1
|
Liu X, Ye L, Ding Y, Gong W, Qian H, Jin K, Niu Y, Zuo Q, Song J, Han W, Chen G, Li B. Role of PI3K/AKT signaling pathway involved in self-renewing and maintaining biological properties of chicken primordial germ cells. Poult Sci 2024; 103:104140. [PMID: 39173217 PMCID: PMC11379996 DOI: 10.1016/j.psj.2024.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Avian primordial germ cells (PGCs) are important culture cells for the production of transgenic chickens and preservation of the genetic resources of endangered species; however, culturing these cells in vitro proves challenging. Although the proliferation of chicken PGCs is dependent on insulin, the underlying molecular mechanisms remain unclear. In the present study, we explored the expression of the PI3K/AKT signaling pathway in PGCs, investigated its effects on PGC self-renewal and biological properties, and identified the underlying mechanisms. Our findings indicated that although supplementation with the PI3K/AKT activator IGF-1 failed to promote proliferation under the assessed culture conditions, the PI3K/AKT inhibitor LY294002 resulted in retarded cell proliferation and reduced expression of germ cell-related markers. We further demonstrated that inhibition of PI3K/AKT regulates the cell cycle and promotes apoptosis in PGCs by activating the expression of BAX and inhibiting that of Bcl-2. These findings indicated that the PI3K/AKT pathway is required for cell renewal, apoptosis, and maintenance of the reproductive potential in chicken PGCs. This study aimed to provide a theoretical basis for the optimization and improvement of a culture system for chicken PGCs and provide insights into the self-renewal of vertebrate PGCs as well as potential evolutionary changes in this unique cell population.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Liu Ye
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ying Ding
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongwu Qian
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences Poultry Institute of Jiangsu, Yangzhou 225003, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Kim JL, Jung KM, Han JY. Single-cell RNA sequencing reveals surface markers of primordial germ cells in chicken and zebra finch. Mol Genet Genomics 2024; 299:90. [PMID: 39325237 DOI: 10.1007/s00438-024-02186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Primordial germ cells (PGCs) in avian species exhibit unique developmental features, including the ability to migrate through the bloodstream and colonize the gonads, allowing their isolation at various developmental stages. Several methods have been developed for the isolation of avian PGCs, including density gradient centrifugation, size-dependent separation, and magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS) using a stage-specific embryonic antigen-1 (SSEA-1) antibody. However, these methods present limitations in terms of efficiency and applicability across development stages. In particular, the specificity of SSEA-1 decreases in later developmental stages. Furthermore, surface markers that can be utilized for isolating or utilizing PGCs are lacking for wild birds, including zebra finches, and endangered avian species. To address this, we used single-cell RNA sequencing (scRNA-seq) to uncover novel PGC-specific surface markers in chicken and zebra finch. We screened for genes that were primarily expressed in the PGC population within the gonadal cells. Analyses of gene expression patterns and levels based on scRNA-seq, coupled with validation by RT-PCR, identified NEGR1 and SLC34A2 as novel PGC-specific surface markers in chickens and ESYT3 in zebra finches. Notably, these newly identified genes exhibited sustained expression not only during later developmental stages but also in reproductive tissues.
Collapse
Affiliation(s)
- Jin Lee Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, 25354, Korea.
| |
Collapse
|
3
|
Sritabtim K, Prukudom S, Piyasanti Y, Chaipipat S, Kuwana T, Jurutha J, Sinsiri R, Tirawattanawanich C, Siripattarapravat K. First study on repeatable culture of primordial germ cells from various embryonic regions with giant feeder cells in Japanese quail (Coturnix japonica). Theriogenology 2024; 213:43-51. [PMID: 37797528 DOI: 10.1016/j.theriogenology.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Japanese quail (JQ, Coturnix japonica) is a farmed animal with a high economic value and has been used extensively as an avian model for research. Germline chimera production based on cryopreserved primordial germ cells (PGCs) is possible for conservation management of quail breeds as successful isolation has been reported of PGCs from their blood and gonads. However, the repeatable cultivation protocol has not been elucidated yet, which has hindered technological development. The current study characterized cultivation of pregonadal PGCs isolated from embryonic parts; embryonic blood (cPGCs), whole embryonic tissues (tPGCs), parts of tail buds (tbPGCs), and a mixture of blood and tail bud tissues (ctbPGCs). The results showed that the cultivation system required the presence of specific embryonic cells to act as a feeder for JQ-PGCs and that such a system facilitated more successful cultivation, as shown by the percentages of isolation and cultivation in tbPGCs (100%, 100%, respectively), tPGCs (60%, 55%, respectively), and ctbPGCs (60%, 30%, respectively), but not in cPGCs (0%) cultured on a mitomycin-treated JQ feeder cell-line. Once the co-culture system had been established, the PGCs could be propagated for at least 5 months. These PGCs expressed germ cell-specific markers (DAZL and CVH) and could colonize embryonic gonads. Conclusively, the isolation of pregonadal PGCs and their long-term cultivation in vitro requires a unique embryonic cell, giant cell feeder, that is indispensable for the proliferation of PGCs. Characterization of cell signaling sustaining a mutual interaction between the PGCs and the specific feeder cells will elucidate a superior environment for in vitro cultivation, as well as support the minimal transfer of used xenobiotics in chimera production.
Collapse
Affiliation(s)
- Kornkanok Sritabtim
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sukumal Prukudom
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand; Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Yanika Piyasanti
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Suparat Chaipipat
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand; Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, Thailand; Center of Excellence on Agricultural Biotechnology:(AG-BIO/PERDO-CHE), Bangkok, Thailand
| | | | - Juthathip Jurutha
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Rungthiwa Sinsiri
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chanin Tirawattanawanich
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Kannika Siripattarapravat
- Center for Veterinary Diagnostic Laboratory - Bangkhen, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand; Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, Thailand; Center of Excellence on Agricultural Biotechnology:(AG-BIO/PERDO-CHE), Bangkok, Thailand; Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
4
|
Suzuki K, Kwon SJ, Saito D, Atsuta Y. LIN28 is essential for the maintenance of chicken primordial germ cells. Cells Dev 2023; 176:203874. [PMID: 37453484 DOI: 10.1016/j.cdev.2023.203874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Understanding the mechanism of stem cell maintenance underlies the establishment of long-term and mass culture methods for stem cells that are fundamental for clinical and agricultural applications. In this study, we use chicken primordial germ cell (PGC) as a model to elucidate the molecular mechanisms underlying stem cell maintenance. The PGC is a useful experimental model because it is readily gene-manipulatable and easy to test gene function in vivo using transplantation. Previous studies to establish a long-term culture system have shown that secreted factors such as FGF2 are required to maintain the self-renewal capability of PGC. On the other hand, we know little about intracellular regulators responsible for PGC maintenance. Among representative stem cell factors, we focus on RNA-binding factors LIN28A and LIN28B as possible central regulators for the gene regulatory network essential to PGC maintenance. By taking advantage of the CRISPR/Cas9-mediated gene editing and a clonal culture technique, we find that both LIN28A and LIN28B regulate the proliferation of PGC in vitro. We further showed that colonization efficiency of grafted PGC at the genital ridges, rudiments for the gonads, of chicken embryos were significantly decreased by knockout (KO) of LIN28A or LIN28B. Of note, overexpression of human LIN28 in LIN28-KO PGC was sufficient to restore the low colonization rates, suggesting that LIN28 plays a key role in PGC colonization at the gonads. Transcriptomic analyses of LIN28-KO PGC reveal that several genes related to mesenchymal traits are upregulated, including EGR1, a transcription factor that promotes the differentiation of mesodermal tissues. Finally, we show that the forced expression of human EGR1 deteriorates replication activity and colonization efficiency of PGCs. Taken together, this work demonstrates that LIN28 maintains self-renewal of PGC by suppressing the expression of differentiation genes including EGR1.
Collapse
Affiliation(s)
- Katsuya Suzuki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Seung June Kwon
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Daisuke Saito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuji Atsuta
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
5
|
Ye L, Liu X, Jin K, Niu Y, Zuo Q, Song J, Han W, Chen G, Li B. Effects of Insulin on Proliferation, Apoptosis, and Ferroptosis in Primordial Germ Cells via PI3K-AKT-mTOR Signaling Pathway. Genes (Basel) 2023; 14:1975. [PMID: 37895324 PMCID: PMC10606282 DOI: 10.3390/genes14101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Primordial germ cells (PGCs) are essential for the genetic modification, resource conservation, and recovery of endangered breeds in chickens and need to remain viable and proliferative in vitro. Therefore, there is an urgent need to elucidate the functions of the influencing factors and their regulatory mechanisms. In this study, PGCs collected from Rugao yellow chicken embryonic eggs at Day 5.5 were cultured in media containing 0, 5, 10, 20, 50, and 100 μg/mL insulin. The results showed that insulin regulates cell proliferation in PGCs in a dose-dependent way, with an optimal dose of 10 μg/mL. Insulin mediates the mRNA expression of cell cycle-, apoptosis-, and ferroptosis-related genes. Insulin at 50 μg/mL and 100 μg/mL slowed down the proliferation with elevated ion content and GSH/oxidized glutathione (GSSG) in PGCs compared to 10 μg/mL. In addition, insulin activates the PI3K/AKT/mTOR pathway dose dependently. Collectively, this study demonstrates that insulin reduces apoptosis and ferroptosis and enhances cell proliferation in a dose-dependent manner via the PI3K-AKT-mTOR signaling pathway in PGCs, providing a new addition to the theory of the regulatory role of the growth and proliferation of PGC in vitro cultures.
Collapse
Affiliation(s)
- Liu Ye
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xin Liu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA;
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences/Poultry Institute of Jiangsu, Yangzhou 225003, China;
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Y.); (X.L.); (K.J.); (Y.N.); (Q.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
6
|
Dehdilani N, Yousefi Taemeh S, Rival-Gervier S, Montillet G, Kress C, Jean C, Goshayeshi L, Dehghani H, Pain B. Enhanced cultivation of chicken primordial germ cells. Sci Rep 2023; 13:12323. [PMID: 37516783 PMCID: PMC10387062 DOI: 10.1038/s41598-023-39536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023] Open
Abstract
The cultivation and expansion of chicken primordial germ cells (cPGCs) are of critical importance for both biotechnological applications and the management of poultry genetic biodiversity. The feeder-free culture system has become the most popular approach for the cultivation and expansion of cPGCs. However, despite some success in the cultivation of cPGCs, the reproducibility of culture conditions across different laboratories remains a challenge. This study aimed to compare two defined and enriched media for the growth of cPGCs originating from the Hubbard JA57 broiler. To this end, cPGCs were isolated from the embryonic blood of Hamburger-Hamilton (HH) stages 14-16 and cultured at various time points. The Growth properties and characteristics of these cells were evaluated in two different culture conditions (the defined or enriched medium) and their migratory properties were assessed after genetic engineering and injection into the vasculature of 2.5-day-old chicken embryos. The main finding of this study was that the use of an enriched medium (the defined medium with Knock-Out Serum Replacement; KOSR) resulted in improved growth properties of cPGCs originating from the Hubbard JA57 broiler compared to a defined medium. The ability to cultivate and expand cPGCs is crucial for the generation of both genetically engineered birds and breeds of interest from local or commercial origins. Therefore, these results highlight the importance of choosing an appropriate culture medium for cPGCs growth and expansion.
Collapse
Affiliation(s)
- Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sylvie Rival-Gervier
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Guillaume Montillet
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Clémence Kress
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Christian Jean
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Bertrand Pain
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France.
| |
Collapse
|
7
|
Zare M, Mirhoseini SZ, Ghovvati S, Yakhkeshi S, Hesaraki M, Barati M, Sayyahpour FA, Baharvand H, Hassani SN. The constitutively active pSMAD2/3 relatively improves the proliferation of chicken primordial germ cells. Mol Reprod Dev 2023. [PMID: 37379342 DOI: 10.1002/mrd.23689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
In many multicellular organisms, mature gametes originate from primordial germ cells (PGCs). Improvements in the culture of PGCs are important not only for developmental biology research, but also for preserving endangered species, and for genome editing and transgenic animal technologies. SMAD2/3 appear to be powerful regulators of gene expression; however, their potential positive impact on the regulation of PGC proliferation has not been taken into consideration. Here, the effect of TGF-β signaling as the upstream activator of SMAD2/3 transcription factors was evaluated on chicken PGCs' proliferation. For this, chicken PGCs at stages 26-28 Hamburger-Hamilton were obtained from the embryonic gonadal regions and cultured on different feeders or feeder-free substrates. The results showed that TGF-β signaling agonists (IDE1 and Activin-A) improved PGC proliferation to some extent while treatment with SB431542, the antagonist of TGF-β, disrupted PGCs' proliferation. However, the transfection of PGCs with constitutively active SMAD2/3 (SMAD2/3CA) resulted in improved PGC proliferation for more than 5 weeks. The results confirmed the interactions between overexpressed SMAD2/3CA and pluripotency-associated genes NANOG, OCT4, and SOX2. According to the results, the application of SMAD2/3CA could represent a step toward achieving an efficient expansion of avian PGCs.
Collapse
Affiliation(s)
- Masumeh Zare
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | | | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojgan Barati
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayyahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Oct4 dependent chromatin activation is required for chicken primordial germ cell migration. Stem Cell Rev Rep 2022; 18:2535-2546. [PMID: 35397052 DOI: 10.1007/s12015-022-10371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Primordial germ cells (PGCs) are the undifferentiated progenitors of the gametes. Unlike the poor maintenance of cultured mammalian PGCs, the avian PGCs can be expanded in vitro indefinitely while preserving pluripotency and germline competence. In mammals, the Oct4 is the master transcription factor that ensures the stemness of pluripotent cells such as PGCs, but the specific function of Oct4 in chicken PGCs remains unclear. As expected, the loss of Oct4 in chicken PGCs reduced the expression of key pluripotency factors and promoted the genes involved in endoderm and ectoderm differentiation. Furthermore, the global active chromatin was reduced as shown by the depletion of the H3K27ac upon Oct4 suppression. Interestingly, the de-activated chromatin caused the down-regulation of adjacent genes which are mostly known regulators of cell junction, chemotaxis and cell migration. Consequently, the Oct4-deficient PGCs show impaired cell migration and could not colonize the gonads when re-introduced into the bloodstream of the embryo. We propose that, in addition to maintaining pluripotency, the Oct4 mediated chromatin activation is dictating chicken PGC migration.
Collapse
|
9
|
Novel rRNA-depletion methods for total RNA sequencing and ribosome profiling developed for avian species. Poult Sci 2021; 100:101321. [PMID: 34298384 PMCID: PMC8322463 DOI: 10.1016/j.psj.2021.101321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Deep sequencing of RNAs has greatly aided the study of the transcriptome, enabling comprehensive gene expression profiling and the identification of novel transcripts. While messenger RNAs (mRNAs) are of the greatest interest in gene expression studies as they encode for proteins, mRNAs make up only 3 to 5% of total RNAs, with the majority comprising ribosomal RNAs (rRNAs). Therefore, applications of deep sequencing to RNA face the challenge of how to efficiently enrich mRNA species prior to library construction. Traditional methods extract mRNAs using oligo-dT primers targeting the poly-A tail on mRNAs; however, this approach is not comprehensive as it does not capture mRNAs lacking the poly-A tail or other long non-coding RNAs that we may be interested in. Alternative mRNA enrichment methods deplete rRNAs, but such approaches require species-specific probes and the commercially available kits are costly and have only been developed for a limited number of model organisms. Here, we describe a quick, cost-effective method for depleting rRNAs using custom-designed oligos, using chickens as an example species for probe design. With this optimized protocol, we have not only removed the rRNAs from total RNAs for RNA-seq library construction but also depleted rRNA fragments from ribosome-protected fragments for ribosome profiling. Currently, this is the only rRNA depletion-based method for avian species; this method thus provides a valuable resource for both the scientific community and the poultry industry.
Collapse
|
10
|
Mizushima S, Sasanami T, Ono T, Matsuzaki M, Kansaku N, Kuroiwa A. Cyclin D1 gene expression is essential for cell cycle progression from the maternal-to-zygotic transition during blastoderm development in Japanese quail. Dev Biol 2021; 476:249-258. [PMID: 33905721 DOI: 10.1016/j.ydbio.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/26/2022]
Abstract
Embryogenesis proceeds by a highly regulated series of events. In animals, maternal factors that accumulate in the egg cytoplasm control cell cycle progression at the initial stage of cleavage. However, cell cycle regulation is switched to a system governed by the activated nuclear genome at a specific stage of development, referred to as maternal-to-zygotic transition (MZT). Detailed molecular analyses have been performed on maternal factors and activated zygotic genes in MZT in mammals, fishes and chicken; however, the underlying mechanisms remain unclear in quail. In the present study, we demonstrated that MZT occurred at blastoderm stage V in the Japanese quail using novel gene targeting technology in which the CRISPR/Cas9 and intracytoplasmic sperm injection (ICSI) systems were combined. At blastoderm stage V, we found that maternal retinoblastoma 1 (RB1) protein expression was down-regulated, whereas the gene expression of cyclin D1 (CCND1) was initiated. When a microinjection of sgRNA containing CCND1-targeted sequencing and Cas9 mRNA was administered at the pronuclear stage, blastoderm development stopped at stage V and the down-regulation of RB1 did not occur. This result indicates the most notable difference from mammals in which CCND-knockout embryos are capable of developing beyond MZT. We also showed that CCND1 induced the phosphorylation of the serine/threonine residues of the RB1 protein, which resulted in the degradation of this protein. These results suggest that CCND1 is one of the key factors for RB1 protein degradation at MZT, and the elimination of RB1 may contribute to cell cycle progression after MZT during blastoderm development in the Japanese quail. Our novel technology, which combined the CRISPR/Cas9 system and ICSI, has the potential to become a powerful tool for avian-targeted mutagenesis.
Collapse
Affiliation(s)
- Shusei Mizushima
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| | - Tomohiro Sasanami
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Shizuoka, 422-8529, Japan
| | - Tamao Ono
- Faculty of Agriculture, Shinshu University, Kamiina, Nagano, 399-4598, Japan
| | - Mei Matsuzaki
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8528, Japan
| | - Norio Kansaku
- Department of Animal Science and Biotechnology, Azabu University, Fuchinobe, Sagamihara, 229-8501, Japan
| | - Asato Kuroiwa
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
11
|
Khwatenge CN, Nahashon SN. Recent Advances in the Application of CRISPR/Cas9 Gene Editing System in Poultry Species. Front Genet 2021; 12:627714. [PMID: 33679892 PMCID: PMC7933658 DOI: 10.3389/fgene.2021.627714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
CRISPR/Cas9 system genome editing is revolutionizing genetics research in a wide spectrum of animal models in the genetic era. Among these animals, is the poultry species. CRISPR technology is the newest and most advanced gene-editing tool that allows researchers to modify and alter gene functions for transcriptional regulation, gene targeting, epigenetic modification, gene therapy, and drug delivery in the animal genome. The applicability of the CRISPR/Cas9 system in gene editing and modification of genomes in the avian species is still emerging. Up to date, substantial progress in using CRISPR/Cas9 technology has been made in only two poultry species (chicken and quail), with chicken taking the lead. There have been major recent advances in the modification of the avian genome through their germ cell lineages. In the poultry industry, breeders and producers can utilize CRISPR-mediated approaches to enhance the many required genetic variations towards the poultry population that are absent in a given poultry flock. Thus, CRISPR allows the benefit of accessing genetic characteristics that cannot otherwise be used for poultry production. Therefore CRISPR/Cas9 becomes a very powerful and robust tool for editing genes that allow for the introduction or regulation of genetic information in poultry genomes. However, the CRISPR/Cas9 technology has several limitations that need to be addressed to enhance its use in the poultry industry. This review evaluates and provides a summary of recent advances in applying CRISPR/Cas9 gene editing technology in poultry research and explores its potential use in advancing poultry breeding and production with a major focus on chicken and quail. This could aid future advancements in the use of CRISPR technology to improve poultry production.
Collapse
Affiliation(s)
- Collins N. Khwatenge
- Department of Biological Sciences, Tennessee State University, Nashville, IN, United States
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Samuel N. Nahashon
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
12
|
Primordial germ cells isolated from individual embryos of red junglefowl and indigenous pheasants of Thailand. Theriogenology 2021; 165:59-68. [PMID: 33640587 DOI: 10.1016/j.theriogenology.2021.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 11/20/2022]
Abstract
Interspecific germline chimerism mediated by transplantation of primordial germ cells (PGCs) of wild species to domestic hosts promises the conservation of wild birds. Cryopreservation of avian eggs and embryos is impracticable, and currently only frozen PGCs enable conservation of both the male and female descendants. Purebred offspring have been obtained from germline chimeras of wild avian species, proving the feasibility of such technology. In vitro propagation has been optimized for avian PGCs of domestic species; however, evidence is rather limited for successful isolation as well as long-term culture from a single embryo of wild species. With accelerating biodiversity loss, we have committed to preserving current genetic resources by freezing PGCs isolated from individual embryos in addition to their genetic material. We have devised a reliable protocol for the isolation and proliferation of PGCs from wild fowls in the family Phasianidae that are conserved in captive breeding (red junglefowl, bar-tailed pheasant, kalij pheasant, Siamese fireback pheasant, and silver pheasant). We obtained individual isolates of cultured circulating PGCs (49.7%, 79/155) as well as tissue PGCs (92.9%, 144/155). The specific co-culture conditions of autologous embryonic cells, without additional growth factors, facilitated the proliferation of so-called tissue PGCs (the remaining PGCs in embryonic tissue following blood aspiration). Only circulating PGCs left in blood vessels and of PGCs migrating to developing gonads have been previously reported. However, the present study is the first to report on the harvest of ectopic PGCs. The defined conditions sustained continuous proliferation of tissue PGCs for at least six months and maintained PGC identity following cryopreservation. Cultured tissue PGCs of these wild species were extensively characterized for their expression of the germ cell-specific proteins, chicken vasa homolog (CVH) and deleted in azoospermia-like (DAZL), as well as the ability to colonize chicken embryonic gonads. The novel protocol is practical for generating enough PGCs for cryopreservation, transplantation, and additionally, it enables isolation of PGCs from both blood circulation and embryonic tissue simultaneously. For conservation purposes, this approach is potentially applicable more widely to other non-domestic birds than those in the family Phasianidae that were investigated in the present study.
Collapse
|
13
|
Expression profiling of sexually dimorphic genes in the Japanese quail, Coturnix japonica. Sci Rep 2020; 10:20073. [PMID: 33257723 PMCID: PMC7705726 DOI: 10.1038/s41598-020-77094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022] Open
Abstract
Research on avian sex determination has focused on the chicken. In this study, we established the utility of another widely used animal model, the Japanese quail (Coturnix japonica), for clarifying the molecular mechanisms underlying gonadal sex differentiation. In particular, we performed comprehensive gene expression profiling of embryonic gonads at three stages (HH27, HH31 and HH38) by mRNA-seq. We classified the expression patterns of 4,815 genes into nine clusters according to the extent of change between stages. Cluster 2 (characterized by an initial increase and steady levels thereafter), including 495 and 310 genes expressed in males and females, respectively, contained five key genes involved in gonadal sex differentiation. A GO analysis showed that genes in this cluster are related to developmental processes including reproductive structure development and developmental processes involved in reproduction were significant, suggesting that expression profiling is an effective approach to identify novel candidate genes. Based on RNA-seq data and in situ hybridization, the expression patterns and localization of most key genes for gonadal sex differentiation corresponded well to those of the chicken. Our results support the effectiveness of the Japanese quail as a model for studies gonadal sex differentiation in birds.
Collapse
|
14
|
Park JS, Lee KY, Han JY. Precise Genome Editing in Poultry and Its Application to Industries. Genes (Basel) 2020; 11:E1182. [PMID: 33053652 PMCID: PMC7601607 DOI: 10.3390/genes11101182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
Poultry such as chickens are valuable model animals not only in the food industry, but also in developmental biology and biomedicine. Recently, precise genome-editing technologies mediated by the CRISPR/Cas9 system have developed rapidly, enabling the production of genome-edited poultry models with novel traits that are applicable to basic sciences, agriculture, and biomedical industry. In particular, these techniques have been combined with cultured primordial germ cells (PGCs) and viral vector systems to generate a valuable genome-edited avian model for a variety of purposes. Here, we summarize recent progress in CRISPR/Cas9-based genome-editing technology and its applications to avian species. In addition, we describe further applications of genome-edited poultry in various industries.
Collapse
Affiliation(s)
| | | | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.P.); (K.Y.L.)
| |
Collapse
|
15
|
Szczerba A, Kuwana T, Paradowska M, Bednarczyk M. In Vitro Culture of Chicken Circulating and Gonadal Primordial Germ Cells on a Somatic Feeder Layer of Avian Origin. Animals (Basel) 2020; 10:E1769. [PMID: 33007811 PMCID: PMC7600596 DOI: 10.3390/ani10101769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022] Open
Abstract
The present study had two aims: (1) To develop a culture system that imitates a normal physiological environment of primordial germ cells (PGCs). There are two types of PGCs in chicken: Circulating blood (cPGCs) and gonadal (gPGCs). The culture condition must support the proliferation of both cPGCs and gPGCs, without affecting their migratory properties and must be deprived of xenobiotic factors, and (2) to propose an easy-to-train, nonlabeling optical technique for the routine identification of live PGCs. To address the first aim, early chicken embryo's feeder cells were examined instead of using feeder cells from mammalian species. The KAv-1 medium at pH 8.0 with the addition of bFGF (basic fibroblast growth factor) was used instead of a conventional culture medium (pH approximately 7.2). Both cPGCs and gPGCs proliferated in vitro and retained their migratory ability after 2 weeks of culture. The cultivated cPGCs and gPGCs colonized the right and/or left gonads of the recipient male and female embryos. To address the second aim, we demonstrated a simple and rapid method to identify live PGCs as bright cells under darkfield illumination. The PGCs rich in lipid droplets in their cytoplasm highly contrasted with the co-cultured feeder layer and other cell populations in the culture.
Collapse
Affiliation(s)
- Agata Szczerba
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (T.K.); (M.P.); (M.B.)
| | | | | | | |
Collapse
|
16
|
Xiong C, Wang M, Ling W, Xie D, Chu X, Li Y, Huang Y, Li T, Otieno E, Qiu X, Xiao X. Advances in Isolation and Culture of Chicken Embryonic Stem Cells In Vitro. Cell Reprogram 2020; 22:43-54. [PMID: 32150690 DOI: 10.1089/cell.2019.0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chicken embryonic stem cells (cESCs) isolated from the egg at the stage X hold great promise for cell therapy, tissue engineering, pharmaceutical, and biotechnological applications. They are considered to be pluripotent cells with the capacity to self-renewal and differentiate into specialized cells. However, long-term maintenance of cESCs cannot be realized now, which impedes the establishment of cESC line and limits their applications. Therefore, the separation locations, isolation methods, and culture conditions especially the supplements and action mechanisms of cytokines, including leukemia inhibitory factor, fibroblast growth factor, transforming growth factor beta, bone morphogenic protein, and activin for cESCs in vitro, have been reviewed here. These defined strategies will contribute to identify the key mechanism on the self-renewal of cESCs, facilitate to optimize system that supports the derivation and longtime maintenance of cESCs, establish the cESC line, and develop the biobank of genetic resources in chicken.
Collapse
Affiliation(s)
- Chunxia Xiong
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Mingyu Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenhui Ling
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dengfeng Xie
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xinyue Chu
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yunxin Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Huang
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tong Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Edward Otieno
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoyan Qiu
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Bahrami S, Amiri-Yekta A, Daneshipour A, Jazayeri SH, Mozdziak PE, Sanati MH, Gourabi H. Designing A Transgenic Chicken: Applying New Approaches toward A Promising Bioreactor. CELL JOURNAL 2019; 22:133-139. [PMID: 31721526 PMCID: PMC6874784 DOI: 10.22074/cellj.2020.6738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Specific developmental characteristics of the chicken make it an attractive model for the generation of transgenic organisms. Chicken possess a strong potential for recombinant protein production and can be used as a powerful bioreactor to produce pharmaceutical and nutritional proteins. Several transgenic chickens have been generated during the last two decades via viral and non-viral transfection. Culturing chicken primordial germ cells (PGCs) and their ability for germline transmission ushered in a new stage in this regard. With the advent of CRISPR/Cas9 system, a new phase of studies for manipulating genomes has begun. It is feasible to integrate a desired gene in a predetermined position of the genome using CRISPR/Cas9 system. In this review, we discuss the new approaches and technologies that can be applied to generate a transgenic chicken with regards to recombinant protein productions.
Collapse
Affiliation(s)
- Salahadin Bahrami
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyedeh Hoda Jazayeri
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Mohammad Hossein Sanati
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.Electronic Address: .,Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
18
|
|
19
|
Retinoic acid (RA) and bone morphogenetic protein 4 (BMP4) restore the germline competence of in vitro cultured chicken blastodermal cells. In Vitro Cell Dev Biol Anim 2019; 55:169-176. [DOI: 10.1007/s11626-019-00324-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/16/2019] [Indexed: 11/26/2022]
|
20
|
Derivation of chicken primordial germ cells using an indirect Co-culture system. Theriogenology 2018; 123:83-89. [PMID: 30292859 DOI: 10.1016/j.theriogenology.2018.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/23/2022]
Abstract
Primordial germ cells (PGCs) are promising genetic resources for avian studies including modified animals. However, chicken PGCs are slow to proliferate and gradually lose germline competency after long-term culture, which hinders their application in avian biotechnology. Thus, we developed a robust method for the isolation and rapid propagation of PGCs using an indirect co-culture system. PGCs derived from a pair of embryonic chicken gonads were expanded to 1 × 106 within 2 weeks, and no sex bias was observed in. These PGCs presented high capacity of germline transmission and produced donor-derived offspring after injection into the chicken embryos. This system allows the efficient gene-banking of chicken species and can facilitate the production of chickens bearing a desired phenotype via genomic editing.
Collapse
|
21
|
Long-term in vitro culture and preliminary establishment of chicken primordial germ cell lines. PLoS One 2018; 13:e0196459. [PMID: 29709001 PMCID: PMC5927411 DOI: 10.1371/journal.pone.0196459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/15/2018] [Indexed: 11/19/2022] Open
Abstract
Primordial germ cells (PGCs) are precursors of functional gametes and can be used as efficient transgenic tools and carriers in bioreactors. Few methods for long-term culture of PGCs are available. In this study, we tested various culture conditions for PGCs, and used the optimum culture system to culture chicken gonad PGCs for about three hundred days. Long-term-cultured PGCs were detected and characterized by karyotype analysis, immunocytochemical staining of SSEA-1, c-kit, Sox2, cDAZL, and quantitative RT-PCR for specific genes like Tert, DAZL, POUV, and NANOG. Cultured PGCs labeled with PKH26 were reinjected into Stage X recipient embryos and into the dorsal aorta of Stage 14–17 embryos to assay their ability of migration into the germinal crescent and gonads, respectively. In conclusion, the most suitable culture system for PGCs is as follows: feeder layer cells treated with 20 μg/mL mitomycin C for 2 hours, and with 50% conditioned medium added to the factor culture medium. PGCs cultured in this system retain their pluripotency and the unique ability of migration without transformation, indicating the successful preliminary establishment of chicken primordial germ cell lines and these PGCs can be considered for use as carriers in transgenic bioreactors.
Collapse
|
22
|
Yakhkeshi S, Rahimi S, Sharafi M, Hassani S, Taleahmad S, Shahverdi A, Baharvand H. In vitro improvement of quail primordial germ cell expansion through activation of TGF‐beta signaling pathway. J Cell Biochem 2018; 119:4309-4319. [DOI: 10.1002/jcb.26618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Saeed Yakhkeshi
- Department of Poultry ScienceFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Shaban Rahimi
- Department of Poultry ScienceFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohsen Sharafi
- Department of Poultry ScienceFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Seyedeh‐Nafiseh Hassani
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Abdolhossein Shahverdi
- Department of EmbryologyReproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental BiologyUniversity of Science and CultureTehranIran
| |
Collapse
|
23
|
Han JY, Park YH. Primordial germ cell-mediated transgenesis and genome editing in birds. J Anim Sci Biotechnol 2018; 9:19. [PMID: 29423217 PMCID: PMC5791193 DOI: 10.1186/s40104-018-0234-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Transgenesis and genome editing in birds are based on a unique germline transmission system using primordial germ cells (PGCs), which is quite different from the mammalian transgenic and genome editing system. PGCs are progenitor cells of gametes that can deliver genetic information to the next generation. Since avian PGCs were first discovered in nineteenth century, there have been numerous efforts to reveal their origin, specification, and unique migration pattern, and to improve germline transmission efficiency. Recent advances in the isolation and in vitro culture of avian PGCs with genetic manipulation and genome editing tools enable the development of valuable avian models that were unavailable before. However, many challenges remain in the production of transgenic and genome-edited birds, including the precise control of germline transmission, introduction of exogenous genes, and genome editing in PGCs. Therefore, establishing reliable germline-competent PGCs and applying precise genome editing systems are critical current issues in the production of avian models. Here, we introduce a historical overview of avian PGCs and their application, including improved techniques and methodologies in the production of transgenic and genome-edited birds, and we discuss the future potential applications of transgenic and genome-edited birds to provide opportunities and benefits for humans.
Collapse
Affiliation(s)
- Jae Yong Han
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea.,2Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598 Japan
| | - Young Hyun Park
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
24
|
Bednarczyk M, Kozłowska I, Łakota P, Szczerba A, Stadnicka K, Kuwana T. Generation of transgenic chickens by the non-viral, cell-based method: effectiveness of some elements of this strategy. J Appl Genet 2018; 59:81-89. [PMID: 29372515 PMCID: PMC5799318 DOI: 10.1007/s13353-018-0429-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/20/2022]
Abstract
Transgenic chickens have, in general, been produced by two different procedures. The first procedure is based on viral transfection systems. The second procedure, the non-viral method, is based on genetically modified embryonic cells transferred directly into the recipient embryo. In this review, we analyzed the effectiveness of important elements of the non-viral, cell-based strategy of transgenic chicken production. The main elements of this strategy are: isolation and cultivation of donor embryonic cells; transgene construction; cell transfection in vitro; and chimera production: injection of cells into recipient embryos, raising and identification of germline chimeras, mating germline chimeras, transgene inheritance, and transgene expression. In this overview, recent progress and important limitations in the development of transgenic chickens are presented.
Collapse
Affiliation(s)
- Marek Bednarczyk
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland.
| | - Izabela Kozłowska
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland
| | - Paweł Łakota
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland
| | - Agata Szczerba
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland
| | - Takashi Kuwana
- Department of Animal Biochemistry and Biotechnology, University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
25
|
Male fertility restored by transplanting primordial germ cells into testes: a new way towards efficient transgenesis in chicken. Sci Rep 2017; 7:14246. [PMID: 29079843 PMCID: PMC5660165 DOI: 10.1038/s41598-017-14475-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022] Open
Abstract
The ongoing progress in primordial germ cell derivation and cultivation is opening new ways in reproductive biotechnology. This study tested whether functional sperm cells can be matured from genetically manipulated primordial germ cells after transplantation in adult testes and used to restore fertility. We show that spermatogenesis can be restored after mCherry-expressing or GFP-expressing primordial germ cells are transplantated into the testes of sterilized G0 roosters and that mCherry-positive or GFP-positive non-chimeric transgenic G1 offspring can be efficiently produced. Compared with the existing approaches to primordial germ cell replacement, this new technique eliminates the germ line chimerism of G0 roosters and is, therefore, faster, more efficient and requires fewer animals. Furthermore, this is the only animal model, where the fate of primordial germ cells in infertile recipients can be studied.
Collapse
|
26
|
Farzaneh M, Attari F, Mozdziak PE, Khoshnam SE. The evolution of chicken stem cell culture methods. Br Poult Sci 2017; 58:681-686. [PMID: 28840744 DOI: 10.1080/00071668.2017.1365354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.
Collapse
Affiliation(s)
- M Farzaneh
- a Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR , Tehran , Iran
| | - F Attari
- b Department of Animal Biology, School of Biology, College of Science , University of Tehran , Tehran , Iran
| | - P E Mozdziak
- c Physiology Graduate Program , North Carolina State University , Raleigh , NC , USA
| | - S E Khoshnam
- d Department of Physiology, Faculty of Medicine, Physiology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran.,e Student Research Committee , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
27
|
Woodcock ME, Idoko-Akoh A, McGrew MJ. Gene editing in birds takes flight. Mamm Genome 2017; 28:315-323. [PMID: 28612238 PMCID: PMC5569130 DOI: 10.1007/s00335-017-9701-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
The application of gene editing (GE) technology to create precise changes to the genome of bird species will provide new and exciting opportunities for the biomedical, agricultural and biotechnology industries, as well as providing new approaches for producing research models. Recent advances in modifying both the somatic and germ cell lineages in chicken indicate that this species, and conceivably soon other avian species, has joined a growing number of model organisms in the gene editing revolution.
Collapse
Affiliation(s)
- Mark E Woodcock
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Alewo Idoko-Akoh
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
28
|
Wang L, Chen M, Chen D, Peng S, Zhou X, Liao Y, Yang X, Xu H, Lu S, Zhang M, Lu K, Lu Y. Derivation and characterization of primordial germ cells from Guangxi yellow-feather chickens. Poult Sci 2017; 96:1419-1425. [DOI: 10.3382/ps/pew387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022] Open
|
29
|
Jung KM, Kim YM, Ono T, Han JY. Size-dependent isolation of primordial germ cells from avian species. Mol Reprod Dev 2017; 84:508-516. [DOI: 10.1002/mrd.22802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Kyung M. Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; College of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - Young M. Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; College of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - Tamao Ono
- Division of Animal Science; Faculty of Agriculture; Shinshu University; Minamiminowa Nagano Japan
| | - Jae Y. Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; College of Agriculture and Life Sciences; Seoul National University; Seoul Korea
- Institute for Biomedical Sciences; Shinshu University; Minamiminowa Nagano Japan
| |
Collapse
|
30
|
Tagami T, Miyahara D, Nakamura Y. Avian Primordial Germ Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:1-18. [PMID: 28980226 DOI: 10.1007/978-981-10-3975-1_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Germ cells transmit genetic information to the next generation through gametogenesis. Primordial germ cells (PGCs) are the first germ-cell population established during development, and are the common origins of both oocytes and spermatogonia. Unlike in other species, PGCs in birds undergo blood circulation to migrate toward the genital ridge, and are one of the major biological properties of avian PGCs. Germ cells enter meiosis and arrest at prophase I during embryogenesis in females, whereas in males they enter mitotic arrest during embryogenesis and enter meiosis only after birth. In chicken, gonadal sex differentiation occurs as early as embryonic day 6, but meiotic initiation of female germ cells starts from a relatively late stage (embryonic day 15.5). Retinoic acid controls meiotic entry in developing chicken gonads through the expressions of retinaldehyde dehydrogenase 2, a major retinoic acid synthesizing enzyme, and cytochrome P450 family 26, subfamily B member 1, a major retinoic acid-degrading enzyme. The other major biological property of avian PGCs is that they can be propagated in vitro for the long term, and this technique is useful for investigating proliferation mechanisms. The main factor involved in chicken PGC proliferation is fibroblast growth factor 2, which activates the signaling of MEK/ERK and thus promotes the cell cycle and anti-apoptosis. Furthermore, the activation of PI3K/Akt signaling is indispensable for the proliferation and survival of chicken PGCs.
Collapse
Affiliation(s)
- Takahiro Tagami
- Institute of Livestock Grassland Science, NARO, Ibaraki, Japan.
| | - Daichi Miyahara
- Institute of Livestock Grassland Science, NARO, Ibaraki, Japan
- Shinshu University, Ueda, Japan
| | | |
Collapse
|
31
|
Pérez Sáez JM, Bussmann LE, Barañao JL, Bussmann UA. Improvement of Chicken Primordial Germ Cell Maintenance In Vitro by Blockade of the Aryl Hydrocarbon Receptor Endogenous Activity. Cell Reprogram 2016; 18:154-61. [PMID: 27253627 PMCID: PMC4900192 DOI: 10.1089/cell.2016.0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Primordial germ cells (PGCs) are the undifferentiated progenitors of gametes. Germline competent PGCs can be developed as a cell-based system for genetic modification in chickens, which provides a valuable tool for transgenic technology with both research and industrial applications. This implies manipulation of PGCs, which, in recent years, encouraged a lot of research focused on the study of PGCs and the way of improving their culture. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that besides mediating toxic responses to environmental contaminants plays pivotal physiological roles in various biological processes. Since a novel compound that acts as an antagonist of this receptor has been reported to promote expansion of hematopoietic stem cells, we conducted the present study with the aim of determining whether addition of an established AHR antagonist to the standard culture medium used nowadays for in vitro chicken PGCs culture improves ex vivo expansion. We have found that addition of α-naphthoflavone in culture medium promotes the amplification of undifferentiated cells and that this effect is exerted by the blockade of AHR action. Our results constitute the first report of the successful use of a readily available AHR antagonist to improve avian PGCs expansion, and they further extend the knowledge of the effects of AHR modulation in undifferentiated cells.
Collapse
Affiliation(s)
- Juan M. Pérez Sáez
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | - J. Lino Barañao
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ursula A. Bussmann
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| |
Collapse
|
32
|
Nandi S, Whyte J, Taylor L, Sherman A, Nair V, Kaiser P, McGrew MJ. Cryopreservation of specialized chicken lines using cultured primordial germ cells. Poult Sci 2016; 95:1905-11. [PMID: 27099306 PMCID: PMC4988548 DOI: 10.3382/ps/pew133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 01/03/2023] Open
Abstract
Biosecurity and sustainability in poultry production requires reliable germplasm conservation. Germplasm conservation in poultry is more challenging in comparison to other livestock species. Embryo cryopreservation is not feasible for egg-laying animals, and chicken semen conservation has variable success for different chicken breeds. A potential solution is the cryopreservation of the committed diploid stem cell precursors to the gametes, the primordial germ cells ( PGCS: ). Primordial germ cells are the lineage-restricted cells found at early embryonic stages in birds and form the sperm and eggs. We demonstrate here, using flocks of partially inbred, lower-fertility, major histocompatibility complex- ( MHC-: ) restricted lines of chicken, that we can easily derive and cryopreserve a sufficient number of independent lines of male and female PGCs that would be sufficient to reconstitute a poultry breed. We demonstrate that germ-line transmission can be attained from these PGCs using a commercial layer line of chickens as a surrogate host. This research is a major step in developing and demonstrating that cryopreserved PGCs could be used for the biobanking of specialized flocks of birds used in research settings. The prospective application of this technology to poultry production will further increase sustainability to meet current and future production needs.
Collapse
Affiliation(s)
- S Nandi
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - J Whyte
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - L Taylor
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - A Sherman
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - V Nair
- Avian Oncogenic Virus Group, The Pirbright Institute, Ash Road, Woking, Guildford, Surrey, GU24 0NF, UK
| | - P Kaiser
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - M J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
33
|
Miyahara D, Oishi I, Makino R, Kurumisawa N, Nakaya R, Ono T, Kagami H, Tagami T. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2. J Reprod Dev 2015; 62:143-9. [PMID: 26727404 PMCID: PMC4848571 DOI: 10.1262/jrd.2015-128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An in vitro culture system of chicken primordial germ cells (PGCs) has been recently
developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present
study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro
proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that
stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL).
Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2),
and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate
of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on
chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of
chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However,
the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2
would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to
recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs
by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%.
The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining
germline competency in vitro in cooperation with FGF2.
Collapse
Affiliation(s)
- Daichi Miyahara
- Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Expression of GFP Gene in Gonads of Chicken Embryos by Transfecting Primordial Germ Cells <i>in vitro </i>or <i>in vivo </i>using the PiggyBac Transposon Vector System. J Poult Sci 2015. [DOI: 10.2141/jpsa.0140197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|