1
|
Kalandakanond-Thongsong S, Daendee S, Thongsong B, Srikiatkhachorn A. Daidzein, but not genistein, has anxiolytic-liked effect on intact male Wistar rats. Behav Brain Res 2024; 474:115172. [PMID: 39094955 DOI: 10.1016/j.bbr.2024.115172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
The phytoestrogens daidzein and genistein are ubiquitous in human food. This study aimed to elucidate their anxiety-liked effects, their effects on the reproductive organs, and the molecular mechanism behind any anxiety-liked effects in intact adult male Wistar rats. These phytoestrogens are of interest due to their posited health benefits, particularly for female, but with some effect on males as well. This study comprised two experiments: (1) Male Wistar rats received either a vehicle, daidzein, or genistein (0.25, 0.50, or 1.00 mg/kg) by subcutaneously injection for four weeks. They were then tested for anxiety-liked behaviors. Then, the brain monoamines in anxiolytic rats were determined; (2) The modulation of gamma aminobutyric acid receptors by phytoestrogens was further analyzed by administration of diazepam to phytoestrogen-treated rats before behavioral tests. In the first experiment, the biological parameters measured, including body weight, daily food intake and reproductive organ weights were unaffected by either genistein or daidzein. However, anxiolytic-like effect was observed in the low-dose daidzein (0.25 mg/kg) group. Higher doses of daidzein or genistein of all doses had no effect. Further, the low-dose daidzein did not alter brain monoamine levels. In the second experiment, the anxiolytic-like behavior of daidzein-treated rats receiving diazepam did not differ from that of the rats treated with just diazepam or just daidzein. In conclusion, 4-week exposure to daidzein or genistein had no negative effects on the reproductive organs, body weight, food intake, anxiogenic-like behavior, or monoaminergic and diazepam-modulated GABAergic neurotransmissions of intact male rats. However, beneficial anxiolytic-like effects were apparent after low-dose treatment with daidzein.
Collapse
Affiliation(s)
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand.
| | - Boonrit Thongsong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anan Srikiatkhachorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
| |
Collapse
|
2
|
Ayaz A, Zaman W, Radák Z, Gu Y. Harmony in Motion: Unraveling the Nexus of Sports, Plant-Based Nutrition, and Antioxidants for Peak Performance. Antioxidants (Basel) 2024; 13:437. [PMID: 38671884 PMCID: PMC11047508 DOI: 10.3390/antiox13040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The intricate interplay between plant-based nutrition, antioxidants, and their impact on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth exploration of how stress and physical performance are interconnected through the lens of nutrition. The increasing interest among athletes in plant-based diets presents an opportunity with benefits for health, performance, and recovery. It is essential to investigate the connection between sports, plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses the growing popularity of plant-based diets among athletes. It elaborates on the importance of antioxidants in combating radicals addressing stress levels while promoting cellular health. By identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these beneficial compounds. Examining stress within the context of sports activities, this review provides insights into its mechanisms and its impact on athletic performance as well as recovery processes. This study explores the impact of plant-based diets on athletes including their types, potential advantages and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to antioxidant supplementation and identifies areas where further research is needed. Furthermore, the review suggests directions for research and potential innovations in sports nutrition. Ultimately it brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that can pave the way for advancements in the ever-evolving field of sports nutrition.
Collapse
Affiliation(s)
- Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary;
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
3
|
Saghir SA, Alnaimat SM, Dmour SM, Al-Tarawni AH, Abdelnour SA, Ahmeda AF, Arisha AH, Hawwal MF, Alanzi AR, Mothana RA, Lindequist U. The ameliorative effect of bergamot oil nano-emulsion in stressed rabbit bucks: Influence on blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes. Saudi Pharm J 2023; 31:101691. [PMID: 37457368 PMCID: PMC10345481 DOI: 10.1016/j.jsps.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
This work explored the activities of bergamot oil nano-emulsion (NBG) in modulating blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes in stressed rabbit bucks. Twenty-four mature rabbit bucks (5 months) were randomly divided into three groups; control group (NBG0) received 1 ml of distilled water, while the other two groups received NBG orally at doses of 50 and 100 mg/kg (bw) twice a week. The present study's findings revealed that treated groups had lower values of total and direct bilirubin, triglyceride, lactate dehydrogenase, and creatinine compared with NBG0 group (p < 0.05). NBG100 group recorded the greatest of total protein, albumin, GPx, T3 and T4 values as well as the lowest values of uric acid, MDA, and indirect bilirubin. Both treated groups showed significantly reduced 8-OhDG, Amyloid A, TLR 4, while significantly increased nitric oxide, IgA, IgM, TAC, and SOD levels. Semen characteristics such as volume, sperm count, sperm motility, normal sperm, and vitality were significantly higher in the NBG100 group compared to the NBG50 and NBG0 groups, whereas sperm abnormalities and dead sperm were significantly reduced. HSP70, HSP72, and HSPA9 gene overexpression showed that testicular integrity was maintained after buck received oral doses of 50 or 100 mg/kg of NBG. Existing findings indicate that oral administration of NBG improves heat tolerance in rabbit bucks primarily as e result of its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sultan A.M. Saghir
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
| | - Sulaiman M. Alnaimat
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
- Department of Biology Department, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Saif M. Dmour
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
| | | | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Ahmad F. Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed H. Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ulrike Lindequist
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Itodo JI, Ayo JO, Rekwot IP, Aluwong T, Allam L, Ibrahim S. Comparative evaluation of solvent extracts of Azanza garckeana fruit pulp on hormonal profiles, spermiogram and antioxidant activities in rabbit bucks. WORLD RABBIT SCIENCE 2022. [DOI: 10.4995/wrs.2022.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The study investigated the comparative influence of different extraction solvents on spermiogram, hormonal profiles and antioxidant activities in rabbit bucks. Adult New Zealand White rabbit bucks (n=18), with average live weight of 1.2±0.03 kg and aged 10-18 mo were fed ad libitum on a commercial diet. They were administered five different Azanza garckeana (AG) fruit pulp extracts at 500 mg/kg via oral gavage, comprising control group (Con), crude (AG Cr), methanol (AG M), n-hexane (AG H), ethyl acetate (AG E)and aqueous (AG AQ) for four weeks. The extracts improved the spermiogram in rabbit bucks administered methanol (AG M) and the reaction time was significantly (P<0.05) lower in AG E group when compared to other groups. The ejaculate volume, sperm motility, pH and sperm concentration were significantly (P<0.05) higher in the AG M group when compared to the other groups. There was a significant (P<0.05) increase in concentrations of blood testosterone, follicle-stimulating hormone and luteinising hormone in methanol extract group (AG M). While the glutathione and malondialdehyde concentrations were (P<0.05) lower, catalase and superoxide dismutase activities were significantly (P<0.05) higher in the groups administered methanol extract (AG M). It was concluded that AG M extracts of AG pulp elicited the best response in spermiogram, hormonal concentrations and antioxidant activities in New Zealand White rabbit bucks. Its use as the extraction solvent is recommended.
Collapse
|
5
|
Effects of phytogenic feed additives on the reproductive performance of animals. Saudi J Biol Sci 2021; 28:5816-5822. [PMID: 34588896 PMCID: PMC8459048 DOI: 10.1016/j.sjbs.2021.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 11/24/2022] Open
Abstract
The reproductive performance of ruminants is economically significant, and its improvement is a primary goal of the livestock industry to ensure its sustainability. Several approaches have been developed to use phytogenics as feed additives for several proposes, such as reducing methane emissions, and as an alternative to antibiotics. Phytogenics have potent antioxidant, anti-inflammatory, immunomodulatory, and metabolism-regulatory properties, and they are present at high levels in animal feeds. This current review considers the potential use of medicinal herbs on the reproductive performance of animals. The influence of diet on the fertility complications commonly noted in ruminants is of global interest. Although the effects of phytogenics on ruminant digestion and absorption are well-explored, their impact on reproductive performance remains poorly investigated. This review focuses on the influence of phytogenics on semen quality, hormonal profiles, and hematobiochemical indices in male ruminants. Based on available data, phytogenics are perceived to improve oocyte quality, reproductive performance, and pregnancy. However, further more comprehensive research on the benefits and potential hazards of the use of phytogenics is required to improve reproductive performance in ruminants.
Collapse
|
6
|
El-Desoky NI, Hashem NM, Gonzalez-Bulnes A, Elkomy AG, Abo-Elezz ZR. Effects of a Nanoencapsulated Moringa Leaf Ethanolic Extract on the Physiology, Metabolism and Reproductive Performance of Rabbit Does during Summer. Antioxidants (Basel) 2021; 10:antiox10081326. [PMID: 34439574 PMCID: PMC8389335 DOI: 10.3390/antiox10081326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 01/05/2023] Open
Abstract
This study investigated the effect of Moringa leaf ethanolic extract (MLEE) on heat-tolerance variables and the reproductive performance of rabbit does bred under hot climate conditions. Additionally, the effect of nanoencapsulation technology on the biological efficiency of MLEE was considered. A total of 56 rabbit does were randomly divided into four experimental groups and treated with 50 mg/kg body weight (BW) nonencapsulated MLEE, 25 or 10 mg/kg BW nanoencapsulated MLEE, or not treated (Control, C). The treatments continued for 50 days, including mating and pregnancy times. Physiological and hematochemical variables, hormonal profiles, and reproductive performance (kindling rate and litter characteristics) were determined. The active components of MLEE were identified. The results indicated that MLEE has 30 active components. All MLEE-based treatments reduced heat-stress-related indicators, such as rectal temperatures, respiratory rates and heart rate; improved hematochemical attributes, redox status, and hormones (progesterone and prolactin); and increased the total litter size, the kindling rate, litter size at birth and litter weight at birth. Adding MLEE can alleviate the negative impacts of heat stress by improving metabolism, redox status, and hormonal balance during pregnancy. These effects were seen whether MLLE was in free or encapsulated forms. However, the use of nanoencapsulated MLEE allowed 80% reduction (10 mg/kg BW) in the optimal dose (50 mg/kg BW) without affecting the efficiency of the treatment. These results support the importance of nanoencapsulation technology in improving the bioavailability of active components when they are orally administered.
Collapse
Affiliation(s)
- Nagwa I. El-Desoky
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.I.E.-D.); (A.G.E.); (Z.R.A.-E.)
| | - Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.I.E.-D.); (A.G.E.); (Z.R.A.-E.)
- Correspondence: (N.M.H.); (A.G.-B.)
| | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, C/Tirant lo Blanc, 7, 46115 Valencia, Spain
- Correspondence: (N.M.H.); (A.G.-B.)
| | - Ahmed G. Elkomy
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.I.E.-D.); (A.G.E.); (Z.R.A.-E.)
| | - Zahraa R. Abo-Elezz
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.I.E.-D.); (A.G.E.); (Z.R.A.-E.)
| |
Collapse
|
7
|
Delis-Hechavarria EA, Guevara-Gonzalez RG, Ocampo-Velazquez R, Gomez-Soto JG, Vargas-Hernandez M, Parola-Contreras I, Torres-Pacheco I. Functional Food for Rabbits. Current Approaches and Trends to Increase Functionality. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1939711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - R. G. Guevara-Gonzalez
- Autonomus University of Queretaro. Engeneering Faculty, Campus Amazcala, Queretaro, Mexico
| | - R.V. Ocampo-Velazquez
- Autonomus University of Queretaro. Engeneering Faculty, Campus Amazcala, Queretaro, Mexico
| | - J. G. Gomez-Soto
- Autonomus University of Queretaro. Natural Science College, Queretaro, Mexico
| | - M. Vargas-Hernandez
- Autonomus University of Queretaro. Engeneering Faculty, Campus Amazcala, Queretaro, Mexico
| | - I. Parola-Contreras
- Autonomus University of Queretaro. Engeneering Faculty, Campus Amazcala, Queretaro, Mexico
| | - I. Torres-Pacheco
- Autonomus University of Queretaro. Engeneering Faculty, Campus Amazcala, Queretaro, Mexico
| |
Collapse
|
8
|
Li C, Fan Y, Li S, Zhou X, Park KY, Zhao X, Liu H. Antioxidant Effect of Soymilk Fermented by Lactobacillus plantarum HFY01 on D-Galactose-Induced Premature Aging Mouse Model. Front Nutr 2021; 8:667643. [PMID: 34079813 PMCID: PMC8165163 DOI: 10.3389/fnut.2021.667643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/16/2021] [Indexed: 01/26/2023] Open
Abstract
The antioxidant effect of soymilk fermented by Lactobacillus plantarum HFY01 (screened from yak yogurt) was investigated on mice with premature aging induced by D-galactose. In vitro antioxidant results showed that L. plantarum HFY01-fermented soymilk (LP-HFY01-DR) had better ability to scavenge the free radicals 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS) than unfermented soymilk and Lactobacillus bulgaricus-fermented soymilk. Histopathological observation showed that LP-HFY01-DR could protect the skin, spleen and liver, reduce oxidative damage and inflammation. Biochemical results showed that LP-HFY01-DR could effectively upregulate glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels and decrease malondialdehyde (MDA) content in the liver, brain, and serum. Real-time quantitative reverse transcription polymerase chain reaction further showed that LP-HFY01-DR could promote the relative expression levels of the genes encoding for cuprozinc superoxide dismutase (Cu/Zn-SOD, SOD1), manganese superoxide dismutase (Mn-SOD, SOD2), CAT, GSH, and GSH-Px in the liver, spleen, and skin. High-performance liquid chromatography results revealed daidzin, glycitin, genistin, daidzein, glycitein, and genistein in LP-HFY01-DR. In conclusion, LP-HFY01-DR could improve the antioxidant capacity in mice with premature aging induced by D-galactose.
Collapse
Affiliation(s)
- Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yang Fan
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuang Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Huazhi Liu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Production of Bovine Equol-Enriched Milk: A Review. Animals (Basel) 2021; 11:ani11030735. [PMID: 33800327 PMCID: PMC7999515 DOI: 10.3390/ani11030735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Milk and dairy products contain many substances beneficial to human health; moreover, the contents of some of these substances can be enhanced. This is also the case of isoflavones which are compounds of plant origin that can be ingested and metabolized by cattle and, subsequently, secreted into bovine milk. An especially healthful substance called equol is ranked among isoflavone metabolites, commonly produced in the digestive tract of cattle. Equol content in milk can be modified by using feedstuffs with different contents of isoflavones or by milk processing and storage. Abstract Milk and dairy products are important sources of nutrients in the human diet because they contain a number of essential substances and other biologically active components. Many of these substances can be modified, and thus offer opportunities to use milk and dairy products as functional food. Isoflavones are particularly important in human nutrition due to their diverse pharmacological and antioxidant properties. The clinical effectiveness of isoflavone-rich products is believed to be dependent on their ability to metabolize daidzein to equol, which may directly exert cancer preventive effects. However, only approximately 30–40% of humans are able to produce equol, while animals, in general, produce equol. Equol is the predominant product of bacterial metabolism of isoflavones and can be found in various amounts in some food of animal origin, especially in milk. Therefore, milk and dairy products can be considered to be sources of equol for humans who are not able to produce this metabolite. When the content of isoflavones in milk is to be modified, two groups of factors should be considered, i.e., dietary factors that include the source of isoflavones and the processing effects on feedstuffs and animal factors that include the intake of isoflavones, ruminal and postruminal changes, and the health and physiological status of animals. The approximate content of isoflavones in milk can be predicted using carry-over rates for different dietary sources or using a formula that describes the relationship between equol concentration in milk and formononetin intake. Processing and storage can affect the content and profile of isoflavones in milk and dairy products.
Collapse
|
10
|
Hashem NM, Hassanein EM, Simal-Gandara J. Improving Reproductive Performance and Health of Mammals Using Honeybee Products. Antioxidants (Basel) 2021; 10:336. [PMID: 33668287 PMCID: PMC7996195 DOI: 10.3390/antiox10030336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Honeybee products have positive effects on the reproductive performance of mammals. Many honeybee product constituents are biologically active, with antioxidant, antimicrobial, antiviral, anti-inflammatory, immunomodulatory, antifungal, wound-healing, and cardio-protective properties. Honeybee products also improve male and female fertility rates by enhancing gamete cryopreservation, in vitro maturation and fertilization, and embryo development. Previously published studies confirmed their efficacy for alleviating reproductive toxicity caused by contaminants and lifestyle habits that impair overall health and well-being. However, high-dose oral administration of honeybee products may adversely affect the reproductive system, and unfavorable effects were alleviated by treatment cessation. For this reason, this review proposes that bioactive components from bee products can be used as a strategy for improving the reproductive performance and health of mammals.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Eman M. Hassanein
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
11
|
Supplementation with Proline Improves Haemato-Biochemical and Reproductive Indicators in Male Rabbits Affected by Environmental Heat-Stress. Animals (Basel) 2021; 11:ani11020373. [PMID: 33540779 PMCID: PMC7913087 DOI: 10.3390/ani11020373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The exposure of rabbits, such as other mammals, to environmental heat stress drastically affects homeostasis and reproductive function. The current trial indicates that a dietary supplementation with 50–100 mg/kg DM of proline improves redox status, blood metabolites, and reproductive traits of rabbit bucks. Abstract Twenty-four adult rabbit bucks (n = 6 per treatment) were fed a basal diet supplemented with 0 (control), 50, 100, and 150 mg proline/kg dry matter (DM) diet for 12 weeks to determine possible usefulness for alleviating the negative impact of environmental heat stress on redox status, haemato-biochaemical attributes and semen quality. There were significant dose–response effects, with increments in levels of dietary proline (LDP) quadratically improving red blood cell counts (p = 0.017), rectal temperature (p = 0.009), and respiratory rate (p < 0.001). Increasing LDP cubically affected superoxide dismutase activity in blood plasma (p = 0.012) and total antioxidant capacity in both blood and seminal plasma (p < 0.001 and p = 0.006, respectively). The optimal response was observed at 30 and 80 mg proline/kg DM for blood and seminal plasma, respectively. With regards to homeostasis indexes, increments in LDP cubically modified blood plasma concentrations of total protein (p = 0.002) and albumin (p < 0.001), with an optimal response found at 70 mg proline/kg DM. A linear relationship (p = 0.005) was also observed between LDP and blood plasma glucose concentrations, with the optimal response being found at 100 mg proline/kg DM. Increasing LDP also showed positive effects on reproductive traits, with quadratic increases in blood plasma testosterone and cortisol concentrations (p < 0.001; optimal responses at 50 and 60 mg proline/kg DM, respectively), a positive linear relationship with in libido, ejaculate volume, sperm concentration and total sperm count (p < 0.001 for all; optimal responses observed at 100 mg proline/kg DM) and a quadratic increase in total functional sperm fraction (p < 0.001; optimal response at 70 mg proline mg/kg DM). Hence, the optimal positive effects of dietary proline supplementation on redox status, blood metabolites, and reproductive traits of rabbit bucks may be achieved at 50–100 mg/kg DM.
Collapse
|
12
|
Senescent cells in rabbit, nutria and chinchilla testes-Results from histochemical and immunohistochemical studies. Anim Reprod Sci 2021; 226:106701. [PMID: 33516138 DOI: 10.1016/j.anireprosci.2021.106701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/31/2022]
Abstract
Rabbit, nutria and chinchilla testes were evaluated to compare testicular cellular senescence. There were no major species-specific differences in structure of either seminiferous tubules or interstitial tissue. There, however, were occasional abnormalities in seminiferous tubule structure with there being multinucleated and exfoliated cells present in rabbit testes. Furthermore, there were seminiferous tubules without a lumen that were filled with premeiotic/meiotic cells in nutria; and tubules with vacuolization with there being no post-meiotic cells in chinchillas. There were no differences in distribution or content of acids, total proteins and polysaccharides in the testis of any of the three species. Results using comparative immunohistochemistry procedures indicated the testes contained a few senescent cells in seminiferous tubules with typical morphology and there was a large number of senescent cells in seminiferous tubules of nutrias and chinchillas that had an abnormal structure (P <0.001). Compared to rabbit testes, in which there was the least number of senescent cells in seminiferous tubules, there was a greater abundance of senescence markers in both nutria and chinchilla testes (P < 0.05; P < 0.001, respectively). Furthermore, there were small abundances of caspase 3 and LC3 in the testes of all species. In chinchilla testes, there was a lesser concentration of cholesterol (P < 0.001) and testosterone compared with the other species. Cellular senescence in testes, therefore, can be assessed by detection of morpho-functional disorders of the testis of the three species evaluated in the present study.
Collapse
|
13
|
Hashem NM, Gonzalez-Bulnes A, Simal-Gandara J. Polyphenols in Farm Animals: Source of Reproductive Gain or Waste? Antioxidants (Basel) 2020; 9:antiox9101023. [PMID: 33096704 PMCID: PMC7589028 DOI: 10.3390/antiox9101023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
Reproduction is a complex process that is substantially affected by environmental cues, specifically feed/diet and its components. Farm animals as herbivorous animals are exposed to a large amount of polyphenols present in their natural feeding system, in alternative feed resources (shrubs, trees, and agro-industrial byproducts), and in polyphenol-enriched additives. Such exposure has increased because of the well-known antioxidant properties of polyphenols. However, to date, the argumentation around the impacts of polyphenols on reproductive events is debatable. Accordingly, the intensive inclusion of polyphenols in the diets of breeding animals and in media for assisted reproductive techniques needs further investigation, avoiding any source of reproductive waste and achieving maximum benefits. This review illustrates recent findings connecting dietary polyphenols consumption from different sources (conventional and unconventional feeds) with the reproductive performance of farm animals, underpinned by the findings of in vitro studies in this field. This update will help in formulating proper diets, optimizing the introduction of new plant species, and feed additives for improving reproductive function, avoiding possible reproductive wastes and maximizing possible benefits.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
- Correspondence: ; Tel.: +20-3-5921960; Fax: +20-3-5922780
| | - Antonio Gonzalez-Bulnes
- Departamento de Reproducción Animal, INIA, Avda, Puerta de Hierro s/n., 28040 Madrid, Spain;
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain;
| |
Collapse
|
14
|
Hosny NS, Hashem NM, Morsy AS, Abo-Elezz ZR. Effects of Organic Selenium on the Physiological Response, Blood Metabolites, Redox Status, Semen Quality, and Fertility of Rabbit Bucks Kept Under Natural Heat Stress Conditions. Front Vet Sci 2020; 7:290. [PMID: 32596265 PMCID: PMC7303341 DOI: 10.3389/fvets.2020.00290] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/28/2020] [Indexed: 12/02/2022] Open
Abstract
Heat stress can impair the general health of rabbit bucks by disturbing physiological homeostasis with negative consequences in animal welfare and remarkable decline in reproductive performance. Selenium (Se) can control a number of vital biological processes. Thus, the effects of organic selenium (OSe) supplementation on the blood metabolites, redox status, semen quality, testicular histology, seminal plasma protein profile, and fertility of rabbit bucks kept under natural heat stress conditions were studied. Adult V-line male rabbits were fed a basal diet supplemented with 0.3 mg OSe/kg dry matter (DM) diet (OSe, n = 9) or not (control, CON, n = 9) for 12 weeks. The results showed that rabbits fed the OSe diet had 73.68 and 68.75% higher (P < 0.05) OSe concentrations in the blood serum and seminal plasma, respectively, than rabbits fed the CON diet. The OSe diet significantly decreased the rectal temperature and respiration rate and significantly increased the blood serum concentrations of total protein, albumin, glucose, and glutathione peroxidase compared to the CON diet. Rabbits fed the OSe diet had lower reaction times (12.53 vs. 5.84 s, ± 0.79, P < 0.01) and higher total functional sperm counts (116.74 vs. 335.23 × 106/ml, ± 24.68, P < 0.001) and percentages of integrated sperm membranes (60.38 vs. 79.19%, ± 1.69, P < 0.01) than rabbits fed the CON diet. Rabbits fed the OSe diet had higher (P < 0.01) contents of seminal plasma total protein, albumin, alanine transaminase, fructose, and total antioxidant capacity and lower (P < 0.001) malondialdehyde (MDA) levels than those fed the CON diet. Rabbits fed the OSe diet had sperm cells with higher levels of integrated DNA than those fed the CON diet. The seminal plasma of rabbits fed the OSe diet contained four new proteins, with molecular weights of 19.0, 21.5, 30.0, and 44.0 kDa. The kindling rates, litter size, and weight at birth of females mated with males fed the OSe diet were significantly higher than those of females mated with males fed the CON diet. In summary, the inclusion of 0.3 mg OSe/kg DM diet of naturally heat-stressed rabbit bucks countered the negative impacts of elevated environmental temperature on physiological homeostasis, semen quality, and fertility.
Collapse
Affiliation(s)
- Nourhan S Hosny
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.,Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application (STR-City), Alexandria, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Amr S Morsy
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application (STR-City), Alexandria, Egypt
| | - Zahraa R Abo-Elezz
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Carneiro AM, Moreira EA, Bragagnolo FS, Borges MS, Pilon AC, Rinaldo D, Funari CS. Soya agricultural waste as a rich source of isoflavones. Food Res Int 2020; 130:108949. [PMID: 32156391 DOI: 10.1016/j.foodres.2019.108949] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 11/29/2022]
Abstract
Soybeans are among the world's major crops responsible for food and biodiesel production, as well as a major source of isoflavones - a class of high value-added bioactive compounds. As estimated 460 million tonnes of soya residues (branches, leaves, roots, and pods) will be produced in the 2018/2019 harvest, and 20-40% of this waste must be removed from the field to ensure soil quality and minimize environmental impacts. This work investigated the potential occurrence and content of isoflavones in soya agricultural waste collected directly from the ground after mechanically harvesting. We also assessed the extraction performances of ethanol and acetone for these materials as an alternative to acetonitrile, a problematic solvent from an environmental point of view. Considerable amounts of isoflavones were found in soya agricultural waste collected directly from the ground when compared to soybeans (2.71 ± 0.27, 0.57 ± 0.1, 0.30 ± 0.05 and 2.09 ± 0.24 kg of isoflavones/tonne of leaves, branches, pods, and soybeans, respectively). The greener ethanol and acetone performed well for a broad range of compounds. This is an example in which appreciable amounts of high value-added compounds are wasted. Since isoflavones are considered phytoestrogens, their recovery from part of this waste might avoid potential contamination of soil and groundwater.
Collapse
Affiliation(s)
| | - Eduarda Antunes Moreira
- USP - University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | - Maiara Stefanini Borges
- UNESP - São Paulo State University, School of Sciences, Bauru, São Paulo, Brazil; UNESP - São Paulo State University, Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Alan Cesar Pilon
- USP - University of São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Rinaldo
- UNESP - São Paulo State University, School of Sciences, Bauru, São Paulo, Brazil; UNESP - São Paulo State University, Institute of Chemistry, Araraquara, São Paulo, Brazil.
| | - Cristiano Soleo Funari
- UNESP - São Paulo State University, Faculty of Agricultural Sciences, Botucatu, São Paulo, Brazil.
| |
Collapse
|