1
|
Lee W, Kim YJ, Lee SJ, Ahn DG, Kim SJ. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for the Re-Emerging Human Monkeypox Virus. J Microbiol Biotechnol 2023; 33:981-991. [PMID: 37519276 PMCID: PMC10468680 DOI: 10.4014/jmb.2306.06033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Monkeypox (Mpox) virus, a member of the Poxviridae family, causes a severe illness similar to smallpox, which is characterized by symptoms such as high fever, rash, and pustules. Human-to-human transmission cases have been reported but remained low since the first recorded case of human infection occurred in the Congo in 1970. Recently, Mpox has re-emerged, leading to an alarming surge in infections worldwide since 2022, originating in the United Kingdom. Consequently, the World Health Organization (WHO) officially declared the '2022-23 Mpox outbreak'. Currently, no specific therapy or vaccine is available for Mpox. Therefore, patients infected with Mpox are treated using conventional therapies developed for smallpox. However, the vaccines developed for smallpox have demonstrated only partial efficacy against Mpox, allowing viral transmission among humans. In this review, we discuss the current epidemiology of the ongoing Mpox outbreak and provide an update on the progress made in diagnosis, treatment, and development of vaccines for Mpox.
Collapse
Affiliation(s)
- Wooseong Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yu-Jin Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Su Jin Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Seong-Jun Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
2
|
Schormann N, Zhukovskaya N, Bedwell G, Nuth M, Gillilan R, Prevelige PE, Ricciardi RP, Banerjee S, Chattopadhyay D. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases. Protein Sci 2016; 25:2113-2131. [PMID: 27684934 DOI: 10.1002/pro.3058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/07/2022]
Abstract
Uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. The adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. An overview of the current state of the knowledge on the structure-function relationship of D4 is provided here.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Natalia Zhukovskaya
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Gregory Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Manunya Nuth
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Richard Gillilan
- MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca, New York, 14853
| | - Peter E Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Robert P Ricciardi
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.,Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT, Argonne, Illinois, 60439
| | | |
Collapse
|
3
|
Contesto-Richefeu C, Tarbouriech N, Brazzolotto X, Burmeister WP, Peyrefitte CN, Iseni F. Structural analysis of point mutations at the Vaccinia virus A20/D4 interface. Acta Crystallogr F Struct Biol Commun 2016; 72:687-91. [PMID: 27599859 PMCID: PMC5012208 DOI: 10.1107/s2053230x16011778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/19/2016] [Indexed: 01/10/2023] Open
Abstract
The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil-DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201-50) revealed the importance of three residues, forming a cation-π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4-R167A/A201-50, D4-P173G/A201-50 and D4/A201-50-W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation-π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface.
Collapse
Affiliation(s)
- Céline Contesto-Richefeu
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223 Brétigny-sur-Orge CEDEX, France
| | - Nicolas Tarbouriech
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoble Alpes, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, BP 73, 91223 Brétigny-sur-Orge CEDEX, France
| | - Wim P. Burmeister
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoble Alpes, 71 Avenue des Martyrs, 38042 Grenoble, France
| | | | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223 Brétigny-sur-Orge CEDEX, France
| |
Collapse
|
4
|
Contesto-Richefeu C, Tarbouriech N, Brazzolotto X, Betzi S, Morelli X, Burmeister WP, Iseni F. Crystal structure of the vaccinia virus DNA polymerase holoenzyme subunit D4 in complex with the A20 N-terminal domain. PLoS Pathog 2014; 10:e1003978. [PMID: 24603707 PMCID: PMC3946371 DOI: 10.1371/journal.ppat.1003978] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A20₁₋₅₀). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A20₁₋₅₀ clearly behaves as a heterodimer. The crystal structure of D4/A20₁₋₅₀ solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A20₁₋₅₀ binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A20₁₋₅₀ formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A20₁₋₅₀ interaction. Finally, we propose a model of D4/A20₁₋₅₀ in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface.
Collapse
Affiliation(s)
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, UMI 3265, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risque Chimique, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes & Aix-Marseille Universités, Marseille, France
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes & Aix-Marseille Universités, Marseille, France
| | - Wim P. Burmeister
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, UMI 3265, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- * E-mail:
| |
Collapse
|
5
|
Flusin O, Saccucci L, Contesto-Richefeu C, Hamdi A, Bardou C, Poyot T, Peinnequin A, Crance JM, Colas P, Iseni F. A small molecule screen in yeast identifies inhibitors targeting protein-protein interactions within the vaccinia virus replication complex. Antiviral Res 2012; 96:187-95. [PMID: 22884885 DOI: 10.1016/j.antiviral.2012.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
Abstract
Genetic and biochemical data have identified at least four viral proteins essential for vaccinia virus (VACV) DNA synthesis: the DNA polymerase E9, its processivity factor (the heterodimer A20/D4) and the primase/helicase D5. These proteins are part of the VACV replication complex in which A20 is a central subunit interacting with E9, D4 and D5. We hypothesised that molecules able to modulate protein-protein interactions within the replication complex may represent a new class of compounds with anti-orthopoxvirus activities. In this study, we adapted a forward duplex yeast two-hybrid assay to screen more than 27,000 molecules in order to identify inhibitors of A20/D4 and/or A20/D5 interactions. We identified two molecules that specifically inhibited both interactions in yeast. Interestingly, we observed that these compounds displayed a similar antiviral activity to cidofovir (CDV) against VACV in cell culture. We further showed that these molecules were able to inhibit the replication of another orthopoxvirus (i.e. cowpox virus), but not the herpes simplex virus type 1 (HSV-1), an unrelated DNA virus. We also demonstrated that the antiviral activity of both compounds correlated with an inhibition of VACV DNA synthesis. Hence, these molecules may represent a starting point for the development of new anti-orthopoxvirus drugs.
Collapse
Affiliation(s)
- Olivier Flusin
- Unité de virologie, Institut de Recherche Biomédicale des Armées (IRBA), 24 avenue des Maquis du Grésivaudan, 38702 La Tronche, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
7
|
Schöneberger H, Weiss A, Brill B, Delis N, Borghouts C, Groner B. The integration of a Stat3 specific peptide aptamer into the thioredoxin scaffold protein strongly enhances its inhibitory potency. Horm Mol Biol Clin Investig 2011; 5:1-9. [DOI: 10.1515/hmbci.2011.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 01/05/2023]
Abstract
AbstractWe are characterizing peptides which are able to interact with functional domains of oncoproteins and thus inhibit their activity. The yeast two-hybrid system was used to derive a peptide sequence which specifically interacts with the dimerization domain of the transcription factor Stat3. The activated form of Stat3 is required for the survival of many transformed cells and Stat3 inhibition can cause tumor cell death. The genetic selection of specific peptide sequences from random peptide libraries requires the integration into a scaffold protein and the expression in yeast cells. The scaffold protein, a variant of the human thioredoxin protein, has previously been optimized and also allows for effective bacterial expression of the recombinant protein and the cellular uptake of the purified, recombinant protein. We investigated the contributions of the scaffold protein to the inhibitory properties of rS3-PA. For this purpose we compared rS3-PA in which the ligand peptide is embedded within the thioredoxin scaffold protein with a minimal Stat3-interacting peptide sequence. sS3-P45 is a synthetic peptide of 45 amino acids in length and consists only of the Stat3-binding sequence of 20 amino acids, a protein transduction domain (PTD) and a Flag-tag. Both, the recombinant rS3-PA of 19.3 kDa and the synthetic sS3-P45 of 5.1 kDa, were taken up into the cytoplasm of cells by the PTD-mediated transduction process, inhibited Stat3 target gene expression and caused the death of Stat3-dependent tumor cells. Stat3-independent normal cells were unaffected. rS3-PA effectively inhibited Stat3 function at 2 μM, however, sS3-P45 was required at a concentration of 100 μM to exert the same effects. The more potent action of rS3-PA is most probably due to a conformational stabilization of the Stat3-interacting peptide in the context of the scaffold protein.
Collapse
|
8
|
Mohan KVK, Rao SS, Atreya CD. Antiviral activity of selected antimicrobial peptides against vaccinia virus. Antiviral Res 2010; 86:306-11. [PMID: 20347875 PMCID: PMC7114312 DOI: 10.1016/j.antiviral.2010.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/05/2010] [Accepted: 03/23/2010] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides (AMPs) are gaining importance as effective therapeutic alternatives to conventional antibiotics. Recently we have shown that a set of nine synthetic antimicrobial peptides, four originating from thrombin-induced human platelet-derived antimicrobial proteins named PD1-PD4 and five synthetic repeats of arginine-tryptophan (RW) repeats (RW1-5) demonstrate antibacterial activity in plasma and platelets. Using WR strain of vaccinia virus (VV) as a model virus for enveloped virus in the present study, we tested the same nine synthetic peptides for their antiviral activity. A cell culture-based standard plaque reduction assay was utilized to estimate antiviral effectiveness of the peptides. Our analysis revealed that peptides PD3, PD4, and RW3 were virucidal against VV with PD3 demonstrating the highest antiviral activity of 100-fold reduction in viral titers, whereas, PD4 and RW3 peptide treatments resulted in 10-30-fold reduction. The EC(50) values of PD3, PD4 and RW3 were found to be 40 microg/ml, 50 microg/ml and 6.5 microM, respectively. In VV-spiked plasma samples, the virucidal activity of PD3, PD4 and RW3 was close to 100% (90-100-fold reduction). Overall, the present study constitutes a new proof-of-concept in developing peptide therapeutics for vaccinia virus infections in biothreat scenarios and as in vitro viral reduction agents.
Collapse
Affiliation(s)
- Ketha V K Mohan
- Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
9
|
Inhibition of hepatitis B virus replication by the internal fragment of hepatitis B core protein. Virus Res 2010; 150:129-34. [PMID: 20303370 DOI: 10.1016/j.virusres.2010.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 11/24/2022]
Abstract
The nucleocapsids formation is a pivotal step of hepatitis B virus (HBV) life cycle. The inhibition of HBV nucleocapsids assembly is a promising strategy for the anti-HBV treatment. HBc78-117 is an internal fragment of hepatitis B core protein (HBc). In this study, we used lentiviral vector to deliver HBc78-117 cDNA sequence into HepG2.2.15 cells and examined the effect of HBc78-117 on HBV replication. We confirmed by immunoprecipitation analysis that HBc78-117 interacted with full-length HBc in HepG2.2.15 cells. The nucleocapsids and HBV DNA replication intermediates were markedly reduced in the cells expressing HBc78-117, although HBV pregenome RNA was not affected. The level of HBV DNA was also significantly reduced in culture supernatant. These suggest that HBc78-117 can inhibit HBV DNA replication by interfering with nucleocapsids assembly.
Collapse
|
10
|
Inhibition of human cytomegalovirus replication via peptide aptamers directed against the nonconventional nuclear localization signal of the essential viral replication factor pUL84. J Virol 2009; 83:11902-13. [PMID: 19740994 DOI: 10.1128/jvi.01378-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The UL84 open reading frame of human cytomegalovirus encodes an essential multifunctional regulatory protein that is thought to act in the nucleus as an initiator of lytic viral replication. Nuclear trafficking of pUL84 is facilitated by a complex nonconventional nuclear localization signal (NLS) that mediates its interaction with the cellular importin-alpha/beta pathway. Since binding of pUL84 to importin-alpha proteins mechanistically differs from that of cellular proteins containing a classical NLS, we assumed that specific interference with the nuclear import of pUL84 might be possible and that this could constitute a novel principle for antiviral therapy. In order to test this hypothesis, we employed peptide aptamer technology and isolated several peptide aptamers from a randomized peptide expression library that specifically bind with high affinity to the unconventional pUL84 NLS under intracellular conditions. Coimmunoprecipitation experiments confirmed these interactions in mammalian cells, and the antiviral potential of the identified peptide aptamers was determined using three independent experimental approaches. (i) Infection experiments with a recombinant human cytomegalovirus expressing green fluorescent protein demonstrated 50 to 60% decreased viral replication in primary human fibroblasts stably expressing pUL84-specific aptamers. (ii) A 50 to 70% reduction of viral plaque formation, as well as a 70 to 90% inhibition of virus release in the presence of pUL84-specific aptamers, was observed. (iii) Immunofluorescence analyses revealed a shift from an almost exclusively nuclear pUL84 staining pattern to a nucleocytoplasmic distribution upon coexpression of the identified molecules, indicating that interference with the nuclear import of pUL84 contributes to the observed antiviral activity of the identified pUL84-binding aptamer molecules.
Collapse
|