Olga Blanco-Prieto
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - Università di Bologna, Italy.
| | - Diego Bucci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - Università di Bologna, Italy
| |
Collapse
|
28
|
Iftikhar M, Noureen A, Uzair M, Jabeen F, Abdel Daim M, Cappello T. Perspectives of Nanoparticles in Male Infertility: Evidence for Induced Abnormalities in Sperm Production. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041758. [PMID: 33670275 PMCID: PMC7918762 DOI: 10.3390/ijerph18041758] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
Advancement in the field of nanotechnology has prompted the need to elucidate the deleterious effects of nanoparticles (NPs) on reproductive health. Many studies have reported on the health safety issues related to NPs by investigating their exposure routes, deposition and toxic effects on different primary and secondary organs but few studies have focused on NPs’ deposition in reproductive organs. Noteworthy, even fewer studies have dealt with the toxic effects of NPs on reproductive indices and sperm parameters (such as sperm number, motility and morphology) by evaluating, for instance, the histopathology of seminiferous tubules and testosterone levels. To date, the research suggests that NPs can easily cross the blood testes barrier and, after accumulation in the testis, induce adverse effects on spermatogenesis. This review aims to summarize the available literature on the risks induced by NPs on the male reproductive system.
Collapse
Affiliation(s)
- Mehwish Iftikhar
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan; (M.I.); (F.J.)
| | - Aasma Noureen
- Department of Biology, Virtual University of Pakistan, Faisalabad 38000, Pakistan
- Correspondence: (A.N.); (T.C.)
| | - Muhammad Uzair
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Farhat Jabeen
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan; (M.I.); (F.J.)
| | - Mohamed Abdel Daim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (A.N.); (T.C.)
| |
Collapse
|
29
|
Effect of organic selenium dietary supplementation on quality and fertility of cryopreserved chicken sperm. Cryobiology 2021; 98:57-62. [PMID: 33400961 DOI: 10.1016/j.cryobiol.2020.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Oxidative stress due to cryopreservation has been considered as a major factor in sperm damage. Supplementation of the diet with different concentrations of organic selenium has been proposed to improve the quality of fresh and frozen-thawed semen in different breeds of roosters. Sixteen Pradu Hang Dum (Thai native) and 16 Rhode Island Red roosters were used in this study. Four levels of selenium supplementation between 0 and 0.9 ppm were examined. After 14 days of feeding, semen samples were collected twice a week and the fresh semen was evaluated. Then semen from each group was pooled and cryopreserved. The fertility of frozen-thawed semen was determined by inseminating 48 layer hens. Supplementation of diets with 0.3, 0.6 and 0.9 ppm selenium improved the fresh semen in terms of sperm viability and normal morphology (P < 0.01). Sperm concentration increased (quadratically, P < 0.001) with increasing dietary selenium levels. Meanwhile, post-thawed semen quality in terms of sperm motility, viability, live with intact acrosome and functioning mitochondria improved significantly with selenium treatments of 0.6 and 0.9 ppm, and lipid peroxidation was decreased (P < 0.001) and fertility improved (P < 0.05) with those levels of selenium treatment. In addition, there were differences between breeds with respect to some fresh or frozen semen quality parameters (P < 0.05). In conclusion, the breed affected both fresh and frozen semen. Even there were no statistically significant differences in the parameters from groups 0.6 and 0.9 ppm on frozen-thawed semen quality, but the highest sperm concentration was found in 0.6 ppm. Therefore selenium supplementation of diets at 0.6 ppm was recommended to improve the quantity and quality of fresh and frozen semen.
Collapse
|
30
|
Nasr-Eldahan S, Nabil-Adam A, Shreadah MA, Maher AM, El-Sayed Ali T. A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2021; 29:1459-1480. [PMID: 33688117 PMCID: PMC7933385 DOI: 10.1007/s10499-021-00677-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/19/2021] [Indexed: 05/10/2023]
Abstract
In recent decades, aquaculture has played a significant role in fulfilling the vast demand for animal protein requirements and consequently in food security. However, environmental contamination and disease prevalence are considered essential challenges for the sector. In this regard, new approaches have been paved in technology to deal effectively with such challenges. Among these, nanotechnology-as a novel and innovative tool-has a broad spectrum of uses and a tremendous potential in aquaculture and seafood preservation. It can provide new technologies for management of drugs as liberation of vaccines and therefore hold the assurance for civilized protection of farmed fish against disease-causing pathogens. This article presents a review of nanotechnology and its applications in aquaculture. Additionally, it gives a brief idea about the fish disease and classical ways of controlling pathogens. On the other hand, this review sheds the light on nanotechnology as a potential novel tool which may possibly enhance the management and the control of disease prevalence. Therefore, the importance of this technology to promote sustainable aquaculture has also been highlighted. Focusing on the role of selenium nanoparticles as an efficient element is discussed also in this article.
Collapse
Affiliation(s)
- Sameh Nasr-Eldahan
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Asmaa Nabil-Adam
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | | | - Adham M. Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Tamer El-Sayed Ali
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
31
|
Liu Y, Li X, Xiao S, Liu X, Chen X, Xia Q, Lei S, Li H, Zhong Z, Xiao K. The Effects of Gold Nanoparticles on Leydig Cells and Male Reproductive Function in Mice. Int J Nanomedicine 2020; 15:9499-9514. [PMID: 33281445 PMCID: PMC7709869 DOI: 10.2147/ijn.s276606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023] Open
Abstract
Background Gold nanoparticles (AuNPs) have shown great promise in various biomedical applications, but their effects on male reproductive function remain to be ascertained. The aim of this study was to investigate the uptake, cytotoxicity and testosterone production inhibition of AuNPs in mouse Leydig cells, as well as their accumulation in the testes of male mice and their effects on male reproductive function. Results AuNPs (5 nm) were able to be internalized into the endosomes/lysosomes of TM3 Leydig cells, induce the formation of autophagosomes, increase the production of reactive oxygen species (ROS), and disrupt the cell cycle in S phase, resulting in concentration-dependent cytotoxicity and DNA damage. Interestingly, AuNPs significantly reduced testosterone production in TM3 cells by inhibiting the expression of 17α-hydroxylase, an important enzyme in androgen synthesis. After repeated intravenous injection, AuNPs gradually accumulated and retained in the testes of male BALB/c mice in a dose-dependent manner. One week after withdrawal, the level of plasma testosterone in the 0.5 mg/kg AuNPs group was significantly reduced compared to that in the PBS control group, accompanied by the decreased expression of 17α-hydroxylase in the testes. In addition, AuNPs treatment significantly increased the rate of epididymal sperm malformation, but without affecting fertility. Conclusion Our results suggest that AuNPs can accumulate in the testes and reduce testosterone production in Leydig cells by down-regulating the expression of 17α-hydroxylase, thus affecting the quality of epididymal sperm.
Collapse
Affiliation(s)
- Ying Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaojie Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shuwen Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xinyi Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuanming Chen
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qiyue Xia
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Song Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhihui Zhong
- Laboratory of Non-Human Primate Disease Model Research, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
32
|
Effect of feeding linseed diet on testis development, antioxidant capacity, and epididymal cauda sperm concentration in Chinese Hu lamb. Theriogenology 2020; 159:69-76. [PMID: 33113446 DOI: 10.1016/j.theriogenology.2020.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential for mammalian testis development and sperm function. However, PUFAs that are contained in linseed oil are easily oxidized in the diet and biohydrogenated in the rumen. In this study, we investigated the effect of linseed as a source of PUFAs on the antioxidant capacity and testis development in Hu lamb. Seventy-five 3-month-old lambs were randomly assigned to three groups. Within each treatment group, 25 lambs were allocated to five pens (five lambs per pen). The lambs in the control group were fed a control diet without linseed for 42 days from D22 to D63. Group I (BS28) was fed a control diet from D22 to D35 and 8% linseed diet from D36 to D63. Group II (BS42) was fed an 8% linseed diet for 42 days from D22 to D63. After 63-day feeding trial, all lambs except the heaviest and lightest in each pen were humanely slaughtered and investigated. Results revealed that feeding linseed did not affect the body weight, scrotal circumference, and testis weight, whereas feeding linseed for 42 days increased the epididymis weight (37.85 ± 1.61 g vs. 32.09 ± 1.06 g, P < 0.05) compared with the control group. Feeding lambs with linseed for 42 days also significantly upregulated the expression of antioxidative (glutathione peroxidase 4 and copper-zinc superoxide dismutase), steroidogenesis (3β-hydroxysteroid dehydrogenase and steroid acute regulatory protein), and PUFA metabolism-related genes (fatty acid desaturase 2 and elongation of very long-chain fatty acid protein 2) and proliferating cell nuclear antigen mRNA (P < 0.05). It also increased the relative expression of mitochondrial DNA (P < 0.05), total antioxidant capacity (0.230 ± 0.019 mmol/mgprot vs. 0.175 ± 0.011 mmol/mgprot, P < 0.05), and superoxide dismutase (1661.467 ± 147.117 U/mgprot vs. 1158.891 ± 98.850 U/mgprot, P < 0.05) in testicular tissue but decreased the cholesterol concentration (0.331 ± 0.073 mmol/mgprot vs. 0.671 ± 0.092 mmol/mgprot, P < 0.05) compared with the control group. Therefore, feeding lambs with linseed for 42 days stimulated seminiferous tubule development and increased the number of Sertoli cells (20.71 ± 0.89 vs. 17.6 ± 0.73, P < 0.05), epididymal cauda lumina diameter (638.26 ± 22.32 μm vs. 444.41 ± 34.80 μm, P < 0.05), and the number of sperm in the epididymal cauda (68.91 ± 7.06 × 108/g vs. 36.61 ± 7.50 × 108/g). All these results suggested that feeding linseed in the early reproductive development stage of lambs upregulated the expression of antioxidative, steroidogenesis, and PUFA metabolism-related genes; increased the antioxidant capacity in lamb's testis; and contributed to testis development and spermatogenesis.
Collapse
|
33
|
Hozyen HF, Khalil HMA, Ghandour RA, Al-Mokaddem AK, Amer MS, Azouz RA. Nano selenium protects against deltamethrin-induced reproductive toxicity in male rats. Toxicol Appl Pharmacol 2020; 408:115274. [PMID: 33038357 DOI: 10.1016/j.taap.2020.115274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
Greater understanding of the efficiency of nanoparticles will assist future research related to male reproductive performance. The current study was performed to assess the potency of selenium nanoparticles (SeNPs) in alleviating deltamethrin (DLM)-induced detrimental effects on sperm characteristics, oxidative status, sexual behavior, and the histological structure of the testes and epididymis in male rats. Thirty-two male Wister rats were divided into four groups according to treatment received orally by gavage 3 times/week for 60 days; control, DLM (0.6 mg/kg bwt), SeNPs (0.5 mg/kg bwt), and DLM-SeNPs groups. DLM caused a significant reduction in sperm count, motility, and viability percent, as well as in body weight and serum testosterone level, blood total antioxidant capacity (TAC), and glutathione peroxidase (GPx) activity. The DLM-treated group showed a significant increase in blood malondialdehyde (MDA) concentration and sperm abnormalities (%), as well as a significant reduction in sexual activity, manifested as an increase in mount, intromission, or ejaculation latency and a reduction in mount or intromission frequency. These toxic effects were confirmed by histological alterations, represented by a significant reduction in the diameter of the seminiferous tubules and spermatogenesis. Conversely, treatment with SeNPs improved DLM-induced negative effects on sperm characteristics, testosterone, and antioxidant biomarkers, as well as behavioral and histopathological alterations. The SeNPs treated group showed improved semen parameters, antioxidant status, and sexual performance. In conclusion, SeNPs may represent an effective treatment for reducing the detrimental effects of DLM on male fertility, and lead to enhanced male reproductive performance.
Collapse
Affiliation(s)
- Heba F Hozyen
- Animal Reproduction and Artificial Insemination Department, National Research Centre, Egypt.
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Rehab A Ghandour
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Asmaa K Al-Mokaddem
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - M S Amer
- Surgery, Anesthesiology, and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Rehab A Azouz
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
34
|
Asadpour R, Aliyoldashi MH, Saberivand A, Hamidian G, Hejazi M. Ameliorative effect of selenium nanoparticles on the structure and function of testis and in vitro embryo development in Aflatoxin B1-exposed male mice. Andrologia 2020; 52:e13824. [PMID: 32951201 DOI: 10.1111/and.13824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of the research was to investigate the therapeutic ability of selenium nanoparticles (Se-NPs) on the aflatoxin B1 (AFB1) toxicity induced in the male reproductive system. For this experiment, the mature male mice were put into four groups. Control (0.5 ml PBS, 60 days; IP, n = 7), Se-NPs (0.5 µg kg-1 day-1 for 60 days; IP), AFB1 (4.5 mg kg-1 day-1 for 60 days; IP) and AFB1 + Se-NPs (4.5 mg kg-1 day-1 + 0.5 µg kg-1 day-1 for 60 days; IP). After treatment, the histological structure of testis, serum testosterone level and sperm parameters, including concentration, motility, viability, morphology and DNA fragmentation, were examined. The results demonstrated that the AFB1 destroyed the testicular tissue structure and decreased the sperm concentration, motility, viability and normal morphology significantly. AFB1 also could significantly increase sperm DNA fragmentation and reduce in vitro fertilisation and embryo development compared to the control group (p < .001). Our data show that Se-NPs could inhibit AFB1-induced damage to the testis and improve sperm parameters as well as in vitro fertilisation and embryo production in AFB1 exposed male mice. This study revealed that the administration of Se-NPs could attenuate the testicular injury of AFB1 and improve the male reproductive system function in AFB1 exposed mice.
Collapse
Affiliation(s)
- Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad H Aliyoldashi
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Adel Saberivand
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Marzieh Hejazi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
35
|
Shokry DM, Badr MR, Orabi SH, Khalifa HK, El-Seedi HR, Abd Eldaim MA. Moringa oleifera leaves extract enhances fresh and cryopreserved semen characters of Barki rams. Theriogenology 2020; 153:133-142. [DOI: 10.1016/j.theriogenology.2020.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/17/2023]
|
36
|
El‐Ratel IT, Tag El‐Din TEH, Bedier MM. Beneficial effects of curcumin as a native or nanoparticles form on productive efficiency, liver and kidney functions, antioxidative status and immunity of heat‐stressed growing rabbits. J Anim Physiol Anim Nutr (Berl) 2020; 104:1778-1787. [DOI: 10.1111/jpn.13420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/10/2020] [Accepted: 06/13/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Ibrahim T. El‐Ratel
- Department of Poultry Production Faculty of Agriculture Damietta University Damietta Egypt
| | | | - Merna Mohamed Bedier
- Department of Poultry Production Faculty of Agriculture Damietta University Damietta Egypt
| |
Collapse
|
37
|
Alavi MH, Allymehr M, Talebi A, Najafi G. Comparative effects of nano-selenium and sodium selenite supplementations on fertility in aged broiler breeder males. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:135-141. [PMID: 32782742 PMCID: PMC7413000 DOI: 10.30466/vrf.2018.83172.2093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/29/2018] [Indexed: 01/23/2023]
Abstract
It is well documented that aging has negative effects on fertility. With increasing age, the activity of antioxidant enzymes are reduced and because of roosters sperm composition, a high proportion of polyunsaturated fatty acids (PUFAs), the probability of sperm damage increases. The objective of the present study was to compare the effects of nano-selenium and sodium selenite on fertility in aged male broiler breeder chickens. Thirty-five male broiler breeders (Cobb 500)® at 50 weeks of age were randomly divided into five equal groups: The control group was fed on a commercial diet, group T1 was fed on a commercial diet supplemented with sodium selenite (0.30 mg kg-1 feed), group T2, T3 and T4 were fed on a commercial diet supplemented with nano-selenium (0.15, 0.30 and 0.60 mg kg-1 feed, respectively). Sperm characteristics (sperm count, motility, viability, and maturity) as well as testicular histomorphometric features [tubule differentiation (TDI), spermiation (SPI), Sertoli cell (SCI) and meiotic (MI) indices] were assessed. The results showed that sperm characteristics were gradually decreased with age in the control group, however, it increased in group T3. Also, TDI, SPI, SCI, and MI in group T3 were higher than those of other groups. Our findings revealed that dietary supplementations with nano-selenium boosted fertility in aged male broiler breeders and the best results were obtained when the roosters received 0.30 mg kg-1 nano-selenium. Supplementation of nano-selenium in aged broiler breeder males might be effective to maintain flock fertility and/or increase the flock fertility.
Collapse
Affiliation(s)
- Mohammad Hossein Alavi
- DVSc Candidate, Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Manoochehr Allymehr
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Alireza Talebi
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Gholamreza Najafi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
38
|
Yousef MS, López-Lorente AI, Diaz-Jimenez M, Consuegra C, Dorado J, Pereira B, Ortiz I, Cárdenas S, Hidalgo M. Nano-depletion of acrosome-damaged donkey sperm by using lectin peanut agglutinin (PNA)-magnetic nanoparticles. Theriogenology 2020; 151:103-111. [PMID: 32325322 DOI: 10.1016/j.theriogenology.2020.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023]
Abstract
Lectin is considered as a suitable biomarker for nano-depletion of acrosome-damaged sperm. The aim of this study was to synthetize magnetic nanoparticles (MNPs) coated by peanut (Arachis hypogaea) agglutinin lectin (PNA) and investigate its beneficial effect in improving of sperm characteristics. MNPs were obtained by co-precipitation method, functionalized with chitosan and coated by PNA at a concentration of 0.04 mg/mL. Semen was frozen either with glycerol-based or sucrose-based extenders. Frozen-thawed straws from five donkeys (three ejaculates per donkey) were incubated with lectin-MNPs (2 mg/mL), and then exposed to an external magnet enabling the non-bound sperm to be collected as nanopurified sperm. Sperm were evaluated post-thawing (control) and after nanopurification for motility, plasma membrane integrity, acrosome integrity, morphology, DNA fragmentation and concentration. The statistical analyses were extended to investigate the correlation between the initial quality of the frozen-thawed semen samples and the effect of nanopurification after thawing. The obtained MNPs were biocompatible to the sperm and significantly improved the progressive motility (P < 0.05) for the glycerol nanopurified group (43.08 ± 3.52%) in comparison to control (33.70 ± 2.64%). Acrosome-damaged sperm were reduced (P < 0.05) in both nanopurified groups (19.92 ± 2.69 for G and 21.57 ± 2.77 for S) in comparison to control (36.07 ± 3.82 for G and 35.35 ± 3.88 for S). There were no significant changes in sperm morphology and membrane integrity after nanopurification. The average sperm recovery after nanopurification was 80.1%. Sperm quality index was significantly higher (P < 0.001) in nanopurified groups regardless of the initial quality of the frozen thawed semen samples. However, in the high sperm quality group, nanopurification significantly improved the progressive motility and membrane integrity besides the increasing of acrosome-intact sperm. Sperm nanopurification using lectin-magnetic nanoparticles can be considered as a suitable method to reduce the proportion of acrosome-damaged sperm and to increase the quality of frozen thawed donkey semen.
Collapse
Affiliation(s)
- M S Yousef
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain; Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - A I López-Lorente
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - M Diaz-Jimenez
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain
| | - C Consuegra
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain
| | - J Dorado
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain
| | - B Pereira
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain
| | - I Ortiz
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, United States
| | - S Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - M Hidalgo
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain.
| |
Collapse
|
39
|
Comparison between the Effects of Adding Vitamins, Trace Elements, and Nanoparticles to SHOTOR Extender on the Cryopreservation of Dromedary Camel Epididymal Spermatozoa. Animals (Basel) 2020; 10:ani10010078. [PMID: 31906462 PMCID: PMC7022978 DOI: 10.3390/ani10010078] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This is a comprehensive study to compare between the effects of different supplements (vitamins C and E, trace elements Na2SeO3 and ZnSO4, and nanoparticles of zinc oxide and selenium) to the semen extender of camel epididymal spermatozoa during cooling and freezing/thawing cryopreservation. Supplementation of the semen SHOTOR extender with zinc oxide and selenium nanoparticles lead to improved progressive motility, vitality, and anti-oxidative defense, and reduced the ultrastructural abnormalities in camel epididymal spermatozoa. Abstract There are several obstacles in camel semen cryopreservation; such as increasing semen viscosity and the reduction in motile spermatozoa after ejaculation. Epididymal spermatozoa offer an efficient alternative to overcome these problems and are well-suited for artificial insemination in camels. In the current study, we compared the effects of supplementation with vitamin C, E, inorganic trace elements of selenium (Na2SeO3) and zinc (ZnSO4), and zinc and selenium nanoparticles (ZnONPs and SeNPs, respectively) on the cryopreservation of dromedary camel epididymal spermatozoa. When the SHOTOR extender was supplemented with ZnONPs and SeNPs; the sperm showed increased progressive motility; vitality; and membrane integrity after cooling at 5 °C for 2 h; when compared to the control and vitamin-supplemented groups. Moreover, the ZnONPs and SeNPs supplementation improved the progressive motility, vitality, sperm membrane integrity, ultrastructural morphology, and decreased apoptosis when frozen and thawed. SeNPs significantly increased reduced glutathione (GSH), superoxide dismutase (SOD), and decreased lipid peroxide malondialdehyde (MDA) levels. The advantageous effects of the trace elements were potentiated by reduction into a nano-sized particle, which could increase bioavailability and reduce the undesired liberation of toxic concentrations. We recommend the inclusion of SeNPs or ZnONPs to SHOTOR extenders to improve the cryotolerance of camel epididymal spermatozoa.
Collapse
|
40
|
Ozer Kaya S, Gur S, Erisir M, Kandemir FM, Benzer F, Kaya E, Turk G, Sonmez M. Influence of vitamin E and vitamin E‐selenium combination on arginase activity, nitric oxide level and some spermatological properties in ram semen. Reprod Domest Anim 2019; 55:162-169. [DOI: 10.1111/rda.13601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/03/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Seyma Ozer Kaya
- Department of Reproduction and Artificial Insemination Faculty of Veterinary Medicine Fırat University Elazig Turkey
| | - Seyfettin Gur
- Department of Reproduction and Artificial Insemination Faculty of Veterinary Medicine Fırat University Elazig Turkey
| | - Mine Erisir
- Department of Biochemistry Faculty of Veterinary Medicine Fırat University Elazig Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry Faculty of Veterinary Medicine Ataturk University Erzurum Turkey
| | - Fulya Benzer
- Department of Food Engineering Faculty of Engineering Munzur University Tunceli Turkey
| | - Emre Kaya
- Department of Biochemistry Faculty of Veterinary Medicine Fırat University Elazig Turkey
| | - Gaffari Turk
- Department of Reproduction and Artificial Insemination Faculty of Veterinary Medicine Fırat University Elazig Turkey
| | - Mustafa Sonmez
- Department of Reproduction and Artificial Insemination Faculty of Veterinary Medicine Fırat University Elazig Turkey
| |
Collapse
|
41
|
The Membrane Interactions of Nano-Silica and Its Potential Application in Animal Nutrition. Animals (Basel) 2019; 9:ani9121041. [PMID: 31795229 PMCID: PMC6940791 DOI: 10.3390/ani9121041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Silicon dioxide nanostructures, due to good biocompatibility, low toxicity and high synthetic availability, are promising materials for various biological and industrial applications. Interest in using silicon dioxide nanostructures arises not only from their special interactions with cell membranes, but also from an ease in manipulating their particle size, shape and porosity, allowing one to make a material with the desired physicochemical properties. Despite that, there is still little known about the possible use of silicon dioxide and other nanostructures in animal nutrition. The aim of the present paper was to describe the properties of silica nanostructures, demonstrating potential applications and achievable benefits of using nanostructures as a feed additive. Based on the literature, it seems that diet supplementation with nanoparticles leads to improved performance and immunity in animals, which might be, at least partially, related to changes in the composition of gut microbiota. These unique features make nanoparticles interesting candidates as feed additives used in animal nutrition. Abstract Nanoparticles are increasingly popular in numerous fields including electronics, optics and medicine (vaccines, tissue engineering, microsurgery, genomics and cancer therapies). The most widely used nanoparticles in biomedical applications are those designed by man. Scientists have obtained many types of silica nanoparticles with defined shape and chemical composition, but different properties and applications. Nanoparticles include particles with at least one dimension ranging from 1–100 nm. Silica nanoparticles (Sn), reaching values from several dozen to several hundred m2/g, have unique physicochemical properties due to their porous structure and well-developed specific surface. Currently, the use of Sn in animal nutrition, with a focus on gastrointestinal tract function, is of great interest.
Collapse
|
42
|
Zhou Q, Yue Z, Li Q, Zhou R, Liu L. Exposure to PbSe Nanoparticles and Male Reproductive Damage in a Rat Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13408-13416. [PMID: 31362495 DOI: 10.1021/acs.est.9b03581] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
PbSe nanoparticles (PbSe-NPs) attract ever-growing interest owing to their great promise in various fields. However, potential toxic effects of PbSe-NPs on male reproductive systems have not been reported. This study aimed to determine whether early-life exposure to PbSe-NPs could affect male reproductive systems and other related health effects in rats. The male rats were intraperitoneally injected with 10 mg/kg/week PbSe-NPs for 60 days followed by a series of reproductive-related analyses. We found that the nanoparticles could accumulate in testes in a size-dependent manner. Furthermore, accumulation of PbSe-NPs resulted in oxidative stress and disorder of normal serum sex hormones. Endoplasmic reticulum and mitochondria-mediated cell apoptosis were triggered via oxidative stress, as shown by upregulation of cytoplasmic Cyt-c, Bax, cleaved Caspase-3, GRP78, and Caspase-12. Notably, PbSe-NP administration led to reduction in the quantity and quality of sperm, which caused a great fertility decrease. In contrast, released Pb2+ from PbSe-NPs did not result in any testis toxicity and fertility declines. These results demonstrate that PbSe-NPs could cause severe reproductive toxicity in a size-dependent manner and these toxic effects should be responsible for PbSe-NPs themselves rather than released Pb2+. The application of PbSe-NPs might be a double-edged sword, and corresponding measures should be taken before use.
Collapse
Affiliation(s)
- Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Zongkai Yue
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Qingzhao Li
- School of Public Health , North China University of Science and Technology , Tangshan 063000 , China
| | - Ruiren Zhou
- College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Lu Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| |
Collapse
|
43
|
Varlamova EG, Maltseva VN. Micronutrient Selenium: Uniqueness and Vital Functions. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919040213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
44
|
Eid SY, El-Zaher HM, Emara SS, Farid OAH, Michael MI. Nano selenium treatment effects on thyroid hormones, immunity and antioxidant status in rabbits. WORLD RABBIT SCIENCE 2019. [DOI: 10.4995/wrs.2019.11251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p>The present study was conducted to compare the effect of Nano-Selenium (Nano-Se) and sodium selenite (SSe) on antioxidant enzyme activity, immunity and thyroid activity of growing New Zealand White (NZW) rabbits. In this study, 72 male rabbits (5 wk old) were divided randomly into 3 groups (24 rabbits each). The first group served as a placebo; in groups 2 and 3, each rabbit was intramuscularly injected once a week with 4 mL solution of Nano-Se or SSe, respectively, for a 2-mo period. The solution was adjusted to provide 30 μg Se/kg/live body weight. Results showed that Nano-Se treatment significantly (<em>P</em><0.0001) increased in superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione (GSH) more than control, but decreased significantly each of glutathione disulphide (GSSG) and nitric oxide (NO) levels in serum. Likewise, supplementation of SSe increased (<em>P</em><0.0001) GPx activity and significantly decreased both malondialdehyde (MDA) and GSSG levels more than control. Nano-Se significantly enhanced serum IgG and IgM more than SSe and control groups. Serum aspartate aminotransferase increased (<em>P</em><0.0001) due to Nano-Se treatment as compared to control and SSe, although the lowest (<em>P</em><0.0001) activity of alanine aminotransferase was recorded due to SSe supplementation. Nano-Se treatment increased (<em>P</em><0.0001) both T3 and T4 concentrations more than other groups. Furthermore, administration of Nano-Se increased SOD, GPx, GSH, total antioxidant capacity (TAC) and adenosine triphosphate (ATP) in liver tissue of growing rabbits, while it decreased MDA and 8-hydroxy-2’deoxyguanosine (8-oHdG) levels in liver tissue compared with control. Also, SSe showed an increase (<em>P</em><0.0001) in GSH, and ATP, but significantly decreased TAC and MDA levels compared with control. It can be concluded that Nano-Se supplementation significantly enhanced the activity of antioxidant enzymes in both serum and liver tissues, with a greater positive influence on immunoglobulin production and thyroid activity in growing NZW rabbits than SSe.</p>
Collapse
|
45
|
Zhang X, Gan X, E Q, Zhang Q, Ye Y, Cai Y, Han A, Tian M, Wang Y, Wang C, Su L, Liang C. Ameliorative effects of nano-selenium against NiSO 4-induced apoptosis in rat testes. Toxicol Mech Methods 2019; 29:467-477. [PMID: 31050317 DOI: 10.1080/15376516.2019.1611979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nickel (Ni) is a common environmental pollutant, which has toxic effects on reproductive system. Nowadays, nano-selenium (Nano-Se) has aroused great attention due to its unique antioxidant effect, excellent biological activities and low toxicity. The aim of this study was to explore the protective effects of Nano-Se on NiSO4-induced testicular injury and apoptosis in rat testes. Nickel sulfate (NiSO4) (5 mg/kg b.w.) was administered intraperitoneally and Nano-Se (0.5, 1, and 2 mg Se/kg b.w., respectively) was given by oral gavage in male Sprague-Dawley rats. Histological changes in the testes were determined by H&E staining. The terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and immunohistochemistry were performed to evaluate the apoptosis in testes. Expression levels of mitochondrial apoptosis-related genes and proteins were analyzed by RT-qPCR and Western blot. The results showed that Nano-Se improved lesions of testicular tissue induced by NiSO4. Nano-Se significantly alleviated NiSO4-induced apoptosis in rat testes, as well as significantly downregulated the Bak, cytochrome c, caspase-9 and caspase-3 and upregulated Bcl-2 expression levels, all of which were involved in mitochondria-mediated apoptosis. Altogether, we concluded that Nano-Se may potentially exert protective effects on NiSO4-induced testicular injury and attenuate apoptosis, at least partly, via regulating mitochondrial apoptosis pathways in rat testes.
Collapse
Affiliation(s)
- Xiaotian Zhang
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Xiaoqin Gan
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Qiannan E
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Qiong Zhang
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Yixing Ye
- b Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , China
| | - Yunyu Cai
- b Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , China
| | - Aijie Han
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Minmin Tian
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Yixuan Wang
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Caixia Wang
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Li Su
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Changhao Liang
- b Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , China
| |
Collapse
|
46
|
Kazemi M, Akbari A, Soleimanpour S, Feizi N, Darroudi M. The Role of Green Reducing Agents in Gelatin-Based Synthesis of Colloidal Selenium Nanoparticles and Investigation of Their Antimycobacterial and Photocatalytic Properties. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01537-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology 2019; 126:121-127. [DOI: 10.1016/j.theriogenology.2018.12.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/08/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
|
48
|
Khalaf AA, Ahmed WMS, Moselhy WA, Abdel-Halim BR, Ibrahim MA. Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Hum Exp Toxicol 2018; 38:398-408. [DOI: 10.1177/0960327118816134] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bisphenol A (BPA) is a widespread compound associated with the manufacture of many consumer products. The BPA-induced reproductive toxicity was reported to be mainly attributed to oxidative stress. However, the role of antioxidants usage to decrease the injurious effects of BPA, on male reproductive functions, remains to unveil. The present research is established to evaluate the role of selenium (Se) and its nano form (NSe) as protective agents to alleviate BPA-induced testicular toxicity. Ninety mature albino male rats were assigned into six equal groups: negative control; orally BPA 150 mg/kg; Se 3 mg/kg; NSe 2 mg/kg; both BPA 150 mg/kg and Se 3 mg/kg; and BPA 150 mg/kg + NSe 2 mg/kg. The experiment lasted for 70 consecutive days, and then serum was collected for estimation of prostatic acid phosphatase. Testicular tissues were subjected to measurement of antioxidant status, lipid peroxidation, DNA damage, and expression of some apoptotic genes. Our results reported that BPA-induced marked testicular damage evidenced by significant elevations in serum prostatic acid phosphatase activity, malondialdehyde levels, a decrease in testicular catalase activity and reduced glutathione level. Moreover, marked DNA internucleosomal fragmentation pattern as well as upregulation of cyclooxygenase-2 and estrogen receptor-2 NSe genes were detected. Coadministration of Se and NSe attenuated the reproductive toxicity induced by BPA via improvement of the antioxidant activity, genetic changes, and restoration of testicular tissue nearly as control one. These results indicated that both Se and NSe forms could be used as reproductive protective agents against the detrimental effect induced by BPA. However, the NSe surpassed the selenium in modulating the DNA laddering, and the studied gene expression levels, and offered a potent reproductive protection.
Collapse
Affiliation(s)
- AA Khalaf
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - WMS Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - WA Moselhy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - BR Abdel-Halim
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - MA Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
49
|
Falchi L, Khalil WA, Hassan M, Marei WF. Perspectives of nanotechnology in male fertility and sperm function. Int J Vet Sci Med 2018; 6:265-269. [PMID: 30564607 PMCID: PMC6286411 DOI: 10.1016/j.ijvsm.2018.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/10/2023] Open
Abstract
Recent advances in nanotechnology have tremendously expanded its possible applications in biomedicine. Although, the effects of nanoparticles (NPs) at cellular and tissue levels have not been fully understood, some of these biological effects might be employed in assisted reproduction to improve male fertility particularly by enhancing sperm cell quality either in vivo or in vitro. This review summarises the available literature regarding the potential applications of nanomaterials in farm animal reproduction, with a specific focus on the male gamete and on different strategies to improve breeding performances, transgenesis and targeted delivery of substances to a sperm cell. Antioxidant, antimicrobial properties and special surface binding ligand functionalization and their applications for sperm processing and cryopreservation have been reviewed. In addition, nanotoxicity and detrimental effects of NPs on sperm cells are also discussed due to the increasing concerns regarding the environmental impact of the expanding use of nanotechnologies on reproduction.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| | - Wael A. Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud Hassan
- Animal Production Research Institute, Dokki, Giza, Egypt
| | - Waleed F.A. Marei
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
50
|
Constantinescu-Aruxandei D, Frîncu RM, Capră L, Oancea F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients 2018; 10:E1466. [PMID: 30304813 PMCID: PMC6213372 DOI: 10.3390/nu10101466] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Selenium is essential for humans and the deficit of Se requires supplementation. In addition to traditional forms such as Se salts, amino acids, or selenium-enriched yeast supplements, next-generation selenium supplements, with lower risk for excess supplementation, are emerging. These are based on selenium forms with lower toxicity, higher bioavailability, and controlled release, such as zerovalent selenium nanoparticles (SeNPs) and selenized polysaccharides (SPs). This article aims to focus on the existing analytical systems for the next-generation Se dietary supplement, providing, at the same time, an overview of the analytical methods available for the traditional forms. The next-generation dietary supplements are evaluated in comparison with the conventional/traditional ones, as well as the analysis and speciation methods that are suitable to reveal which Se forms and species are present in a dietary supplement. Knowledge gaps and further research potential in this field are highlighted. The review indicates that the methods of analysis of next-generation selenium supplements should include a step related to chemical species separation. Such a step would allow a proper characterization of the selenium forms/species, including molecular mass/dimension, and substantiates the marketing claims related to the main advantages of these new selenium ingredients.
Collapse
Affiliation(s)
- Diana Constantinescu-Aruxandei
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Rodica Mihaela Frîncu
- INCDCP-ICECHIM Calarasi Subsidiary, 7A Nicolae Titulescu St., 915300 Lehliu Gara, Romania.
| | - Luiza Capră
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Florin Oancea
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| |
Collapse
|