1
|
Liu X, Jimenez-Alesanco A, Li Z, Rizzuti B, Neira JL, Estaras M, Peng L, Chuluyan E, Garona J, Gottardo F, Velazquez-Campoy A, Xia Y, Abian O, Santofimia-Castaño P, Iovanna J. Development of an efficient NUPR1 inhibitor with anticancer activity. Sci Rep 2024; 14:29515. [PMID: 39604425 PMCID: PMC11603058 DOI: 10.1038/s41598-024-79340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Pancreatic cancer is highly lethal and has limited treatment options available. Our team had previously developed ZZW-115, a promising drug candidate that targets the nuclear protein 1 (NUPR1), which is involved in pancreatic cancer development and progression. However, clinical translation of ZZW-115 was hindered due to potential cardiotoxicity caused by its interaction with the human Ether-à-go-go-Related Gene (hERG) potassium channel. To address this, we have performed a high-throughput screening of 10,000 compounds from the HitFinder Chemical Library, and identified AJO14 as a lead compound that binds to NUPR1, without having favorable affinity towards hERG. AJO14 induced cell death through apoptosis, necroptosis, and parthanatos (induced by the poly-ADP ribose polymerase (PARP) overactivation), driven by mitochondrial catastrophe and decreased ATP production. This process seemed to be mediated by the hyperPARylation (an excessive modification of proteins by PARP, leading to cellular dysfunction), as it could be reversed by Olaparib, a PARP inhibitor. In xenografted mice, AJO14 demonstrated a dose-dependent tumor reduction activity. Furthermore, we attempted to improve the anti-cancer properties of AJO14 by molecular modification of the lead compound. Among the 51 candidates obtained and tested, 8 compounds exhibited a significant increase in efficacy and have been retained for further studies, especially LZX-2-73. These AJO14-derived compounds offer potent NUPR1 inhibition for pancreatic cancer treatment, without cardiotoxicity concerns.
Collapse
Affiliation(s)
- Xi Liu
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ana Jimenez-Alesanco
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
| | - Zexian Li
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- CNR NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Via P.Bucci, Cubo 31 C, 87036, Rende, Italy
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- IDIBE, Universidad Miguel Hernández, Edificio Torregaitán, Avda. del Ferrocarril s/n, 03202, Elche, Alicante, Spain
| | - Matías Estaras
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ling Peng
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR7325, Parc Scientifique et Technologique de Luminy, Equipe labélisée Ligue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Eduardo Chuluyan
- Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
- Department of Microbiology, Parasitology and Immunology, Faculty of Medicine, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
| | - Juan Garona
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Florencia Gottardo
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Yi Xia
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina.
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Lansbergen MF, Dings MPG, Manoukian P, Fariña A, Waasdorp C, Hooijer GKJ, Verheij J, Koster J, Zwijnenburg DA, Wilmink JW, Medema JP, Dijk F, van Laarhoven HWM, Bijlsma MF. Transcriptome-based classification to predict FOLFIRINOX response in a real-world metastatic pancreatic cancer cohort. Transl Res 2024; 273:137-147. [PMID: 39154856 DOI: 10.1016/j.trsl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/18/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at metastatic stage and typically treated with fluorouracil, leucovorin, irinotecan and oxaliplatin (FOLFIRINOX). Few patients benefit from this treatment. Molecular subtypes are prognostic in particularly resectable PDAC and might predict treatment response. This study aims to correlate molecular subtypes in metastatic PDAC with FOLFIRINOX responses using real-world data, providing assistance in counselling patients. We collected 131 RNA-sequenced metastatic biopsies and applied a network-based meta-analysis using published PDAC classifiers. Subsequent survival analysis was performed using the most suitable classifier. For validation, we developed an immunohistochemistry (IHC) classifier using GATA6 and keratin-17 (KRT17), and applied it to 86 formalin-fixed paraffin-embedded samples of advanced PDAC. Lastly, GATA6 knockdown models were generated in PDAC organoids and cell lines. We showed that the PurIST classifier was the most suitable classifier. With this classifier, classical tumors had longer PFS and OS than basal-like tumors (PFS: 216 vs. 78 days, p = 0.0002; OS: 251 vs. 195 days, p = 0.049). The validation cohort showed a similar trend. Importantly, IHC GATA6low patients had significantly shorter survival with FOLFIRINOX (323 vs. 746 days, p = 0.006), but no difference in non-treated patients (61 vs. 54 days, p = 0.925). This suggests that GATA6 H-score predicts therapy response. GATA6 knockdown models did not lead to increased FOLFIRINOX responsiveness. These data suggest a predictive role for subtyping (transcriptomic and GATA6 IHC), though no direct causal relationship was found between GATA6 expression and chemoresistance. GATA6 immunohistochemistry should be seamlessly added to current diagnostics and integrated into upcoming clinical trials.
Collapse
Affiliation(s)
- Marjolein F Lansbergen
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Mark P G Dings
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Paul Manoukian
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arantza Fariña
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gerrit K J Hooijer
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Joanne Verheij
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jan Koster
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Johanna W Wilmink
- Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frederike Dijk
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Espona-Fiedler M, Patthey C, Lindblad S, Sarró I, Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions. Biochem Pharmacol 2024; 229:116492. [PMID: 39153553 DOI: 10.1016/j.bcp.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer deaths by 2030 and this is mostly due to therapy failure. Limited treatment options and resistance to standard-of-care (SoC) therapies makes PDAC one of the cancer types with poorest prognosis and survival rates [1,2]. Pancreatic tumors are renowned for their poor response to therapeutic interventions including targeted therapies, chemotherapy and radiotherapy. Herein, we review hallmarks of therapy resistance in PDAC and current strategies aiming to tackle escape mechanisms and to re-sensitize cancer cells to therapy. We will further provide insights on recent advances in the field of drug discovery, nanomedicine, and disease models that are setting the ground for future research.
Collapse
Affiliation(s)
- Margarita Espona-Fiedler
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| | - Cedric Patthey
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden
| | - Stina Lindblad
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden
| | - Irina Sarró
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Universitat de Barcelona, Barcelona, Spain
| | - Daniel Öhlund
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| |
Collapse
|
4
|
Nicolle R, Canivet C, Palazzo L, Napoléon B, Ayadi M, Pignolet C, Cros J, Gourgou S, Selves J, Torrisani J, Dusetti N, Cordelier P, Buscail L, Bournet B. Predictive genomic and transcriptomic analysis on endoscopic ultrasound-guided fine needle aspiration materials from primary pancreatic adenocarcinoma: a prospective multicentre study. EBioMedicine 2024; 109:105373. [PMID: 39383608 PMCID: PMC11497430 DOI: 10.1016/j.ebiom.2024.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/24/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND We apply endoscopic ultrasound-guided fine needle aspiration biopsy to cytopathologically diagnose and sample nucleic acids from primary tumours regardless of the disease stage. METHODS 397 patients with proven pancreatic adenocarcinoma were included and followed up in a multicentre prospective study. DNA and mRNA were extracted from materials of primary tumours obtained by endoscopic ultrasound-guided fine needle aspiration biopsy and analysed using targeted deep sequencing and RNAseq respectively. FINDINGS The variant allele frequency of the KRAS mutation was used to evaluate the tumour cellularity, ranging from 15 to 20% in all cells, regardless of the tumour stage. The molecular profile of metastatic primary tumours significantly differed from other types of tumours, more frequently having TP53 mutations (p = 0.0002), less frequently having RNF43 mutations, and possessing more basal-like mRNA component (p = 0.001). Molecular markers associated with improved overall survival were: mutations in homologous recombination deficiency genes in patients who received first-line platinum-based chemotherapy (p = 0.025) and wild-type TP53 gene in patients with locally advanced tumours who received radio-chemotherapy (p = 0.01). The GemPred transcriptomic profile was associated with a significantly better overall survival in patients with locally advanced or metastatic pancreatic cancer who received a gemcitabine-based first-line treatment (p = 0.019). INTERPRETATION The combination of genomic and transcriptomic analyses of primary pancreatic tumours enables us to distinguish metastatic tumours from other tumour types. Our molecular strategy may assist in predicting overall survival outcomes for platinum or gemcitabine-based chemotherapies, as well as radio-chemotherapy. FUNDING Institut National Du Cancer (BCB INCa_7294), CHU of Toulouse, Inserm and Ligue Nationale Contre le Cancer (CIT program).
Collapse
Affiliation(s)
- Rémy Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris F-75018, France
| | - Cindy Canivet
- Service de Gastroentérologie et Pancréatologie, Centre Hospitalier Universitaire de Toulouse-Rangueil (CHU), Toulouse, France
| | | | - Bertrand Napoléon
- Service de Gastroentérologie, Hôpital Privé Jean Mermoz, Ramsay Générale de Santé, Lyon, France
| | - Mira Ayadi
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Camille Pignolet
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris F-75018, France
| | - Jérôme Cros
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris F-75018, France; Université Paris Cité, Service d'Anatomopathologie, Centre Hospitalier Universitaire Beaujon/Bichat (APHP), Clichy/Paris, France
| | - Sophie Gourgou
- Institut du Cancer de Montpellier-Val d'Aurelle, Université de Montpellier, Montpellier, France
| | - Janick Selves
- Service d'Anatomopathologie, Institut Universitaire du Cancer-Oncopole de Toulouse, Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Jérôme Torrisani
- Centre de Recherches en Cancérologie de Toulouse, Inserm U1037, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Nelson Dusetti
- Centre de Recherche sur le Cancer de Marseille, Inserm, CNRS, Institut Paoli-Calmettes, Université Aix-Marseille, Marseille, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, Inserm U1037, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Louis Buscail
- Service de Gastroentérologie et Pancréatologie, Centre Hospitalier Universitaire de Toulouse-Rangueil (CHU), Toulouse, France; Centre de Recherches en Cancérologie de Toulouse, Inserm U1037, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France.
| | - Barbara Bournet
- Service de Gastroentérologie et Pancréatologie, Centre Hospitalier Universitaire de Toulouse-Rangueil (CHU), Toulouse, France; Centre de Recherches en Cancérologie de Toulouse, Inserm U1037, CRCT, Université de Toulouse, Inserm, CNRS, Toulouse, France
| |
Collapse
|
5
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
6
|
Fraunhoffer N, Teyssedou C, Pessaux P, Bigonnet M, Dusetti N, Iovanna J. Development of transcriptomic tools for predicting the response to individual drug of the mFOLFIRINOX regimen in patients with metastatic pancreatic cancer. Front Oncol 2024; 14:1437200. [PMID: 39323995 PMCID: PMC11422012 DOI: 10.3389/fonc.2024.1437200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Background The utilization of modified FOLFIRINOX (mFFX) therapy has shown notable advancements in patient outcomes in both localized and metastatic PDAC. Nevertheless, the effectiveness of mFFX treatment comes at the cost of elevated toxicity, leading to its restriction to patients with adequate performance status. Consequently, the administration of mFFX is contingent upon patient performance rather than rational criteria. The ideal scenario would involve the ability to assess the sensitivity of each drug within the mFFX regimen, minimizing unnecessary toxicity without compromising clinical benefits. Methods We developed transcriptomic signatures for each drug of the mFFX regimen (5FU, oxaliplatin and irinotecan) by integrating transcriptomic data from PDC, PDO and PDX with their corresponding chemo-response profiles to capture the biological components responsible for the response to each drug. We further validated the signatures in a cohort of 167 patients with advanced and metastatic PDAC. Results All three signatures captured high responder patients for OS and PFS in the mFFX arm exclusively. We then studied the response of patients to 0, 1, 2 and 3 drugs and we identified a positive correlation between the number of drugs predicted as sensitive and the OS and PFS, and the with objective response rate. Conclusions We developed three novel transcriptome-based signatures which define sensitivity for each mFFX components that can be used to rationalize the administration of the mFFX regimen in patients with metastatic pancreatic cancer and could help to avoid unnecessary toxic effects.
Collapse
Affiliation(s)
- Nicolas Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Buenos Aires, Argentina
| | - Carlos Teyssedou
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Endocrine and Visceral Surgery Department, University Hospital Angers, Angers, France
| | - Patrick Pessaux
- Department of General, Digestive, and Endocrine Surgery, Nouvel Hôpital Civil, Strasbourg, France
| | - Martin Bigonnet
- PredictingMed, Luminy Science and Technology Park, Marseille, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| |
Collapse
|
7
|
Fraunhoffer N, Hammel P, Conroy T, Nicolle R, Bachet JB, Harlé A, Rebours V, Turpin A, Ben Abdelghani M, Mitry E, Biagi J, Chanez B, Bigonnet M, Lopez A, Evesque L, Lecomte T, Assenat E, Bouché O, Renouf DJ, Lambert A, Monard L, Mauduit M, Cros J, Iovanna J, Dusetti N. Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma. Ann Oncol 2024; 35:780-791. [PMID: 38906254 DOI: 10.1016/j.annonc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment. PATIENTS AND METHODS We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the 'Pancreas-View' tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial. RESULTS Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively). CONCLUSIONS This study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM.
Collapse
Affiliation(s)
- N Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France; Laboratory of Immunomodulators, School of Medicine, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - P Hammel
- Digestive and Medical Oncology, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Villejuif
| | - T Conroy
- Medical Oncology Department, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy; Université de Lorraine, INSERM, INSPIIRE, Nancy
| | - R Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris
| | - J-B Bachet
- Service d'Hépato-Gastro-Entérologie, Hôpital Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris
| | - A Harlé
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, Vandoeuvre-lès-Nancy, France
| | - V Rebours
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris; Pancreatology and Digestive Oncology Department, Beaujon Hospital-AP-HP, Clichy
| | - A Turpin
- Department of Oncology, Lille University Hospital, Lille; CNRS UMR9020, INSERM UMR1277, University of Lille, Institut Pasteur, Lille
| | - M Ben Abdelghani
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, Strasbourg
| | - E Mitry
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France; Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France
| | - J Biagi
- Department of Oncology, Queen's University, Kingston, Canada
| | - B Chanez
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France; Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France
| | - M Bigonnet
- PredictingMed, Luminy Science and Technology Park, Marseille
| | - A Lopez
- Hepatogastroenterology Department, University Hospital of Nancy, Nancy
| | - L Evesque
- Department of Medical Oncology, Antoine Lacassagne Center, Nice
| | - T Lecomte
- Hepatogastroenterology Department, Hôpital Trousseau, Tours; INSERM UMR 1069, Tours University, Tours
| | - E Assenat
- Medical Oncology Department, Centre Hospitalier Universitaire de Saint-Eloi, Montpellier
| | - O Bouché
- Université Reims Champagne Ardenne, CHU Reims, Reims, France
| | - D J Renouf
- Division of Medical Oncology, BC Cancer, Vancouver; Department of Medicine, University of British Columbia, Vancouver, Canada
| | - A Lambert
- Medical Oncology Department, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy; Université de Lorraine, INSERM, INSPIIRE, Nancy
| | | | | | - J Cros
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris; Université Paris Cité, Department of Pathology, FHU MOSAIC, Beaujon/Bichat University Hospital (AP-HP), Paris, France
| | - J Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France; Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires; University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| | - N Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
8
|
Casalino S, Zecchetto C, Merz V, Quinzii A, Pietrobono S, Melisi D. Circumventing human limits in precision oncology: AI-enhanced tailoring of post-operative treatment for pancreatic ductal adenocarcinoma. Ann Oncol 2024; 35:760-761. [PMID: 39214630 DOI: 10.1016/j.annonc.2024.05.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- S Casalino
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - C Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - V Merz
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - A Quinzii
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - S Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - D Melisi
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy; Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| |
Collapse
|
9
|
Shah A, Jahan R, Kisling SG, Atri P, Natarajan G, Nallasamy P, Cox JL, Macha MA, Sheikh IA, Ponnusamy MP, Kumar S, Batra SK. Secretory Trefoil Factor 1 (TFF1) promotes gemcitabine resistance through chemokine receptor CXCR4 in Pancreatic Ductal Adenocarcinoma. Cancer Lett 2024; 598:217097. [PMID: 38964729 DOI: 10.1016/j.canlet.2024.217097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Gemcitabine is the first-line treatment option for patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, the frequent adoption of resistance to gemcitabine by cancer cells poses a significant challenge in treating this aggressive disease. In this study, we focused on analyzing the role of trefoil factor 1 (TFF1) in gemcitabine resistance in PDAC. Analysis of PDAC TCGA and cell line datasets indicated an enrichment of TFF1 in the gemcitabine-resistant classical subtype and suggested an inverse correlation between TFF1 expression and sensitivity to gemcitabine treatment. The genetic ablation of TFF1 in PDAC cells enhanced their sensitivity to gemcitabine treatment in both in vitro and in vivo tumor xenografts. The biochemical studies revealed that TFF1 contributes to gemcitabine resistance through enhanced stemness, increasing migration ability of cancer cells, and induction of anti-apoptotic genes. We further pursued studies to predict possible receptors exerting TFF1-mediated gemcitabine resistance. Protein-protein docking investigations with BioLuminate software revealed that TFF1 binds to the chemokine receptor CXCR4, which was supported by real-time binding analysis of TFF1 and CXCR4 using SPR studies. The exogenous addition of TFF1 increased the proliferation and migration of PDAC cells through the pAkt/pERK axis, which was abrogated by treatment with a CXCR4-specific antagonist AMD3100. Overall, the present study demonstrates the contribution of the TFF1-CXCR4 axis in imparting gemcitabine resistance properties to PDAC cells.
Collapse
MESH Headings
- Humans
- Gemcitabine
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Drug Resistance, Neoplasm
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Trefoil Factor-1/genetics
- Trefoil Factor-1/metabolism
- Animals
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Antimetabolites, Antineoplastic/pharmacology
- Cell Movement/drug effects
- Mice
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Apoptosis/drug effects
- Mice, Nude
- Cell Proliferation/drug effects
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, 68198-5950, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, 68198-5950, USA.
| |
Collapse
|
10
|
Gancedo SN, Sahores A, Gómez N, Di Siervi N, May M, Yaneff A, de Sousa Serro MG, Fraunhoffer N, Dusetti N, Iovanna J, Shayo C, Davio CA, González B. The xenobiotic transporter ABCC4/MRP4 promotes epithelial mesenchymal transition in pancreatic cancer. Front Pharmacol 2024; 15:1432851. [PMID: 39114357 PMCID: PMC11303182 DOI: 10.3389/fphar.2024.1432851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The xenobiotic transporter ABCC4/MRP4 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) and correlates with a more aggressive phenotype and metastatic propensity. Here, we show that ABCC4 promotes epithelial-mesenchymal transition (EMT) in PDAC, a hallmark process involving the acquisition of mesenchymal traits by epithelial cells, enhanced cell motility, and chemoresistance. Modulation of ABCC4 levels in PANC-1 and BxPC-3 cell lines resulted in the dysregulation of genes present in the EMT signature. Bioinformatic analysis on several cohorts including tumor samples, primary patient-derived cultured cells, patient-derived xenografts, and cell lines, revealed a positive correlation between ABCC4 expression and EMT markers. We also characterized the ABCC4 cistrome and identified four candidate clusters in the distal promoter and intron one that showed differential binding of pro-epithelial FOXA1 and pro-mesenchymal GATA2 transcription factors in low ABCC4-expressing HPAF-II and high ABCC4-expressing PANC-1 xenografts. HPAF-II xenografts showed exclusive binding of FOXA1, and PANC-1 xenografts exclusive binding of GATA2, at ABCC4 clusters, consistent with their low and high EMT phenotype respectively. Our results underscore ABCC4/MRP4 as a valuable prognostic marker and a potential therapeutic target to treat PDAC subtypes with prominent EMT features, such as the basal-like/squamous subtype, characterized by worse prognosis and no effective therapies.
Collapse
Affiliation(s)
- S. N. Gancedo
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - A. Sahores
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - N. Gómez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - N. Di Siervi
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - M. May
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - A. Yaneff
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - M. G. de Sousa Serro
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - N. Fraunhoffer
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
| | - N. Dusetti
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
| | - J. Iovanna
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
- Hospital de Alta Complejidad El Cruce, Argentina. Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - C. Shayo
- Instituto de Biología y Medicina Experimental (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - C. A. Davio
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - B. González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| |
Collapse
|
11
|
Boileve A, Smolenschi C, Lambert A, Boige V, Tarabay A, Valery M, Fuerea A, Pudlarz T, Conroy T, Hollebecque A, Ducreux M. Role of molecular biology in the management of pancreatic cancer. World J Gastrointest Oncol 2024; 16:2902-2914. [PMID: 39072173 PMCID: PMC11271790 DOI: 10.4251/wjgo.v16.i7.2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges in patient management due to a dismal prognosis, increasing incidence, and limited treatment options. In this regard, precision medicine, which personalizes treatments based on tumour molecular characteristics, has gained great interest. However, its widespread implementation is not fully endorsed in current recommendations. This review explores key molecular alterations in PDAC, while emphasizing differences between KRAS-mutated and KRAS-wild-type tumours. It assesses the practical application of precision medicine in clinical settings and outlines potential future directions with respect to PDAC. Actionable molecular targets are examined with the aim of enhancing our understanding of PDAC molecular biology. Insights from this analysis may contribute to a more refined and personalized approach to pancreatic cancer treatment, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Alice Boileve
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | | | - Aurélien Lambert
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy 54519, France
| | - Valérie Boige
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Anthony Tarabay
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Marine Valery
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Alina Fuerea
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Thomas Pudlarz
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Thierry Conroy
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy 54519, France
| | | | - Michel Ducreux
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| |
Collapse
|
12
|
Nusrat F, Khanna A, Jain A, Jiang W, Lavu H, Yeo CJ, Bowne W, Nevler A. The Clinical Implications of KRAS Mutations and Variant Allele Frequencies in Pancreatic Ductal Adenocarcinoma. J Clin Med 2024; 13:2103. [PMID: 38610868 PMCID: PMC11012482 DOI: 10.3390/jcm13072103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The KRAS proto-oncogene is a major driver of pancreatic tumorigenesis and is nearly ubiquitously mutated in pancreatic ductal adenocarcinoma (PDAC). KRAS point mutations are detected in over 90% of PDAC cases, and these mutations have been shown to be associated with worse therapy response and overall survival. Pathogenic KRAS mutations are mostly limited to codons 12, 13 and 61, with G12D, G12V, G12R, Q61H, and G13D accounting for approximately 95% of the mutant cases. Emerging data have shown the importance of specific mutant subtypes, as well as KRAS variant allele frequency on clinical prognosis. Furthermore, novel technologies and therapies are being developed to target specific mutant subtypes, with encouraging early results. In this paper, we aim to review the recent studies regarding the relative impact of specific mutant KRAS subtypes on oncologic outcomes, the application of variant allele frequency in next generation sequencing analyses, and the ongoing research into therapies targeting specific mutant KRAS subtypes.
Collapse
Affiliation(s)
- Faria Nusrat
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Akshay Khanna
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aditi Jain
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wei Jiang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harish Lavu
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Charles J Yeo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wilbur Bowne
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Avinoam Nevler
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Nicolle R, Bachet JB, Harlé A, Iovanna J, Hammel P, Rebours V, Turpin A, Ben Abdelghani M, Wei A, Mitry E, Lopez A, Biagi J, François E, Artru P, Lambert A, Renouf DJ, Monard L, Mauduit M, Dusetti N, Conroy T, Cros J. Prediction of Adjuvant Gemcitabine Sensitivity in Resectable Pancreatic Adenocarcinoma Using the GemPred RNA Signature: An Ancillary Study of the PRODIGE-24/CCTG PA6 Clinical Trial. J Clin Oncol 2024; 42:1067-1076. [PMID: 37963313 PMCID: PMC10950182 DOI: 10.1200/jco.22.02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/02/2023] [Accepted: 09/07/2023] [Indexed: 11/16/2023] Open
Abstract
PURPOSE GemPred, a transcriptomic signature predictive of the efficacy of adjuvant gemcitabine (GEM), was developed from cell lines and organoids and validated retrospectively. The phase III PRODIGE-24/CCTG PA6 trial has demonstrated the superiority of modified folinic acid, fluorouracil, irinotecan, and oxaliplatin (mFOLFIRINOX) over GEM as adjuvant therapy in patients with resected pancreatic ductal adenocarcinoma at the expense of higher toxicity. We evaluated the potential predictive value of GemPred in this population. PATIENTS AND METHODS Routine formalin-fixed paraffin-embedded surgical specimens of 350 patients were retrieved for RNA sequencing and GemPred prediction (167 in the GEM arm and 183 in the mFOLFIRINOX [mFFX] arm). Survival analyses were stratified by resection margins, lymph node status, and cancer antigen 19-9 level. RESULTS Eighty-nine patients' tumors (25.5%) were GemPred+ and were thus predicted to be gemcitabine-sensitive. In the GEM arm, GemPred+ patients (n = 50, 30%) had a significantly longer disease-free survival (DFS) than GemPred- patients (n = 117, 70%; median 27.3 v 10.2 months, hazard ratio [HR], 0.43 [95% CI, 0.29 to 0.65]; P < .001) and cancer-specific survival (CSS; median 68.4 v 28.6 months, HR, 0.42 [95% CI, 0.27 to 0.66]; P < .001). GemPred had no prognostic value in the mFFX arm. DFS and CSS were similar in GemPred+ patients who received adjuvant GEM and mFFX (median 27.3 v 24.0 months, and 68.4 v 51.4 months, respectively). The statistical interaction between GEM and GemPred+ status was significant for DFS (P = .008) and CSS (P = .004). GemPred+ patients had significantly more adverse events of grade ≥3 in the mFFX arm (76%) compared with those in the GEM arm (40%; P = .001). CONCLUSION This ancillary study of a phase III randomized trial demonstrates that among the quarter of patients with a GemPred-positive transcriptomic signature, survival was comparable with that of mFOLFIRINOX, whereas those receiving adjuvant gemcitabine had fewer adverse events.
Collapse
Affiliation(s)
- Rémy Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018, Paris, France
| | - Jean-Baptiste Bachet
- Service d'Hépato—Gastro—Entérologie, Hôpital Pitié Salpêtrière, Assistance Publique—Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
| | - Alexandre Harlé
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, Vandœuvre-lès-Nancy CEDEX, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes; Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Pascal Hammel
- Digestive and Medical Oncology, Paul Brousse Hospital, Assistance Publique—Hôpitaux de Paris (AP-HP), Université of Paris Saclay, Villejuif, France
| | - Vinciane Rebours
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018, Paris, France
- Pancreatology and Digestive Oncology Department, Beaujon Hospital, APHP, Clichy and Centre de Référence des Maladies Rares du Pancréas—PAncreaticRaresDISeases (PaRaDis), Paris, France
| | - Anthony Turpin
- Department of Oncology, Lille University Hospital; CNRS UMR9020, INSERM UMR1277, University of Lille, Institut Pasteur, Lille, France
| | | | - Alice Wei
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Emmanuel Mitry
- Department of Medical Oncology, Paoli-Calmettes Institute, Marseille, France
| | - Anthony Lopez
- Hepatogastroenterology Department, University Hospital, Nancy, France
| | - James Biagi
- Department of Oncology, Queen's University, Kingston, Canada
| | - Eric François
- Hepatogastroenterology department, Hôpital Jean-Mermoz, Lyon, France
| | - Pascal Artru
- Medical Oncology department, Institut de cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, APEMAC, équipe MICS, Nancy, France
| | - Aurélien Lambert
- Medical Oncology department, Institut de cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, APEMAC, équipe MICS, Nancy, France
| | - Daniel J. Renouf
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes; Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Thierry Conroy
- Medical Oncology department, Institut de cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, APEMAC, équipe MICS, Nancy, France
| | - Jérome Cros
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018, Paris, France
- Université Paris Cité, Department of Pathology, Beaujon/Bichat University Hospital (APHP), Clichy/Paris, France
| |
Collapse
|
14
|
Jiang L, Qin J, Dai Y, Zhao S, Zhan Q, Cui P, Ren L, Wang X, Zhang R, Gao C, Zhou Y, Cai S, Wang G, Xie W, Tang X, Shi M, Ma F, Liu J, Wang T, Wang C, Svrcek M, Bardier-Dupas A, Emile JF, de Mestier L, Bachet JB, Nicolle R, Cros J, Laurent-Puig P, Wei M, Song B, Jing W, Guo S, Zheng K, Jiang H, Wang H, Deng X, Chen H, Tian Q, Wang S, Shi S, Jin G, Yin T, Fang H, Chen S, Shen B. Prospective observational study on biomarkers of response in pancreatic ductal adenocarcinoma. Nat Med 2024; 30:749-761. [PMID: 38287168 DOI: 10.1038/s41591-023-02790-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Adjuvant chemotherapy benefits patients with resected pancreatic ductal adenocarcinoma (PDAC), but the compromised physical state of post-operative patients can hinder compliance. Biomarkers that identify candidates for prompt adjuvant therapy are needed. In this prospective observational study, 1,171 patients with PDAC who underwent pancreatectomy were enrolled and extensively followed-up. Proteomic profiling of 191 patient samples unveiled clinically relevant functional protein modules. A proteomics-level prognostic risk model was established for PDAC, with its utility further validated using a publicly available external cohort. More importantly, through an interaction effect regression analysis leveraging both clinical and proteomic datasets, we discovered two biomarkers (NDUFB8 and CEMIP2), indicative of the overall sensitivity of patients with PDAC to adjuvant chemotherapy. The biomarkers were validated through immunohistochemistry on an internal cohort of 386 patients. Rigorous validation extended to two external multicentic cohorts-a French multicentric cohort (230 patients) and a cohort from two grade-A tertiary hospitals in China (466 patients)-enhancing the robustness and generalizability of our findings. Moreover, experimental validation through functional assays was conducted on PDAC cell lines and patient-derived organoids. In summary, our cohort-scale integration of clinical and proteomic data demonstrates the potential of proteomics-guided prognosis and biomarker-aided adjuvant chemotherapy for PDAC.
Collapse
Affiliation(s)
- Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiejie Qin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shulin Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Cui
- Burning Rock Biotech, Guangzhou, China
| | - Lingjie Ren
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelong Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxu Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Ma
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Magali Svrcek
- Department of Pathology, Saint-Antoine Hospital - Sorbonne Universités, Paris, France
| | - Armelle Bardier-Dupas
- Department of Pathology, Pitié-Salpêtrière Hospital - Sorbonne Universités, Paris, France
| | - Jean Francois Emile
- Department of Pathology, Ambroise Paré Hospital - Université Saint Quentin en Yvelines, Paris, France
| | - Louis de Mestier
- Department of Pancreatology, Université Paris Cité - FHU MOSAIC, Beaujon Hospital, Clichy, France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology, Pitié-Salpêtrière Hospital - Sorbonne Universités, Paris, France
| | - Remy Nicolle
- Université Paris Cité, FHU MOSAIC, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris, France
| | - Jerome Cros
- Department of Pathology, Université Paris Cité - FHU MOSAIC, Beaujon Hospital, Clichy, France
| | - Pierre Laurent-Puig
- Department of Biochemistry, Hôpital Européen Georges Pompidou, Centre de Recherche des Cordeliers, INSERM UMRS1138, CNRS, Sorbonne Université, USPC, Université Paris Cité, Equipe labellisée Ligue Nationale contre le cancer, CNRS, Paris, France
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bin Song
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Jing
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Kailian Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hui Jiang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Pathology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Tian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengyue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Yun WG, Han Y, Cho YJ, Jung HS, Lee M, Kwon W, Jang JY. In Neoadjuvant FOLFIRINOX Chemotherapy for Pancreatic Ductal Adenocarcinoma, Which Response is the More Reliable Indicator for Prognosis, Radiologic or Biochemical? Ann Surg Oncol 2024; 31:1336-1346. [PMID: 37991581 DOI: 10.1245/s10434-023-14532-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND In this era of increasing neoadjuvant chemotherapy, methods for evaluating responses to neoadjuvant chemotherapy are still diverse among institutions. Additionally, the efficacy of adjuvant chemotherapy for patients undergoing neoadjuvant chemotherapy remains unclear. Therefore, this retrospective study was performed to evaluate the effectiveness of methods for assessing response to neoadjuvant chemotherapy and the need for adjuvant chemotherapy in treating patients with non-metastatic pancreatic ductal adenocarcinoma. METHODS The study identified 150 patients who underwent neoadjuvant FOLFIRINOX chemotherapy followed by curative-intent pancreatectomy. The patients were stratified by biochemical response based on the normalization of carbohydrate antigen 19-9 and by radiologic response based on size change at imaging. RESULTS The patients were classified into the following three groups based on their response to neoadjuvant chemotherapy and prognosis: biochemical responders (BR+), radiology-only responders (BR-/RR+), and non-responders (BR-/RR-). The 3-year overall survival rate was higher for BR+ (71.0%) than for BR-/RR+ (53.6%) or BR-/RR- (33.1%) (P < 0.001). Response to neoadjuvant chemotherapy also was identified as a significant risk factor for recurrence in a comparison between BR-/RR+ and BR+ (hazard ratio [HR], 2.15; 95% confidence interval [CI] 1.19-3.88; P = 0.011) and BR-/RR- (HR, 3.82; 95% CI 2.41-6.08; P < 0.001). Additionally, regardless of the response to neoadjuvant chemotherapy, patients who completed adjuvant chemotherapy had a significantly higher 3-year overall survival rate than those who did not. CONCLUSIONS This response evaluation criterion for neoadjuvant chemotherapy is feasible and can significantly predict prognosis. Additionally, completion of adjuvant chemotherapy could be helpful to patients who undergo neoadjuvant chemotherapy regardless of their response to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Won-Gun Yun
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngmin Han
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Jae Cho
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye-Sol Jung
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mirang Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Ogunleye A, Piyawajanusorn C, Ghislat G, Ballester PJ. Large-Scale Machine Learning Analysis Reveals DNA Methylation and Gene Expression Response Signatures for Gemcitabine-Treated Pancreatic Cancer. HEALTH DATA SCIENCE 2024; 4:0108. [PMID: 38486621 PMCID: PMC10904073 DOI: 10.34133/hds.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/08/2023] [Indexed: 03/17/2024]
Abstract
Background: Gemcitabine is a first-line chemotherapy for pancreatic adenocarcinoma (PAAD), but many PAAD patients do not respond to gemcitabine-containing treatments. Being able to predict such nonresponders would hence permit the undelayed administration of more promising treatments while sparing gemcitabine life-threatening side effects for those patients. Unfortunately, the few predictors of PAAD patient response to this drug are weak, none of them exploiting yet the power of machine learning (ML). Methods: Here, we applied ML to predict the response of PAAD patients to gemcitabine from the molecular profiles of their tumors. More concretely, we collected diverse molecular profiles of PAAD patient tumors along with the corresponding clinical data (gemcitabine responses and clinical features) from the Genomic Data Commons resource. From systematically combining 8 tumor profiles with 16 classification algorithms, each of the resulting 128 ML models was evaluated by multiple 10-fold cross-validations. Results: Only 7 of these 128 models were predictive, which underlines the importance of carrying out such a large-scale analysis to avoid missing the most predictive models. These were here random forest using 4 selected mRNAs [0.44 Matthews correlation coefficient (MCC), 0.785 receiver operating characteristic-area under the curve (ROC-AUC)] and XGBoost combining 12 DNA methylation probes (0.32 MCC, 0.697 ROC-AUC). By contrast, the hENT1 marker obtained much worse random-level performance (practically 0 MCC, 0.5 ROC-AUC). Despite not being trained to predict prognosis (overall and progression-free survival), these ML models were also able to anticipate this patient outcome. Conclusions: We release these promising ML models so that they can be evaluated prospectively on other gemcitabine-treated PAAD patients.
Collapse
Affiliation(s)
- Adeolu Ogunleye
- Department of Organismal Biology,
Uppsala University, Uppsala, Sweden
| | | | - Ghita Ghislat
- Department of Life Sciences,
Imperial College London, London, UK
| | | |
Collapse
|
17
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a rising incidence and is one of the most lethal human malignancies. Much is known regarding the biology and pathophysiology of PDAC, but translating this knowledge to the clinic to improve patient outcomes has been challenging. In this Review, we discuss advances and practice-changing trials for PDAC. We briefly review therapeutic failures as well as ongoing research to refine the standard of care, including novel biomarkers and clinical trial designs. In addition, we highlight contemporary areas of research, including poly(ADP-ribose) polymerase inhibitors, KRAS-targeted therapies and immunotherapies. Finally, we discuss the future of pancreatic cancer research and areas for improvement in the next decade.
Collapse
Affiliation(s)
- Z Ian Hu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
18
|
El Kaoutari A, Fraunhoffer NA, Audebert S, Camoin L, Berthois Y, Gayet O, Roques J, Bigonnet M, Bongrain C, Ciccolini J, Iovanna JL, Dusetti NJ, Soubeyran P. Pancreatic ductal adenocarcinoma ubiquitination profiling reveals specific prognostic and theranostic markers. EBioMedicine 2023; 92:104634. [PMID: 37257316 DOI: 10.1016/j.ebiom.2023.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has been widely studied at multiomics level. However, little is known about its specific ubiquitination, a major post-translational modification (PTM). As PTMs regulate the final function of any gene, we decided to establish the ubiquitination profiles of 60 PDAC. METHODS We used specific proteomic tools to establish the ubiquitin dependent proteome (ubiquitinome) of frozen PDXs (Patients' derived xenographs). Then, we performed bioinformatics analysis to identify the possible associations of these ubiquitination profiles with tumour phenotype, patient survival and resistance to chemotherapies. Finally, we used proximity ligation assays (PLA) to detect and quantify the ubiquitination level of one identified marker. FINDINGS We identified 38 ubiquitination site profiles correlating with the transcriptomic phenotype of tumours and four had notable prognostic capabilities. Seventeen ubiquitination profiles displayed potential theranostic marker for gemcitabine, seven for 5-FU, six for oxaliplatin and thirteen for irinotecan. Using PLA, we confirmed the use of one ubiquitination profile as a drug-response marker, directly on paraffin embedded tissues, supporting the possible application of these biomarkers in the clinical setting. INTERPRETATION These findings bring new and important insights on the relationship between ubiquitination levels of proteins and different molecular and clinical features of PDAC patients. Markers identified in this study could have a potential application in clinical settings to help to predict response to chemotherapies thereby allowing the personalization of treatments. FUNDING Fondation ARC (PJA 20181208270 and PGA 12021010002840_3562); INCa; Canceropôle PACA; DGOS; Amidex Foundation; Fondation de France; and INSERM.
Collapse
Affiliation(s)
- Abdessamad El Kaoutari
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France; COMPO Unit, Inria Sophia Antipolis, 13385, Marseille, France
| | - Nicolas A Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France
| | - Luc Camoin
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France
| | - Yolande Berthois
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France
| | - Julie Roques
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France
| | - Martin Bigonnet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France
| | - Claire Bongrain
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France
| | - Joseph Ciccolini
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France; COMPO Unit, Inria Sophia Antipolis, 13385, Marseille, France
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France; Paoli-Calmettes Institut, 13009, Marseille, France
| | - Nelson J Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France.
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13288, Marseille, France.
| |
Collapse
|
19
|
Crake R, Gasmi I, Dehaye J, Lardinois F, Peiffer R, Maloujahmoum N, Agirman F, Koopmansch B, D'Haene N, Azurmendi Senar O, Arsenijevic T, Lambert F, Peulen O, Van Laethem JL, Bellahcène A. Resistance to Gemcitabine in Pancreatic Cancer Is Connected to Methylglyoxal Stress and Heat Shock Response. Cells 2023; 12:1414. [PMID: 37408249 DOI: 10.3390/cells12101414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with poor prognosis. Gemcitabine is the first-line therapy for PDAC, but gemcitabine resistance is a major impediment to achieving satisfactory clinical outcomes. This study investigated whether methylglyoxal (MG), an oncometabolite spontaneously formed as a by-product of glycolysis, notably favors PDAC resistance to gemcitabine. We observed that human PDAC tumors expressing elevated levels of glycolytic enzymes together with high levels of glyoxalase 1 (GLO1), the major MG-detoxifying enzyme, present with a poor prognosis. Next, we showed that glycolysis and subsequent MG stress are triggered in PDAC cells rendered resistant to gemcitabine when compared with parental cells. In fact, acquired resistance, following short and long-term gemcitabine challenges, correlated with the upregulation of GLUT1, LDHA, GLO1, and the accumulation of MG protein adducts. We showed that MG-mediated activation of heat shock response is, at least in part, the molecular mechanism underlying survival in gemcitabine-treated PDAC cells. This novel adverse effect of gemcitabine, i.e., induction of MG stress and HSR activation, is efficiently reversed using potent MG scavengers such as metformin and aminoguanidine. We propose that the MG blockade could be exploited to resensitize resistant PDAC tumors and to improve patient outcomes using gemcitabine therapy.
Collapse
Affiliation(s)
- Rebekah Crake
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Imène Gasmi
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Jordan Dehaye
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Fanny Lardinois
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Benjamin Koopmansch
- Department of Human Genetics, Liège University Hospital, 4020 Liège, Belgium
| | - Nicky D'Haene
- Department of Pathology, Hôpital Universitaire de Bruxelles Bordet Erasme l Hospital, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Oier Azurmendi Senar
- Laboratory of Experimental Gastroenterology, Medical Faculty, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Medical Faculty, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Universitaire de Bruxelles Bordet Erasme Hospital, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Frédéric Lambert
- Department of Human Genetics, Liège University Hospital, 4020 Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Medical Faculty, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Universitaire de Bruxelles Bordet Erasme Hospital, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| |
Collapse
|
20
|
Springfeld C, Ferrone CR, Katz MHG, Philip PA, Hong TS, Hackert T, Büchler MW, Neoptolemos J. Neoadjuvant therapy for pancreatic cancer. Nat Rev Clin Oncol 2023; 20:318-337. [PMID: 36932224 DOI: 10.1038/s41571-023-00746-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
Patients with localized pancreatic ductal adenocarcinoma (PDAC) are best treated with surgical resection of the primary tumour and systemic chemotherapy, which provides considerably longer overall survival (OS) durations than either modality alone. Regardless, most patients will have disease relapse owing to micrometastatic disease. Although currently a matter of some debate, considerable research interest has been focused on the role of neoadjuvant therapy for all forms of resectable PDAC. Whilst adjuvant combination chemotherapy remains the standard of care for patients with resectable PDAC, neoadjuvant chemotherapy seems to improve OS without necessarily increasing the resection rate in those with borderline-resectable disease. Furthermore, around 20% of patients with unresectable non-metastatic PDAC might undergo resection following 4-6 months of induction combination chemotherapy with or without radiotherapy, even in the absence of a clear radiological response, leading to improved OS outcomes in this group. Distinct molecular and biological responses to different types of therapies need to be better understood in order to enable the optimal sequencing of specific treatment modalities to further improve OS. In this Review, we describe current treatment strategies for the various clinical stages of PDAC and discuss developments that are likely to determine the optimal sequence of multimodality therapies by integrating the fundamental clinical and molecular features of the cancer.
Collapse
Affiliation(s)
- Christoph Springfeld
- Department of Medical Oncology, National Center for Tumour Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip A Philip
- Wayne State University School of Medicine, Department of Oncology, Henry Ford Cancer Institute, Detroit, MI, USA
| | - Theodore S Hong
- Research and Scientific Affairs, Gastrointestinal Service Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - John Neoptolemos
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
21
|
Chaigneau T, Aguilera Munoz L, Oger C, Gourdeau C, Hentic O, Laurent L, Muller N, Dioguardi Burgio M, Gagaille MP, Lévy P, Rebours V, Hammel P, de Mestier L. Efficacy and tolerance of LV5FU2-carboplatin chemotherapy in patients with advanced pancreatic ductal adenocarcinoma after failure of standard regimens. Ther Adv Med Oncol 2023; 15:17588359231163776. [PMID: 37007630 PMCID: PMC10052496 DOI: 10.1177/17588359231163776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Chemotherapy options in patients with advanced pancreatic ductal adenocarcinoma (PDAC) after failure of standard chemotherapies are limited. Objectives: We aimed to report the efficacy and safety of the leucovorin and 5-fluorouracil (LV5FU2) and carboplatin combination in this setting. Design: We performed a retrospective study including consecutive patients with advanced PDAC who received LV5FU2–carboplatin between 2009 and 2021 in an expert center. Methods: We measured overall survival (OS) and progression-free survival (PFS), and explored associated factors using Cox proportional hazard models. Results: In all, 91 patients were included (55% male, median age 62), with a performance status of 0/1 in 74% of cases. LV5FU2–carboplatin was mainly used in third (59.3%) or fourth line (23.1%), with three (interquartile range: 2.0–6.0) cycles administered on average. The clinical benefit rate was 25.2%. Median PFS was 2.7 months (95% CI: 2.4–3.0). At multivariable analysis, no extrahepatic metastases (p = 0.083), no ascites or opioid-requiring pain (p = 0.023), <2 prior treatment lines (p < 0.001), full dose of carboplatin (p = 0.004), and treatment initiation >18 months after initial diagnosis (p < 0.001) were associated with longer PFS. Median OS was 4.2 months (95% CI: 3.48–4.92) and was influenced by the presence of extrahepatic metastases (p = 0.058), opioid-requiring pain or ascites (p = 0.039), and number of prior treatment lines (0.065). Prior tumor response under oxaliplatin did not impact either PFS or OS. Worsening of preexisting residual neurotoxicity was infrequent (13.2%). The most common grade 3–4 adverse events were neutropenia (24.7%) and thrombocytopenia (11.8%). Conclusion: Although the efficacy of LV5FU2–carboplatin appears limited in patients with pretreated advanced PDAC, it may be beneficial in selected patients.
Collapse
Affiliation(s)
- Thomas Chaigneau
- Université Paris-Cité, Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Clichy, France
- Department of Hepatology, Gastroenterology, and Nutrition, Caen-Normandie University Hospital, Caen, France
| | - Lina Aguilera Munoz
- Université Paris-Cité, Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Clichy, France
| | - Caroline Oger
- Université Paris-Cité, Department of Pharmacy and Chemotherapy, Beaujon Hospital (APHP.Nord), Clichy, France
| | - Clémence Gourdeau
- Université Paris-Cité, Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Clichy, France
- Department of Hepatology and Gastroenterology, Rouen University Hospital, Rouen, France
| | - Olivia Hentic
- Université Paris-Cité, Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Clichy, France
| | - Lucie Laurent
- Université Paris-Cité, Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Clichy, France
| | - Nelly Muller
- Université Paris-Cité, Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Clichy, France
| | - Marco Dioguardi Burgio
- Université Paris-Cité, Department of Radiology, Beaujon Hospital (APHP.Nord), Clichy, France
| | - Marie-Pauline Gagaille
- Université Paris-Cité, Department of Pharmacy and Chemotherapy, Beaujon Hospital (APHP.Nord), Clichy, France
| | - Philippe Lévy
- Université Paris-Cité, Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Clichy, France
| | - Vinciane Rebours
- Université Paris-Cité, Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Clichy, France
| | - Pascal Hammel
- Université Paris-Cité, Department of Digestive and Medical Oncology, Beaujon Hospital (APHP.Nord), Clichy, France
- Université Paris-Saclay, Department of Digestive and Medical Oncology, Paul-Brousse Hospital (APHP.Sud), Villejuif, France
| | | |
Collapse
|
22
|
Fraunhoffer N, Chanez B, Teyssedou C, Iovanna JL, Mitry E, Dusetti NJ. A Transcriptomic-Based Tool to Predict Gemcitabine Sensitivity in Advanced Pancreatic Adenocarcinoma. Gastroenterology 2023; 164:476-480.e4. [PMID: 36496056 DOI: 10.1053/j.gastro.2022.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Nicolas Fraunhoffer
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Brice Chanez
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France; Medical Oncology Department, Institut Paoli-Calmettes, Marseille, France
| | - Carlos Teyssedou
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France; Endocrine and Visceral Surgery Department, University Hospital Angers, Angers, France; Haut Anjou Hospital Center, Château-Gontier, France
| | | | - Juan L Iovanna
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France; Medical Oncology Department, Institut Paoli-Calmettes, Marseille, France.
| | - Emmanuel Mitry
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France; Medical Oncology Department, Institut Paoli-Calmettes, Marseille, France
| | - Nelson J Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France.
| |
Collapse
|
23
|
Tong T, Zhang C, Li J, Deng M, Wang X. Preclinical models derived from endoscopic ultrasound-guided tissue acquisition for individualized treatment of pancreatic ductal adenocarcinoma. Front Med (Lausanne) 2023; 9:934974. [PMID: 36687406 PMCID: PMC9849774 DOI: 10.3389/fmed.2022.934974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor outcomes. Although the management strategies have evolved in recent years, the PDAC 5-year survival rate remains at only 9%; it may become the second leading cause of cancer death in the USA by 2030. Only 15-20% of PDAC patients are eligible to undergo surgery; diagnostic biopsies and individualized treatment present a more significant challenge for the remaining group. Endoscopic ultrasound-guided tissue acquisition (EUS-TA) has been widely used in the diagnosis of pancreatic masses. With the advancement of this sampling technique, adequate specimens can be obtained from all patients with PDAC in both early and late clinical stages. Recent data suggest that the specimens obtained from EUS-TA might be used to establish viable preclinical models, which conserve the genetic mutation and preserve the heterogeneity of the original tumors. Additionally, any drug sensitivity evident in the EUS-TA-derived preclinical models might predict the clinical response, thus guiding the prospective therapeutic selection. As we move toward the era of precision medicine, this review provides an update on the role of EUS-TA as a method for obtaining genetic material used in preclinical models that can assess and stratify individuals according to their individual cancer biology.
Collapse
Affiliation(s)
- Ting Tong
- Endoscopic Center, The First Affiliated Hospital of Xiamen University, Xiamen, China,Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Chao Zhang
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Jingbo Li
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Minzi Deng
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China,*Correspondence: Minzi Deng,
| | - Xiaoyan Wang
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China,Xiaoyan Wang,
| |
Collapse
|
24
|
Perelló-Reus CM, Rubio-Tomás T, Cisneros-Barroso E, Ibargüen-González L, Segura-Sampedro JJ, Morales-Soriano R, Barceló C. Challenges in precision medicine in pancreatic cancer: A focus in cancer stem cells and microbiota. Front Oncol 2022; 12:995357. [PMID: 36531066 PMCID: PMC9751445 DOI: 10.3389/fonc.2022.995357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Pancreatic cancer adenocarcinoma (PDAC) is a lethal disease, with the lowest 5-years survival rate of all cancers due to late diagnosis. Despite the advance and success of precision oncology in gastrointestinal cancers, the frequency of molecular-informed therapy decisions in PDAC is currently neglectable. The reasons for this dismal situation are mainly the absence of effective early diagnostic biomarkers and therapy resistance. PDAC cancer stem cells (PDAC-SC), which are regarded as essential for tumor initiation, relapse and drug resistance, are highly dependent on their niche i.e. microanatomical structures of the tumor microenvironment. There is an altered microbiome in PDAC patients embedded within the highly desmoplastic tumor microenvironment, which is known to determine therapeutic responses and affecting survival in PDAC patients. We consider that understanding the communication network that exists between the microbiome and the PDAC-SC niche by co-culture of patient-derived organoids (PDOs) with TME microbiota would recapitulate the complexity of PDAC paving the way towards a precision oncology treatment-response prediction.
Collapse
Affiliation(s)
- Catalina M. Perelló-Reus
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain,*Correspondence: Carles Barceló, ; Catalina M. Perelló-Reus,
| | | | | | - Lesly Ibargüen-González
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain
| | - Juan José Segura-Sampedro
- Advanced Oncological Surgery, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain,General and Digestive Surgery Unit, Hospital Universitari Son Espases, School of Medicine, Balearic Islands Health Research Institute, University of Balearic Islands, Palma de Mallorca, Spain
| | - Rafael Morales-Soriano
- Advanced Oncological Surgery, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain,General and Digestive Surgery Unit, Hospital Universitari Son Espases, School of Medicine, Balearic Islands Health Research Institute, University of Balearic Islands, Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain,*Correspondence: Carles Barceló, ; Catalina M. Perelló-Reus,
| |
Collapse
|
25
|
Perera S, Jang GH, Wang Y, Kelly D, Allen M, Zhang A, Denroche RE, Dodd A, Ramotar S, Hutchinson S, Tehfe M, Ramjeesingh R, Biagi J, Lam B, Wilson J, Fischer SE, Zogopoulos G, Notta F, Gallinger S, Grant RC, Knox JJ, O'Kane GM. hENT1 Expression Predicts Response to Gemcitabine and Nab-Paclitaxel in Advanced Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2022; 28:5115-5120. [PMID: 36222851 DOI: 10.1158/1078-0432.ccr-22-2576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Modified FOLFIRINOX (mFFX) and gemcitabine/nab-paclitaxel (GnP) remain standard first-line options for patients with advanced pancreatic ductal adenocarcinoma (PDAC). Human equilibrative nucleoside transporter 1 (hENT1) was hypothesized to be a biomarker of gemcitabine in the adjuvant setting, with conflicting results. In this study, we explore hENT1 mRNA expression as a predictive biomarker in advanced PDAC. EXPERIMENTAL DESIGN COMPASS was a prospective observational trial of patients with advanced PDAC. A biopsy was required prior to initiating chemotherapy, as determined by treating physician. Biopsies underwent laser capture microdissection prior to whole genome and RNA sequencing. The cut-off thresholds for hENT1 expression were determined using the maximal χ2 statistic. RESULTS 253 patients were included in the analyses with a median follow-up of 32 months, with 138 patients receiving mFFX and 92 receiving GnP. In the intention to treat population, median overall survival (OS) was 10.0 months in hENT1high versus 7.9 months in hENT1low (P = 0.02). In patients receiving mFFX, there was no difference in overall response rate (ORR; 35% vs. 28%, P = 0.56) or median OS (10.6 vs. 10.5 months, P = 0.45). However, in patients treated with GnP, the ORR was significantly higher in hENT1high compared with hENT1low tumors (43% vs. 21%, P = 0.038). Median OS in this GnP-treated cohort was 10.6 months in hENT1high versus 6.7 months hENT1low (P < 0.001). In an interaction analysis, hENT1 was predictive of treatment response to GnP (interaction P = 0.002). CONCLUSIONS In advanced PDAC, hENT1 mRNA expression predicts ORR and OS in patients receiving GnP.
Collapse
Affiliation(s)
- Sheron Perera
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Yifan Wang
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada.,Department of Surgery, McGill University, Montreal, Québec, Canada
| | - Deirdre Kelly
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Michael Allen
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Amy Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Anna Dodd
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Ramotar
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Shawn Hutchinson
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mustapha Tehfe
- Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Ravi Ramjeesingh
- Nova Scotia Cancer Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James Biagi
- Queen's University, Cancer Center of Southeastern Ontario, Kingston, Ontario, Canada
| | - Bernard Lam
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Julie Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sandra E Fischer
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - George Zogopoulos
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada.,Department of Surgery, McGill University, Montreal, Québec, Canada
| | - Faiyaz Notta
- University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steven Gallinger
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Robert C Grant
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jennifer J Knox
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Grainne M O'Kane
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Puleo A, Malla M, Boone BA. Defining the Optimal Duration of Neoadjuvant Therapy for Pancreatic Ductal Adenocarcinoma: Time for a Personalized Approach? Pancreas 2022; 51:1083-1091. [PMID: 37078929 PMCID: PMC10144367 DOI: 10.1097/mpa.0000000000002147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 11/03/2022] [Indexed: 04/21/2023]
Abstract
ABSTRACT Despite recent advances, pancreatic ductal adenocarcinoma (PDAC) continues to be associated with dismal outcomes, with a cure evading most patients. While historic treatment for PDAC has been surgical resection followed by 6 months of adjuvant therapy, there has been a recent shift toward neoadjuvant treatment (NAT). Several considerations support this approach, including the characteristic early systemic spread of PDAC, and the morbidity often surrounding pancreatic resection, which can delay recovery and preclude patients from starting adjuvant treatment. The addition of NAT has been suggested to improve margin-negative resection rates, decrease lymph node positivity, and potentially translate to improved survival. Conversely, complications and disease progression can occur during preoperative treatment, potentially eliminating the chance of curative resection. As NAT utilization has increased, treatment durations have been found to vary widely between institutions with an optimal duration remaining undefined. In this review, we assess the existing literature on NAT for PDAC, reviewing treatment durations reported across retrospective case series and prospective clinical trials to establish currently used approaches and seek the optimal duration. We also analyze markers of treatment response and review the potential for personalized approaches that may help clarify this important treatment question and move NAT toward a more standardized approach.
Collapse
Affiliation(s)
- Amanda Puleo
- From the Division of Surgical Oncology, Department of Surgery
| | - Midhun Malla
- Section of Hematology/Oncology, Department of Medicine
| | - Brian A. Boone
- From the Division of Surgical Oncology, Department of Surgery
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| |
Collapse
|
27
|
Fraunhoffer NA, Abuelafia AM, Chanez B, Bigonnet M, Gayet O, Roques J, Chuluyan E, Dusetti N, Iovanna J. Inhibition of glucuronidation in pancreatic cancer improves gemcitabine anticancer activity. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1212-1216. [PMID: 36178036 DOI: 10.1002/cac2.12365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Nicolas Alejandro Fraunhoffer
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France.,Buenos Aires University, Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires, C1121ABG, Argentina
| | - Analía Meilerman Abuelafia
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France
| | - Brice Chanez
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France
| | - Martin Bigonnet
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France.,PredictingMed, Scientific and Technological Park of Luminy, Marseille, 13288, France
| | - Odile Gayet
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France
| | - Julie Roques
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France
| | - Eduardo Chuluyan
- Buenos Aires University, Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires, C1121ABG, Argentina.,Buenos Aires University, Faculty of Medicine, Department of Microbiology, Parasitology and Immunology, Buenos Aires, C1121ABG, Argentina
| | - Nelson Dusetti
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France
| | - Juan Iovanna
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France
| |
Collapse
|
28
|
Turpin A, Neuzillet C, Colle E, Dusetti N, Nicolle R, Cros J, de Mestier L, Bachet JB, Hammel P. Therapeutic advances in metastatic pancreatic cancer: a focus on targeted therapies. Ther Adv Med Oncol 2022; 14:17588359221118019. [PMID: 36090800 PMCID: PMC9459481 DOI: 10.1177/17588359221118019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Mortality from pancreatic ductal adenocarcinoma (PDAC) is increasing worldwide and effective new treatments are urgently needed. The current treatment of metastatic PDAC in fit patients is based on two chemotherapy combinations (FOLFIRINOX and gemcitabine plus nab-paclitaxel) which were validated more than 8 years ago. Although almost all treatments targeting specific molecular alterations have failed so far when administered to unselected patients, encouraging results were observed in the small subpopulations of patients with germline BRCA 1/2 mutations, and somatic gene fusions (neurotrophic tyrosine receptor kinase, Neuregulin 1, which are enriched in KRAS wild-type PDAC), KRAS G12C mutations, or microsatellite instability. While targeted tumor metabolism therapies and immunotherapy have been disappointing, they are still under investigation in combination with other drugs. Optimizing pharmacokinetics and adapting available chemotherapies based on molecular signatures are other promising avenues of research. This review evaluates the current expectations and limits of available treatments and analyses the existing trials. A permanent search for actionable vulnerabilities in PDAC tumor cells and microenvironments will probably result in a more personalized therapeutic approach, keeping in mind that supportive care must also play a major role if real clinical efficacy is to be achieved in these patients.
Collapse
Affiliation(s)
- Anthony Turpin
- Department of Medical Oncology, CNRS UMR9020,
Inserm UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to
Therapies, University Lille, CHU Lille, Lille, France
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie
Institute, Versailles Saint-Quentin University, Paris-Saclay University,
Saint-Cloud, France
| | - Elise Colle
- Department of Digestive and Medical Oncology,
Hospital Paul Brousse (AP-HP), Villejuif, University of Paris Saclay,
France
| | - Nelson Dusetti
- Cancer Research Center of Marseille, CRCM,
Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille,
France
| | - Rémy Nicolle
- Centre de Recherche sur l’Inflammation, INSERM,
U1149, CNRS, ERL 8252, Université de Paris Cité, Paris, France
| | - Jérôme Cros
- Department of Pathology, University of Paris
Cité, Hospital Beaujon (AP-HP), Clichy, France
| | - Louis de Mestier
- Department of Gastroenterology and
Pancreatology, University of Paris Cité, Hospital Beaujon (AP-HP), Clichy,
France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology and Digestive
Oncology, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC University,
Paris, France
| | - Pascal Hammel
- Department of Digestive and Medical Oncology,
Hôpital Paul Brousse (AP-HP), 12 Avenue Paul Vaillant-Couturier, Villejuif
94800, University of Paris Saclay, France
| |
Collapse
|
29
|
Multi-omics data integration and modeling unravels new mechanisms for pancreatic cancer and improves prognostic prediction. NPJ Precis Oncol 2022; 6:57. [PMID: 35978026 PMCID: PMC9385633 DOI: 10.1038/s41698-022-00299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), has recently been found to be a heterogeneous disease, although the extension of its diversity remains to be fully understood. Here, we harmonize transcriptomic profiles derived from both PDAC epithelial and microenvironment cells to develop a Master Regulators (MR)-Gradient model that allows important inferences on transcriptional networks, epigenomic states, and metabolomics pathways that underlies this disease heterogeneity. This gradient model was generated by applying a blind source separation based on independent components analysis and robust principal component analyses (RPCA), following regulatory network inference. The result of these analyses reveals that PDAC prognosis strongly associates with the tumor epithelial cell phenotype and the immunological component. These studies were complemented by integration of methylome and metabolome datasets generated from patient-derived xenograft (PDX), together experimental measurements of metabolites, immunofluorescence microscopy, and western blot. At the metabolic level, PDAC favorable phenotype showed a positive correlation with enzymes implicated in complex lipid biosynthesis. In contrast, the unfavorable phenotype displayed an augmented OXPHOS independent metabolism centered on the Warburg effect and glutaminolysis. Epigenetically, we find that a global hypermethylation profile associates with the worst prognosis. Lastly, we report that, two antagonistic histone code writers, SUV39H1/SUV39H2 (H3K9Me3) and KAT2B (H3K9Ac) were identified key deregulated pathways in PDAC. Our analysis suggests that the PDAC phenotype, as it relates to prognosis, is determined by a complex interaction of transcriptomic, epigenomic, and metabolic features. Furthermore, we demonstrated that PDAC prognosis could be modulated through epigenetics.
Collapse
|
30
|
Liu K, Geng Y, Wang L, Xu H, Zou M, Li Y, Zhao Z, Chen T, Xu F, Sun L, Wu S, Gu Y. Systematic exploration of the underlying mechanism of gemcitabine resistance in pancreatic adenocarcinoma. Mol Oncol 2022; 16:3034-3051. [PMID: 35810469 PMCID: PMC9394232 DOI: 10.1002/1878-0261.13279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/18/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Resistance to gemcitabine is the main challenge of chemotherapy for pancreatic ductal adenocarcinoma (PDAC). Hence, the development of a response signature to gemcitabine is essential for precision therapy of PDAC. However, existing quantitative signatures of gemcitabine are susceptible to batch effects and variations in sequencing platforms. Therefore, based on within-sample relative expression ordering of pairwise genes, we developed a transcriptome-based gemcitabine signature consisting of 28 gene pairs (28-GPS) that could predict response to gemcitabine for PDAC at the individual level. The 28-GPS was superior to previous quantitative signatures in terms of classification accuracy and prognostic performance. Resistant samples classified by 28-GPS showed poorer overall survival, higher genomic instability, lower immune infiltration, higher metabolic level and higher-fidelity DNA damage repair compared with sensitive samples. In addition, we found that gemcitabine combined with phosphoinositide 3-kinase (PI3K) inhibitor may be an alternative treatment strategy for PDAC. Single-cell analysis revealed that cancer cells in the same PDAC sample showed both the characteristics of sensitivity and resistance to gemcitabine, and the activation of the TGFβ signalling pathway could promote progression of PDAC. In brief, 28-GPS could robustly determine whether PDAC is resistant or sensitive to gemcitabine, and may be an auxiliary tool for clinical treatment.
Collapse
Affiliation(s)
- Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Yiding Geng
- Department of Systems Biology, College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Linzhu Wang
- Department of Human Anatomy, Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of EducationHarbin Medical UniversityHarbinChina
| | - Huanhuan Xu
- Department of Systems Biology, College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Min Zou
- Department of Systems Biology, College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Yawei Li
- Department of Systems Biology, College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Zhangxiang Zhao
- The Sino‐Russian Medical Research Center of Jinan University, the Institute of Chronic Disease of Jinan UniversityThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Fengyan Xu
- Department of Human Anatomy, Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of EducationHarbin Medical UniversityHarbinChina
| | - Liang Sun
- Department of Human Anatomy, Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of EducationHarbin Medical UniversityHarbinChina
| | - Shuliang Wu
- Department of Human Anatomy, Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of EducationHarbin Medical UniversityHarbinChina
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| |
Collapse
|
31
|
Fraunhoffer NA, Abuelafia AM, Dusetti N, Iovanna J. Limitation and challenges in using pancreatic cancer-derived organoids as a preclinical tool. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1028-1031. [PMID: 35848462 PMCID: PMC9558692 DOI: 10.1002/cac2.12335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Nicolas A Fraunhoffer
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France.,Buenos Aires University, Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires, C1121ABG, Argentina
| | - Analía Meilerman Abuelafia
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France
| | - Nelson Dusetti
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France
| | - Juan Iovanna
- Cancer Research Center of Marseille, Inserm, Paoli-Calmettes Institut, Aix-Marseille University, Scientific and Technological Park of Luminy, Marseille, 13288, France
| |
Collapse
|
32
|
Xie F, Huang X, He C, Wang R, Li S. An Inflammatory Response-Related Gene Signature Reveals Distinct Survival Outcome and Tumor Microenvironment Characterization in Pancreatic Cancer. Front Mol Biosci 2022; 9:876607. [PMID: 35755810 PMCID: PMC9216734 DOI: 10.3389/fmolb.2022.876607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Desmoplasia or rich fibrotic stroma is a typical property of pancreatic cancer (PC), with a significant impact on tumor progression, metastasis, and chemotherapy response. Unusual inflammatory responses are considered to induce fibrosis of tissue, but the expression and clinical significance of inflammatory response-related genes in PC have not been clearly elucidated. Methods: Prognosis-related differentially expressed genes (DEGs) between tumor and normal tissues were identified by comparing the transcriptome data of PC samples based on The Cancer Genome Atlas (TCGA) portal and the Genotype Tissue Expression (GTEx) databases. Samples from the ArrayExpress database were used as an external validation cohort. Results: A total of 27 inflammatory response-related DEGs in PC were identified. Least absolute shrinkage and selection operator (LASSO) analysis revealed three core genes that served as an inflammatory response gene signature (IRGS), and a risk score was calculated. The diagnostic accuracy of the IRGS was validated in the training (n = 176) and validation (n = 288) cohorts, which reliably predicted the overall survival (OS) and disease-free survival (DFS) of patients with PC. Furthermore, multivariate analysis identified the risk score as an independent risk factor for OS and DFS. The comprehensive results suggested that a high IRGS score was correlated with decreased CD8+ T-cell infiltration, increased M2 macrophage infiltration, increased occurrence of stroma-activated molecular subtype and hypoxia, enriched myofibroblast-related signaling pathways, and greater benefit from gemcitabine. Conclusion: The IRGS was able to promisingly distinguish the prognosis, the tumor microenvironment characteristics, and the benefit from chemotherapy for PC.
Collapse
Affiliation(s)
- Fengxiao Xie
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chaobin He
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruiqi Wang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shengping Li
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
33
|
AlMasri S, Zenati M, Hammad A, Nassour I, Liu H, Hogg ME, Zeh HJ, Boone B, Bahary N, Singhi AD, Lee KK, Paniccia A, Zureikat AH. Adaptive Dynamic Therapy and Survivorship for Operable Pancreatic Cancer. JAMA Netw Open 2022; 5:e2218355. [PMID: 35737385 PMCID: PMC9227002 DOI: 10.1001/jamanetworkopen.2022.18355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
Importance Neoadjuvant therapy is increasingly used in localized pancreatic carcinoma, and survival is correlated with carbohydrate antigen 19-9 (CA19-9) levels and histopathologic response following neoadjuvant therapy. With several regimens now available, the choice of chemotherapy could be best dictated by response to neoadjuvant therapy (as measured by CA19-9 levels and/or pathologic response), a strategy defined herein as adaptive dynamic therapy. Objective To evaluate the association of adaptive dynamic therapy with oncologic outcomes in patients with surgically resected pancreatic cancer. Design, Setting, and Participants This retrospective cohort study included patients with localized pancreatic cancer who were treated with either gemcitabine/nab-paclitaxel or fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) preoperatively between 2010 and 2019 at a high-volume tertiary care academic center. Participants were identified from a prospectively maintained database and had a median follow-up of 49 months. Data were analyzed from October 17 to November 24, 2020. Exposures The adaptive dynamic therapy group included 219 patients who remained on or switched to an alternative regimen as dictated by CA19-9 response and for whom the adjuvant regimen was selected based on CA19-9 and/or pathologic response. The nonadaptive dynamic therapy group included 103 patients who had their chemotherapeutic regimen selected independent of CA19-9 and/or tumoral response. Main Outcomes and Measures Prognostic implications of dynamic perioperative therapy assessed through Kaplan-Meier analysis, Cox regression, and inverse probability weighted estimators. Results A total of 322 consecutive patients (mean [SD] age, 65.1 [9] years; 162 [50%] women) were identified. The adaptive dynamic therapy group, compared with the nonadaptive dynamic therapy group, had a more pronounced median (IQR) decrease in CA19-9 levels (-80% [-92% to -56%] vs -45% [-81% to -13%]; P < .001), higher incidence of complete or near-complete tumoral response (25 [12%] vs 2 [2%]; P = .007), and lower median (IQR) number of lymph node metastasis (1 [0 to 4] vs 2 [0 to 4]; P = .046). Overall survival was significantly improved in the dynamic group compared with the nondynamic group (38.7 months [95% CI, 34.0 to 46.7 months] vs 26.5 months [95% CI, 23.5 to 32.9 months]; P = .03), and on adjusted analysis, dynamic therapy was independently associated with improved survival (hazard ratio, 0.73; 95% CI, 0.53 to 0.99; P = .04). On inverse probability weighted analysis of 320 matched patients, the average treatment effect of dynamic therapy was to increase overall survival by 11.1 months (95% CI, 1.5 to 20.7 months; P = .02). Conclusions and Relevance In this cohort study that sought to evaluate the role of adaptive dynamic therapy in localized pancreatic cancer, selecting a chemotherapeutic regimen based on response to preoperative therapy was associated with improved survival. These findings support an individualized and in vivo assessment of response to perioperative therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Samer AlMasri
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mazen Zenati
- Department of Surgery, Epidemiology, Clinical and Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Abdulrahman Hammad
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Hao Liu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melissa E. Hogg
- Department of Surgery, NorthShore Hospital System, Chicago, Illinois
| | - Herbert J. Zeh
- Department of Surgery, University of Texas Southwestern, Dallas
| | - Brian Boone
- Department of Surgery, West Virginia University, Morgantown
| | - Nathan Bahary
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kenneth K. Lee
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Amer H. Zureikat
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Orben F, Lankes K, Schneeweis C, Hassan Z, Jakubowsky H, Krauß L, Boniolo F, Schneider C, Schäfer A, Murr J, Schlag C, Kong B, Öllinger R, Wang C, Beyer G, Mahajan UM, Xue Y, Mayerle J, Schmid RM, Kuster B, Rad R, Braun CJ, Wirth M, Reichert M, Saur D, Schneider G. Epigenetic drug screening defines a PRMT5 inhibitor-sensitive pancreatic cancer subtype. JCI Insight 2022; 7:e151353. [PMID: 35439169 PMCID: PMC9220834 DOI: 10.1172/jci.insight.151353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic therapies for pancreatic ductal adenocarcinoma (PDAC) remain unsatisfactory. Clinical prognosis is particularly poor for tumor subtypes with activating aberrations in the MYC pathway, creating an urgent need for novel therapeutic targets. To unbiasedly find MYC-associated epigenetic dependencies, we conducted a drug screen in pancreatic cancer cell lines. Here, we found that protein arginine N-methyltransferase 5 (PRMT5) inhibitors triggered an MYC-associated dependency. In human and murine PDACs, a robust connection of MYC and PRMT5 was detected. By the use of gain- and loss-of-function models, we confirmed the increased efficacy of PRMT5 inhibitors in MYC-deregulated PDACs. Although inhibition of PRMT5 was inducing DNA damage and arresting PDAC cells in the G2/M phase of the cell cycle, apoptotic cell death was executed predominantly in cells with high MYC expression. Experiments in primary patient-derived PDAC models demonstrated the existence of a highly PRMT5 inhibitor-sensitive subtype. Our work suggests developing PRMT5 inhibitor-based therapies for PDAC.
Collapse
Affiliation(s)
- Felix Orben
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
| | | | - Christian Schneeweis
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich (TUM), Munich, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
| | - Hannah Jakubowsky
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich (TUM), Munich, Germany
| | - Lukas Krauß
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Fabio Boniolo
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich (TUM), Munich, Germany
| | - Carolin Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Arlett Schäfer
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
| | - Janine Murr
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
| | | | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany
- Department of General Surgery, University of Ulm, Ulm, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and
| | - Chengdong Wang
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, TUM, Freising, Germany
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Georg Beyer
- Department of Medicine II, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Ujjwal M. Mahajan
- Department of Medicine II, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Yonggan Xue
- Department of Medicine II, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland M. Schmid
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, TUM, Freising, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM, Freising, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian J. Braun
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Center for Protein Assemblies (CPA), TUM, Garching, Germany
- Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich (TUM), Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar and
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| |
Collapse
|
35
|
Hilmi M, Armenoult L, Ayadi M, Nicolle R. Whole-Transcriptome Profiling on Small FFPE Samples: Which Sequencing Kit Should Be Used? Curr Issues Mol Biol 2022; 44:2186-2193. [PMID: 35678677 PMCID: PMC9164037 DOI: 10.3390/cimb44050148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
RNA sequencing (RNA-Seq) appears as a great tool with huge clinical potential, particularly in oncology. However, sufficient sample size is often a limiting factor and the vast majority of samples from patients with cancer are formalin-fixed paraffin-embedded (FFPE). To date, several sequencing kits are proposed for FFPE samples yet no comparison on low quantities were performed. To select the most reliable, cost-effective, and relevant RNA-Seq approach, we applied five FFPE-compatible kits (based on 3′ capture, exome-capture and ribodepletion approaches) using 8 ng to 400 ng of FFPE-derived RNA and compared them to Nanostring on FFPE samples and to a reference PolyA (Truseq) approach on flash-frozen samples of the same tumors. We compared gene expression correlations and reproducibility. The Smarter Pico V3 ribodepletion approach appeared systematically the most comparable to Nanostring and Truseq (p < 0.001) and was a highly reproducible technique. In comparison with exome-capture and 3′ kits, the Smarter appeared more comparable to Truseq (p < 0.001). Overall, our results suggest that the Smarter is the most robust RNA-Seq technique to study small FFPE samples and 3′ Lexogen presents an interesting quality−price ratio for samples with less limiting quantities.
Collapse
Affiliation(s)
- Marc Hilmi
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, 75005 Paris, France;
| | - Lucile Armenoult
- Programme Cartes D’Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, 75013 Paris, France; (L.A.); (M.A.)
| | - Mira Ayadi
- Programme Cartes D’Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, 75013 Paris, France; (L.A.); (M.A.)
| | - Rémy Nicolle
- Centre de Recherche sur l’Inflammation (CRI), Université de Paris Cité, INSERM, U1149, CNRS, ERL 8252, 75018 Paris, France
- Correspondence:
| |
Collapse
|
36
|
Casamitjana J, Espinet E, Rovira M. Pancreatic Organoids for Regenerative Medicine and Cancer Research. Front Cell Dev Biol 2022; 10:886153. [PMID: 35592251 PMCID: PMC9110799 DOI: 10.3389/fcell.2022.886153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, the development of ex vivo organoid cultures has gained substantial attention as a model to study regenerative medicine and diseases in several tissues. Diabetes and pancreatic ductal adenocarcinoma (PDAC) are the two major devastating diseases affecting the pancreas. Suitable models for regenerative medicine in diabetes and to accurately study PDAC biology and treatment response are essential in the pancreatic field. Pancreatic organoids can be generated from healthy pancreas or pancreatic tumors and constitute an important translational bridge between in vitro and in vivo models. Here, we review the rapidly emerging field of pancreatic organoids and summarize the current applications of the technology to tissue regeneration, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Joan Casamitjana
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisa Espinet
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
37
|
Gouirand V, Gicquel T, Lien EC, Jaune‐Pons E, Da Costa Q, Finetti P, Metay E, Duluc C, Mayers JR, Audebert S, Camoin L, Borge L, Rubis M, Leca J, Nigri J, Bertucci F, Dusetti N, Lucio Iovanna J, Tomasini R, Bidaut G, Guillaumond F, Vander Heiden MG, Vasseur S. Ketogenic HMG-CoA lyase and its product β-hydroxybutyrate promote pancreatic cancer progression. EMBO J 2022; 41:e110466. [PMID: 35307861 PMCID: PMC9058543 DOI: 10.15252/embj.2021110466] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that β-hydroxybutyrate (βOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while βOHB stimulates metastatic dissemination to the liver. These findings suggest that βOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.
Collapse
|
38
|
Peschke K, Jakubowsky H, Schäfer A, Maurer C, Lange S, Orben F, Bernad R, Harder FN, Eiber M, Öllinger R, Steiger K, Schlitter M, Weichert W, Mayr U, Phillip V, Schlag C, Schmid RM, Braren RF, Kong B, Demir IE, Friess H, Rad R, Saur D, Schneider G, Reichert M. Identification of treatment-induced vulnerabilities in pancreatic cancer patients using functional model systems. EMBO Mol Med 2022; 14:e14876. [PMID: 35119792 PMCID: PMC8988213 DOI: 10.15252/emmm.202114876] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the advance and success of precision oncology in gastrointestinal cancers, the frequency of molecular-informed therapy decisions in pancreatic ductal adenocarcinoma (PDAC) is currently neglectable. We present a longitudinal precision oncology platform based on functional model systems, including patient-derived organoids, to identify chemotherapy-induced vulnerabilities. We demonstrate that treatment-induced tumor cell plasticity in vivo distinctly changes responsiveness to targeted therapies, without the presence of a selectable genetic marker, indicating that tumor cell plasticity can be functionalized. By adding a mechanistic layer to precision oncology, adaptive processes of tumors under therapy can be exploited, particularly in highly plastic tumors, such as pancreatic cancer.
Collapse
Affiliation(s)
- Katja Peschke
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
| | - Hannah Jakubowsky
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University of MunichMunichGermany
| | - Arlett Schäfer
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
| | - Carlo Maurer
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
| | - Sebastian Lange
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of MunichMunichGermany
| | - Felix Orben
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
| | - Raquel Bernad
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University of MunichMunichGermany
| | - Felix N Harder
- Institute of Diagnostic and Interventional RadiologyTechnical University of MunichMunichGermany
| | - Matthias Eiber
- Department of Nuclear MedicineKlinikum Rechts der IsarTechnical University of MunichMunichGermany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of MunichMunichGermany
| | - Katja Steiger
- Institute of PathologyTechnical University of MunichMünchenGermany
| | | | - Wilko Weichert
- Institute of PathologyTechnical University of MunichMünchenGermany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
| | - Ulrich Mayr
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
| | - Veit Phillip
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
| | - Christoph Schlag
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
| | - Roland M Schmid
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
| | - Rickmer F Braren
- Institute of Diagnostic and Interventional RadiologyTechnical University of MunichMunichGermany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
| | - Bo Kong
- Department of SurgeryKlinikum rechts der IsarTechnical University of MunichMunichGermany
- Department of General SurgeryUniversity of UlmUlmGermany
| | - Ihsan Ekin Demir
- Department of SurgeryKlinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Helmut Friess
- Department of SurgeryKlinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of MunichMunichGermany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University of MunichMunichGermany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
| | - Günter Schneider
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Center for Protein Assemblies (CPA)Technical University of MunichGarchingGermany
- Translational Pancreatic Cancer Research CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of MunichMünchenGermany
| |
Collapse
|
39
|
Systematic Evaluation Meta-Analysis of the Efficacy of Recombinant Human Endostatin Combined with Gemcitabine and Cisplatin in Non-Small-Cell Lung Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3208780. [PMID: 35340250 PMCID: PMC8941552 DOI: 10.1155/2022/3208780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Objective. To evaluate the efficacy of recombinant human endostatin combined with gemcitabine and cisplatin in the treatment of non-small-cell lung cancer (NSCLC). Methods. The databases of Cochrane Library, Embase, ClinicalTrials, PubMed, HowNet, Wanfang, and VIP were searched to collect randomized controlled trials (RCTs) of recombinant human endostatin combined with gemcitabine and cisplatin (experimental group) and gemcitabine combined with cisplatin (control group) for comparative study. The quality of literature was evaluated by bias risk assessment tools and related scales, and then meta-analysis was performed. Results. A total of 27 RCTs (1646 patients) were included. The results of meta-analysis showed that the effective rate (
< 0.000 01) and benefit rate (
< 0.000 01) of the experimental group were significantly higher than those of the control group, the incidence of leucopenia (
= 0.79), thrombocytopenia (
= 0.39), and gastrointestinal reaction (
= 0.85) were not statistically significant. Conclusion. The combination of recombinant human endostatin, gemcitabine, and cisplatin can increase the efficacy and safety of NSCLC patients.
Collapse
|
40
|
Multicellular Modelling of Difficult-to-Treat Gastrointestinal Cancers: Current Possibilities and Challenges. Int J Mol Sci 2022; 23:ijms23063147. [PMID: 35328567 PMCID: PMC8955095 DOI: 10.3390/ijms23063147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers affecting the gastrointestinal system are highly prevalent and their incidence is still increasing. Among them, gastric and pancreatic cancers have a dismal prognosis (survival of 5–20%) and are defined as difficult-to-treat cancers. This reflects the urge for novel therapeutic targets and aims for personalised therapies. As a prerequisite for identifying targets and test therapeutic interventions, the development of well-established, translational and reliable preclinical research models is instrumental. This review discusses the development, advantages and limitations of both patient-derived organoids (PDO) and patient-derived xenografts (PDX) for gastric and pancreatic ductal adenocarcinoma (PDAC). First and next generation multicellular PDO/PDX models are believed to faithfully generate a patient-specific avatar in a preclinical setting, opening novel therapeutic directions for these difficult-to-treat cancers. Excitingly, future opportunities such as PDO co-cultures with immune or stromal cells, organoid-on-a-chip models and humanised PDXs are the basis of a completely new area, offering close-to-human models. These tools can be exploited to understand cancer heterogeneity, which is indispensable to pave the way towards more tumour-specific therapies and, with that, better survival for patients.
Collapse
|
41
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
42
|
Wu W, Liu Y, Jin Y, Liu L, Guo Y, Xu M, Hao Q, Li D, Fang W, Zhang A, Zhao P. Case Report: Effectiveness of Targeted Treatment in a Patient With Pancreatic Cancer Harboring PALB2 Germline Mutation and KRAS Somatic Mutation. Front Med (Lausanne) 2022; 8:746637. [PMID: 35096857 PMCID: PMC8792848 DOI: 10.3389/fmed.2021.746637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer is one of the most leading causes of cancer death worldwide. The rapid development of next-generation sequencing (NGS) and precision medicine promote us to seek potential targets for the treatment of pancreatic cancer. Here, we report a female pancreatic cancer patient who underwent radical surgical excision after neoadjuvant chemotherapy. After the surgery, the patient underwent gemcitabine + S-1 therapy, capecitabine + albumin paclitaxel therapy and irinotecan therapy successively, however, MRI review revealed tumor progression. The surgical tissue sample was subjected to next-generation sequencing (NGS), and PALB2 germline mutation and KRAS somatic mutation were identified. The patient then received olaparib (a PARP inhibitor) + irinotecan and the disease stabilized for one year. Due to the increased CA19-9, treatment of the patient with a combination of trametinib (a MEK inhibitor) and hydroxychloroquine resulted in stable disease (SD) with a significant decrease of CA19-9. This case demonstrated that the NGS may be a reliable method for finding potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | - Yu Liu
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | - Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | - Lulu Liu
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | - Yixuan Guo
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | | | | | - Dazhi Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | - Aibin Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Nicolle R, Gayet O, Bigonnet M, Roques J, Chanez B, Puleo F, Augustin J, Emile JF, Svrcek M, Arsenijevic T, Hammel P, Rebours V, Giovannini M, Grandval P, Dahan L, Moutardier V, Mitry E, Van Laethem JL, Bachet JB, Cros J, Iovanna J, Dusetti NJ. Relevance of biopsy-derived pancreatic organoids in the development of efficient transcriptomic signatures to predict adjuvant chemosensitivity in pancreatic cancer. Transl Oncol 2021; 16:101315. [PMID: 34906890 PMCID: PMC8681024 DOI: 10.1016/j.tranon.2021.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Most patient with pancreatic cancer are treated by chemotherapy. Treatments selection are not personalized on the tumor characteristics. Signatures predicting chemotherapy efficiency are essential for personalizing treatments. An RNA signature of gemcitabine-sensitivity is developed leveraged on the dissimilarities between 2D and 3D in vitro models. Combining different in vitro models can help in defining clinically efficient transcriptomic signatures.
Pancreatic ductal adenocarcinoma (PDAC) patients are frequently treated by chemotherapy. Even if personalized therapy based on molecular analysis can be performed for some tumors, PDAC regimens selection is still mainly based on patients' performance status and expected efficacy. Therefore, the establishment of molecular predictors of chemotherapeutic efficacy could potentially improve prognosis by tailoring treatments. We have recently developed an RNA-based signature that predicts the efficacy of adjuvant gemcitabine using 38 PDAC primary cell cultures. While demonstrated its efficiency, a significant association with the classical/basal-like PDAC spectrum was observed. We hypothesized that this flaw was due to the basal-like biased phenotype of cellular models used in our strategy. To overcome this limitation, we generated a prospective cohort of 27 consecutive biopsied derived pancreatic organoids (BDPO) and include them in the signature identification strategy. As BDPO's do not have the same biased phenotype as primary cell cultures we expect they can compensate one with each other and cover a broader range of molecular phenotypes. We then obtained an improved signature predicting gemcitabine sensibility that was validated in a cohort of 300 resected PDAC patients that have or have not received adjuvant gemcitabine. We demonstrated a significant association between the improved signature and the overall and disease-free survival in patients predicted as sensitive and treated with adjuvant gemcitabine. We propose then that including BDPO along primary cell cultures represent a powerful strategy that helps to overcome primary cell cultures limitations producing unbiased RNA-based signatures predictive of adjuvant treatments in PDAC.
Collapse
Affiliation(s)
- R Nicolle
- Tumor Identity Card Program (CIT), French League Against Cancer, Paris, France
| | - O Gayet
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France
| | - M Bigonnet
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France
| | - J Roques
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France
| | - B Chanez
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France; Paoli-Calmettes Institut, Marseille, France
| | - F Puleo
- Laboratory of Experimental Gastroenterology (Université Libre de Bruxelles), Brussels, Belgium; Department of Gastroenterology and Digestive Oncology, Delta Hospital, Center Hospitalier Interregional Edith Cavell, Brussels, Belgium
| | - J Augustin
- Department of Pathology, AP-HP, Henri Mondor University Hospital, Créteil, France
| | - J F Emile
- Ambroise Paré Hospital, Boulogne, AP-HP, Boulogne-Billancourt, France
| | - M Svrcek
- Department of Pathology, Saint-Antoine Hospital, Sorbonne University, UPMC University, Paris, France
| | - T Arsenijevic
- Laboratory of Experimental Gastroenterology (Université Libre de Bruxelles), Brussels, Belgium; Department of Gastroenterology and Digestive Oncology, Erasme Hospital, Brussels, Belgium
| | - P Hammel
- Department of Digestive Oncology, Paul Brousse Hospital, APHP, Villejuif, France
| | - V Rebours
- Université de Paris, Department of Pancreatology, Beaujon Hospital, APHP, Clichy, France
| | - M Giovannini
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France; Paoli-Calmettes Institut, Marseille, France
| | - P Grandval
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France; Université de Paris, Department of Pancreatology, Beaujon Hospital, APHP, Clichy, France
| | - L Dahan
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France; La Timone Hospital, Marseille, France
| | - V Moutardier
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France; Nord Hospital, Marseille, France
| | - E Mitry
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France; Paoli-Calmettes Institut, Marseille, France
| | - J L Van Laethem
- Laboratory of Experimental Gastroenterology (Université Libre de Bruxelles), Brussels, Belgium; Department of Gastroenterology and Digestive Oncology, Erasme Hospital, Brussels, Belgium
| | - J B Bachet
- Department of Gastroenterology, Pitié-Salpetrière Hospital, Sorbonne University, UPMC University, Paris, France
| | - J Cros
- Université de Paris, Department of Pathology, Beaujon Hospital, APHP, Clichy, France
| | - J Iovanna
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France; Paoli-Calmettes Institut, Marseille, France
| | - N J Dusetti
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille, France.
| |
Collapse
|
44
|
Malinova A, Veghini L, Real FX, Corbo V. Cell Lineage Infidelity in PDAC Progression and Therapy Resistance. Front Cell Dev Biol 2021; 9:795251. [PMID: 34926472 PMCID: PMC8675127 DOI: 10.3389/fcell.2021.795251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Infidelity to cell fate occurs when differentiated cells lose their original identity and either revert to a more multipotent state or transdifferentiate into a different cell type, either within the same embryonic lineage or in an entirely different one. Whilst in certain circumstances, such as in wound repair, this process is beneficial, it can be hijacked by cancer cells to drive disease initiation and progression. Cell phenotype switching has been shown to also serve as a mechanism of drug resistance in some epithelial cancers. In pancreatic ductal adenocarcinoma (PDAC), the role of lineage infidelity and phenotype switching is still unclear. Two consensus molecular subtypes of PDAC have been proposed that mainly reflect the existence of cell lineages with different degrees of fidelity to pancreatic endodermal precursors. Indeed, the classical subtype of PDAC is characterised by the expression of endodermal lineage specifying transcription factors, while the more aggressive basal-like/squamous subtype is defined by epigenetic downregulation of endodermal genes and alterations in chromatin modifiers. Here, we summarise the current knowledge of mechanisms (genetic and epigenetic) of cell fate switching in PDAC and discuss how pancreatic organoids might help increase our understanding of both cell-intrinsic and cell-extrinsic factors governing lineage infidelity during the distinct phases of PDAC evolution.
Collapse
Affiliation(s)
- Antonia Malinova
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Lisa Veghini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francisco X. Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain
- CIBERONC, Madrid, Spain
- Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-Net Research Centre, University of Verona, Verona, Italy
| |
Collapse
|
45
|
Chen P, Zhang X, Ding R, Yang L, Lyu X, Zeng J, Lei JH, Wang L, Bi J, Shao N, Shu D, Wu B, Wu J, Yang Z, Wang H, Wang B, Xiong K, Lu Y, Fu S, Choi TK, Lon NW, Zhang A, Tang D, Quan Y, Meng Y, Miao K, Sun H, Zhao M, Bao J, Zhang L, Xu X, Shi Y, Lin Y, Deng C. Patient-Derived Organoids Can Guide Personalized-Therapies for Patients with Advanced Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101176. [PMID: 34605222 PMCID: PMC8596108 DOI: 10.1002/advs.202101176] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Indexed: 05/04/2023]
Abstract
Most breast cancers at an advanced stage exhibit an aggressive nature, and there is a lack of effective anticancer options. Herein, the development of patient-derived organoids (PDOs) is described as a real-time platform to explore the feasibility of tailored treatment for refractory breast cancers. PDOs are successfully generated from breast cancer tissues, including heavily treated specimens. The microtubule-targeting drug-sensitive response signatures of PDOs predict improved distant relapse-free survival for invasive breast cancers treated with adjuvant chemotherapy. It is further demonstrated that PDO pharmaco-phenotyping reflects the previous treatment responses of the corresponding patients. Finally, as clinical case studies, all patients who receive at least one drug predicate to be sensitive by PDOs achieve good responses. Altogether, the PDO model is developed as an effective platform for evaluating patient-specific drug sensitivity in vitro, which can guide personal treatment decisions for breast cancer patients at terminal stage.
Collapse
|
46
|
Hessmann E, Schneider G. New Insights Into Pancreatic Cancer: Notes from a Virtual Meeting. Gastroenterology 2021; 161:785-791. [PMID: 34089734 DOI: 10.1053/j.gastro.2021.04.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
Pancreatic ductal adenocarcinoma remains a major challenge in cancer medicine. Given the increase in incidence and mortality, interdisciplinary research is necessary to translate basic knowledge into therapeutic strategies improving the outcome of patients. On the 4th and 5th of February 2021, three German pancreatic cancer research centers, the Clinical Research Unit 5002 from Göttingen, the Collaborative Research Center 1321 from Munich, and Clinical Research Unit 325 from Marburg organized the 1st Virtual Göttingen-Munich-Marburg Pancreatic Cancer Meeting in order to foster scientific exchange. This report summarizes current research and proceedings presented during that meeting.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.
| | - Günter Schneider
- Medical Clinic and Policlinic II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
47
|
Pappalardo A, Giunta EF, Tirino G, Pompella L, Federico P, Daniele B, De Vita F, Petrillo A. Adjuvant Treatment in Pancreatic Cancer: Shaping the Future of the Curative Setting. Front Oncol 2021; 11:695627. [PMID: 34485130 PMCID: PMC8415474 DOI: 10.3389/fonc.2021.695627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease even in the early stages, despite progresses in surgical and pharmacological treatment in recent years. High potential for metastases is the main cause of therapeutic failure in localized disease, highlighting the current limited knowledge of underlying pathological processes. However, nowadays research is focusing on the search for personalized approaches also in the adjuvant setting for PDAC, by implementing the use of biomarkers and investigating new therapeutic targets. In this context, the aim of this narrative review is to summarize the current treatment scenario and new potential therapeutic approaches in early stage PDAC, from both a preclinical and clinical point of view. Additionally, the review examines the role of target therapies in localized PDAC and the influence of neoadjuvant treatments on survival outcomes.
Collapse
Affiliation(s)
- Annalisa Pappalardo
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Emilio Francesco Giunta
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Giuseppe Tirino
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Luca Pompella
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | | | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| | - Angelica Petrillo
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of study of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
48
|
Fraunhoffer NA, Abuelafia AM, Teyssedou C, Chuluyan E, Bigonnet M, Palazzo L, Gayet O, Nicolle R, Cros J, Iovanna J, Dusetti N. Squamousness gain defines pancreatic ductal adenocarcinoma hepatic metastases phenotype, and gemcitabine response. Eur J Cancer 2021; 155:42-53. [PMID: 34348180 DOI: 10.1016/j.ejca.2021.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a survival rate of less than 7%, mainly due to the hepatic metastatic spread. Despite the importance of understanding PDAC metastases, central questions remain concerning their biology and chemosensitivity. Moreover, the transcriptomic divergence between primary tumor (PT) and hepatic metastases (HM) has been poorly studied and without a clear dissection of the confounding tumoral-surrounding tissue. METHODS Here, to unravel key biological features not biased by the surrounding tissue, we implemented a blind source separation based on independent component analysis, ProDenICA, on a treatment-naïve cohort of PDAC paired samples and a cohort of 305 resectable patients. In addition, a time-lapse experiment was performed to assess the gemcitabine chemosensitivity profile between the PT and HM. RESULTS We identified HM's specific transcriptomic characteristics related to the upregulation of cell cycle checkpoint, mitochondria activity, and extracellular matrix reorganization, which could be associated with metastatic niche adaptation mechanisms. Furthermore, squamous lineage emerged as a key feature linked with a downregulation in the epithelial-to-mesenchymal program that can stratifies PDAC HM independent of the classical/basal-like spectrum. Remarkably, we also demonstrated that gemcitabine response is influenced by the squamous profile, being the HM more refractory to the treatment than the PT. CONCLUSIONS These results pointed out divergent HM aspects compared to PT and allowed their stratification through the squamous lineage. Moreover, we unravel a clinical actionable squamous signature that predicts the gemcitabine response.
Collapse
Affiliation(s)
- Nicolas A Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Buenos Aires, Argentina
| | - Analia M Abuelafia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Carlos Teyssedou
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Eduardo Chuluyan
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología; e Inmunología, Buenos Aires, Argentina
| | - Martin Bigonnet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Laurent Palazzo
- Digestive Endoscopy Unit, Clinique Du Trocadéro, Paris, France
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Remy Nicolle
- Tumour Identity Card Program (CIT), French League Against Cancer, Paris, France
| | - Jerome Cros
- Department of Pathology, Beaujon Hospital, APHP- Université de Paris, Clichy, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.
| |
Collapse
|
49
|
Martens S, Coolens K, Van Bulck M, Arsenijevic T, Casamitjana J, Fernandez Ruiz A, El Kaoutari A, Martinez de Villareal J, Madhloum H, Esni F, Heremans Y, Leuckx G, Heimberg H, Bouwens L, Jacquemin P, De Paep DL, In't Veld P, D'Haene N, Bouchart C, Dusetti N, Van Laethem JL, Waelput W, Lefesvre P, Real FX, Rovira M, Rooman I. Discovery and 3D imaging of a novel ΔNp63-expressing basal cell type in human pancreatic ducts with implications in disease. Gut 2021; 71:gutjnl-2020-322874. [PMID: 34330784 PMCID: PMC9484383 DOI: 10.1136/gutjnl-2020-322874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) harbours a ΔNp63 (p40) gene expression signature reminiscent of a basal cell type. Distinct from other epithelia with basal tumours, ΔNp63+ basal cells reportedly do not exist in the normal pancreas. DESIGN We evaluated ΔNp63 expression in human pancreas, chronic pancreatitis (CP) and PDAC. We further studied in depth the non-cancerous tissue and developed a three-dimensional (3D) imaging protocol (FLIP-IT, Fluorescence Light sheet microscopic Imaging of Paraffin-embedded or Intact Tissue) to study formalin-fixed paraffin-embedded samples at single cell resolution. Pertinent mouse models and HPDE cells were analysed. RESULTS In normal human pancreas, rare ΔNp63+ cells exist in ducts while their prevalence increases in CP and in a subset of PDAC. In non-cancer tissue, ΔNp63+ cells are atypical KRT19+ duct cells that overall lack SOX9 expression while they do express canonical basal markers and pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views show that the basal cells anchor on the basal membrane of normal medium to large ducts while in CP they exist in multilayer dome-like structures. In mice, ΔNp63 is not found in adult pancreas nor in selected models of CP or PDAC, but it is induced in organoids from larger Sox9low ducts. In HPDE, ΔNp63 supports a basal cell phenotype at the expense of a classical duct cell differentiation programme. CONCLUSION In larger human pancreatic ducts, basal cells exist. ΔNp63 suppresses duct cell identity. These cells may play an important role in pancreatic disease, including PDAC ontogeny, but are not present in mouse models.
Collapse
Affiliation(s)
- Sandrina Martens
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Katarina Coolens
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Mathias Van Bulck
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Bruxelles, Belgium
- Hopital Erasme Service de Gastroenterologie d'Hepato-Pancreatologie et d'Oncologie Digestive, Bruxelles, Belgium
| | - Joan Casamitjana
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Angel Fernandez Ruiz
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Abdessamad El Kaoutari
- Centre de Recherche en Cancérologie de Marseille - CRCM, INSERM UMR1068, CRCM, Marseille, France
- COMPO Unit, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | | | - Hediel Madhloum
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Farzad Esni
- Division of Pediatric General and Thoracic Surgery, University of Pittsburgh Department of Surgery, Pittsburgh, Pennsylvania, USA
| | - Yves Heremans
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Gunter Leuckx
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Harry Heimberg
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Luc Bouwens
- Cell Differentiation Laboratory, Vrije Universiteit Brussel, Brussel, Belgium
| | - Patrick Jacquemin
- Institut de Duve, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Peter In't Veld
- Diabetes Research Center, Vrije Universiteit Brussel, Brussel, Belgium
| | - Nicky D'Haene
- Department of Pathology, Hopital Erasme, Bruxelles, Belgium
| | - Christelle Bouchart
- Department of Radiation-Oncology, Jules Bordet Institute, Bruxelles, Belgium
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille - CRCM, INSERM UMR1068, CRCM, Marseille, France
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Bruxelles, Belgium
- Hopital Erasme Service de Gastroenterologie d'Hepato-Pancreatologie et d'Oncologie Digestive, Bruxelles, Belgium
| | - Wim Waelput
- Department of Pathology, UZ Brussel, Brussel, Belgium
- Department of Pathology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Pierre Lefesvre
- Department of Pathology, UZ Brussel, Brussel, Belgium
- Department of Pathology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ilse Rooman
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
50
|
Principe DR, Underwood PW, Korc M, Trevino JG, Munshi HG, Rana A. The Current Treatment Paradigm for Pancreatic Ductal Adenocarcinoma and Barriers to Therapeutic Efficacy. Front Oncol 2021; 11:688377. [PMID: 34336673 PMCID: PMC8319847 DOI: 10.3389/fonc.2021.688377] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with a median survival time of 10-12 months. Clinically, these poor outcomes are attributed to several factors, including late stage at the time of diagnosis impeding resectability, as well as multi-drug resistance. Despite the high prevalence of drug-resistant phenotypes, nearly all patients are offered chemotherapy leading to modest improvements in postoperative survival. However, chemotherapy is all too often associated with toxicity, and many patients elect for palliative care. In cases of inoperable disease, cytotoxic therapies are less efficacious but still carry the same risk of serious adverse effects, and clinical outcomes remain particularly poor. Here we discuss the current state of pancreatic cancer therapy, both surgical and medical, and emerging factors limiting the efficacy of both. Combined, this review highlights an unmet clinical need to improve our understanding of the mechanisms underlying the poor therapeutic responses seen in patients with PDAC, in hopes of increasing drug efficacy, extending patient survival, and improving quality of life.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Jose G. Trevino
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Hidayatullah G. Munshi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|