1
|
Guimarães JPT, Fogaça MBT, Moura RS, Mendonça M, Conceição FR, Gimaque JBL, de Almeida THP, Abrain C, Mourão MPG, Figueiredo LTM, Stefani MMA, Bührer-Sékula S. Hantavirus: Preliminary assessment of lateral flow immune assay prototypes to detect IgM and IgG antibodies. Diagn Microbiol Infect Dis 2024; 110:116521. [PMID: 39243495 DOI: 10.1016/j.diagmicrobio.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Three lateral flow immunoassay prototypes developed to detect IgM, IgG and IgM/IgG antibodies against Hantavirus were evaluated. A total of 163 samples were tested: 10 from Hantavirus patients, 103 from related diseases, and 50 from healthy controls. The prototypes exhibited 100 % sensitivity, 97.5 % to 99.3 % specificity, indicating promising improved diagnosis.
Collapse
Affiliation(s)
| | | | | | - Marcelo Mendonça
- Universidade Federal do Agreste de Pernambuco, Garanhuns, PE, Brazil; Technology Development Center, Biotechnology Nucleus/Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fabricio Rochedo Conceição
- Technology Development Center, Biotechnology Nucleus/Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | | | - Cláudia Abrain
- Hospital Foundation of Hematology and Hemotherapy of Amazon, Manaus, AM, Brazil
| | - Maria Paula Gomes Mourão
- Tropical Medicine Foundation Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | | | | | - Samira Bührer-Sékula
- Institute of Tropical Pathology and Public Health /Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
2
|
Ulloa-Morrison R, Pavez N, Parra E, Lopez R, Mondaca R, Fernandez P, Kraunik D, Sanhueza C, Bravo S, Cornu MG, Kattan E. Critical care management of hantavirus cardiopulmonary syndrome. A narrative review. J Crit Care 2024; 84:154867. [PMID: 39024823 DOI: 10.1016/j.jcrc.2024.154867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Hantaviruses, members of the Bunyaviridae family, can cause two patterns of disease in humans, hantavirus hemorrhagic fever with renal syndrome (HFRS) and cardiopulmonary syndrome (HCPS), being the latter hegemonic on the American continent. Andesvirus is one of the strains that can cause HCPS and is endemic in Chile. Its transmission occurs through direct or indirect contact with infected rodents' urine, saliva, or feces and inhalation of aerosol particles containing the virus. HCPS rapidly evolves into acute but reversible multiorgan dysfunction. The hemodynamic pattern of HCPS is not identical to that of cardiogenic or septic shock, being characterized by hypovolemia, systolic dysfunction, and pulmonary edema secondary to increased permeability. Given the lack of specific effective therapies to treat this viral infection, the focus of treatment lies in the timely provision of intensive care, specifically hemodynamic and respiratory support, which often requires veno-arterial extracorporeal membrane oxygenation (VA-ECMO). This narrative review aims to provide insights into specific ICU management of HCPS based on the available evidence and gathered experience in Chile and South America including perspectives of pathophysiology, organ dysfunction kinetics, timely life support provision, safe patient transportation, and key challenges for the future.
Collapse
Affiliation(s)
| | - Nicolas Pavez
- Unidad de Cuidados Intensivos, Hospital Guillermo Grant Benavente, Concepción, Chile; Departamento de Medicina Interna, Universidad de Concepción, Concepción, Chile
| | - Esteban Parra
- Unidad de Cuidados Intensivos, Hospital Las Higueras, Talcahuano, Chile
| | - Rene Lopez
- Departamento de Paciente Crítico, Clínica Alemana de Santiago, Santiago, Chile; Grupo Intensivo, ICIM, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Roberto Mondaca
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Fernandez
- Unidad de Cuidados Intensivos, Hospital Guillermo Grant Benavente, Concepción, Chile; Departamento de Medicina Interna, Universidad de Concepción, Concepción, Chile
| | - David Kraunik
- Unidad de Cuidados Intensivos, Hospital Las Higueras, Talcahuano, Chile; Departamento de Medicina Interna, Universidad de Concepción, Concepción, Chile
| | - Claudia Sanhueza
- Unidad de Cuidados Intensivos, Hospital Las Higueras, Talcahuano, Chile
| | - Sebastian Bravo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Jacob AT, Ziegler BM, Farha SM, Vivian LR, Zilinski CA, Armstrong AR, Burdette AJ, Beachboard DC, Stobart CC. Sin Nombre Virus and the Emergence of Other Hantaviruses: A Review of the Biology, Ecology, and Disease of a Zoonotic Pathogen. BIOLOGY 2023; 12:1413. [PMID: 37998012 PMCID: PMC10669331 DOI: 10.3390/biology12111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Sin Nombre virus (SNV) is an emerging virus that was first discovered in the Four Corners region of the United States in 1993. The virus causes a disease known as Hantavirus Pulmonary Syndrome (HPS), sometimes called Hantavirus Cardiopulmonary Syndrome (HCPS), a life-threatening illness named for the predominance of infection of pulmonary endothelial cells. SNV is one of several rodent-borne hantaviruses found in the western hemisphere with the capability of causing this disease. The primary reservoir of SNV is the deer mouse (Peromyscus maniculatus), and the virus is transmitted primarily through aerosolized rodent excreta and secreta. Here, we review the history of SNV emergence and its virus biology and relationship to other New World hantaviruses, disease, treatment, and prevention options.
Collapse
Affiliation(s)
- Andrew T. Jacob
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | | | - Stefania M. Farha
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Lyla R. Vivian
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Cora A. Zilinski
- Department of Biology, DeSales University, Center Valley, PA 18034, USA
| | | | - Andrew J. Burdette
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Dia C. Beachboard
- Department of Biology, DeSales University, Center Valley, PA 18034, USA
| | - Christopher C. Stobart
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
- Interdisciplinary Program in Public Health, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|
4
|
Essex K, Mullen J, Lauria MJ, Braude DA. Management of Hantavirus Cardiopulmonary Syndrome in Critical Care Transport: A Review. Air Med J 2023; 42:483-487. [PMID: 37996187 DOI: 10.1016/j.amj.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 11/25/2023]
Abstract
In 1993, the Southwest found itself staring down a disease then known as "unexplained adult respiratory syndrome." During the outbreak, 12 of 23 known patients died. What we now recognize as hantavirus cardiopulmonary syndrome still remains a rare and deadly disease. Although no cure exists, modern supportive techniques such as extracorporeal membrane oxygenation have increased survival among these patients. Early diagnosis has become the primary factor in patient survival. The initial presentation of hantavirus is similar to acute respiratory distress syndrome, necessitating a high index of suspicion to afford the patient the best chance of survival. Diagnosis is further complicated by prolonged and nonspecific incubation periods making it difficult to pinpoint an exposure. Familiarizing oneself with common clinical presentations, diagnostic strategies, and testing is the best way to increase patient survival. Because hantavirus has a predilection for rural areas, transport to a tertiary facility is paramount to provide the resources necessary to care for these complex patients. Rapid sequence intubation, although common in airway-compromised patients, could prove fatal in the setting of the severe hemodynamic instability found in hantavirus cardiopulmonary syndrome. Anticipation of significant pressor use and fluid administration could likely mean the difference in patient mortality during transport.
Collapse
Affiliation(s)
- Kyle Essex
- AIT Airmed, Albuquerque, New Mexico; American Medical Response, Las Cruces, New Mexico.
| | | | - Michael J Lauria
- Department of Emergency Medicine, University of New Mexico School of Medicine, Albuquerque, NM; Lifeguard Air Emergency Services, Albuquerque, NM
| | - Darren A Braude
- Department of Emergency Medicine, University of New Mexico School of Medicine, Albuquerque, NM; Lifeguard Air Emergency Services, Albuquerque, NM
| |
Collapse
|
5
|
Williams EP, Nandi A, Nam V, Allen LJS, Trindade AA, Kosiewicz MM, Jonsson CB. Modeling the Immune Response for Pathogenic and Nonpathogenic Orthohantavirus Infections in Human Lung Microvasculature Endothelial Cells. Viruses 2023; 15:1806. [PMID: 37766212 PMCID: PMC10535571 DOI: 10.3390/v15091806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Hantaviruses, genus Orthohantavirus, family Hantaviridae, order Bunyavirales, are negative-sense, single-stranded, tri-segmented RNA viruses that persistently infect rodents, shrews, and moles. Of these, only certain virus species harbored by rodents are pathogenic to humans. Infection begins with inhalation of virus particles into the lung and trafficking to the lung microvascular endothelial cells (LMVEC). The reason why certain rodent-borne hantavirus species are pathogenic has long been hypothesized to be related to their ability to downregulate and dysregulate the immune response as well as increase vascular permeability of infected endothelial cells. We set out to study the temporal dynamics of host immune response modulation in primary human LMVECs following infection by Prospect Hill (nonpathogenic), Andes (pathogenic), and Hantaan (pathogenic) viruses. We measured the level of RNA transcripts for genes representing antiviral, proinflammatory, anti-inflammatory, and metabolic pathways from 12 to 72 h with time points every 12 h. Gene expression analysis in conjunction with mathematical modeling revealed a similar profile for all three viruses in terms of upregulated genes that partake in interferon signaling (TLR3, IRF7, IFNB1), host immune cell recruitment (CXCL10, CXCL11, and CCL5), and host immune response modulation (IDO1). We examined secreted protein levels of IFN-β, CXCL10, CXCL11, CCL5, and IDO in two male and two female primary HLMVEC donors at 48 and 60 h post infection. All three viruses induced similar levels of CCL5, CXCL10, and CXCL11 within a particular donor, and the levels were similar in three of the four donors. All three viruses induced different protein secretion levels for both IFN-β and IDO and secretion levels differed between donors. In conclusion, we show that there was no difference in the transcriptional profiles of key genes in primary HLMVECs following infection by pathogenic and nonpathogenic hantaviruses, with protein secretion levels being more donor-specific than virus-specific.
Collapse
Affiliation(s)
- Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Aadrita Nandi
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Victoria Nam
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Linda J. S. Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - A. Alexandre Trindade
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA; (A.N.); (V.N.); (L.J.S.A.); (A.A.T.)
| | - Michele M. Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA;
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
6
|
Debnath SK, Debnath M, Srivastava R. Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon 2022; 8:e12620. [PMID: 36619445 PMCID: PMC9816992 DOI: 10.1016/j.heliyon.2022.e12620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/03/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Lung diseases continue to draw considerable attention from biomedical and public health care agencies. The lung with the largest epithelial surface area is continuously exposed to the external environment during exchanging gas. Therefore, the chances of respiratory disorders and lung infections are overgrowing. This review has covered promising and opportunistic etiologic agents responsible for lung infections. These pathogens infect the lungs either directly or indirectly. However, it is difficult to intervene in lung diseases using available oral or parenteral antimicrobial formulations. Many pieces of research have been done in the last two decades to improve inhalable antimicrobial formulations. However, very few have been approved for human use. This review article discusses the approved inhalable antimicrobial agents (AMAs) and identifies why pulmonary delivery is explored. Additionally, the basic anatomy of the respiratory system linked with barriers to AMA delivery has been discussed here. This review opens several new scopes for researchers to work on pulmonary medicines for specific diseases and bring more respiratory medication to market.
Collapse
|
7
|
Coelho RM, Periolo N, Duhalde CP, Alonso DO, Bellomo CM, Corazza M, Iglesias AA, Martinez VP. Hantavirus Pulmonary Syndrome in a COVID-19 Patient, Argentina, 2020. Emerg Infect Dis 2022; 28:876-878. [PMID: 35203110 PMCID: PMC8962894 DOI: 10.3201/eid2804.211837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We describe a patient in Argentina with severe acute respiratory syndrome coronavirus 2 infection and hantavirus pulmonary syndrome (HPS). Although both coronavirus disease and HPS can be fatal when not diagnosed and treated promptly, HPS is much more lethal. This case report may contribute to improved detection of co-infections in HPS-endemic regions.
Collapse
|
8
|
Koehler FC, Di Cristanziano V, Späth MR, Hoyer-Allo KJR, Wanken M, Müller RU, Burst V. OUP accepted manuscript. Clin Kidney J 2022; 15:1231-1252. [PMID: 35756741 PMCID: PMC9217627 DOI: 10.1093/ckj/sfac008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
Hantavirus-induced diseases are emerging zoonoses with endemic appearances and frequent outbreaks in different parts of the world. In humans, hantaviral pathology is characterized by the disruption of the endothelial cell barrier followed by increased capillary permeability, thrombocytopenia due to platelet activation/depletion and an overactive immune response. Genetic vulnerability due to certain human leukocyte antigen haplotypes is associated with disease severity. Typically, two different hantavirus-caused clinical syndromes have been reported: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The primarily affected vascular beds differ in these two entities: renal medullary capillaries in HFRS caused by Old World hantaviruses and pulmonary capillaries in HCPS caused by New World hantaviruses. Disease severity in HFRS ranges from mild, e.g. Puumala virus-associated nephropathia epidemica, to moderate, e.g. Hantaan or Dobrava virus infections. HCPS leads to a severe acute respiratory distress syndrome with high mortality rates. Due to novel insights into organ tropism, hantavirus-associated pathophysiology and overlapping clinical features, HFRS and HCPS are believed to be interconnected syndromes frequently involving the kidneys. As there are no specific antiviral treatments or vaccines approved in Europe or the USA, only preventive measures and public awareness may minimize the risk of hantavirus infection. Treatment remains primarily supportive and, depending on disease severity, more invasive measures (e.g., renal replacement therapy, mechanical ventilation and extracorporeal membrane oxygenation) are needed.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Manuel Wanken
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
9
|
Williamson BN, Prescott J, Garrido JL, Alvarez RA, Feldmann H, Barría MI. Therapeutic Efficacy of Human Monoclonal Antibodies against Andes Virus Infection in Syrian Hamsters. Emerg Infect Dis 2021; 27:2707-2710. [PMID: 34545791 PMCID: PMC8462347 DOI: 10.3201/eid2710.210735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Andes virus, an orthohantavirus endemic to South America, causes severe hantavirus cardiopulmonary syndrome associated with human-to-human transmission. No approved treatments or vaccines against this virus are available. We show that a combined treatment with 2 monoclonal antibodies protected Syrian hamsters when administered at midstage or late-stage disease.
Collapse
|
10
|
Binding of the Andes Virus Nucleocapsid Protein to RhoGDI Induces the Release and Activation of the Permeability Factor RhoA. J Virol 2021; 95:e0039621. [PMID: 34133221 DOI: 10.1128/jvi.00396-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Andes virus (ANDV) nonlytically infects pulmonary microvascular endothelial cells (PMECs), causing acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every PMEC is infected; however, the mechanism by which ANDV induces vascular permeability and edema remains to be resolved. The ANDV nucleocapsid (N) protein activates the GTPase RhoA in primary human PMECs, causing VE-cadherin internalization from adherens junctions and PMEC permeability. We found that ANDV N protein failed to bind RhoA but coprecipitates RhoGDI (Rho GDP dissociation inhibitor), the primary RhoA repressor that normally sequesters RhoA in an inactive state. ANDV N protein selectively binds the RhoGDI C terminus (residues 69 to 204) but fails to form ternary complexes with RhoA or inhibit RhoA binding to the RhoGDI N terminus (residues 1 to 69). However, we found that ANDV N protein uniquely inhibits RhoA binding to an S34D phosphomimetic RhoGDI mutant. Hypoxia and vascular endothelial growth factor (VEGF) increase RhoA-induced PMEC permeability by directing protein kinase Cα (PKCα) phosphorylation of S34 on RhoGDI. Collectively, ANDV N protein alone activates RhoA by sequestering and reducing RhoGDI available to suppress RhoA. In response to hypoxia and VEGF-activated PKCα, ANDV N protein additionally directs the release of RhoA from S34-phosphorylated RhoGDI, synergistically activating RhoA and PMEC permeability. These findings reveal a fundamental edemagenic mechanism that permits ANDV to amplify PMEC permeability in hypoxic HPS patients. Our results rationalize therapeutically targeting PKCα and opposing protein kinase A (PKA) pathways that control RhoGDI phosphorylation as a means of resolving ANDV-induced capillary permeability, edema, and HPS. IMPORTANCE HPS-causing hantaviruses infect pulmonary endothelial cells (ECs), causing vascular leakage, pulmonary edema, and a 35% fatal acute respiratory distress syndrome (ARDS). Hantaviruses do not lyse or disrupt the endothelium but dysregulate normal EC barrier functions and increase hypoxia-directed permeability. Our findings reveal a novel underlying mechanism of EC permeability resulting from ANDV N protein binding to RhoGDI, a regulatory protein that normally maintains edemagenic RhoA in an inactive state and inhibits EC permeability. ANDV N sequesters RhoGDI and enhances the release of RhoA from S34-phosphorylated RhoGDI. These findings indicate that ANDV N induces the release of RhoA from PKC-phosphorylated RhoGDI, synergistically enhancing hypoxia-directed RhoA activation and PMEC permeability. Our data suggest inhibiting PKC and activating PKA phosphorylation of RhoGDI as mechanisms of inhibiting ANDV-directed EC permeability and therapeutically restricting edema in HPS patients. These findings may be broadly applicable to other causes of ARDS.
Collapse
|
11
|
Vergote V, Laenen L, Mols R, Augustijns P, Van Ranst M, Maes P. Chloroquine, an Anti-Malaria Drug as Effective Prevention for Hantavirus Infections. Front Cell Infect Microbiol 2021; 11:580532. [PMID: 33791230 PMCID: PMC8006394 DOI: 10.3389/fcimb.2021.580532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/15/2021] [Indexed: 01/14/2023] Open
Abstract
We investigated whether chloroquine can prevent hantavirus infection and disease in vitro and in vivo, using the Hantaan virus newborn C57BL/6 mice model and the Syrian hamster model for Andes virus. In vitro antiviral experiments were performed using Vero E6 cells, and Old World and New World hantavirus species. Hantavirus RNA was detected using quantitative RT-PCR. For all hantavirus species tested, results indicate that the IC50 of chloroquine (mean 10.2 ± 1.43 μM) is significantly lower than the CC50 (mean 260 ± 2.52 μM) yielding an overall selectivity index of 25.5. We also investigated the potential of chloroquine to prevent death in newborn mice after Hantaan virus infection and its antiviral effect in the hantavirus Syrian hamster model. For this purpose, C57Bl/6 mother mice were treated subcutaneously with daily doses of chloroquine. Subsequently, 1-day-old suckling mice were inoculated intracerebrally with 5 x 102 Hantaan virus particles. In litters of untreated mothers, none of the pups survived challenge. The highest survival rate (72.7% of pups) was found when mother mice were administered a concentration of 10 mg/kg chloroquine. Survival rates declined in a dose-dependent manner, with 47.6% survival when treated with 5 mg/kg chloroquine, and 4.2% when treated with 1 mg/kg chloroquine. Assessing the antiviral therapeutic and prophylactic effect of chloroquine in the Syrian hamster model was done using two different administration routes (intraperitoneally and subcutaneously using an osmotic pump system). Evaluating the prophylactic effect, a delay in onset of disease was noted and for the osmotic pump, 60% survival was observed. Our results show that chloroquine can be highly effective against Hantaan virus infection in newborn mice and against Andes virus in Syrian hamsters.
Collapse
Affiliation(s)
- Valentijn Vergote
- Laboratory of Clinical Virology, Zoonotic Infectious Diseases Unit, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lies Laenen
- Laboratory of Clinical Virology, Zoonotic Infectious Diseases Unit, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Raf Mols
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Zoonotic Infectious Diseases Unit, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Piet Maes
- Laboratory of Clinical Virology, Zoonotic Infectious Diseases Unit, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Ma Y, Frutos-Beltrán E, Kang D, Pannecouque C, De Clercq E, Menéndez-Arias L, Liu X, Zhan P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev 2021; 50:4514-4540. [PMID: 33595031 DOI: 10.1039/d0cs01084g] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last forty years we have witnessed impressive advances in the field of antiviral drug discovery culminating with the introduction of therapies able to stop human immunodeficiency virus (HIV) replication, or cure hepatitis C virus infections in people suffering from liver disease. However, there are important viral diseases without effective treatments, and the emergence of drug resistance threatens the efficacy of successful therapies used today. In this review, we discuss strategies to discover antiviral compounds specifically designed to combat drug resistance. Currently, efforts in this field are focused on targeted proteins (e.g. multi-target drug design strategies), but also on drug conformation (either improving drug positioning in the binding pocket or introducing conformational constraints), in the introduction or exploitation of new binding sites, or in strengthening interaction forces through the introduction of multiple hydrogen bonds, covalent binding, halogen bonds, additional van der Waals forces or multivalent binding. Among the new developments, proteolysis targeting chimeras (PROTACs) have emerged as a valid approach taking advantage of intracellular mechanisms involving protein degradation by the ubiquitin-proteasome system. Finally, several molecules targeting host factors (e.g. human dihydroorotate dehydrogenase and DEAD-box polypeptide 3) have been identified as broad-spectrum antiviral compounds. Implementation of herein described medicinal chemistry strategies are expected to contribute to the discovery of new drugs effective against current and future threats due to emerging and re-emerging viral pandemics.
Collapse
Affiliation(s)
- Yue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Munir N, Jahangeer M, Hussain S, Mahmood Z, Ashiq M, Ehsan F, Akram M, Ali Shah SM, Riaz M, Sana A. Hantavirus diseases pathophysiology, their diagnostic strategies and therapeutic approaches: A review. Clin Exp Pharmacol Physiol 2021; 48:20-34. [PMID: 32894790 DOI: 10.1111/1440-1681.13403] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Hantaviruses are enveloped negative (-) single-stranded RNA viruses belongs to Hantaviridae family, hosted by small rodents and entering into the human body through inhalation, causing haemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) also known as hantavirus cardiopulmonary syndrome (HCPS). Hantaviruses infect approximately more than 200 000 people annually all around the world and its mortality rate is about 35%-40%. Hantaviruses play significant role in affecting the target cells as these inhibit the apoptotic factor in these cells. These viruses impair the integrity of endothelial barrier due to an excessive innate immune response that is proposed to be central in the pathogenesis and is a hallmark of hantavirus disease. A wide range of different diagnostic tools including polymerase chain reaction (PCR), focus reduction neutralization test (FRNT), enzyme-linked immunosorbent assay (ELISA), immunoblot assay (IBA), immunofluorescence assay (IFA), and other molecular techniques are used as detection tools for hantavirus in the human body. Now the availability of therapeutic modalities is the major challenge to control this deadly virus because still no FDA approved drug or vaccine is available. Antiviral agents, DNA-based vaccines, polyclonal and monoclonal antibodies neutralized the viruses so these techniques are considered as the hope for the treatment of hantavirus disease. This review has been compiled to provide a comprehensive overview of hantaviruses disease, its pathophysiology, diagnostic tools and the treatment approaches to control the hantavirus infection.
Collapse
Affiliation(s)
- Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shoukat Hussain
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mehvish Ashiq
- Department of Chemistry, The Women University Multan, Multan, Pakistan
| | - Fatima Ehsan
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Directorate of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Muhammad Ali Shah
- Department of Eastern Medicine, Directorate of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Aneezah Sana
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
14
|
Shrivastava-Ranjan P, Lo MK, Chatterjee P, Flint M, Nichol ST, Montgomery JM, O'Keefe BR, Spiropoulou CF. Hantavirus Infection Is Inhibited by Griffithsin in Cell Culture. Front Cell Infect Microbiol 2020; 10:561502. [PMID: 33251157 PMCID: PMC7671970 DOI: 10.3389/fcimb.2020.561502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Andes virus (ANDV) and Sin Nombre virus (SNV), highly pathogenic hantaviruses, cause hantavirus pulmonary syndrome in the Americas. Currently no therapeutics are approved for use against these infections. Griffithsin (GRFT) is a high-mannose oligosaccharide-binding lectin currently being evaluated in phase I clinical trials as a topical microbicide for the prevention of human immunodeficiency virus (HIV-1) infection (ClinicalTrials.gov Identifiers: NCT04032717, NCT02875119) and has shown broad-spectrum in vivo activity against other viruses, including severe acute respiratory syndrome coronavirus, hepatitis C virus, Japanese encephalitis virus, and Nipah virus. In this study, we evaluated the in vitro antiviral activity of GRFT and its synthetic trimeric tandemer 3mGRFT against ANDV and SNV. Our results demonstrate that GRFT is a potent inhibitor of ANDV infection. GRFT inhibited entry of pseudo-particles typed with ANDV envelope glycoprotein into host cells, suggesting that it inhibits viral envelope protein function during entry. 3mGRFT is more potent than GRFT against ANDV and SNV infection. Our results warrant the testing of GRFT and 3mGRFT against ANDV infection in animal models.
Collapse
Affiliation(s)
- Punya Shrivastava-Ranjan
- Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Michael K Lo
- Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Payel Chatterjee
- Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Mike Flint
- Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Stuart T Nichol
- Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joel M Montgomery
- Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States.,Division of Cancer Treatment and Diagnosis, Natural Products Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States
| | - Christina F Spiropoulou
- Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
15
|
Ma Y, Tang K, Zhang Y, Zhang C, Cheng L, Zhang F, Zhuang R, Jin B, Zhang Y. Protective CD8 + T-cell response against Hantaan virus infection induced by immunization with designed linear multi-epitope peptides in HLA-A2.1/K b transgenic mice. Virol J 2020; 17:146. [PMID: 33028368 PMCID: PMC7538842 DOI: 10.1186/s12985-020-01421-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Background An effective vaccine that prevents disease caused by hantaviruses is a global public health priority, but up to now, no vaccine has been approved for worldwide use. Therefore, novel vaccines with high prophylaxis efficacy are urgently needed. Methods Herein, we designed and synthesized Hantaan virus (HTNV) linear multi-epitope peptide consisting of HLA-A*02-restricted HTNV cytotoxic T cell (CTL) epitope and pan HLA-DR-binding epitope (PADRE), and evaluated the immunogenicity, as well as effectiveness, of multi-epitope peptides in HLA-A2.1/Kb transgenic mice with interferon (IFN)-γ enzyme-linked immunospot assay, cytotoxic mediator detection, proliferation assay and HTNV-challenge test. Results The results showed that a much higher frequency of specific IFN-γ-secreting CTLs, high levels of granzyme B production, and a strong proliferation capacity of specific CTLs were observed in splenocytes of mice immunized with multi-epitope peptide than in those of a single CTL epitope. Moreover, pre-immunization of multi-epitope peptide could reduce the levels of HTNV RNA loads in the liver, spleen and kidneys of mice, indicating that specific CTL responses induced by multi-epitope peptide could reduce HTNV RNA loads in vivo. Conclusions This study may provide an important foundation for the development of novel peptide vaccines for HTNV prophylaxis.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Linfeng Cheng
- Department of Microbiology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fanglin Zhang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
16
|
Singh H, Kaur H, Medhi B. Novel therapeutic approaches toward Hantaan virus and its clinical features' similarity with COVID-19. Indian J Pharmacol 2020; 52:347-355. [PMID: 33283765 PMCID: PMC8025769 DOI: 10.4103/ijp.ijp_1001_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Zoonotic virus spill over in human community has been an intensive area of viral pathogenesis and the outbreak of Hantaan virus and severe acute respiratory syndrome coronavirus 2 (SARS CoV2) after late December 2019 caused a global threat. Hantaan virus is second to the COVID-19 outbreak in China with seven cases positive and one death. Both RNA viruses have opposite sense as in (-) for Hantaan virus and (+) for SARS CoV2 but have similarity in the pathogenesis and relevant clinical features including dry cough, high fever, shortness of breath, and SARS associated with pneumonia and certain reported cases with multiple organ failure. Although COVID-19 has global impact with high death toll, Hantaan virus has varyingly high mortality rate between 1% and 40%. Hence, there is a need to explore novel therapeutic targets in Hantaan virus due to its rapid evolution rate in its genetic makeup which governs virulence and target host cells. This review emphasizes the importance of structural and nonstructural proteins of Hantaan virus with relevant insight from SARS CoV2. The envelope glycoproteins such as Gn, Gc, and nucleocapsid protein (N) direct the viral assembly and replication in host cells. Therapeutic treatment has similarity in using ribavirin and extracorporeal membrane oxygenation but lack of efficacious treatment in both cases of SARAS CoV2 and Hantaan virus. Therefore, potential features regarding therapeutic targets for drug discovery for Hantaan viruses are discussed herewith. The conclusive description highlights that N protein is substantially involved in evoking immune response and induces symptoms and could be precursive target for drug discovery studies.
Collapse
Affiliation(s)
| | | | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India
| |
Collapse
|
17
|
D'Souza MH, Patel TR. Biodefense Implications of New-World Hantaviruses. Front Bioeng Biotechnol 2020; 8:925. [PMID: 32850756 PMCID: PMC7426369 DOI: 10.3389/fbioe.2020.00925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/17/2020] [Indexed: 01/20/2023] Open
Abstract
Hantaviruses, part of the Bunyaviridae family, are a genus of negative-sense, single-stranded RNA viruses that cause two major diseases: New-World Hantavirus Cardiopulmonary Syndrome and Old-World Hemorrhagic Fever with Renal Syndrome. Hantaviruses generally are found worldwide with each disease corresponding to their respective hemispheres. New-World Hantaviruses spread by specific rodent-host reservoirs and are categorized as emerging viruses that pose a threat to global health and security due to their high mortality rate and ease of transmission. Incidentally, reports of Hantavirus categorization as a bioweapon are often contradicted as both US National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention refer to them as Category A and C bioagents respectively, each retaining qualitative levels of importance and severity. Concerns of Hantavirus being engineered into a novel bioagent has been thwarted by Hantaviruses being difficult to culture, isolate, and purify limiting its ability to be weaponized. However, the natural properties of Hantaviruses pose a threat that can be exploited by conventional and unconventional forces. This review seeks to clarify the categorization of Hantaviruses as a bioweapon, whilst defining the practicality of employing New-World Hantaviruses and their effect on armies, infrastructure, and civilian targets.
Collapse
Affiliation(s)
- Michael Hilary D'Souza
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada.,Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Bugert JJ, Hucke F, Zanetta P, Bassetto M, Brancale A. Antivirals in medical biodefense. Virus Genes 2020; 56:150-167. [PMID: 32076918 PMCID: PMC7089181 DOI: 10.1007/s11262-020-01737-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
The viruses historically implicated or currently considered as candidates for misuse in bioterrorist events are poxviruses, filoviruses, bunyaviruses, orthomyxoviruses, paramyxoviruses and a number of arboviruses causing encephalitis, including alpha- and flaviviruses. All these viruses are of concern for public health services when they occur in natural outbreaks or emerge in unvaccinated populations. Recent events and intelligence reports point to a growing risk of dangerous biological agents being used for nefarious purposes. Public health responses effective in natural outbreaks of infectious disease may not be sufficient to deal with the severe consequences of a deliberate release of such agents. One important aspect of countermeasures against viral biothreat agents are the antiviral treatment options available for use in post-exposure prophylaxis. These issues were adressed by the organizers of the 16th Medical Biodefense Conference, held in Munich in 2018, in a special session on the development of drugs to treat infections with viruses currently perceived as a threat to societies or associated with a potential for misuse as biothreat agents. This review will outline the state-of-the-art methods in antivirals research discussed and provide an overview of antiviral compounds in the pipeline that are already approved for use or still under development.
Collapse
Affiliation(s)
- J J Bugert
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany.
| | - F Hucke
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - P Zanetta
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - M Bassetto
- Department of Chemistry, Swansea University, Swansea, SA2 8PP, UK
| | - A Brancale
- Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
19
|
Gravinatti ML, Barbosa CM, Soares RM, Gregori F. Synanthropic rodents as virus reservoirs and transmitters. Rev Soc Bras Med Trop 2020; 53:e20190486. [PMID: 32049206 PMCID: PMC7083353 DOI: 10.1590/0037-8682-0486-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
This review focuses on reports of hepatitis E virus, hantavirus, rotavirus,
coronavirus, and arenavirus in synanthropic rodents (Rattus
rattus, Rattus norvegicus, and Mus
musculus) within urban environments. Despite their potential impact
on human health, relatively few studies have addressed the monitoring of these
viruses in rodents. Comprehensive control and preventive activities should
include actions such as the elimination or reduction of rat and mouse
populations, sanitary education, reduction of shelters for the animals, and
restriction of the access of rodents to residences, water, and food
supplies.
Collapse
Affiliation(s)
- Mara Lucia Gravinatti
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Rodrigo Martins Soares
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio Gregori
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Deletions in Genes Participating in Innate Immune Response Modify the Clinical Course of Andes Orthohantavirus Infection. Viruses 2019; 11:v11080680. [PMID: 31349540 PMCID: PMC6723883 DOI: 10.3390/v11080680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Andes orthohantavirus (ANDV) is an important human pathogen causing hantavirus cardiopulmonary syndrome (HCPS) with a fatality rate of 30% in Chile. Around 60% of all cases have a severe clinical course, while the others have a mild clinical course. The main goal of this study was to understand if the genetic variation of patients is associated with the clinical course they develop after ANDV infection. For this, the frequency of copy number variants (CNVs, i.e., deletions and duplications) was studied in 195 patients, 88 with mild and 107 with severe HCPS. CNVs were called from intensity data of the Affymetrix Genome-Wide SNP Array 6.0. The analysis of the data was performed with PennCNV, ParseCNV and R softwares; Results: a deletion of 19, 416 bp in the q31.3 region of chromosome 1 is found more frequently in severe patients (p < 0.05). This region contains Complement Factor H Related (CFHR1) and CFHR3 genes, regulators of the complement cascade. A second deletion of 1.81 kb located in the p13 region of chr20 was significantly more frequent in mild patients (p < 0.05). This region contains the SIRPB1 gene, which participates in the innate immune response, more specifically in neutrophil trans-epithelial migration. Both deletions are associated with the clinical course of HCPS, the first being a risk factor and the second being protective. The participation of genes contained in both deletions in ANDV infection pathophysiology deserves further investigation.
Collapse
|
21
|
Progress on the Prevention and Treatment of Hantavirus Disease. Viruses 2019; 11:v11070610. [PMID: 31277410 PMCID: PMC6669544 DOI: 10.3390/v11070610] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/22/2022] Open
Abstract
Hantaviruses, members of the order Bunyavirales, family Hantaviridae, have a world-wide distribution and are responsible for greater than 150,000 cases of disease per year. The spectrum of disease associated with hantavirus infection include hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) also known as hantavirus cardiopulmonary syndrome (HCPS). There are currently no FDA-approved vaccines or treatments for these hantavirus diseases. This review provides a summary of the status of vaccine and antiviral treatment efforts including those tested in animal models or human clinical trials.
Collapse
|
22
|
Simons MJ, Gorbunova EE, Mackow ER. Unique Interferon Pathway Regulation by the Andes Virus Nucleocapsid Protein Is Conferred by Phosphorylation of Serine 386. J Virol 2019; 93:e00338-19. [PMID: 30867297 PMCID: PMC6498058 DOI: 10.1128/jvi.00338-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/29/2023] Open
Abstract
Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS) and is the only hantavirus shown to spread person to person and cause a highly lethal HPS-like disease in Syrian hamsters. The unique ability of ANDV N protein to inhibit beta interferon (IFNβ) induction may contribute to its virulence and spread. Here we analyzed IFNβ regulation by ANDV N protein substituted with divergent residues from the nearly identical Maporal virus (MAPV) N protein. We found that MAPV N fails to inhibit IFNβ signaling and that replacing ANDV residues 252 to 296 with a hypervariable domain (HVD) from MAPV N prevents IFNβ regulation. In addition, changing ANDV residue S386 to the histidine present in MAPV N or the alanine present in other hantaviruses prevented ANDV N from regulating IFNβ induction. In contrast, replacing serine with phosphoserine-mimetic aspartic acid (S386D) in ANDV N robustly inhibited interferon regulatory factor 3 (IRF3) phosphorylation and IFNβ induction. Additionally, the MAPV N protein gained the ability to inhibit IRF3 phosphorylation and IFNβ induction when ANDV HVD and H386D replaced MAPV residues. Mass spectroscopy analysis of N protein from ANDV-infected cells revealed that S386 is phosphorylated, newly classifying ANDV N as a phosphoprotein and phosphorylated S386 as a unique determinant of IFN regulation. In this context, the finding that the ANDV HVD is required for IFN regulation by S386 but dispensable for IFN regulation by D386 suggests a role for HVD in kinase recruitment and S386 phosphorylation. These findings delineate elements within the ANDV N protein that can be targeted to attenuate ANDV and suggest targeting cellular kinases as potential ANDV therapeutics.IMPORTANCE ANDV contains virulence determinants that uniquely permit it to spread person to person and cause highly lethal HPS in immunocompetent hamsters. We discovered that ANDV S386 and an ANDV-specific hypervariable domain permit ANDV N to inhibit IFN induction and that IFN regulation is directed by phosphomimetic S386D substitutions in ANDV N. In addition, MAPV N proteins containing D386 and ANDV HVD gained the ability to inhibit IFN induction. Validating these findings, mass spectroscopy analysis revealed that S386 of ANDV N protein is uniquely phosphorylated during ANDV infection. Collectively, these findings reveal new paradigms for ANDV N protein as a phosphoprotein and IFN pathway regulator and suggest new mechanisms for hantavirus regulation of cellular kinases and signaling pathways. Our findings define novel IFN-regulating virulence determinants of ANDV, identify residues that can be modified to attenuate ANDV for vaccine development, and suggest the potential for kinase inhibitors to therapeutically restrict ANDV replication.
Collapse
Affiliation(s)
- Matthew J Simons
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Elena E Gorbunova
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Erich R Mackow
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
23
|
Klingström J, Smed-Sörensen A, Maleki KT, Solà-Riera C, Ahlm C, Björkström NK, Ljunggren HG. Innate and adaptive immune responses against human Puumala virus infection: immunopathogenesis and suggestions for novel treatment strategies for severe hantavirus-associated syndromes. J Intern Med 2019; 285:510-523. [PMID: 30663801 PMCID: PMC6850289 DOI: 10.1111/joim.12876] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two related hyperinflammatory syndromes are distinguished following infection of humans with hantaviruses: haemorrhagic fever with renal syndrome (HFRS) seen in Eurasia and hantavirus pulmonary syndrome (HPS) seen in the Americas. Fatality rates are high, up to 10% for HFRS and around 35%-40% for HPS. Puumala virus (PUUV) is the most common HFRS-causing hantavirus in Europe. Here, we describe recent insights into the generation of innate and adaptive cell-mediated immune responses following clinical infection with PUUV. First described are studies demonstrating a marked redistribution of peripheral blood mononuclear phagocytes (MNP) to the airways, a process that may underlie local immune activation at the site of primary infection. We then describe observations of an excessive natural killer (NK) cell activation and the persistence of highly elevated numbers of NK cells in peripheral blood following PUUV infection. A similar vigorous CD8 Tcell response is also described, though Tcell responses decline with viraemia. Like MNPs, many NK cells and CD8 T cells also localize to the lung upon acute PUUV infection. Following this, findings demonstrating the ability of hantaviruses, including PUUV, to cause apoptosis resistance in infected target cells, are described. These observations, and associated inflammatory cytokine responses, may provide new insights into HFRS and HPS disease pathogenesis. Based on similarities between inflammatory responses in severe hantavirus infections and other hyperinflammatory disease syndromes, we speculate whether some therapeutic interventions that have been successful in the latter conditions may also be applicable in severe hantavirus infections.
Collapse
Affiliation(s)
- J Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - K T Maleki
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Solà-Riera
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University Hospital, Umeå University, Umeå, Sweden
| | - N K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H G Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Shipley LC, Taylor ST, Grimsley C, Stoffer K, Goldstein J. Rats! Hantavirus: A Case Report of a Suspected Case in Eastern Tennessee. Perm J 2018; 22:17-222. [PMID: 30010530 DOI: 10.7812/tpp/17-222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Hantavirus is an RNA virus that is transmitted to humans by inhalation of aerosolized excrement from infected rodents. This case report demonstrates the value of taking a thorough social history and highlights the challenges associated with early diagnosis of this viral infection. CASE PRESENTATION We highlight a case of suspected hantavirus infection with subtle gastrointestinal and pulmonary symptoms that challenged the initial diagnosis. DISCUSSION Efforts are needed to improve clinical recognition and rapid detection of hantavirus infections, to reduce associated mortality. In a patient presenting with gastrointestinal prodromal symptoms followed by cardiopulmonary findings, physicians should pay special attention to that patient's living conditions and maintain a high index of suspicion for hantavirus infection. Early diagnosis is critical to prevent rapid deterioration to hantavirus pulmonary syndrome in some patients.
Collapse
Affiliation(s)
- Lindsey C Shipley
- Internal Medicine Resident at the University of Alabama in Birmingham.
| | - S Trevor Taylor
- Medical Student at the East Tennessee State University James H Quillen College of Medicine in Johnson City.
| | - Christina Grimsley
- Medical Student at the East Tennessee State University James H Quillen College of Medicine in Johnson City.
| | - Kevin Stoffer
- Medical Student at the East Tennessee State University James H Quillen College of Medicine in Johnson City.
| | - Jack Goldstein
- Professor of Internal Medicine at the East Tennessee State University James H Quillen College of Medicine in Johnson City.
| |
Collapse
|
25
|
Bai F, Huff KES, Allen LJS. The effect of delay in viral production in within-host models during early infection. JOURNAL OF BIOLOGICAL DYNAMICS 2018; 13:47-73. [PMID: 30021482 DOI: 10.1080/17513758.2018.1498984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Delay in viral production may have a significant impact on the early stages of infection. During the eclipse phase, the time from viral entry until active production of viral particles, no viruses are produced. This delay affects the probability that a viral infection becomes established and timing of the peak viral load. Deterministic and stochastic models are formulated with either multiple latent stages or a fixed delay for the eclipse phase. The deterministic model with multiple latent stages approaches in the limit the model with a fixed delay as the number of stages approaches infinity. The deterministic model framework is used to formulate continuous-time Markov chain and stochastic differential equation models. The probability of a minor infection with rapid viral clearance as opposed to a major full-blown infection with a high viral load is estimated from a branching process approximation of the Markov chain model and the results are confirmed through numerical simulations. In addition, parameter values for influenza A are used to numerically estimate the time to peak viral infection and peak viral load for the deterministic and stochastic models. Although the average length of the eclipse phase is the same in each of the models, as the number of latent stages increases, the numerical results show that the time to viral peak and the peak viral load increase.
Collapse
Affiliation(s)
- Fan Bai
- a Department of Mathematics and Statistics, Texas Tech University , Lubbock , TX , USA
| | - Krystin E S Huff
- a Department of Mathematics and Statistics, Texas Tech University , Lubbock , TX , USA
| | - Linda J S Allen
- a Department of Mathematics and Statistics, Texas Tech University , Lubbock , TX , USA
| |
Collapse
|
26
|
VEGF Upregulation in Viral Infections and Its Possible Therapeutic Implications. Int J Mol Sci 2018; 19:ijms19061642. [PMID: 29865171 PMCID: PMC6032371 DOI: 10.3390/ijms19061642] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Several viruses are recognized as the direct or indirect causative agents of human tumors and other severe human diseases. Vascular endothelial growth factor (VEGF) is identified as a principal proangiogenic factor that enhances the production of new blood vessels from existing vascular network. Therefore, oncogenic viruses such as Kaposi’s sarcoma herpesvirus (KSHV) and Epstein-Barr virus (EBV) and non-oncogenic viruses such as herpes simplex virus (HSV-1) and dengue virus, which lack their own angiogenic factors, rely on the recruitment of cellular genes for angiogenesis in tumor progression or disease pathogenesis. This review summarizes how human viruses exploit the cellular signaling machinery to upregulate the expression of VEGF and benefit from its physiological functions for their own pathogenesis. Understanding the interplay between viruses and VEGF upregulation will pave the way to design targeted and effective therapeutic approaches for viral oncogenesis and severe diseases.
Collapse
|
27
|
IFN-λs inhibit Hantaan virus infection through the JAK-STAT pathway and expression of Mx2 protein. Genes Immun 2018; 20:234-244. [PMID: PMID: 29765118 DOI: 10.1038/s41435-018-0028-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/08/2018] [Accepted: 02/25/2018] [Indexed: 02/07/2023]
Abstract
Hantaan virus (HTNV), member of the newly defined Hantaviridae family, within the order Bunyavirales, can cause a hemorrhagic fever with renal syndrome with high fatality rates in humans. However, no specific antiviral agents are currently available for HTNV infection approved by the US Food and Drug Administration. Although interferon lambdas (IFN-λs) have been shown to induce an antiviral state against HTNV, the molecular mechanisms remain to be determined. In this study, we found that IFN-λs exerted its anti-HTNV effect by activating Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway-mediated antiviral immunity in A549 cells. Simultaneously, IFN-λs downregulated suppressor of cytokine signaling proteins, which are the known negative feedback regulators of the JAK-STAT signaling pathway. Additionally, we demonstrated the role of IFN-λs-induced myxovirus resistance 2 (Mx2, also known as MxB) protein as a potential inhibitor for HTNV infection. These findings indicate that IFN-λs play an important role in cellular defenses against HTNV infection at an early stage and that human Mx2 may represent a potential therapeutic target for HTNV infection.
Collapse
|
28
|
Abstract
Hantaviruses are known to cause haemorrhagic fever with renal syndrome in Eurasia and hantavirus cardiopulmonary syndrome in the Americas. They are globally emerging pathogens as newer serotypes are routinely being reported. This review discusses hantavirus biology, clinical features and pathogenesis of hantavirus disease, its diagnostics, distribution and mammalian hosts. Hantavirus research in India is also summarised.
Collapse
Affiliation(s)
- Sara Chandy
- International Clinical Epidemiology Network (INCLEN), INCLEN Trust International, New Delhi, India
| | - Dilip Mathai
- Apollo Medical College and Research Center, Hyderabad, Telangana, India
| |
Collapse
|
29
|
Baba M, Toyama M, Sakakibara N, Okamoto M, Arima N, Saijo M. Establishment of an antiviral assay system and identification of severe fever with thrombocytopenia syndrome virus inhibitors. Antivir Chem Chemother 2017; 25:83-89. [PMID: 29096526 PMCID: PMC5890513 DOI: 10.1177/2040206617740303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aims Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease. SFTS is epidemic in Asia, and its fatality rate is around 30% in Japan. The causative virus severe fever with thrombocytopenia syndrome virus (SFTSV) is a phlebovirus of the family Phenuiviridae (the order Bunyavirales). Although effective treatments are required, there are no antiviral agents currently approved for clinical use. Ribavirin and favipiravir were examined for their anti-SFTSV activity and found to be selective inhibitors of SFTSV replication in vitro. However, their activity was not sufficient. Therefore, it is mandatory to identify novel compounds active against SFTSV. To this end, we have established a safe and rapid assay system for screening selective inhibitors of SFTSV. Methods The virus was isolated from SFTS patients treated in Kagoshima University Hospital. Vero cells were infected with SFTSV and incubated in the presence of various concentrations of test compounds. After three days, the cells were examined for their intracellular viral RNA levels by real-time reverse transcription-PCR without extracting viral RNA. The cytotoxicity of test compounds was determined by a tetrazolium dye method. Results Among the test compounds, the antimalarial agent amodiaquine was identified as a selective inhibitor of SFTSV replication. Its 50% effective concentration (EC50) and cytotoxic concentration (CC50) were 19.1 ± 5.1 and >100 µM, respectively. The EC50 value of amodiaquine was comparable to those of ribavirin and favipiravir. Conclusion Amodiaquine is considered to be a promising lead of novel anti-SFTSV agents, and evaluating the anti-SFTSV activity of its derivatives is in progress.
Collapse
Affiliation(s)
- Masanori Baba
- 1 Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Kagoshima, University, Kagoshima, Japan
| | - Masaaki Toyama
- 1 Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Kagoshima, University, Kagoshima, Japan
| | - Norikazu Sakakibara
- 2 Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Japan
| | - Mika Okamoto
- 1 Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Kagoshima, University, Kagoshima, Japan
| | - Naomichi Arima
- 3 Division of Hematology and Immunology, Center for Chronic Viral Diseases, Kagoshima, University, Kagoshima, Japan
| | - Masayuki Saijo
- 4 Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
30
|
Anderson D, Beecher G, Power C, Bridgland L, Zochodne DW. A neuropathic pain syndrome associated with hantavirus infection. J Neurovirol 2017; 23:919-921. [PMID: 28895058 PMCID: PMC7095002 DOI: 10.1007/s13365-017-0576-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/09/2017] [Accepted: 08/24/2017] [Indexed: 01/31/2023]
Abstract
Hantaviruses are a group of single-stranded RNA viruses of the Bunyaviridae family. "New World" hantaviruses cause hantavirus cardiopulmonary syndrome (HCPS) in North America. HCPS carries with it significant mortality and those patients who survive the disease are often left with substantial morbidity. Neurologic complications of hantavirus infections are rare, with only sparse cases of central nervous system involvement having been documented in the literature. To our knowledge, there are no reports of hantavirus infection contributing to peripheral nervous system dysfunction. Here we report a case of possible small fiber neuropathy associated with hantavirus infection, in a patient who survived HCPS. Persistent and treatment-resistant neuropathic pain may be a prominent feature in hantavirus-associated peripheral neuropathy.
Collapse
Affiliation(s)
- Dustin Anderson
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, Alberta, T6G 2G3, Canada
| | - Grayson Beecher
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, Alberta, T6G 2G3, Canada
| | - Christopher Power
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, Alberta, T6G 2G3, Canada
| | - Lindsay Bridgland
- Division of General Internal Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
31
|
Bondu V, Wu C, Cao W, Simons PC, Gillette J, Zhu J, Erb L, Zhang XF, Buranda T. Low-affinity binding in cis to P2Y 2R mediates force-dependent integrin activation during hantavirus infection. Mol Biol Cell 2017; 28:2887-2903. [PMID: 28835374 PMCID: PMC5638590 DOI: 10.1091/mbc.e17-01-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Atomic force microscopy is used to establish that low-affinity integrins bind in cis to P2Y2R. Integrin activation is initiated by a membrane-normal switchblade motion triggered by integrin priming after the virus binds to the integrin PSI domain. Tensile force between the P2Y2R and unbending integrin stimulates outside-in signaling. Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation.
Collapse
Affiliation(s)
- Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Chenyu Wu
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Wenpeng Cao
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Peter C Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jennifer Gillette
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jieqing Zhu
- Blood Research Institute, Bloodcenter of Wisconsin, Milwaukee, WI 53226
| | - Laurie Erb
- Department of Biochemistry, 540F Bond Life Sciences Center, Columbia, MO 65211
| | - X Frank Zhang
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131 .,Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
32
|
Angulo J, Martínez-Valdebenito C, Marco C, Galeno H, Villagra E, Vera L, Lagos N, Becerra N, Mora J, Bermúdez A, Díaz J, Ferrés M, López-Lastra M. Serum levels of interleukin-6 are linked to the severity of the disease caused by Andes Virus. PLoS Negl Trop Dis 2017; 11:e0005757. [PMID: 28708900 PMCID: PMC5529019 DOI: 10.1371/journal.pntd.0005757] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/26/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
Andes virus (ANDV) is the etiological agent of hantavirus cardiopulmonary syndrome in Chile. In this study, we evaluated the profile of the pro-inflammatory cytokines IL-1β, IL-12p70, IL-21, TNF-α, IFN-γ, IL-10 and IL-6 in serum samples of ANDV-infected patients at the time of hospitalization. The mean levels of circulating cytokines were determined by a Bead-Based Multiplex assay coupled with Luminex detection technology, in order to compare 43 serum samples of healthy controls and 43 samples of ANDV-infected patients that had been categorized according to the severity of disease. When compared to the controls, no significant differences in IL-1β concentration were observed in ANDV-infected patients (p = 0.9672), whereas levels of IL-12p70 and IL-21 were significantly lower in infected cases (p = <0.0001). Significantly elevated levels of TNF-α, IFN-γ, IL-10, and IL-6 were detected in ANDV-infected individuals (p = <0.0001, 0.0036, <0.0001, <0.0001, respectively). Notably, IL-6 levels were significantly higher (40-fold) in the 22 patients with severe symptoms compared to the 21 individuals with mild symptoms (p = <0.0001). Using multivariate regression models, we show that IL-6 levels has a crude OR of 14.4 (CI: 3.3–63.1). In conclusion, the serum level of IL-6 is a significant predictor of the severity of the clinical outcome of ANDV-induced disease. Andes virus (ANDV) causes hantavirus cardiopulmonary syndrome (HCPS) that is characterized by the development of vascular leakage syndrome, eventually leading to massive pulmonary edema, shock and, in many cases, death. To date, no FDA-approved immunotherapeutics, specific antivirals, or vaccines are available for use against HCPS. Patient survival rates hinge largely on early virus diagnosis, hospital admission and aggressive pulmonary and hemodynamic support in an intensive care unit. Individual host factors associated with the outcome of an ANDV infection are poorly known, and such knowledge could allow the disease progression of hospitalized patients to be predicted, resulting in individualized treatment. In this study, we show that serum levels of IL-6 at the time of hospitalization in ANDV-infected patients are associated with the severity of the clinical outcome of ANDV-induced disease. Therefore, these finding suggest that determining IL-6 levels at the time of admission to the hospital could be useful to predict the progression of ANDV-induced disease.
Collapse
Affiliation(s)
- Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia (IMII), Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Martínez-Valdebenito
- Laboratorio de Infectología, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Marco
- Laboratorio de Infectología, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Héctor Galeno
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Eliecer Villagra
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Lilian Vera
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Natalia Lagos
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Natalia Becerra
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Judith Mora
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Andrea Bermúdez
- Departamento de Asuntos Científicos, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Janepsy Díaz
- Departamento de Asuntos Científicos, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Marcela Ferrés
- Laboratorio de Infectología, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia (IMII), Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
33
|
Bugedo G, Florez J, Ferres M, Roessler E, Bruhn A. Hantavirus cardiopulmonary syndrome successfully treated with high-volume hemofiltration. Rev Bras Ter Intensiva 2017; 28:190-4. [PMID: 27410413 PMCID: PMC4943057 DOI: 10.5935/0103-507x.20160032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/09/2015] [Indexed: 11/20/2022] Open
Abstract
Hantavirus cardiopulmonary syndrome has a high mortality rate, and early
connection to extracorporeal membrane oxygenation has been suggested to improve
outcomes. We report the case of a patient with demonstrated Hantavirus
cardiopulmonary syndrome and refractory shock who fulfilled the criteria for
extracorporeal membrane oxygenation and responded successfully to high volume
continuous hemofiltration. The implementation of high volume continuous
hemofiltration along with protective ventilation reversed the shock within a few
hours and may have prompted recovery. In patients with Hantavirus
cardiopulmonary syndrome, a short course of high volume continuous
hemofiltration may help differentiate patients who can be treated with
conventional intensive care unit management from those who will require more
complex therapies, such as extracorporeal membrane oxygenation.
Collapse
Affiliation(s)
- Guillermo Bugedo
- Departamento de Medicina Intensiva, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jorge Florez
- Departamento de Medicina Intensiva, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Marcela Ferres
- Departamento de Enfermedades Infecciosas e Imunologia Pediátrica, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Eric Roessler
- Departamento de Nefrologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
34
|
The Andes Virus Nucleocapsid Protein Directs Basal Endothelial Cell Permeability by Activating RhoA. mBio 2016; 7:mBio.01747-16. [PMID: 27795403 PMCID: PMC5080385 DOI: 10.1128/mbio.01747-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Andes virus (ANDV) predominantly infects microvascular endothelial cells (MECs) and nonlytically causes an acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every pulmonary MEC is infected, MECs are enlarged, and infection results in vascular leakage and highly lethal pulmonary edema. We observed that MECs infected with the ANDV hantavirus or expressing the ANDV nucleocapsid (N) protein showed increased size and permeability by activating the Rheb and RhoA GTPases. Expression of ANDV N in MECs increased cell size by preventing tuberous sclerosis complex (TSC) repression of Rheb-mTOR-pS6K. N selectively bound the TSC2 N terminus (1 to 1403) within a complex containing TSC2/TSC1/TBC1D7, and endogenous TSC2 reciprocally coprecipitated N protein from ANDV-infected MECs. TSCs normally restrict RhoA-induced MEC permeability, and we found that ANDV infection or N protein expression constitutively activated RhoA. This suggests that the ANDV N protein alone is sufficient to activate signaling pathways that control MEC size and permeability. Further, RhoA small interfering RNA, dominant-negative RhoA(N19), and the RhoA/Rho kinase inhibitors fasudil and Y27632 dramatically reduced the permeability of ANDV-infected MECs by 80 to 90%. Fasudil also reduced the bradykinin-directed permeability of ANDV and Hantaan virus-infected MECs to control levels. These findings demonstrate that ANDV activation of RhoA causes MEC permeability and reveal a potential edemagenic mechanism for ANDV to constitutively inhibit the basal barrier integrity of infected MECs. The central importance of RhoA activation in MEC permeability further suggests therapeutically targeting RhoA, TSCs, and Rac1 as potential means of resolving capillary leakage during hantavirus infections. HPS is hallmarked by acute pulmonary edema, hypoxia, respiratory distress, and the ubiquitous infection of pulmonary MECs that occurs without disrupting the endothelium. Mechanisms of MEC permeability and targets for resolving lethal pulmonary edema during HPS remain enigmatic. Our findings suggest a novel underlying mechanism of MEC dysfunction resulting from ANDV activation of the Rheb and RhoA GTPases that, respectively, control MEC size and permeability. Our studies show that inhibition of RhoA blocks ANDV-directed permeability and implicate RhoA as a potential therapeutic target for restoring capillary barrier function to the ANDV-infected endothelium. Since RhoA activation forms a downstream nexus for factors that cause capillary leakage, blocking RhoA activation is liable to restore basal capillary integrity and prevent edema amplified by tissue hypoxia and respiratory distress. Targeting the endothelium has the potential to resolve disease during symptomatic stages, when replication inhibitors lack efficacy, and to be broadly applicable to other hemorrhagic and edematous viral diseases.
Collapse
|
35
|
Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters. J Virol 2016; 90:6200-6215. [PMID: 27099308 PMCID: PMC4936146 DOI: 10.1128/jvi.00304-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. IMPORTANCE Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are poised to defend against hantavirus infection, but those antiviral responses may also contribute to hantavirus disease. Here, we demonstrate that, like in our prior T and B cell studies, alveolar macrophages neither prevent hantavirus infection nor cause hantavirus disease. While these studies reflect pathogenesis in the hamster model, they should help us rule out specific cell types and prompt us to consider other potential mechanisms of disease in an effort to improve the outcome of human HPS.
Collapse
|
36
|
Angulo J, Pino K, Echeverría-Chagas N, Marco C, Martínez-Valdebenito C, Galeno H, Villagra E, Vera L, Lagos N, Becerra N, Mora J, Bermúdez A, Cárcamo M, Díaz J, Miquel JF, Ferrés M, López-Lastra M. Association of Single-Nucleotide Polymorphisms in IL28B, but Not TNF-α, With Severity of Disease Caused by Andes Virus. Clin Infect Dis 2015; 61:e62-9. [PMID: 26394672 PMCID: PMC4657541 DOI: 10.1093/cid/civ830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Andes virus (ANDV) is the sole etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in Chile, with a fatality rate of about 35%. Individual host factors affecting ANDV infection outcome are poorly understood. In this case-control genetic association analysis, we explored the link between single-nucleotide polymorphisms (SNPs) rs12979860, rs8099917 and rs1800629 and the clinical outcome of ANDV-induced disease. The SNPs rs12979860 and rs8099917 are known to play a role in the differential expression of the interleukin 28B gene (IL28B), whereas SNP rs1800629 is implicated in the expression of tumor necrosis factor α gene (TNF-α). METHODS A total of 238 samples from confirmed ANDV-infected patients collected between 2006 and 2014, and categorized according to the severity of the disease, were genotyped for SNPs rs12979860, rs8099917, and rs1800629. RESULTS Analysis of IL28B SNPs rs12979860 and rs8099917 revealed a link between homozygosity of the minor alleles (TT and GG, respectively), displaying a mild disease progression, whereas heterozygosity or homozygosity for the major alleles (CT/CC and TG/TT, respectively) in both IL28B SNPs is associated with severe disease. No association with the clinical outcome of HCPS was observed for TNF-α SNP rs1800629 (TNF -308G>A). CONCLUSIONS The IL28B SNPs rs12979860 and rs8099917, but not TNF-α SNP rs1800629, are associated with the clinical outcome of ANDV-induced disease, suggesting a possible link between IL28B expression and ANDV pathogenesis.
Collapse
Affiliation(s)
- Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia
| | - Natalia Echeverría-Chagas
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Claudia Marco
- Laboratorio de Infectología, Centro de Investigaciones Médicas, Escuela de Medicina, División de Pediatría
| | | | - Héctor Galeno
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Eliecer Villagra
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Lilian Vera
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Natalia Lagos
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Natalia Becerra
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Judith Mora
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Andrea Bermúdez
- Departamento de Asuntos Científicos, Instituto de Salud Pública de Chile, Santiago
| | - Marcela Cárcamo
- Departamento de Asuntos Científicos, Instituto de Salud Pública de Chile, Santiago
| | - Janepsy Díaz
- Departamento de Asuntos Científicos, Instituto de Salud Pública de Chile, Santiago
| | - Juan Francisco Miquel
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile
| | - Marcela Ferrés
- Laboratorio de Infectología, Centro de Investigaciones Médicas, Escuela de Medicina, División de Pediatría
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia
| |
Collapse
|
37
|
Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses. BIOMED RESEARCH INTERNATIONAL 2015; 2015:793257. [PMID: 26266264 PMCID: PMC4523679 DOI: 10.1155/2015/793257] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022]
Abstract
Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF) and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM) to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs.
Collapse
|
38
|
Abstract
Over the past few decades understanding and recognition of hantavirus infection has greatly improved worldwide, but both the amplitude and the magnitude of hantavirus outbreaks have been increasing. Several novel hantaviruses with unknown pathogenic potential have been identified in a variety of insectivore hosts. With the new hosts, new geographical distributions of hantaviruses have also been discovered and several new species were found in Africa. Hantavirus infection in humans can result in two clinical syndromes: haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) caused by Old World and New World hantaviruses, respectively. The clinical presentation of HFRS varies from subclinical, mild, and moderate to severe, depending in part on the causative agent of the disease. In general, HFRS caused by Hantaan virus, Amur virus and Dobrava virus are more severe with mortality rates from 5 to 15%, whereas Seoul virus causes moderate and Puumala virus and Saaremaa virus cause mild forms of disease with mortality rates <1%. The central phenomena behind the pathogenesis of both HFRS and HCPS are increased vascular permeability and acute thrombocytopenia. The pathogenesis is likely to be a complex multifactorial process that includes contributions from immune responses, platelet dysfunction and the deregulation of endothelial cell barrier functions. Also a genetic predisposition, related to HLA type, seems to be important for the severity of the disease. As there is no effective treatment or vaccine approved for use in the USA and Europe, public awareness and precautionary measures are the only ways to minimize the risk of hantavirus disease.
Collapse
Affiliation(s)
- T Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia.
| | - A Saksida
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia
| | - M Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia
| |
Collapse
|
39
|
Poliquin PG, Drebot M, Grolla A, Jones SE, Larke B, Strong JE. Therapeutic Approaches for New World Hantaviruses. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2015. [DOI: 10.1007/s40506-015-0047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Hantavirus pulmonary syndrome in Canada: An overview of clinical features, diagnostics, epidemiology and prevention. ACTA ACUST UNITED AC 2015; 41:124-131. [PMID: 29769944 DOI: 10.14745/ccdr.v41i06a02] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hantavirus pulmonary syndrome is a disease caused by the inhalation of excreta from infected deer mice. In Canada, the majority of hantavirus pulmonary syndrome cases occur in the western provinces of British Columbia, Alberta, Saskatchewan and Manitoba and the primary cause of the illness is the Sin Nombre virus. Only one case of hantavirus pulmonary syndrome has been documented in eastern Canada (Québec); however, Sin Nombre virus-infected deer mice have been identified across the country. Although cases are rare (yearly case numbers range from zero to 13 and the total number of confirmed cases in Canada now total 109), the mortality rate among infected individuals is approximately 30%. The majority of cases occur in the spring and early summer indicating seasonally-associated risk factors for viral exposure. In 2013 and 2014, a substantial increase in the number of hantavirus pulmonary syndrome cases was identified; however the cause remains unclear. No antivirals or vaccines are currently available and treatment is supportive. Public education, rodent control and the use of personal protective measures are key to avoid infections in at-risk populations.
Collapse
|
41
|
Velkov T, Abdul Rahim N, Zhou Q(T, Chan HK, Li J. Inhaled anti-infective chemotherapy for respiratory tract infections: successes, challenges and the road ahead. Adv Drug Deliv Rev 2015; 85:65-82. [PMID: 25446140 PMCID: PMC4429008 DOI: 10.1016/j.addr.2014.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
One of the most common causes of illnesses in humans is from respiratory tract infections caused by bacterial, viral or fungal pathogens. Inhaled anti-infective drugs are crucial for the prophylaxis and treatment of respiratory tract infections. The benefit of anti-infective drug delivery via inhalation is that it affords delivery of sufficient therapeutic dosages directly to the primary site of infection, while minimizing the risks of systemic toxicity or avoiding potential suboptimal pharmacokinetics/pharmacodynamics associated with systemic drug exposure. This review provides an up-to-date treatise of approved and novel developmental inhaled anti-infective agents, with particular attention to effective strategies for their use, pulmonary pharmacokinetic properties and safety.
Collapse
|
42
|
Reinoso JA, de la Rubia FJ. Spatial spread of the Hantavirus infection. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032703. [PMID: 25871140 DOI: 10.1103/physreve.91.032703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 06/04/2023]
Abstract
The spatial propagation of Hantavirus-infected mice is considered a serious threat for public health. We analyze the spatial spread of the infected mice by including diffusion in the stage-dependent model for Hantavirus infection recently proposed by Reinoso and de la Rubia [Phys. Rev. E 87, 042706 (2013)]. We consider a general scenario in which mice propagate in fronts from their refugia to the surroundings and find an expression for the speed of the front of infected mice. We also introduce a depletion time that measures the time scale for an appreciable impoverishment of the environment conditions and show how this new situation may change the spreading of the infection significantly.
Collapse
Affiliation(s)
- José A Reinoso
- Departamento de Física Fundamental, Universidad Nacional de Educación a Distancia-UNED, Paseo Senda del Rey 9, E-28040 Madrid, Spain
| | - F Javier de la Rubia
- Departamento de Física Fundamental, Universidad Nacional de Educación a Distancia-UNED, Paseo Senda del Rey 9, E-28040 Madrid, Spain
| |
Collapse
|
43
|
Hardcastle K, Scott D, Safronetz D, Brining DL, Ebihara H, Feldmann H, LaCasse RA. Laguna Negra Virus Infection Causes Hantavirus Pulmonary Syndrome in Turkish Hamsters (Mesocricetus brandti). Vet Pathol 2015; 53:182-9. [PMID: 25722219 DOI: 10.1177/0300985815570071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Laguna Negra virus (LNV) is a New World hantavirus associated with severe and often fatal cardiopulmonary disease in humans, known as hantavirus pulmonary syndrome (HPS). Five hamster species were evaluated for clinical and serologic responses following inoculation with 4 hantaviruses. Of the 5 hamster species, only Turkish hamsters infected with LNV demonstrated signs consistent with HPS and a fatality rate of 43%. Clinical manifestations in infected animals that succumbed to disease included severe and rapid onset of dyspnea, weight loss, leukopenia, and reduced thrombocyte numbers as compared to uninfected controls. Histopathologic examination revealed lung lesions that resemble the hallmarks of HPS in humans, including interstitial pneumonia and pulmonary edema, as well as generalized infection of endothelial cells and macrophages in major organ tissues. Histologic lesions corresponded to the presence of viral antigen in affected tissues. To date, there have been no small animal models available to study LNV infection and pathogenesis. The Turkish hamster model of LNV infection may be important in the study of LNV-induced HPS pathogenesis and development of disease treatment and prevention strategies.
Collapse
Affiliation(s)
- K Hardcastle
- National Emerging Infectious Disease Laboratories, Boston University, Boston, MA, USA Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - D Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - D Safronetz
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - D L Brining
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA Office of Animal Resources, University of Colorado Boulder, Boulder, CO, USA
| | - H Ebihara
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - H Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - R A LaCasse
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
44
|
Abstract
Emerging infectious diseases of zoonotic origin are shaping today's infectious disease field more than ever. In this article, we introduce and review three emerging zoonotic viruses. Novel hantaviruses emerged in the Americas in the mid-1990s as the cause of severe respiratory infections, designated hantavirus pulmonary syndrome, with case fatality rates of around 40%. Nipah virus emerged a few years later, causing respiratory infections and encephalitis in Southeast Asia, with case fatality rates ranging from 40% to more than 90%. A new coronavirus emerged in 2012 on the Arabian Peninsula with a clinical syndrome of acute respiratory infections, later designated as Middle East respiratory syndrome (MERS), and an initial case fatality rate of more than 40%. Our current state of knowledge on the pathogenicity of these three severe, emerging viral infections is discussed.
Collapse
Affiliation(s)
- David Safronetz
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana; , ,
| | | | | |
Collapse
|
45
|
Braun M, Björkström NK, Gupta S, Sundström K, Ahlm C, Klingström J, Ljunggren HG. NK cell activation in human hantavirus infection explained by virus-induced IL-15/IL15Rα expression. PLoS Pathog 2014; 10:e1004521. [PMID: 25412359 PMCID: PMC4239055 DOI: 10.1371/journal.ppat.1004521] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/14/2014] [Indexed: 12/15/2022] Open
Abstract
Clinical infection with hantaviruses cause two severe acute diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). These diseases are characterized by strong immune activation, increased vascular permeability, and up to 50% case-fatality rates. One prominent feature observed in clinical hantavirus infection is rapid expansion of natural killer (NK) cells in peripheral blood of affected individuals. We here describe an unusually high state of activation of such expanding NK cells in the acute phase of clinical Puumala hantavirus infection. Expanding NK cells expressed markedly increased levels of activating NK cell receptors and cytotoxic effector molecules. In search for possible mechanisms behind this NK cell activation, we observed virus-induced IL-15 and IL-15Rα on infected endothelial and epithelial cells. Hantavirus-infected cells were shown to strongly activate NK cells in a cell-cell contact-dependent way, and this response was blocked with anti-IL-15 antibodies. Surprisingly, the strength of the IL-15-dependent NK cell response was such that it led to killing of uninfected endothelial cells despite expression of normal levels of HLA class I. In contrast, hantavirus-infected cells were resistant to NK cell lysis, due to a combination of virus-induced increase in HLA class I expression levels and hantavirus-mediated inhibition of apoptosis induction. In summary, we here describe a possible mechanism explaining the massive NK cell activation and proliferation observed in HFRS patients caused by Puumala hantavirus infection. The results add further insights into mechanisms behind the immunopathogenesis of hantavirus infections in humans and identify new possible targets for intervention. Hantaviruses cause severe clinical infections with up to 50% case-fatality rates. The diseases represent an important global health problem as no vaccine or specific treatment is available. The most prominent hallmark in patients is strong immune activation, reflected as massive CD8 T and NK cell expansion, accompanied by severe vascular leakage. The mechanisms behind this massive immune activation are still not fully understood. Here, we first assessed the expression of several activation markers and receptors on NK cells derived from hantavirus-infected patients using flow cytometry. High NK cell activation was observed during the acute phase of clinical infection. To address possible underlying mechanisms explaining this NK cell activation, we established an in vitro hantavirus infection model using human primary endothelial cells, the natural in vivo targets of the virus. We demonstrate hantavirus-induced IL-15/IL-15Rα on infected endothelial cells, and show that this results in NK cell activation, similar to the profile found in hantavirus-infected patients. Interestingly, these activated NK cells were able to kill uninfected endothelial cells despite their normal expression of HLA class I. The present data add further insights into hantavirus-induced pathogenesis and suggest possible targets for future therapeutical interventions in these severe diseases.
Collapse
Affiliation(s)
- Monika Braun
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail: (MB); (HGL)
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Liver Immunology Laboratory, Unit for Gastroenterology and Hepatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Shawon Gupta
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Sundström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail: (MB); (HGL)
| |
Collapse
|
46
|
Kruger DH, Figueiredo LTM, Song JW, Klempa B. Hantaviruses--globally emerging pathogens. J Clin Virol 2014; 64:128-36. [PMID: 25453325 DOI: 10.1016/j.jcv.2014.08.033] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
Abstract
Hantaviruses are emerging zoonotic viruses which cause human disease in Africa, America, Asia, and Europe. This review summarizes the progress in hantavirus epidemiology and diagnostics during the previous decade. Moreover, we discuss the influence of ecological factors on the worldwide virus distribution and give an outlook on research perspectives for the next years.
Collapse
Affiliation(s)
- Detlev H Kruger
- Institute of Medical Virology, Charité School of Medicine, Berlin, Germany.
| | | | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Boris Klempa
- Institute of Medical Virology, Charité School of Medicine, Berlin, Germany; Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
47
|
Affiliation(s)
- Christopher M Coleman
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD 21201, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
48
|
Chiang CF, Albariňo CG, Lo MK, Spiropoulou CF. Small interfering RNA inhibition of Andes virus replication. PLoS One 2014; 9:e99764. [PMID: 24924189 PMCID: PMC4055710 DOI: 10.1371/journal.pone.0099764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/16/2014] [Indexed: 01/02/2023] Open
Abstract
Andes virus (ANDV) is the most common causative agent of hantavirus pulmonary syndrome (HPS) in the Americas, and is the only hantavirus associated with human-to-human transmission. Case fatality rates of ANDV-induced HPS are approximately 40%. There are currently no effective vaccines or antivirals against ANDV. Since HPS severity correlates with viral load, we tested small interfering RNA (siRNA) directed against ANDV genes as a potential antiviral strategy. We designed pools of 4 siRNAs targeting each of the ANDV genome segments (S, M, and L), and tested their efficacy in reducing viral replication in vitro. The siRNA pool targeting the S segment reduced viral transcription and replication in Vero-E6 cells more efficiently than those targeting the M and L segments. In contrast, siRNAs targeting the S, M, or L segment were similar in their ability to reduce viral replication in human lung microvascular endothelial cells. Importantly, these siRNAs inhibit ANDV replication even if given after infection. Taken together, our findings indicate that siRNAs targeting the ANDV genome efficiently inhibit ANDV replication, and show promise as a strategy for developing therapeutics against ANDV infection.
Collapse
Affiliation(s)
- Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cesar G. Albariňo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
49
|
Vial PA, Valdivieso F, Calvo M, Rioseco ML, Riquelme R, Araneda A, Tomicic V, Graf J, Paredes L, Florenzano M, Bidart T, Cuiza A, Marco C, Hjelle B, Ye C, Hanfelt-Goade D, Vial C, Rivera JC, Delgado I, Mertz GJ. A non-randomized multicentre trial of human immune plasma for treatment of hantavirus cardiopulmonary syndrome by ANDV. Antivir Ther 2014; 20:377-86. [DOI: 10.3851/imp2875] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
50
|
Ogg M, Jonsson CB, Camp JV, Hooper JW. Ribavirin protects Syrian hamsters against lethal hantavirus pulmonary syndrome--after intranasal exposure to Andes virus. Viruses 2013; 5:2704-20. [PMID: 24217424 PMCID: PMC3856411 DOI: 10.3390/v5112704] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 11/16/2022] Open
Abstract
Andes virus, ANDV, harbored by wild rodents, causes the highly lethal hantavirus pulmonary syndrome (HPS) upon transmission to humans resulting in death in 30% to 50% of the cases. As there is no treatment for this disease, we systematically tested the efficacy of ribavirin in vitro and in an animal model. In vitro assays confirmed antiviral activity and determined that the most effective doses were 40 µg/mL and above. We tested three different concentrations of ribavirin for their capability to prevent HPS in the ANDV hamster model following an intranasal challenge. While the highest level of ribavirin (200 mg/kg) was toxic to the hamster, both the middle (100 mg/kg) and the lowest concentration (50 mg/kg) prevented HPS in hamsters without toxicity. Specifically, 8 of 8 hamsters survived intranasal challenge for both of those groups whereas 7 of 8 PBS control-treated animals developed lethal HPS. Further, we report that administration of ribavirin at 50 mg/kg/day starting on days 6, 8, 10, or 12 post-infection resulted in significant protection against HPS in all groups. Administration of ribavirin at 14 days post-infection also provided a significant level of protection against lethal HPS. These data provide in vivo evidence supporting the potential use of ribavirin as a post-exposure treatment to prevent HPS after exposure by the respiratory route.
Collapse
Affiliation(s)
- Monica Ogg
- Molecular Virology Branch, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21772, USA; E-Mail:
| | - Colleen B. Jonsson
- Department of Microbiology and Immunology, Center for Predictive Medicine for Infectious Diseases and Biodefense, Louisville, KY 40202, USA; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.B.J.); (J.W.H.); Tel.: +1-502-413-1177 (C.B.J); +1-301-619-6101 (J.W.H)
| | - Jeremy V. Camp
- Department of Microbiology and Immunology, Center for Predictive Medicine for Infectious Diseases and Biodefense, Louisville, KY 40202, USA; E-Mail:
| | - Jay W. Hooper
- Molecular Virology Branch, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21772, USA; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.B.J.); (J.W.H.); Tel.: +1-502-413-1177 (C.B.J); +1-301-619-6101 (J.W.H)
| |
Collapse
|