1
|
Babaei S, Fadaee M, Abbasi-Kenarsari H, Shanehbandi D, Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun Signal 2024; 22:527. [PMID: 39482766 PMCID: PMC11526674 DOI: 10.1186/s12964-024-01906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
The malignant form of melanoma is one of the deadliest human cancers that accounts for almost all of the skin tumor-related fatalities in its later stages. Achieving an exhaustive understanding of reliable cancer-specific markers and molecular pathways can provide numerous practical techniques and direct the way toward the development of rational curative medicines to increase the lifespan of patients. Immunotherapy has significantly enhanced the treatment of metastatic and late-stage melanoma, resulting in an incredible increase in positive responses to therapy. Despite the increasing occurrence of melanoma, the median survival rate for patients with advanced, inoperable terminal disease has increased from around six months to almost six years. The current knowledge of the tumor microenvironment (TME) and its interaction with the immune system has resulted in the swift growth of innovative immunotherapy treatments. Exosomes are small extracellular vesicles (EVs), ranging from 30 to 150 nm in size, that the majority of cells released them. Exosomes possess natural advantages such as high compatibility with living organisms and low potential for causing immune reactions, making them practical for delivering therapeutic agents like chemotherapy drugs, nucleic acids, and proteins. This review highlights recent advancements in using exosomes as an approach to providing medications for the treatment of melanoma.
Collapse
Affiliation(s)
- Shabnam Babaei
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dariush Shanehbandi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146.
| |
Collapse
|
2
|
Aizaz M, Khan AS, Khan M, Musazade E, Yang G. Advancements in tumor-infiltrating lymphocytes: Historical insights, contemporary milestones, and future directions in oncology therapy. Crit Rev Oncol Hematol 2024; 202:104471. [PMID: 39117163 DOI: 10.1016/j.critrevonc.2024.104471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are a subtype of immune cells that infiltrate and accumulate within tumors. Studies proved that TILs can be used as prognostic and predictive markers for cancer patients' responses to immunotherapy. This review explores the modern knowledge of TILs, the challenges and opportunities for utilizing TILs in cancer treatment, such as the rise of therapies under TIL circumstances, the identification of biomarkers for TIL activity, and methods used to isolate and expand TILs for therapeutic use. Ongoing clinical trials and promising results in different cancer types are highlighted, including melanoma, ovarian, and colorectal cancer. This also focuses on ongoing efforts to improve TIL-based therapies by identifying the specific subsets of TILs that are most effective in treating cancer and developing methods to increase the functionality and persistence of TILs in the tumor microenvironment. The article recapitulates the present state TILs therapy, ongoing research, and improvements to its potency.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China.
| | | | - Maria Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Pakistan.
| | - Elshan Musazade
- College of Life Science, Jilin Agricultural University, Changchun, China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China.
| |
Collapse
|
3
|
Chen X, Zhong S, Zhan Y, Zhang X. CRISPR-Cas9 applications in T cells and adoptive T cell therapies. Cell Mol Biol Lett 2024; 29:52. [PMID: 38609863 PMCID: PMC11010303 DOI: 10.1186/s11658-024-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shuhan Zhong
- Department of Hematology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310003, China
| | - Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
4
|
Gammelgaard OL, Terp MG, Kirkin AF, Johansen S, Traynor S, Vever H, Guldberg P, Kodahl AR, Gjerstorff MF, Ditzel HJ. Adoptive cell transfer therapy with ex vivo primed peripheral lymphocytes in combination with anti-PDL1 therapy effectively inhibits triple-negative breast cancer growth and metastasis. Mol Cancer 2024; 23:6. [PMID: 38184565 PMCID: PMC10770996 DOI: 10.1186/s12943-023-01914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Adoptive cell transfer cancer immunotherapy holds promise for treating disseminated disease, yet generating sufficient numbers of lymphocytes with anti-cancer activity against diverse specificities remains a major challenge. We recently developed a novel procedure (ALECSAT) for selecting, expanding and maturating polyclonal lymphocytes from peripheral blood with the capacity to target malignant cells. METHODS Immunodeficient mice were challenged with triple-negative breast cancer cell lines or patient-derived xenografts (PDX) and treated with allogeneic or autologous ALECSAT cells with and without anti-PDL1 therapy to assess the capacity of ALECSAT cells to inhibit primary tumor growth and metastasis. RESULTS ALECSAT mono therapy inhibited metastasis, but did not inhibit primary tumor growth or prolong survival of tumor-bearing mice. In contrast, combined ALECSAT and anti-PDL1 therapy significantly inhibited primary tumor growth, nearly completely blocked metastasis, and prolonged survival of tumor-bearing mice. CONCLUSIONS Combined ALECSAT and anti-PDL1 therapy results in favorable anti-cancer responses in both cell line-derived xenograft and autologous PDX models of advanced triple-negative breast cancer.
Collapse
Affiliation(s)
- Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark.
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | | | - Simone Johansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Henriette Vever
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Per Guldberg
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
- Danish Cancer Institute (DCI), Copenhagen, Denmark
| | - Annette R Kodahl
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark.
- Department of Oncology, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
5
|
Pavlick AC, Ariyan CE, Buchbinder EI, Davar D, Gibney GT, Hamid O, Hieken TJ, Izar B, Johnson DB, Kulkarni RP, Luke JJ, Mitchell TC, Mooradian MJ, Rubin KM, Salama AK, Shirai K, Taube JM, Tawbi HA, Tolley JK, Valdueza C, Weiss SA, Wong MK, Sullivan RJ. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of melanoma, version 3.0. J Immunother Cancer 2023; 11:e006947. [PMID: 37852736 PMCID: PMC10603365 DOI: 10.1136/jitc-2023-006947] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 10/20/2023] Open
Abstract
Since the first approval for immune checkpoint inhibitors (ICIs) for the treatment of cutaneous melanoma more than a decade ago, immunotherapy has completely transformed the treatment landscape of this chemotherapy-resistant disease. Combination regimens including ICIs directed against programmed cell death protein 1 (PD-1) with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) agents or, more recently, anti-lymphocyte-activation gene 3 (LAG-3) agents, have gained regulatory approvals for the treatment of metastatic cutaneous melanoma, with long-term follow-up data suggesting the possibility of cure for some patients with advanced disease. In the resectable setting, adjuvant ICIs prolong recurrence-free survival, and neoadjuvant strategies are an active area of investigation. Other immunotherapy strategies, such as oncolytic virotherapy for injectable cutaneous melanoma and bispecific T-cell engager therapy for HLA-A*02:01 genotype-positive uveal melanoma, are also available to patients. Despite the remarkable efficacy of these regimens for many patients with cutaneous melanoma, traditional immunotherapy biomarkers (ie, programmed death-ligand 1 expression, tumor mutational burden, T-cell infiltrate and/or microsatellite stability) have failed to reliably predict response. Furthermore, ICIs are associated with unique toxicity profiles, particularly for the highly active combination of anti-PD-1 plus anti-CTLA-4 agents. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop this clinical practice guideline on immunotherapy for the treatment of melanoma, including rare subtypes of the disease (eg, uveal, mucosal), with the goal of improving patient care by providing guidance to the oncology community. Drawing from published data and clinical experience, the Expert Panel developed evidence- and consensus-based recommendations for healthcare professionals using immunotherapy to treat melanoma, with topics including therapy selection in the advanced and perioperative settings, intratumoral immunotherapy, when to use immunotherapy for patients with BRAFV600-mutated disease, management of patients with brain metastases, evaluation of treatment response, special patient populations, patient education, quality of life, and survivorship, among others.
Collapse
Affiliation(s)
| | - Charlotte E Ariyan
- Department of Surgery Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Diwakar Davar
- Hillman Cancer Center, University of Pittsburg Medical Center, Pittsburgh, Pennsylvania, USA
| | - Geoffrey T Gibney
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California, USA
| | - Tina J Hieken
- Department of Surgery and Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rajan P Kulkarni
- Departments of Dermatology, Oncological Sciences, Biomedical Engineering, and Center for Cancer Early Detection Advanced Research, Knight Cancer Institute, OHSU, Portland, Oregon, USA
- Operative Care Division, VA Portland Health Care System (VAPORHCS), Portland, Oregon, USA
| | - Jason J Luke
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tara C Mitchell
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meghan J Mooradian
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Krista M Rubin
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - April Ks Salama
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, Carolina, USA
| | - Keisuke Shirai
- Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Janis M Taube
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J Keith Tolley
- Patient Advocate, Melanoma Research Alliance, Washington, DC, USA
| | - Caressa Valdueza
- Cutaneous Oncology Program, Weill Cornell Medicine, New York, New York, USA
| | - Sarah A Weiss
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Michael K Wong
- Patient Advocate, Melanoma Research Alliance, Washington, DC, USA
| | - Ryan J Sullivan
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Davis L, Miller RE, Wong YNS. The Landscape of Adoptive Cellular Therapies in Ovarian Cancer. Cancers (Basel) 2023; 15:4814. [PMID: 37835509 PMCID: PMC10571827 DOI: 10.3390/cancers15194814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Ovarian cancers are typically poorly immunogenic and have demonstrated disappointing responses to immune checkpoint inhibitor (ICI) therapy. Adoptive cellular therapy (ACT) offers an alternative method of harnessing the immune system that has shown promise, especially with the success of chimeric antigen receptor T-cell (CAR-T) therapy in haematologic malignancies. So far, ACT has led to modest results in the treatment of solid organ malignancies. This review explores the possibility of ACT as an effective alternative or additional treatment to current standards of care in ovarian cancer. We will highlight the potential of ACTs, such as CAR-T, T-cell receptor therapy (TCR-T), tumour-infiltrating lymphocytes (TILs) and cell-based vaccines, whilst also discussing their challenges. We will present clinical studies for these approaches in the treatment of immunologically 'cold' ovarian cancer and consider the rationale for future research.
Collapse
Affiliation(s)
- Lucy Davis
- Royal Free Hospital, London NW3 2QG, UK;
| | - Rowan E Miller
- Department of Medical Oncology, University College London Hospital, London NW1 3PG, UK;
- Department of Medical Oncology, St Bartholomew’s Hospital, London EC1A 7BE, UK
| | - Yien Ning Sophia Wong
- Royal Free Hospital, London NW3 2QG, UK;
- Department of Medical Oncology, University College London Hospital, London NW1 3PG, UK;
| |
Collapse
|
7
|
Langenbach M, Giesler S, Richtsfeld S, Costa-Pereira S, Rindlisbacher L, Wertheimer T, Braun LM, Andrieux G, Duquesne S, Pfeifer D, Woessner NM, Menssen HD, Taromi S, Duyster J, Börries M, Brummer T, Blazar BR, Minguet S, Turko P, Levesque MP, Becher B, Zeiser R. MDM2 Inhibition Enhances Immune Checkpoint Inhibitor Efficacy by Increasing IL15 and MHC Class II Production. Mol Cancer Res 2023; 21:849-864. [PMID: 37071397 PMCID: PMC10524444 DOI: 10.1158/1541-7786.mcr-22-0898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
The treatment of patients with metastatic melanoma with immune checkpoint inhibitors (ICI) leads to impressive response rates but primary and secondary resistance to ICI reduces progression-free survival. Novel strategies that interfere with resistance mechanisms are key to further improve patient outcome during ICI therapy. P53 is often inactivated by mouse-double-minute-2 (MDM2), which may decrease immunogenicity of melanoma cells. We analyzed primary patient-derived melanoma cell lines, performed bulk sequencing analysis of patient-derived melanoma samples, and used melanoma mouse models to investigate the role of MDM2-inhibition for enhanced ICI therapy. We found increased expression of IL15 and MHC-II in murine melanoma cells upon p53 induction by MDM2-inhibition. MDM2-inhibitor induced MHC-II and IL15-production, which was p53 dependent as Tp53 knockdown blocked the effect. Lack of IL15-receptor in hematopoietic cells or IL15 neutralization reduced the MDM2-inhibition/p53-induction-mediated antitumor immunity. P53 induction by MDM2-inhibition caused anti-melanoma immune memory as T cells isolated from MDM2-inhibitor-treated melanoma-bearing mice exhibited anti-melanoma activity in secondary melanoma-bearing mice. In patient-derived melanoma cells p53 induction by MDM2-inhibition increased IL15 and MHC-II. IL15 and CIITA expressions were associated with a more favorable prognosis in patients bearing WT but not TP53-mutated melanoma. IMPLICATIONS MDM2-inhibition represents a novel strategy to enhance IL15 and MHC-II-production, which disrupts the immunosuppressive tumor microenvironment. On the basis of our findings, a clinical trial combining MDM2-inhibition with anti-PD-1 immunotherapy for metastatic melanoma is planned.
Collapse
Affiliation(s)
- Marlene Langenbach
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Sophie Giesler
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Stefan Richtsfeld
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sara Costa-Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tobias Wertheimer
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lukas M. Braun
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandra Duquesne
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nadine M. Woessner
- Signalling Research Centres BIOSS and CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | - Sanaz Taromi
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Melanie Börries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Tilman Brummer
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany Germany
| | - Bruce R. Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susana Minguet
- Signalling Research Centres BIOSS and CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg
| | - Patrick Turko
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Robert Zeiser
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Geurts V, Kok M. Immunotherapy for Metastatic Triple Negative Breast Cancer: Current Paradigm and Future Approaches. Curr Treat Options Oncol 2023; 24:628-643. [PMID: 37079257 PMCID: PMC10172210 DOI: 10.1007/s11864-023-01069-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 04/21/2023]
Abstract
OPINION STATEMENT In approximately 15-20% of the patients diagnosed with breast cancer, it comprises the triple negative (TN) subtype, which until recently lacked targets for specific treatments and is known for its aggressive clinical behavior in patients with metastatic disease. TNBC is considered the most immunogenic breast cancer subtype due to higher levels of tumor infiltrating lymphocytes (TILs), tumor mutational burden and PD-L1 expression, providing a rationale for immunotherapy. The addition of pembrolizumab to chemotherapy as first-line treatment resulted in significantly improved PFS and OS for PD-L1 positive mTNBC, leading to FDA approval. However, response rate of ICB in unselected patients is low. Ongoing (pre)clinical trials aim to further optimize ICB efficacy and widen its application beyond PD-L1 positive breast tumors. Novel immunomodulatory approaches to induce a more inflamed tumor microenvironment include dual checkpoint blockade, bispecific antibodies, immunocytokines, adoptive cell therapies, oncolytic viruses, and cancer vaccines. Preclinical data for these novel strategies seems promising, but solid clinical data to further support its application for mTNBC is awaited. Biomarkers capturing the degree of immunogenicity such as but not limited to TILs, CD8 T cell levels, and IFNg signatures could support deciding which therapeutic strategy is most appropriate for which patient. Given 1) the accumulating therapy options for patients with metastatic disease and 2) the heterogeneity of mTNBC from inflamed to immune-desert tumors, the challenge is to work towards immunomodulatory strategies for specific subgroups of patients with TNBC to enable personalized (immuno)therapy for patients with metastatic disease.
Collapse
Affiliation(s)
- Veerle Geurts
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Marleen Kok
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Cole K, Al-Kadhimi Z, Talmadge JE. Highlights into historical and current immune interventions for cancer. Int Immunopharmacol 2023; 117:109882. [PMID: 36848790 PMCID: PMC10355273 DOI: 10.1016/j.intimp.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Immunotherapy is an additional pillar when combined with traditional standards of care such as chemotherapy, radiotherapy, and surgery for cancer patients. It has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapies, including adoptive cellular therapy (ACT) and checkpoint inhibitors (CPIs), can induce durable clinical responses. However, their efficacies vary, and only subsets of cancer patients benefit from their use. In this review, we address three goals: to provide insight into the history of these approaches, broaden our understanding of immune interventions, and discuss current and future approaches. We highlight how cancer immunotherapy has evolved and discuss how personalization of immune intervention may address present limitations. Cancer immunotherapy is considered a recent medical achievement and in 2013 was selected as the "Breakthrough of the Year" by Science. While the breadth of immunotherapeutics has been rapidly expanding, to include the use of chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint inhibitor (ICI) therapy, immunotherapy dates back over 3000 years. The expansive history of immunotherapy, and related observations, have resulted in several approved immune therapeutics beyond the recent emphasis on CAR-T and ICI therapies. In addition to other classical forms of immune intervention, including human papillomavirus (HPV), hepatitis B, and the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) tuberculosis vaccines, immunotherapies have had a broad and durable impact on cancer therapy and prevention. One classic example of immunotherapy was identified in 1976 with the use of intravesical administration of BCG in patients with bladder cancer; resulting in a 70 % eradication rate and is now standard of care. However, a greater impact from the use of immunotherapy is documented by the prevention of HPV infections that are responsible for 98 % of cervical cancer cases. In 2020, the World Health Organization (WHO) estimated that 341,831 women died from cervical cancer [1]. However, administration of a single dose of a bivalent HPV vaccine was shown to be 97.5 % effective in preventing HPV infections. These vaccines not only prevent cervical squamous cell carcinoma and adenocarcinoma, but also oropharyngeal, anal, vulvar, vaginal, and penile squamous cell carcinomas. The breadth, response and durability of these vaccines can be contrasted with CAR-T-cell therapies, which have significant barriers to their widespread use including logistics, manufacturing limitations, toxicity concerns, financial burden and lasting remissions observed in only 30 to 40 % of responding patients. Another, recent immunotherapy focus are ICIs. ICIs are a class of antibodies that can increase the immune responses against cancer cells in patients. However, ICIs are only effective against tumors with a high mutational burden and are associated with a broad spectrum of toxicities requiring interruption of administration and/or administration corticosteroids; both of which limit immune therapy. In summary, immune therapeutics have a broad impact worldwide, utilizing numerous mechanisms of action and when considered in their totality are more effective against a broader range of tumors than initially considered. These new cancer interventions have tremendous potential notability when multiple mechanisms of immune intervention are combined as well as with standard of care modalities.
Collapse
Affiliation(s)
- Kathryn Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zaid Al-Kadhimi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
10
|
Malissen N, Grob JJ. Treatment of Recurrent Melanoma Following Adjuvant Therapy. Am J Clin Dermatol 2023; 24:333-341. [PMID: 36890427 DOI: 10.1007/s40257-023-00762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
In the era of effective therapies in melanoma, notably the widespread use of two types of adjuvant treatments: anti-PD-1 immunotherapies and therapies targeting the mitogen-activated protein kinase pathway, for BRAF-mutant patients, an important question arises about how to treat these patients in case of recurrent melanoma following adjuvant therapy. Prospective data are lacking in this area and might be difficult to obtain due to the constant progress being made in the field. Therefore, we reviewed available data suggesting that the initial adjuvant treatment received and the following events provide information about the biology of the disease and the probability of response to following systemic treatments. Thus, in case of relapse during or just after adjuvant anti-PD-1, immune resistance is probable, an anti-PD-1 monotherapy rechallenge has a low likelihood of clinical benefit, and escalation with a combination of immunotherapies should be given priority. In case of relapse during treatment with BRAF plus MEK inhibitors, there may be a risk of lower efficacy of immunotherapy than in naïve patients since this relapse attests not only to a resistance to BRAF-MEK inhibition, but also the introduction of immunotherapy to rescue a progression on targeted therapy. In case of relapse long after adjuvant treatment cessation, whatever the treatment received, no conclusion can be drawn about the efficacy of these drugs, and these patients can be treated like naïve patients. Thus, a combination of anti-PD-1 and anti-CTLA4 is probably the best solution, and the following line can be BRAF-MEK inhibitors in BRAF-mutated patients. Finally, in case of recurrent melanoma following adjuvant therapy, given the promising upcoming strategies, inclusion in a clinical trial should be offered as frequently as possible.
Collapse
Affiliation(s)
- Nausicaa Malissen
- Dermatology and Skin Cancer Department, Aix Marseille University, APHM, CRCM Inserm U1068, CNRS U7258, CHU Timone, 13005, Marseille, France.
| | - Jean-Jacques Grob
- Dermatology and Skin Cancer Department, Aix Marseille University, APHM, CRCM Inserm U1068, CNRS U7258, CHU Timone, 13005, Marseille, France
| |
Collapse
|
11
|
Knight A, Karapetyan L, Kirkwood JM. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers (Basel) 2023; 15:1106. [PMID: 36831449 PMCID: PMC9954703 DOI: 10.3390/cancers15041106] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The use of immunotherapy in the treatment of advanced and high-risk melanoma has led to a striking improvement in outcomes. Although the incidence of melanoma has continued to rise, median survival has improved from approximately 6 months to nearly 6 years for patients with advanced inoperable stage IV disease. Recent understanding of the tumor microenvironment and its interplay with the immune system has led to the explosive development of novel immunotherapy treatments. Since the approval of the therapeutic cytokines interleukin-2 and interferon alfa-2 in the 1990s, the development of novel immune checkpoint inhibitors (ICIs), oncolytic virus therapy, and modulators of the tumor microenvironment have given way to a new era in melanoma treatment. Monoclonal antibodies directed at programmed cell death protein 1 receptor (PD-1) and its ligand (PDL-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and lymphocyte-activation gene 3 (LAG-3) have provided robust activation of the adaptive immune system, restoring immune surveillance leading to host tumor recognition and destruction. Multiple other immunomodulatory therapeutics are under investigation to overcome resistance to ICI therapy, including the toll-like receptor-9 (TLR-9) and 7/8 (TLR-7/8) agonists, stimulator of interferon genes (STING) agonists, and fecal microbiota transplantation. In this review, we focus on the recent advances in immunotherapy for the treatment of melanoma and provide an update on novel therapies currently under investigation.
Collapse
Affiliation(s)
- Andrew Knight
- Department of Medicine, Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Kirkwood
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
12
|
Ziogas DC, Theocharopoulos C, Koutouratsas T, Haanen J, Gogas H. Mechanisms of resistance to immune checkpoint inhibitors in melanoma: What we have to overcome? Cancer Treat Rev 2023; 113:102499. [PMID: 36542945 DOI: 10.1016/j.ctrv.2022.102499] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Marching into the second decade after the approval of ipilimumab, it is clear that immune checkpoint inhibitors (ICIs) have dramatically improved the prognosis of melanoma. Although the current edge is already high, with a 4-year OS% of 77.9% for adjuvant nivolumab and a 6.5-year OS% of 49% for nivolumab/ipilimumab combination in the metastatic setting, a high proportion of patients with advanced melanoma have no benefit from immunotherapy, or experience an early disease relapse/progression in the first few months of treatment, surviving much less. Reasonably, the primary and acquired resistance to ICIs has entered into the focus of clinical research with positive (e.g., nivolumab and relatlimab combination) and negative feedbacks (e.g., nivolumab with pegylated-IL2, pembrolizumab with T-VEC, nivolumab with epacadostat, and combinatorial triplets of BRAF/MEK inhibitors with immunotherapy). Many intrinsic (intracellular or intra-tumoral) but also extrinsic (systematic) events are considered to be involved in the development of this resistance to ICIs: i) melanoma cell immunogenicity (e.g., tumor mutational burden, antigen-processing machinery and immunogenic cell death, neoantigen affinity and heterogeneity, genomic instability, melanoma dedifferentiation and phenotypic plasticity), ii) immune cell trafficking, T-cell priming, and cell death evasion, iii) melanoma neovascularization, cellular TME components(e.g., Tregs, CAFs) and extracellular matrix modulation, iv) metabolic antagonism in the TME(highly glycolytic status, upregulated CD39/CD73/adenosine pathway, iDO-dependent tryptophan catabolism), v) T-cell exhaustion and negative immune checkpoints, and vi) gut microbiota. In the present overview, we discuss how these parameters compromise the efficacy of ICIs, with an emphasis on the lessons learned by the latest melanoma studies; and in parallel, we describe the main ongoing approaches to overcome the resistance to immunotherapy. Summarizing this information will improve the understanding of how these complicated dynamics contribute to immune escape and will help to develop more effective strategies on how anti-tumor immunity can surpass existing barriers of ICI-refractory melanoma.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Tilemachos Koutouratsas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - John Haanen
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
13
|
Ben Aïssa A. Immunotherapy in Melanoma: Highlights for the General Practitioner. PRAXIS 2023; 112:135-142. [PMID: 36855885 DOI: 10.1024/1661-8157/a003972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Melanoma is the most aggressive skin cancer, and surgery is the standard of care for localised disease. However, a risk of local and distant relapse exists despite tumour removal, particularly with thick or ulcerated tumours or lymph node involvement. Immunotherapy with immune checkpoint inhibitors (ICIs) targeting PD-1, PD-L-1 or CTLA-4 demonstrated improved relapse-free survival and distant metastasis-free survival against placebo after surgery for stage-III and high-risk stage-II melanoma. In unresectable localised and metastatic tumours, the double immunotherapy with ICIs (anti-PD-1+ anti-CTLA-4) allows for long-term survival in more than 50% of the patients. Novel immunotherapies (anti-LAG-3 ICI, adoptive cell therapy, intra-tumoural immunotherapy, cancer vaccines) and new combinations are in development to overcome resistance and improve patients' survival. Therapeutic decisions for each patient should be discussed in a specialised multidisciplinary team.
Collapse
Affiliation(s)
- Assma Ben Aïssa
- Service d'oncologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| |
Collapse
|
14
|
Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, Falak R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022; 13:1018962. [PMID: 36389779 PMCID: PMC9651159 DOI: 10.3389/fimmu.2022.1018962] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), frontline soldiers of the adaptive immune system, are recruited into the tumor site to fight against tumors. However, their small number and reduced activity limit their ability to overcome the tumor. Enhancement of TILs number and activity against tumors has been of interest for a long time. A lack of knowledge about the tumor microenvironment (TME) has limited success in primary TIL therapies. Although the advent of engineered T cells has revolutionized the immunotherapy methods of hematologic cancers, the heterogeneity of solid tumors warrants the application of TILs with a wide range of specificity. Recent advances in understanding TME, immune exhaustion, and immune checkpoints have paved the way for TIL therapy regimens. Nowadays, TIL therapy has regained attention as a safe personalized immunotherapy, and currently, several clinical trials are evaluating the efficacy of TIL therapy in patients who have failed conventional immunotherapies. Gaining favorable outcomes following TIL therapy of patients with metastatic melanoma, cervical cancer, ovarian cancer, and breast cancer has raised hope in patients with refractory solid tumors, too. Nevertheless, TIL therapy procedures face several challenges, such as high cost, timely expansion, and technical challenges in selecting and activating the cells. Herein, we reviewed the recent advances in the TIL therapy of solid tumors and discussed the challenges and perspectives.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|