1
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
2
|
Abstract
Globally, the most frequent route of HIV transmission is through sexual intercourse. In women, sexual transmission of HIV involves cervical, vaginal, endometrial, and rectal mucosal exposure to the virus. Here we describe technical protocols for ex vivo cervical, vaginal, and rectal tissue infection models and cultures that can be used to assess tissue susceptibility to infection under different conditions as well as the potential antiviral efficacy of a treatment for HIV prevention or cure.
Collapse
Affiliation(s)
| | - Nikolas C Vann
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | |
Collapse
|
3
|
HIV transmitting mononuclear phagocytes; integrating the old and new. Mucosal Immunol 2022; 15:542-550. [PMID: 35173293 PMCID: PMC9259493 DOI: 10.1038/s41385-022-00492-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important. With advancements in high parameter single cell technologies, new MNPs subsets are continuously being discovered and their definition and classification is in a state of flux. This has important implications for our knowledge of HIV transmission, which requires a deeper understanding to design effective vaccines and better blocking strategies. Here we review the historical research of the role MNPs play in HIV transmission up to the present day and revaluate these studies in the context of our most recent understandings of the MNP system.
Collapse
|
4
|
Jewanraj J, Ngcapu S, Liebenberg LJP. Semen: A modulator of female genital tract inflammation and a vector for HIV-1 transmission. Am J Reprod Immunol 2021; 86:e13478. [PMID: 34077596 PMCID: PMC9286343 DOI: 10.1111/aji.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
In order to establish productive infection in women, HIV must transverse the vaginal epithelium and gain access to local target cells. Genital inflammation contributes to the availability of HIV susceptible cells at the female genital mucosa and is associated with higher HIV transmission rates in women. Factors that contribute to genital inflammation may subsequently increase the risk of HIV infection in women. Semen is a highly immunomodulatory fluid containing several bioactive molecules with the potential to influence inflammation and immune activation at the female genital tract. In addition to its role as a vector for HIV transmission, semen induces profound mucosal changes to prime the female reproductive tract for conception. Still, most studies of mucosal immunity are conducted in the absence of semen or without considering its immune impact on the female genital tract. This review discusses the various mechanisms by which semen exposure may influence female genital inflammation and highlights the importance of routine screening for semen biomarkers in vaginal specimens to account for its impact on genital inflammation.
Collapse
Affiliation(s)
- Janine Jewanraj
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
5
|
Yeruva SL, Kumar P, Deepa S, Kondapi AK. Lactoferrin nanoparticles coencapsulated with curcumin and tenofovir improve vaginal defense against HIV-1 infection. Nanomedicine (Lond) 2021; 16:569-586. [PMID: 33660529 DOI: 10.2217/nnm-2020-0347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: We report here the development of tenofovir- and curcumin-loaded lactoferrin nanoparticles (TCNPs) as an HIV-microbicide. Materials & methods: TCNPs were subjected to various physicochemical characterization experiments, followed by in vitro and in vivo experiments to assess their efficacy. Results: TCNPs had a diameter of 74.31 ± 2.56 nm with a gross encapsulation of more than 61% for each drug. Nanoparticles were effective against HIV-1 replication, with an IC50 of 1.75 μM for curcumin and 2.8 μM for tenofovir. TCNPs provided drug release at the application site for up to 8-12 h, with minimal leakage into the systemic circulation. TCNPs showed spermicidal activity at ≥200 μM and induced minimal cytotoxicity and inflammation in the vaginal epithelium as revealed by histopathological and ELISA studies. Conclusion: We demonstrated that TCNPs could serve as a novel anti-HIV microbicidal agent in rats. [Formula: see text].
Collapse
Affiliation(s)
- Samrajya Lakshmi Yeruva
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Prashant Kumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.,Department of Pediatrics, The University of Tennessee Health Science Center & Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Seetharam Deepa
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.,Department of Urology, University of Miami, Florida, FL 33136, USA
| | - Anand K Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
6
|
Jewanraj J, Ngcapu S, Osman F, Mtshali A, Singh R, Mansoor LE, Abdool Karim SS, Abdool Karim Q, Passmore JAS, Liebenberg LJP. The Impact of Semen Exposure on the Immune and Microbial Environments of the Female Genital Tract. FRONTIERS IN REPRODUCTIVE HEALTH 2020; 2:566559. [PMID: 36304709 PMCID: PMC9580648 DOI: 10.3389/frph.2020.566559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Semen induces an immune response at the female genital tract (FGT) to promote conception. It is also the primary vector for HIV transmission to women during condomless sex. Since genital inflammation and immune activation increase HIV susceptibility in women, semen-induced alterations at the FGT may have implications for HIV risk. Here we investigated the impact of semen exposure, as measured by self-reported condom use and Y-chromosome DNA (YcDNA) detection, on biomarkers of female genital inflammation associated with HIV acquisition. Methods: Stored genital specimens were collected biannually (mean 5 visits) from 153 HIV-negative women participating in the CAPRISA 008 tenofovir gel open-label extension trial. YcDNA was detected in cervicovaginal lavage (CVL) pellets by RT-PCR and served as a biomarker of semen exposure within 15 days of genital sampling. Protein concentrations were measured in CVL supernatants by multiplexed ELISA, and the frequency of activated CD4+CCR5+ HIV targets was assessed on cytobrush-derived specimens by flow cytometry. Common sexually transmitted infections (STIs) and bacterial vaginosis (BV)-associated bacteria were measured by PCR. Multivariable linear mixed models were used to assess the relationship between YcDNA detection and biomarkers of inflammation over time. Results: YcDNA was detected at least once in 69% (106/153) of women during the trial (median 2, range 1-5 visits), and was associated with marital status, cohabitation, the frequency of vaginal sex, and Nugent Score. YcDNA detection but not self-reported condom use was associated with elevated concentrations of several cytokines: IL-12p70, IL-10, IFN-γ, IL-13, IP-10, MIG, IL-7, PDGF-BB, SCF, VEGF, β-NGF, and biomarkers of epithelial barrier integrity: MMP-2 and TIMP-4; and with reduced concentrations of IL-18 and MIF. YcDNA detection was not associated with alterations in immune cell frequencies but was related to increased detection of P. bivia (OR = 1.970; CI 1.309-2.965; P = 0.001) at the FGT. Conclusion: YcDNA detection but not self-reported condom use was associated with alterations in cervicovaginal cytokines, BV-associated bacteria, and matrix metalloproteinases, and may have implications for HIV susceptibility in women. This study highlights the discrepancies related to self-reported condom use and the need for routine screening for biomarkers of semen exposure in studies of mucosal immunity to HIV and other STIs.
Collapse
Affiliation(s)
- Janine Jewanraj
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Sinaye Ngcapu
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Farzana Osman
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Andile Mtshali
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology, National Health Laboratory Services, KwaZulu-Natal Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Leila E. Mansoor
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S. Abdool Karim
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States
| | - Quarraisha Abdool Karim
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States
| | - Jo-Ann S. Passmore
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Johannesburg, South Africa
| | - Lenine J. P. Liebenberg
- Center for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
8
|
Lumngwena EN, Abrahams B, Shuping L, Cicala C, Arthos J, Woodman Z. Selective transmission of some HIV-1 subtype C variants might depend on Envelope stimulating dendritic cells to secrete IL-10. PLoS One 2020; 15:e0227533. [PMID: 31978062 PMCID: PMC6980567 DOI: 10.1371/journal.pone.0227533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022] Open
Abstract
Envelope (Env) phenotype(s) that provide transmitted founders (TF) with a selective advantage during HIV-1 transmission would be the ideal target for preventative therapy. We generated Env clones from four individuals infected with a single virus and one participant infected with multiple variants at transmission and compared phenotype with matched Envs from chronic infection (CI). When we determined whether pseudovirus (PSV) of the five TF and thirteen matched CI Env clones differed in their ability to 1) enter TZM-bl cells, 2) bind DC-SIGN, and 3) trans-infect CD4+ cells there was no association between time post-infection and variation in Env phenotype. However, when we compared the ability of PSV to induce monocyte-derived dendritic cells (MDDCs) to secrete Interleukin-10 (IL-10), we found that only TF Envs from single variant transmission cases induced MDDCs to secrete either higher or similar levels of IL-10 as the CI clones. Furthermore, interaction between MDDC DC-SIGN and Env was required for secretion of IL-10. When variants were grouped according to time post-infection, TF PSV induced the release of higher levels of IL-10 than their CI counterparts although this relationship varied across MDDC donors. The selection of variants during transmission is therefore likely a complex event dependent on both virus and host genetics. Our findings suggest that, potentially due to overall variation in N-glycosylation across variants, nuanced differences in binding of TF Env to DC-SIGN might trigger alternative DC immune responses (IRs) in the female genital tract (FGT) that favour HIV-1 survival and facilitate transmission.
Collapse
Affiliation(s)
- Evelyn Ngwa Lumngwena
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute for Medical Research and Medicinal Plants studies (IMPM), Ministry of Scientific Research and Innovation (MINRESI), Yaounde, Cameroon
- * E-mail: (ZW); (ENL)
| | - Bianca Abrahams
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Liliwe Shuping
- National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Claudia Cicala
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, United States of America
| | - James Arthos
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, United States of America
| | - Zenda Woodman
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail: (ZW); (ENL)
| |
Collapse
|
9
|
A Caulobacter crescentus Microbicide Protects from Vaginal Infection with HIV-1 JR-CSF in Humanized Bone Marrow-Liver-Thymus Mice. J Virol 2019; 93:JVI.00614-19. [PMID: 31243127 PMCID: PMC6714793 DOI: 10.1128/jvi.00614-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/12/2019] [Indexed: 02/01/2023] Open
Abstract
Human immunodeficiency virus (HIV) disproportionally infects young women in sub-Saharan Africa. Current HIV-1 prevention options have had limited success among women, suggesting that alternative, female-controlled prevention options need to be developed. Microbicides that can be applied to the vaginal tract are a promising prevention option. In this study, we describe the testing of 15 potential candidates for inhibition of HIV-1 infection in a humanized mouse model of HIV-1 infection. Four of these candidates were able to provide significant protection from vaginal infection with HIV-1, with the most successful candidate protecting 75% of the mice from infection. This study describes the preclinical testing of a new strategy that could be a safe and effective option for HIV-1 prevention in women. Over 2 million people are infected with HIV-1 annually. Approximately half of these new infections occur in women residing in low-income countries, where their access to and control over HIV-1 preventative measures are often limited, indicating that female-controlled prevention options for HIV-1 are urgently needed. Microbicides that can be topically applied to the vaginal tract in advance of sexual activity represent a promising female-controlled prevention option for HIV-1. We have previously described the development of an HIV-1-specific microbicide using the surface or S-layer recombinant protein display capabilities of the nonpathogenic, freshwater bacterium Caulobacter crescentus. Recombinant C. crescentus bacteria were created that displayed proteins that interfere with the HIV-1 attachment and entry process and that were able to provide significant protection of TZM-bl cells from infection with HIV-1 pseudovirus. These studies have been expanded to investigate if these recombinant C. crescentus bacteria are able to maintain efficacy with replication-competent HIV-1 and both TZM-bl cells and human peripheral blood mononuclear cells (PBMCs). In addition, we utilized the humanized bone marrow-liver-thymus (BLT) mouse model to determine if vaginal application of recombinant C. crescentus at the time of HIV-1JR-CSF infection could provide protection from HIV-1 infection. Recombinant C. crescentus bacteria expressing Griffithsin, GB virus C E2 protein, elafin, α-1-antitrypsin, indolicidin, and the fusion inhibitor T-1249 were able to protect 40 to 75% of the BLT mice from vaginal infection with HIV-1JR-CSF, with C. crescentus bacteria expressing Griffithsin being the most effective. Taken together, these data suggest that a C. crescentus-based microbicide could be a safe and effective method for HIV-1 prevention. IMPORTANCE Human immunodeficiency virus (HIV) disproportionally infects young women in sub-Saharan Africa. Current HIV-1 prevention options have had limited success among women, suggesting that alternative, female-controlled prevention options need to be developed. Microbicides that can be applied to the vaginal tract are a promising prevention option. In this study, we describe the testing of 15 potential candidates for inhibition of HIV-1 infection in a humanized mouse model of HIV-1 infection. Four of these candidates were able to provide significant protection from vaginal infection with HIV-1, with the most successful candidate protecting 75% of the mice from infection. This study describes the preclinical testing of a new strategy that could be a safe and effective option for HIV-1 prevention in women.
Collapse
|
10
|
Marlin R, Nugeyre MT, Tchitchek N, Parenti M, Lefebvre C, Hocini H, Benjelloun F, Cannou C, Nozza S, Dereuddre-Bosquet N, Levy Y, Barré-Sinoussi F, Scarlatti G, Le Grand R, Menu E. Seminal Plasma Exposures Strengthen Vaccine Responses in the Female Reproductive Tract Mucosae. Front Immunol 2019; 10:430. [PMID: 30915079 PMCID: PMC6423065 DOI: 10.3389/fimmu.2019.00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/18/2019] [Indexed: 01/01/2023] Open
Abstract
HIV-1 sexual transmission occurs mainly via mucosal semen exposures. In the female reproductive tract (FRT), seminal plasma (SP) induces physiological modifications, including inflammation. An effective HIV-1 vaccine should elicit mucosal immunity, however, modifications of vaccine responses by the local environment remain to be characterized. Using a modified vaccinia virus Ankara (MVA) as a vaccine model, we characterized the impact of HIV-1+ SP intravaginal exposure on the local immune responses of non-human primates. Multiple HIV-1+ SP exposures did not impact the anti-MVA antibody responses. However, SP exposures revealed an anti-MVA responses mediated by CD4+ T cells, which was not observed in the control group. Furthermore, the frequency and the quality of specific anti-MVA CD8+ T cell responses increased in the FRT exposed to SP. Multi-parameter approaches clearly identified the cervix as the most impacted compartment in the FRT. SP exposures induced a local cell recruitment of antigen presenting cells, especially CD11c+ cells, and CD8+ T cell recruitment in the FRT draining lymph nodes. CD11c+ cell recruitment was associated with upregulation of inflammation-related gene expression after SP exposures in the cervix. We thus highlight the fact that physiological conditions, such as SP exposures, should be taken into consideration to test and to improve vaccine efficacy against HIV-1 and other sexually transmitted infections.
Collapse
Affiliation(s)
- Romain Marlin
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Marie-Thérèse Nugeyre
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Nicolas Tchitchek
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France
| | - Matteo Parenti
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Cécile Lefebvre
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Équipe 16 Physiopathologie et Immunothérapies dans l'Infection VIH, Institut Mondor de Recherche Biomédicale - INSERM U955, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Équipe 16 Physiopathologie et Immunothérapies dans l'Infection VIH, Institut Mondor de Recherche Biomédicale - INSERM U955, Créteil, France
| | - Fahd Benjelloun
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Claude Cannou
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Silvia Nozza
- Infectious Diseases Department, San Raffaele Scientific Institute, Milan, Italy
| | - Nathalie Dereuddre-Bosquet
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France
| | - Yves Levy
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Équipe 16 Physiopathologie et Immunothérapies dans l'Infection VIH, Institut Mondor de Recherche Biomédicale - INSERM U955, Créteil, France.,Groupe Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Françoise Barré-Sinoussi
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,International Division, Institut Pasteur, Paris, France
| | - Gabriella Scarlatti
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Viral Evolution and Transmission Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Roger Le Grand
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Elisabeth Menu
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
11
|
Generation of a Dual-Target, Safe, Inexpensive Microbicide that Protects Against HIV-1 and HSV-2 Disease. Sci Rep 2018; 8:2786. [PMID: 29434285 PMCID: PMC5809452 DOI: 10.1038/s41598-018-21134-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/22/2018] [Indexed: 01/17/2023] Open
Abstract
HSV-2 infection is a significant health problem and a major co-morbidity factor for HIV-1 acquisition, increasing risk of infection 2-4 fold. Condom based prevention strategies for HSV-2 and HIV-1 have not been effective at stopping the HIV-1 pandemic, indicating that alternative prevention strategies need to be investigated. We have previously developed an inexpensive HIV-1 specific microbicide that utilizes the S-layer mediated display capabilities of Caulobacter crescentus, and have shown that recombinant C. crescentus displaying HIV entry blocking proteins are able to provide significant protection from HIV-1 infection in vitro. Here we demonstrate that recombinant C. crescentus are safe for topical application and describe 5 new recombinant C. crescentus that provide protection from HIV-1 infection in vitro. Further, we demonstrate protection from disease following intravaginal infection with HSV-2 in a murine model using C. crescentus expressing the anti-viral lectins Cyanovirin-N and Griffithsin, as well as α-1-antitrypsin and indolicidin. Interestingly, C. crescentus alone significantly reduced HSV-2 replication in vaginal lavage fluid. Protection from HSV-2 disease was strongly associated with early cytokine production in the vaginal tract. Our data support the potential for a dual-target microbicide that can protect against both HIV-1 and HSV-2, which could have an enormous impact on public health.
Collapse
|
12
|
Secchi M, Grampa V, Vangelista L. Rational CCL5 mutagenesis integration in a lactobacilli platform generates extremely potent HIV-1 blockers. Sci Rep 2018; 8:1890. [PMID: 29382912 PMCID: PMC5790001 DOI: 10.1038/s41598-018-20300-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/16/2018] [Indexed: 11/10/2022] Open
Abstract
Efforts to improve existing anti-HIV-1 therapies or develop preventatives have identified CCR5 as an important target and CCL5 as an ideal scaffold to sculpt potent HIV-1 entry inhibitors. We created novel human CCL5 variants that exhibit exceptional anti-HIV-1 features using recombinant lactobacilli (exploited for live microbicide development) as a screening platform. Protein design, expression and anti-HIV-1 activity flowed in iterative cycles, with a stepwise integration of successful mutations and refinement of an initial CCL5 mutant battery towards the generation of two ultimate CCL5 derivatives, a CCR5 agonist and a CCR5 antagonist with similar anti-HIV-1 potency. The CCR5 antagonist was tested in human macrophages and against primary R5 HIV-1 strains, exhibiting cross-clade low picomolar IC50 activity. Moreover, its successful combination with several HIV-1 inhibitors provided the ground for conceiving therapeutic and preventative anti-HIV-1 cocktails. Beyond HIV-1 infection, these CCL5 derivatives may now be tested against several inflammation-related pathologies where the CCL5:CCR5 axis plays a relevant role.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Valentina Grampa
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milan, Italy
- INSERM, UMRS-839, Institut du Fer à Moulin, 75005, Paris, France
| | - Luca Vangelista
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milan, Italy.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 010000, Astana, Kazakhstan.
| |
Collapse
|
13
|
Hu M, Zhou T, Dezzutti CS, Rohan LC. The Effect of Commonly Used Excipients on the Epithelial Integrity of Human Cervicovaginal Tissue. AIDS Res Hum Retroviruses 2017; 32:992-1004. [PMID: 27611224 DOI: 10.1089/aid.2016.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pharmaceutical excipients are widely used in vaginal drug products. The epithelial integrity of the cervicovaginal tissue is important for HIV-1 prevention. However, the effects of excipients on cervicovaginal epithelium remain unknown. This study aims at assessing the effects of vaginal product excipients on the integrity of human cervicovaginal epithelium and on a lead HIV prevention antiretroviral drug, tenofovir (TFV). In the current study, nine excipients commonly used in vaginal formulations were incubated for 6 h with excised human ectocervical tissue. The effects of the excipients were examined by measuring the transepithelial electrical resistance (TEER), epithelial morphology, paracellular/transcellular permeability, and cell viability. The efficacy of TFV for preventing HIV-1 infection in the ex vivo cultured ectocervix was also tested. We found that disodium ethyl-enediaminetetraacetate (EDTA), sorbic acid, and benzoic acid had no effect on the tissue TEER. Butylated hydroxyanisole, glycerin, propylene glycol, methylparaben, and propylparaben slightly to moderately decreased tissue TEER, whereas citric acid significantly decreased the TEER in a time-dependent manner. Tissue morphology observed post-exposure strongly correlated with TEER data; however, a less strong correlation was observed between paracellular permeability and TEER data after exposure to different excipients. In addition, treatment with EDTA, methylparaben, and propylene glycol at tested levels had no effect on the efficacy of TFV in preventing tissue HIV-1 infection. In conclusion, the combined measurements of TEER, morphology, permeability, and viability using human cervicovaginal tissue represent a clinically relevant platform for safety evaluation of excipients and formulated products for HIV-1 prevention.
Collapse
Affiliation(s)
- Minlu Hu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Tian Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Charlene S. Dezzutti
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa C. Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Mandal S, Khandalavala K, Pham R, Bruck P, Varghese M, Kochvar A, Monaco A, Prathipati PK, Destache C, Shibata A. Cellulose Acetate Phthalate and Antiretroviral Nanoparticle Fabrications for HIV Pre-Exposure Prophylaxis. Polymers (Basel) 2017; 9. [PMID: 30450244 PMCID: PMC6239201 DOI: 10.3390/polym9090423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To adequately reduce new HIV infections, development of highly effective pre-exposure prophylaxis (PrEP) against HIV infection in women is necessary. Cellulose acetate phthalate (CAP) is a pH sensitive polymer with HIV-1 entry inhibitory properties. Dolutegravir (DTG) is an integrase strand transfer inhibitor with potent antiretroviral activity. DTG delivered in combination with CAP may significantly improve current PrEP against HIV. In the present study, the development of DTG-loaded CAP nanoparticles incorporated in thermosensitive (TMS) gel at vaginal pH 4.2 and seminal fluid pH 7.4 is presented as proof-of-concept for improved PrEP. Water–oil–in–water homogenization was used to fabricate DTG-loaded CAP nanoparticles (DTG–CAP–NPs). Size, polydispersity, and morphological analyses illustrate that DTG–CAP–NPs were smooth and spherical, ≤200 nm in size, and monodispersed with a polydispersity index PDI ≤ 0.2. The drug encapsulation (EE%) and release profile of DTG–CAP–NPs was determined by HPLC analysis. The EE% of DTG in DTG–CAP–NPs was evaluated to be ~70%. The thermal sensitivity of the TMS gel was optimized and the pH dependency was evaluated by rheological analysis. DTG release studies in TMS gel revealed that DTG–CAP–NPs were stable in TMS gel at pH 4.2 while DTG–CAP–NPs in TMS gel at pH 7.4 rapidly release DTG (≥80% release within 1 h). Cytotoxicity studies using vaginal cell lines revealed that DTG–CAP–NPs were relatively non-cytotoxic at concentration <1 µg/mL. Confocal microscopic studies illustrate that ≥98% cells retained DTG–CAP–NPs intracellularly over seven days. Antiretroviral drug loaded nanocellulose fabrications in TMS gel delivered intravaginally may enhance both microbicidal and antiretroviral drug efficacy and may present a novel option for female PrEP against HIV.
Collapse
Affiliation(s)
- Subhra Mandal
- School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (S.M.); (P.K.P.); (C.D.)
| | - Karl Khandalavala
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
| | - Rachel Pham
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
| | - Patrick Bruck
- Dana-Farber Cancer Institute, Harvard University, Boston, MA 02215, USA;
| | - Marisa Varghese
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
| | - Andrew Kochvar
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
| | - Ashley Monaco
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
| | - Pavan Kumar Prathipati
- School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (S.M.); (P.K.P.); (C.D.)
| | - Christopher Destache
- School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (S.M.); (P.K.P.); (C.D.)
| | - Annemarie Shibata
- Department of Biology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; (K.K.); (R.P.); (M.V.); (A.K.); (A.M.)
- Correspondence: ; Tel.: +1-402-280-3588
| |
Collapse
|
15
|
Brako F, Mahalingam S, Rami-Abraham B, Craig DQM, Edirisinghe M. Application of nanotechnology for the development of microbicides. NANOTECHNOLOGY 2017; 28:052001. [PMID: 28032619 DOI: 10.1088/1361-6528/28/5/052001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The vaginal route is increasingly being considered for both local and systemic delivery of drugs, especially those unsuitable for oral administration. One of the opportunities offered by this route but yet to be fully utilised is the administration of microbicides. Microbicides have an unprecedented potential for mitigating the global burden from HIV infection as heterosexual contact accounts for most of the new infections occurring in sub-Saharan Africa, the region with the highest prevalent rates. Decades of efforts and massive investment of resources into developing an ideal microbicide have resulted in disappointing outcomes, as attested by several clinical trials assessing the suitability of those formulated so far. The highly complex and multi-level biochemical interactions that must occur among the virus, host cells and the drug for transmission to be halted means that a less sophisticated approach to formulating a microbicide e.g. conventional gels, etc may have to give way for a different formulation approach. Nanotechnology has been identified to offer prospects for fabricating structures with high capability of disrupting HIV transmission. In this review, predominant challenges seen in microbicide development have been highlighted and possible ways of surmounting them suggested. Furthermore, formulations utilising some of these highly promising nanostructures such as liposomes, nanofibres and nanoparticles have been discussed. A perspective on how a tripartite collaboration among governments and their agencies, the pharmaceutical industry and academic scientists to facilitate the development of an ideal microbicide in a timely manner has also been briefly deliberated.
Collapse
Affiliation(s)
- Francis Brako
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK. University College London, School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | |
Collapse
|
16
|
CD4-mimetic sulfopeptide conjugates display sub-nanomolar anti-HIV-1 activity and protect macaques against a SHIV162P3 vaginal challenge. Sci Rep 2016; 6:34829. [PMID: 27721488 PMCID: PMC5056392 DOI: 10.1038/srep34829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
The CD4 and the cryptic coreceptor binding sites of the HIV-1 envelope glycoprotein are key to viral attachment and entry. We developed new molecules comprising a CD4 mimetic peptide linked to anionic compounds (mCD4.1-HS12 and mCD4.1-PS1), that block the CD4-gp120 interaction and simultaneously induce the exposure of the cryptic coreceptor binding site, rendering it accessible to HS12- or PS1- mediated inhibition. Using a cynomolgus macaque model of vaginal challenge with SHIV162P3, we report that mCD4.1-PS1, formulated into a hydroxyethyl-cellulose gel provides 83% protection (5/6 animals). We next engineered the mCD4 moiety of the compound, giving rise to mCD4.2 and mCD4.3 that, when conjugated to PS1, inhibited cell-free and cell-associated HIV-1 with particularly low IC50, in the nM to pM range, including some viral strains that were resistant to the parent molecule mCD4.1. These chemically defined molecules, which target major sites of vulnerability of gp120, are stable for at least 48 hours in conditions replicating the vaginal milieu (37 °C, pH 4.5). They efficiently mimic several large gp120 ligands, including CD4, coreceptor or neutralizing antibodies, to which their efficacy compares very favorably, despite a molecular mass reduced to 5500 Da. Together, these results support the development of such molecules as potential microbicides.
Collapse
|
17
|
Zhou T, Hu M, Pearlman A, Rohan LC. Expression, regulation, and function of drug transporters in cervicovaginal tissues of a mouse model used for microbicide testing. Biochem Pharmacol 2016; 116:162-75. [PMID: 27453435 PMCID: PMC5362249 DOI: 10.1016/j.bcp.2016.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/14/2016] [Indexed: 01/18/2023]
Abstract
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 4 (MRP4) are three efflux transporters that play key roles in the pharmacokinetics of antiretroviral drugs used in the pre-exposure prophylaxis of HIV sexual transmission. In this study, we investigated the expression, regulation, and function of these transporters in cervicovaginal tissues of a mouse model. Expression and regulation were examined using real-time RT-PCR and immunohistochemical staining, in the mouse tissues harvested at estrus and diestrus stages under natural cycling or after hormone synchronization. The three transporters were expressed at moderate to high levels compared to the liver. Transporter proteins were localized in various cell types in different tissue segments. Estrous cycle and exogenous hormone treatment affected transporter mRNA and protein expression, in a tissue- and transporter-dependent manner. Depo-Provera-synchronized mice were dosed vaginally or intraperitoneally with (3)H-TFV, with or without MK571 co-administration, to delineate the function of cervicovaginal Mrp4. Co-administration of MK571 significantly increased the concentration of vaginally-administered TFV in endocervix and vagina. MK571 increased the concentration of intraperitoneally-administered TFV in the cervicovaginal lavage and vagina by several fold. Overall, P-gp, Bcrp, and Mrp4 were positively expressed in mouse cervicovaginal tissues, and their expression can be regulated by the estrous cycle or by exogenous hormones. In this model, the Mrp4 transporter impacted TFV distribution in cervicovaginal tissues.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Anti-HIV Agents/metabolism
- Anti-HIV Agents/pharmacokinetics
- Cell Line
- Cervix Uteri/cytology
- Cervix Uteri/drug effects
- Cervix Uteri/metabolism
- Diestrus/drug effects
- Diestrus/metabolism
- Estrus/drug effects
- Estrus/metabolism
- Female
- Gene Expression Regulation/drug effects
- Humans
- Mice
- Multidrug Resistance-Associated Proteins/antagonists & inhibitors
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Organ Specificity
- Propionates/pharmacology
- Quinolines/pharmacology
- Rabbits
- Reproductive Control Agents/pharmacology
- Species Specificity
- Tenofovir/metabolism
- Tenofovir/pharmacokinetics
- Tissue Distribution/drug effects
- Vagina/cytology
- Vagina/drug effects
- Vagina/metabolism
- Vaginal Creams, Foams, and Jellies/metabolism
- Vaginal Creams, Foams, and Jellies/pharmacokinetics
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Minlu Hu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Andrew Pearlman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Lisa C Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States.
| |
Collapse
|
18
|
Woodman Z. Can one size fit all? Approach to bacterial vaginosis in sub-Saharan Africa. Ann Clin Microbiol Antimicrob 2016; 15:16. [PMID: 26968525 PMCID: PMC4787044 DOI: 10.1186/s12941-016-0132-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/02/2016] [Indexed: 01/06/2023] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal disorder affecting women of reproductive age and is associated with increased risk of sexually transmitted infections such as human immunodeficiency syndrome (HIV-1). Sub-Saharan Africa has the highest BV and HIV-1 burden and yet very few studies have focused on understanding the aetiology of BV and its association with HIV in this region. It has been suggested that we need to accurately diagnose and treat BV to lower the risk of HIV infection globally. However, effective diagnosis requires knowledge of what constitutes a "healthy" cervicovaginal microbiome and current studies indicate that Lactobacillus crispatus might not be the only commensal protective against BV: healthy women from different countries and ethnicities harbour alternative commensals. Microbiotas associated with BV have also shown global variation, further complicating effective diagnosis via culture-based assays as some species are difficult to grow. Antibiotics and probiotics have been suggested to be key in controlling BV infection, but the efficacy of this treatment might rely on reconstituting endogenous commensals while targeting a specific species of BV-associated bacteria (BVAB). Alternatively, therapy could inhibit essential BV bacterial growth factors e.g. sialidases or provide anti-microbial compounds e.g. lactic acid associated with a healthy cervicovaginal microbiome. But without global investigation into the mechanism of BV pathogenesis and its association with HIV, selection of such compounds could be limited to Caucasian women from certain regions. To confirm this suggestion and guide future therapy we require standardised diagnostic assays and research methodologies. This review will focus on research papers that describe the global variation of BV aetiology and how this influences the identification of determinants of BV pathogenesis and potential probiotic and antimicrobial therapy.
Collapse
Affiliation(s)
- Zenda Woodman
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa.
| |
Collapse
|
19
|
Hu M, Patel SK, Zhou T, Rohan LC. Drug transporters in tissues and cells relevant to sexual transmission of HIV: Implications for drug delivery. J Control Release 2015; 219:681-696. [PMID: 26278511 PMCID: PMC4656065 DOI: 10.1016/j.jconrel.2015.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/11/2023]
Abstract
Efflux and uptake transporters of drugs are key regulators of the pharmacokinetics of many antiretroviral drugs. A growing body of literature has revealed the expression and functionality of multiple transporters in female genital tract (FGT), colorectal tissue, and immune cells. Drug transporters could play a significant role in the efficacy of preventative strategies for HIV-1 acquisition. Pre-exposure prophylaxis (PrEP) is a promising strategy, which utilizes topically (vaginally or rectally), orally or other systemically administered antiretroviral drugs to prevent the sexual transmission of HIV to receptive partners. The drug concentration in the receptive mucosal tissues and target immune cells for HIV is critical for PrEP effectiveness. Hence, there is an emerging interest in utilizing transporter information to explain tissue disposition patterns of PrEP drugs, to interpret inter-individual variability in PrEP drug pharmacokinetics and effectiveness, and to improve tissue drug exposure through modulation of the cervicovaginal, colorectal, or immune cell transporters. In this review, the existing literature on transporter expression, functionality and regulation in the transmission-related tissues and cells is summarized. In addition, the relevance of transporter function for drug delivery and strategies that could exploit transporters for increased drug concentration at target locales is discussed. The overall goal is to facilitate an understanding of drug transporters for PrEP optimization.
Collapse
Affiliation(s)
- Minlu Hu
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Sravan Kumar Patel
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Tian Zhou
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Lisa C Rohan
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Antimisiaris SG, Mourtas S. Recent advances on anti-HIV vaginal delivery systems development. Adv Drug Deliv Rev 2015; 92:123-45. [PMID: 25858666 DOI: 10.1016/j.addr.2015.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/04/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
A review of the recent outcomes regarding technologies to prevent vaginal transmission of HIV, mainly by using antiretroviral (ARV) drugs formulated as microbicides. An introduction about the HIV transmission mechanisms by the vaginal route is included, together with the recent challenges faced for development of successful microbicide products. The outcomes of clinical evaluations are mentioned, and the different formulation strategies studied to-date, with the requirements, advantages, disadvantages and limitations of each dosage-form type, are presented. Finally, the recent attempts to apply various types of nanotechnologies in order to develop advanced microbicide-products and overcome existing limitations, are discussed.
Collapse
|
21
|
Zalenskaya IA, Joseph T, Bavarva J, Yousefieh N, Jackson SS, Fashemi T, Yamamoto HS, Settlage R, Fichorova RN, Doncel GF. Gene Expression Profiling of Human Vaginal Cells In Vitro Discriminates Compounds with Pro-Inflammatory and Mucosa-Altering Properties: Novel Biomarkers for Preclinical Testing of HIV Microbicide Candidates. PLoS One 2015; 10:e0128557. [PMID: 26052926 PMCID: PMC4459878 DOI: 10.1371/journal.pone.0128557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammation and immune activation of the cervicovaginal mucosa are considered factors that increase susceptibility to HIV infection. Therefore, it is essential to screen candidate anti-HIV microbicides for potential mucosal immunomodulatory/inflammatory effects prior to further clinical development. The goal of this study was to develop an in vitro method for preclinical evaluation of the inflammatory potential of new candidate microbicides using a microarray gene expression profiling strategy. METHODS To this end, we compared transcriptomes of human vaginal cells (Vk2/E6E7) treated with well-characterized pro-inflammatory (PIC) and non-inflammatory (NIC) compounds. PICs included compounds with different mechanisms of action. Gene expression was analyzed using Affymetrix U133 Plus 2 arrays. Data processing was performed using GeneSpring 11.5 (Agilent Technologies, Santa Clara, CA). RESULTS Microarraray comparative analysis allowed us to generate a panel of 20 genes that were consistently deregulated by PICs compared to NICs, thus distinguishing between these two groups. Functional analysis mapped 14 of these genes to immune and inflammatory responses. This was confirmed by the fact that PICs induced NFkB pathway activation in Vk2 cells. By testing microbicide candidates previously characterized in clinical trials we demonstrated that the selected PIC-associated genes properly identified compounds with mucosa-altering effects. The discriminatory power of these genes was further demonstrated after culturing vaginal cells with vaginal bacteria. Prevotella bivia, prevalent bacteria in the disturbed microbiota of bacterial vaginosis, induced strong upregulation of seven selected PIC-associated genes, while a commensal Lactobacillus gasseri associated to vaginal health did not cause any changes. CONCLUSIONS In vitro evaluation of the immunoinflammatory potential of microbicides using the PIC-associated genes defined in this study could help in the initial screening of candidates prior to entering clinical trials. Additional characterization of these genes can provide further insight into the cervicovaginal immunoinflammatory and mucosal-altering processes that facilitate or limit HIV transmission with implications for the design of prevention strategies.
Collapse
Affiliation(s)
- Irina A Zalenskaya
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Theresa Joseph
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Jasmin Bavarva
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Nazita Yousefieh
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Suzanne S Jackson
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Titilayo Fashemi
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hidemi S Yamamoto
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Settlage
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gustavo F Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| |
Collapse
|
22
|
Steinbach JM. Protein and oligonucleotide delivery systems for vaginal microbicides against viral STIs. Cell Mol Life Sci 2015; 72:469-503. [PMID: 25323132 PMCID: PMC11113570 DOI: 10.1007/s00018-014-1756-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/10/2014] [Accepted: 10/06/2014] [Indexed: 01/17/2023]
Abstract
Intravaginal delivery offers an effective option for localized, targeted, and potent microbicide delivery. However, an understanding of the physiological factors that impact intravaginal delivery must be considered to develop the next generation of microbicides. In this review, a comprehensive discussion of the opportunities and challenges of intravaginal delivery are highlighted, in the context of the intravaginal environment and currently utilized dosage forms. After a subsequent discussion of the stages of microbicide development, the intravaginal delivery of proteins and oligonucleotides is addressed, with specific application to HSV and HIV. Future directions may include the integration of more targeted delivery modalities to virus and host cells, in addition to the use of biological agents to affect specific genes and proteins involved in infection. More versatile and multipurpose solutions are envisioned that integrate new biologicals and materials into potentially synergistic combinations to achieve these goals.
Collapse
Affiliation(s)
- Jill M Steinbach
- Department of Bioengineering, Center for Predictive Medicine, University of Louisville, 505 S. Hancock St., CTRB, Room 623, Louisville, KY, 40202, USA.
| |
Collapse
|
23
|
Grammen C, Baes M, Haenen S, Verguts J, Augustyns K, Zydowsky T, La Colla P, Augustijns P, Brouwers J. Vaginal Expression of Efflux Transporters and the Potential Impact on the Disposition of Microbicides in Vitro and in Rabbits. Mol Pharm 2014; 11:4405-14. [DOI: 10.1021/mp5005004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Carolien Grammen
- Department
of Pharmaceutical and Pharmacological Sciences, Drug Delivery and
Disposition, KU Leuven—University of Leuven, Leuven, Belgium
| | - Myriam Baes
- Department
of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell
Metabolism, KU Leuven—University of Leuven, Leuven, Belgium
| | - Steven Haenen
- Department
of Pharmaceutical and Pharmacological Sciences, Drug Delivery and
Disposition, KU Leuven—University of Leuven, Leuven, Belgium
| | - Jasper Verguts
- Department
of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Augustyns
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Thomas Zydowsky
- The Population Council, New York, New York 10017, United States
| | - Paolo La Colla
- Department
of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Patrick Augustijns
- Department
of Pharmaceutical and Pharmacological Sciences, Drug Delivery and
Disposition, KU Leuven—University of Leuven, Leuven, Belgium
| | - Joachim Brouwers
- Department
of Pharmaceutical and Pharmacological Sciences, Drug Delivery and
Disposition, KU Leuven—University of Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Grammen C, Plum J, Van Den Brande J, Darville N, Augustyns K, Augustijns P, Brouwers J. The Use of Supersaturation for the Vaginal Application of Microbicides: A Case Study with Dapivirine. J Pharm Sci 2014; 103:3696-3703. [DOI: 10.1002/jps.24176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 11/11/2022]
|
25
|
Richardson-Harman N, Hendrix CW, Bumpus NN, Mauck C, Cranston RD, Yang K, Elliott J, Tanner K, McGowan I, Kashuba A, Anton PA. Correlation between compartmental tenofovir concentrations and an ex vivo rectal biopsy model of tissue infectibility in the RMP-02/MTN-006 phase 1 study. PLoS One 2014; 9:e111507. [PMID: 25350130 PMCID: PMC4211741 DOI: 10.1371/journal.pone.0111507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES This study was designed to assess the dose-response relationship between tissue, blood, vaginal and rectal compartment concentrations of tenofovir (TFV) and tenofovir diphosphate (TFVdp) and ex vivo rectal HIV suppression following oral tenofovir disoproxil fumarate (TDF) and rectal administration of TFV 1% vaginally-formulated gel. DESIGN Phase 1, randomized, two-site (US), double-blind, placebo-controlled study of sexually-abstinent males and females. METHODS Eighteen participants received a single 300 mg exposure of oral TDF and were then randomized 2∶1 to receive a single then seven-daily rectal exposures of TFV 1% gel (40 mg TFV per 4 ml gel application) or hydroxyethyl-cellulose (HEC) placebo gel. Blood and rectal biopsies were collected for pharmacokinetic TDF and TFVdp analyses and ex vivo HIV-1 challenge. RESULTS There was a significant fit for the TFVdp dose-response model for rectal tissue (p = 0.0004), CD4+MMC (p<0.0001), CD4-MMC (p<0.0001), and TotalMMC (p<0.0001) compartments with r2 ranging 0.36-0.64. Higher concentrations of TFVdp corresponded with lower p24, consistent with drug-mediated virus suppression. The single oral treatment failed to provide adequate compartment drug exposure to reach the EC50 of rectal tissue TFVdp predicted to be necessary to suppress HIV in rectal tissue. The EC50 for CD4+MMC was within the single topical treatment range, providing evidence that a 1% topical, vaginally-formulated TFV gel provided in-vivo doses predicted to provide for 50% efficacy in the ex vivo assay. The 7-daily topical TFV gel treatment provided TFVdp concentrations that reached EC90 biopsy efficacy for CD4-MMC, CD4+MMC and TotalMMC compartments. CONCLUSION The TFVdp MMC compartment (CD4+, CD4- and Total) provided the best surrogate for biopsy infectibility and the 7-daily topical TFV gel treatment provided the strongest PK profile for HIV suppression. ClinicalTrials.gov NCT00984971.
Collapse
Affiliation(s)
| | - Craig W. Hendrix
- Departments of Medicine and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Namandjé N. Bumpus
- Departments of Medicine and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | | | - Ross D. Cranston
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kuo Yang
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Julie Elliott
- Center for HIV Prevention Research, UCLA AIDS Institute, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Karen Tanner
- Center for HIV Prevention Research, UCLA AIDS Institute, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Ian McGowan
- Magee-Womens Research Institute, University of Pittsburgh Medical School, Pittsburgh, PA, United States of America
| | - Angela Kashuba
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Peter A. Anton
- Center for HIV Prevention Research, UCLA AIDS Institute, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
26
|
Li P, Fujimoto K, Bourguingnon L, Yukl S, Deeks S, Wong JK. Exogenous and endogenous hyaluronic acid reduces HIV infection of CD4(+) T cells. Immunol Cell Biol 2014; 92:770-80. [PMID: 24957217 PMCID: PMC4205896 DOI: 10.1038/icb.2014.50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 01/02/2023]
Abstract
Preventing mucosal transmission of HIV is critical to halting the HIV epidemic. Novel approaches to preventing mucosal transmission are needed. Hyaluronic acid (HA) is a major extracellular component of mucosa and the primary ligand for the cell surface receptor CD44. CD44 enhances HIV infection of CD4(+) T cells, but the role of HA in this process is not clear. To study this, virions were generated with CD44 (HIVCD44) or without CD44 (HIVmock). Exogenous HA reduced HIV infection of unstimulated CD4(+) T cells in a CD44-dependent manner. Conversely, hyaluronidase-mediated reduction of endogenous HA on the cell surface enhanced HIV binding to and infection of unstimulated CD4(+) T cells. Exogenous HA treatment reduced activation of protein kinase C alpha via CD44 on CD4(+) T cells during infection with HIVCD44. These results reveal new roles for HA during the interaction of HIV with CD4(+) T cells that may be relevant to mucosal HIV transmission and could be exploitable as a future strategy to prevent HIV infection.
Collapse
Affiliation(s)
- Peilin Li
- San Francisco Veterans Affairs Medical Center, Department of Medicine, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Katsuya Fujimoto
- San Francisco Veterans Affairs Medical Center, Department of Medicine, San Francisco, CA, USA
| | - Lilly Bourguingnon
- San Francisco Veterans Affairs Medical Center, Department of Medicine, San Francisco, CA, USA
| | - Steven Yukl
- San Francisco Veterans Affairs Medical Center, Department of Medicine, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Joseph K Wong
- San Francisco Veterans Affairs Medical Center, Department of Medicine, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
27
|
Férir G, Huskens D, Noppen S, Koharudin LMI, Gronenborn AM, Schols D. Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family. J Antimicrob Chemother 2014; 69:2746-58. [PMID: 24970741 DOI: 10.1093/jac/dku220] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Oscillatoria agardhii agglutinin homologue (OAAH) proteins belong to a recently discovered lectin family. The founding member OAA and a designed hybrid OAAH (OPA) recognize similar but unique carbohydrate structures of Man-9, compared with other antiviral carbohydrate-binding agents (CBAs). These two newly described CBAs were evaluated for their inactivating properties on HIV replication and transmission and for their potential as microbicides. METHODS Various cellular assays were used to determine antiviral activity against wild-type and certain CBA-resistant HIV-1 strains: (i) free HIV virion infection in human T lymphoma cell lines and PBMCs; (ii) syncytium formation assay using persistently HIV-infected T cells and non-infected CD4+ T cells; (iii) DC-SIGN-mediated viral capture; and (iv) transmission to uninfected CD4+ T cells. OAA and OPA were also evaluated for their mitogenic properties and potential synergistic effects using other CBAs. RESULTS OAA and OPA inhibit HIV replication, syncytium formation between HIV-1-infected and uninfected T cells, DC-SIGN-mediated HIV-1 capture and transmission to CD4+ target T cells, thereby rendering a variety of HIV-1 and HIV-2 clinical isolates non-infectious, independent of their coreceptor use. Both CBAs competitively inhibit the binding of the Manα(1-2)Man-specific 2G12 monoclonal antibody (mAb) as shown by flow cytometry and surface plasmon resonance analysis. The HIV-1 NL4.3(2G12res), NL4.3(MVNres) and IIIB(GRFTres) strains were equally inhibited as the wild-type HIV-1 strains by these CBAs. Combination studies indicate that OAA and OPA act synergistically with Hippeastrum hybrid agglutinin, 2G12 mAb and griffithsin (GRFT), with the exception of OPA/GRFT. CONCLUSIONS OAA and OPA are unique CBAs with broad-spectrum anti-HIV activity; however, further optimization will be necessary for microbicidal application.
Collapse
Affiliation(s)
- Geoffrey Férir
- Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Dana Huskens
- Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Sam Noppen
- Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Leonardus M I Koharudin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Dominique Schols
- Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
28
|
Doncel GF, Anderson S, Zalenskaya I. Role of Semen in Modulating the Female Genital Tract Microenvironment – Implications for HIV Transmission. Am J Reprod Immunol 2014; 71:564-74. [DOI: 10.1111/aji.12231] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/19/2014] [Indexed: 02/03/2023] Open
Affiliation(s)
- Gustavo F. Doncel
- Department of Obstetrics and Gynecology CONRAD Eastern Virginia Medical School Norfolk VA USA
| | - Sharon Anderson
- Department of Obstetrics and Gynecology CONRAD Eastern Virginia Medical School Norfolk VA USA
| | - Irina Zalenskaya
- Department of Obstetrics and Gynecology CONRAD Eastern Virginia Medical School Norfolk VA USA
| |
Collapse
|
29
|
Silencing sexually transmitted infections: topical siRNA-based interventions for the prevention of HIV and HSV. Infect Dis Obstet Gynecol 2014; 2014:125087. [PMID: 24526828 PMCID: PMC3913465 DOI: 10.1155/2014/125087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/25/2013] [Indexed: 12/27/2022] Open
Abstract
The global impact of sexually transmitted infections (STIs) is significant. The sexual transmission of viruses such as herpes simplex virus type-2 (HSV-2) and the human immunodeficiency virus type-1 (HIV-1), has been especially difficult to control. To date, no effective vaccines have been developed to prevent the transmission of these STIs. Although antiretroviral drugs have been remarkably successful in treating the symptoms associated with these viral infections, the feasibility of their widespread use for prevention purposes may be more limited. Microbicides might provide an attractive alternative option to reduce their spread. In particular, topically applied small inhibitory RNAs (siRNAs) have been shown to not only block transmission of viral STIs to mucosal tissues both in vitro and in vivo, but also confer durable knockdown of target gene expression, thereby circumventing the need to apply a microbicide around the time of sexual encounter, when compliance is mostly difficult. Despite numerous clinical trials currently testing the efficacy of siRNA-based therapeutics, they have yet to be approved for use in the treatment of viral STIs. While several obstacles to their successful implementation in the clinic still exist, promising preclinical studies suggest that siRNAs are a viable modality for the future prevention and treatment of HSV and HIV.
Collapse
|
30
|
Fanibunda SE, Modi DN, Bandivdekar AH. HIV gp120 induced gene expression signatures in vaginal epithelial cells. Microbes Infect 2013; 15:806-15. [DOI: 10.1016/j.micinf.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/22/2013] [Accepted: 07/08/2013] [Indexed: 01/22/2023]
|
31
|
Sepúlveda-Crespo D, Lorente R, Leal M, Gómez R, De la Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:609-18. [PMID: 24135563 DOI: 10.1016/j.nano.2013.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/01/2013] [Accepted: 10/06/2013] [Indexed: 01/29/2023]
Abstract
UNLABELLED Polyanionic carbosilane dendrimers represent opportunities to develop new anti-HIV microbicides. Dendrimers and antiretrovirals (ARVs) acting at different stages of HIV replication have been proposed as compounds to decrease new HIV infections. Thus, we determined the potential use of our G2-STE16 carbosilane dendrimer in combination with other carbosilane dendrimers and ARVs for the use as topical microbicide against HIV-1. We showed that these combinations obtained 100% inhibition and displayed a synergistic profile against different HIV-1 isolates in our model of TZM.bl cells. Our results also showed their potent activity in the presence of an acidic vaginal or seminal fluid environment and did not activate an inflammatory response. This study is the first step toward exploring the use of different anionic carbosilane dendrimers in combination and toward making a safe microbicide. Therefore, our results support further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicide. FROM THE CLINICAL EDITOR This paper describes the first steps toward the use of anionic carbosilane dendrimers in combination with antivirals to address HIV-1, paving the way to further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicides.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Raquel Lorente
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Rafael Gómez
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco J De la Mata
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Luis Jiménez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - M Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
32
|
The complexity of contraceptives: understanding their impact on genital immune cells and vaginal microbiota. AIDS 2013; 27 Suppl 1:S5-15. [PMID: 24088684 DOI: 10.1097/qad.0000000000000058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Translation of biomedical prevention strategies for HIV: prospects and pitfalls. J Acquir Immune Defic Syndr 2013; 63 Suppl 1:S12-25. [PMID: 23673881 DOI: 10.1097/qai.0b013e31829202a2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Early achievements in biomedical approaches for HIV prevention included physical barriers (condoms), clean injection equipment (both for medical use and for injection drug users), blood and blood product safety, and prevention of mother-to-child transmission. In recent years, antiretroviral drugs to reduce the risk of transmission (when the infected person takes the medicines; treatment as prevention) or reduce the risk of acquisition (when the seronegative person takes them; preexposure prophylaxis) have proven to be efficacious. Circumcision of men has also been a major tool relevant for higher prevalence regions such as sub-Saharan Africa. Well-established prevention strategies in the control of sexually transmitted diseases and tuberculosis are highly relevant for HIV (ie, screening, linkage to care, early treatment, and contact tracing). Unfortunately, only slow progress is being made in some available HIV-prevention strategies such as family planning for HIV-infected women who do not want more children and prevention of mother-to-child HIV transmission. Current studies seek to integrate strategies into approaches that combine biomedical, behavioral, and structural methods to achieve prevention synergies. This review identifies the major biomedical approaches demonstrated to be efficacious that are now available. We also highlight the need for behavioral risk reduction and adherence as essential components of any biomedical approach.
Collapse
|
34
|
Farr C, Nomellini JF, Ailon E, Shanina I, Sangsari S, Cavacini LA, Smit J, Horwitz MS. Development of an HIV-1 Microbicide Based on Caulobacter crescentus: Blocking Infection by High-Density Display of Virus Entry Inhibitors. PLoS One 2013; 8:e65965. [PMID: 23840383 PMCID: PMC3686833 DOI: 10.1371/journal.pone.0065965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 05/02/2013] [Indexed: 01/23/2023] Open
Abstract
The HIV/AIDS pandemic remains an enormous global health concern. Despite effective prevention options, 2.6 million new infections occur annually, with women in developing countries accounting for more than half of these infections. New prevention strategies that can be used by women are urgently needed. Topical microbicides specific for HIV-1 represent a promising prevention strategy. Conceptually, using harmless bacteria to display peptides or proteins capable of blocking entry provides an inexpensive approach to microbicide development. To avoid the potential pitfalls of engineering commensal bacteria, our strategy is to genetically display infection inhibitors on a non-native bacterium and rely on topical application of stabilized bacteria before potential virus exposure. Due to the high density cell-surface display capabilities and the inherent low toxicity of the bacterium, the S-layer mediated protein display capabilities of the non-pathogenic bacterium Caulobacter crescentus has been exploited for this approach. We have demonstrated that C. crescentus displaying MIP1α or CD4 interfered with the virus entry pathway and provided significant protection from HIV-1 pseudovirus representing clade B in a standard single cycle infection assay. Here we have expanded our C. crescentus based microbicide approach with additional and diverse classes of natural and synthetic inhibitors of the HIV-1 entry pathway. All display constructs provided variable but significant protection from HIV-1 infection; some with protection as high as 70%. Further, we describe protection from infection with additional viral clades. These findings indicate the significant potential for engineering C. crescentus to be an effective and readily adaptable HIV-1 microbicide platform.
Collapse
Affiliation(s)
- Christina Farr
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John F. Nomellini
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Ailon
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sassan Sangsari
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa A. Cavacini
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - John Smit
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
35
|
Durable knockdown and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol Ther 2013; 21:1378-89. [PMID: 23629001 DOI: 10.1038/mt.2013.77] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/17/2013] [Indexed: 02/06/2023] Open
Abstract
The continued spread of HIV underscores the need to interrupt transmission. One attractive strategy, in the absence of an effective vaccine, is a topical microbicide, but the need for application around the time of sexual intercourse leads to poor patient compliance. Intravaginal (IVAG) application of CD4 aptamer-siRNA chimeras (CD4-AsiCs) targeting the HIV coreceptor CCR5, gag, and vif protected humanized mice from sexual transmission. In non-dividing cells and tissue, RNAi-mediated gene knockdown lasts for several weeks, providing an opportunity for infrequent dosing not temporally linked to sexual intercourse, when compliance is challenging. Here, we investigate the durability of gene knockdown and viral inhibition, protection afforded by CCR5 or HIV gene knockdown on their own, and effectiveness of CD4-AsiCs formulated in a gel in polarized human cervicovaginal explants and in humanized mice. CD4-AsiC-mediated gene knockdown persisted for several weeks. Cell-specific gene knockdown and protection were comparable in a hydroxyethylcellulose gel formulation. CD4-AsiCs against CCR5 or gag/vif performed as well as a cocktail in humanized mice. Transmission was completely blocked by CCR5 CD4-AsiCs applied 2 days before challenge. Significant, but incomplete, protection also occurred when exposure was delayed for 4 or 6 days. CD4-AsiCs targeting gag/vif provided some protection when administered only after exposure. These data suggest that CD4-AsiCs are a promising approach for developing an HIV microbicide.
Collapse
|
36
|
|
37
|
Clark MR, Friend DR. Pharmacokinetics and topical vaginal effects of two tenofovir gels in rabbits. AIDS Res Hum Retroviruses 2012; 28:1458-66. [PMID: 22394281 DOI: 10.1089/aid.2011.0328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tenofovir (TFV) 1% gel has proven effective in preclinical and clinical studies in preventing sexual transmission of HIV-1. The impact of changing the current gel formulation to reduce its osmolality was evaluated using pharmacokinetic assessments and local tissue effects in the rabbit. Following vaginal administration of TFV 1% gel and reduced-glycerin TFV 1% gel, TFV was measured in plasma, vaginal tissues, vaginal fluids, and iliac lymph nodes. After a single dose, plasma C(max) and AUC(0-4h) were significantly higher in the TFV 1% gel group compared with the reduced-glycerin TFV 1% gel group. After 14 days of once-daily dosing, differences in these parameters were insignificant. Vaginal fluid concentrations were ∼100 μg/ml following the first dose and up to a mean of about 500 μg/ml after 14 once-daily doses. Mean (and median) cranial TFV tissue concentrations were generally in excess of 100 μg/g following a single dose and 14 once-daily doses of both gels; concentrations in the caudal vaginal tissues were comparatively lower, although in nearly all cases mean values exceeded 10 μg/g. Treatment of tissues with phosphatase to liberate TFV from its diphosphate and monophosphate metabolites increased recovery of TFV by 60-120%. Median TFV concentrations in iliac lymph nodes ranged from 44 ng/g to 196 ng/g; differences between iliac lymph node TFV concentrations following dosing of the two gels were insignificant. There were no differences observed in histological evaluation in the cranial vagina following 14 days of once-daily dosing of either gel. There was an apparent impact of TFV on rabbit vaginal epithelium (increased secretory depletion and increased cellular vacuolization) independent of formulation. These data indicate that the reduced-glycerin TFV 1% gel may be a suitable alternative to TFV 1% gel.
Collapse
Affiliation(s)
- Meredith R. Clark
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Arlington, Virginia
| | - David R. Friend
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Arlington, Virginia
| |
Collapse
|
38
|
Aravantinou M, Singer R, Derby N, Calenda G, Mawson P, Abraham CJ, Menon R, Seidor S, Goldman D, Kenney J, Villegas G, Gettie A, Blanchard J, Lifson JD, Piatak M, Fernández-Romero JA, Zydowsky TM, Teleshova N, Robbiani M. The nonnucleoside reverse transcription inhibitor MIV-160 delivered from an intravaginal ring, but not from a carrageenan gel, protects against simian/human immunodeficiency virus-RT Infection. AIDS Res Hum Retroviruses 2012; 28:1467-75. [PMID: 22816564 PMCID: PMC3484820 DOI: 10.1089/aid.2012.0080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
We previously showed that a carrageenan (CG) gel containing 50 μM MIV-150 (MIV-150/CG) reduced vaginal simian/human immunodeficiency virus (SHIV)-RT infection of macaques (56%, p>0.05) when administered daily for 2 weeks with the last dose given 8 h before challenge. Additionally, when 100 mg of MIV-150 was loaded into an intravaginal ring (IVR) inserted 24 h before challenge and removed 2 weeks after challenge, >80% protection was observed (p<0.03). MIV-160 is a related NNRTI with a similar IC(50), greater aqueous solubility, and a shorter synthesis. To objectively compare MIV-160 with MIV-150, herein we evaluated the antiviral effects of unformulated MIV-160 in vitro as well as the in vivo protection afforded by MIV-160 delivered in CG (MIV-160/CG gel) and in an IVR under regimens used with MIV-150 in earlier studies. Like MIV-150, MIV-160 exhibited potent antiviral activity against SHIV-RT in macaque vaginal explants. However, formulated MIV-160 exhibited divergent effects in vivo. The MIV-160/CG gel offered no protection compared to CG alone, whereas the MIV-160 IVRs protected significantly. Importantly, the results of in vitro release studies of the MIV-160/CG gel and the MIV-160 IVR suggested that in vivo efficacy paralleled the amount of MIV-160 released in vitro. Hundreds of micrograms of MIV-160 were released daily from IVRs while undetectable amounts of MIV-160 were released from the CG gel. Our findings highlight the importance of testing different modalities of microbicide delivery to identify the optimal formulation for efficacy in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland
| | | | | | | | | |
Collapse
|
39
|
Richardson-Harman N, Mauck C, McGowan I, Anton P. Dose-response relationship between tissue concentrations of UC781 and explant infectibility with HIV type 1 in the RMP-01 rectal safety study. AIDS Res Hum Retroviruses 2012; 28:1422-33. [PMID: 22900504 DOI: 10.1089/aid.2012.0073] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A retrospective correlational analysis of UC781 (0.1, 0.25%) gel pharmacokinetics (PK) and pharmacodynamics (PD) was undertaken using data generated in the RMP-01/MTN-006 Phase 1 rectal safety study of the UC781 microbicide gel, where strong UC781-related inhibition of ex vivo biopsy infectibility (PD) was seen. Precision analysis, linear and logistical correlational methods were applied to model the dose-response relationship. Four analyses of explant virus growth were compared to determine tissue concentrations of UC781 needed to maintain ex vivo virus growth below a range of cut-points. SOFT, a cross-sectional index from a growth curve, and cumulative p24 endpoints were the most precise measurement of ex vivo HIV infection and significantly (p<0.01) correlated with rectal tissue UC781 concentrations. Cut-points reflecting infectibility, ranging from 200 to 1300 p24 pg/ml, provided EC(50,90,95) tissue levels of UC781. A cut-point of 200 p24 pg/ml provided an EC(50) of 2148 UC781 ng/g tissue; a cut-point of 1100 p24 predicted a lower EC(50) of 101 UC781 ng/g. A 30- to 170-fold EC(90):EC(50) ratio was found. Higher p24 cut-points provided more predictive models. Tissue UC781 levels and ex vivo infectibility data were correlated to model dose-response drug efficacy in this small Phase 1 trial. Logistic regression analyses showed EC(50,90,95) values were inversely related to p24 cut-point levels, providing clinically relevant insights into tissue drug concentration necessary for ex vivo suppression of HIV tissue infectibility. This first PK-PD assessment of topical microbicides demonstrates feasibility in Phase 1 trials, enabling comparisons of microbicide efficacy (i.e., EC(50,90,95)) between formulations, compartments, and application methods. (ClinicalTrials.gov; #NCT00408538).
Collapse
|
40
|
Grammen C, Augustijns P, Brouwers J. In vitro profiling of the vaginal permeation potential of anti-HIV microbicides and the influence of formulation excipients. Antiviral Res 2012; 96:226-33. [PMID: 23000496 DOI: 10.1016/j.antiviral.2012.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/31/2012] [Accepted: 09/12/2012] [Indexed: 12/22/2022]
Abstract
In the search for an effective anti-HIV microbicidal gel, limited drug penetration into the vaginal submucosa is a possible reason for failed protection against HIV transmission. To address this issue in early development, we here describe a simple in vitro strategy to predict the tissue permeation potential of vaginally applied drugs, based on solubility, permeability and flux assessment. We demonstrated this approach for four model microbicides (tenofovir, darunavir, saquinavir mesylate and dapivirine) and additionally examined the influence of formulation excipients on the permeation potential. When formulated in an aqueous-based HEC gel, high flux values across an HEC-1A cell layer were reached by tenofovir, as a result of its high aqueous solubility. In contrast, saquinavir and dapivirine fluxes remained low due to poor permeability and solubility, respectively. These low fluxes suggest limited in vivo tissue penetration, possibly leading to lack of efficacy. Dapivirine fluxes, however, could be enhanced up to 30-fold, by including formulation excipients such as polyethylene glycol 1000 (20%) or cyclodextrins (5%) in the HEC gels. Alternative formulations, i.e. emulsions or silicone elastomer gels, were less effective in flux enhancement compared to cyclodextrin-HEC gels. In conclusion, implementing the proposed solubility and permeability profiling in early microbicide development may contribute to the successful selection of promising microbicide candidates and appropriate formulations.
Collapse
Affiliation(s)
- Carolien Grammen
- Laboratory for Pharmacotechnology and Biopharmacy, KU Leuven, Belgium
| | | | | |
Collapse
|
41
|
Férir G, Hänchen A, François KO, Hoorelbeke B, Huskens D, Dettner F, Süssmuth RD, Schols D. Feglymycin, a unique natural bacterial antibiotic peptide, inhibits HIV entry by targeting the viral envelope protein gp120. Virology 2012; 433:308-19. [PMID: 22959895 DOI: 10.1016/j.virol.2012.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/04/2012] [Accepted: 08/01/2012] [Indexed: 11/18/2022]
Abstract
Feglymycin (FGM), a natural Streptomyces-derived 13mer peptide, consistently inhibits HIV replication in the lower μM range. FGM also inhibits HIV cell-to-cell transfer between HIV-infected T cells and uninfected CD4(+) T cells and the DC-SIGN-mediated viral transfer to CD4(+) T cells. FGM potently interacts with gp120 (X4 and R5) as determined by SPR analysis and shown to act as a gp120/CD4 binding inhibitor. Alanine-scan analysis showed an important role for l-aspartic acid at position 13 for its anti-HIV activity. In vitro generated FGM-resistant HIV-1 IIIB virus (HIV-1 IIIB(FGMres)) showed two unique mutations in gp120 at positions I153L and K457I. HIV-1 IIIB(FGMres) virus was equally susceptible to other viral binding/adsorption inhibitors with the exception of dextran sulfate (9-fold resistance) and cyclotriazadisulfonamide (>15-fold), two well-described compounds that interfere with HIV entry. In conclusion, FGM is a unique prototype lead peptide with potential for further development of more potent anti-HIV derivatives.
Collapse
Affiliation(s)
- Geoffrey Férir
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
VANPOUILLE C, ARAKELYAN A, MARGOLIS L. Microbicides: still a long road to success. Trends Microbiol 2012; 20:369-75. [PMID: 22705107 PMCID: PMC3756685 DOI: 10.1016/j.tim.2012.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
The development of efficient microbicides, the topically applied compounds that protect uninfected individuals from acquiring HIV-1, is a promising strategy to contain HIV-1 epidemics. Such microbicides should of course possess anti-HIV-1 activity, but they should also act against other genital pathogens, which facilitate HIV-1 transmission. The new trend in microbicide strategy is to use drugs currently used in HIV-1 therapy. The success of this strategy is mixed so far and is impaired by our limited knowledge of the basic mechanisms of HIV-1 transmission as well as by the inadequacy of the systems in which microbicides are tested in preclinical studies.
Collapse
Affiliation(s)
- Christophe VANPOUILLE
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anush ARAKELYAN
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Leonid MARGOLIS
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model. Virology 2012; 432:505-10. [PMID: 22832125 DOI: 10.1016/j.virol.2012.06.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 11/23/2022]
Abstract
The new generation broadly neutralizing antibody VRC01 against HIV-1 shows great potential as a topically administered microbicide to prevent sexual transmission. We evaluated its efficacy in a RAG-hu humanized mouse model of vaginal HIV-1 transmission. Mice were challenged vaginally with R5 tropic HIV-1 BaL an hour after intravaginal application of the VRC01 (1 mg/ml concentration) gel. A combination of four first generation bNAbs, namely b12, 2F5, 4E10 and 2G12, was used as a positive efficacy control whereas a non-specific dengue MAb 4G2 was used as negative control. Our results showed that seven out of nine VRC01 antibody administered mice and all of the mice receiving the four bNAb antibody combination were protected against HIV-1 challenge. These findings demonstrate the efficacy of the new bNAb VRC01 as a topical microbicide to protect against HIV-1 vaginal transmission and highlight the use of the RAG-hu mouse model for testing HIV prevention strategies.
Collapse
|
44
|
Pillay V, Mashingaidze F, Choonara YE, Du Toit LC, Buchmann E, Maharaj V, Ndesendo VM, Kumar P. Qualitative and Quantitative Intravaginal Targeting: Key to Anti-HIV-1 Microbicide Delivery from Test Tube to In Vivo Success. J Pharm Sci 2012; 101:1950-68. [DOI: 10.1002/jps.23098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/27/2011] [Accepted: 02/09/2012] [Indexed: 12/20/2022]
|
45
|
Kiser PF, Mahalingam A, Fabian J, Smith E, Damian FR, Peters JJ, Katz DF, Elgendy H, Clark MR, Friend DR. Design of Tenofovir–UC781 Combination Microbicide Vaginal Gels. J Pharm Sci 2012; 101:1852-64. [DOI: 10.1002/jps.23089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/04/2012] [Accepted: 02/02/2012] [Indexed: 11/10/2022]
|
46
|
Preclinical evaluation of the HIV-1 fusion inhibitor L'644 as a potential candidate microbicide. Antimicrob Agents Chemother 2012; 56:2347-56. [PMID: 22330930 DOI: 10.1128/aac.06108-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Topical blockade of the gp41 fusogenic protein of HIV-1 is one possible strategy by which microbicides could prevent HIV transmission, working early against infection, by inhibiting viral entry into host cells. In this study, we examined the potential of gp41 fusion inhibitors (FIs) as candidate anti-HIV microbicides. Preclinical evaluation of four FIs, C34, T20, T1249, and L'644, was performed using cellular and ex vivo genital and colorectal tissue explant models. Increased and sustained activity was detected for L'644, a cholesterol-derivatized version of C34, relative to the other FIs. The higher potency of L'644 was further increased with sustained exposure of cells or tissue to the compound. The activity of L'644 was not affected by biological fluids, and the compound was still active when tissue explants were treated after viral exposure. L'644 was also more active than other FIs against a viral escape mutant resistant to reverse transcriptase inhibitors (RTIs), demonstrating the potential of L'644 to be included as part of a multiactive antiretroviral (ARV) combination-based microbicide. These data support the further development of L'644 for microbicide application.
Collapse
|
47
|
Stockman JK, Ludwig-Barron N, Hoffman MA, Ulibarri MD, Dyer TVP. Prevention interventions for human immunodeficiency virus in drug-using women with a history of partner violence. Subst Abuse Rehabil 2012; 3:45-57. [PMID: 24500422 PMCID: PMC3280816 DOI: 10.2147/sar.s21293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The intersecting epidemics of human immunodeficiency virus (HIV) and partner violence disproportionately affect women who use drugs. Despite accumulating evidence throughout the world linking these epidemics, HIV prevention efforts focused on these synergistic issues as well as underlying determinants that contribute to the HIV risk environment (eg, housing instability, incarceration, policing practices, survival sex) are lacking. This article highlights selected behavior change theories and biomedical approaches that have been used or could be applied in HIV prevention interventions for drug-using women with histories of partner violence and in existing HIV prevention interventions for drug-using women that have been gender-focused while integrating histories of partner violence and/or relationship power dynamics. To date, there is a paucity of HIV prevention interventions designed for drug-using women (both in and outside of drug treatment programs) with histories of partner violence. Of the few that exist, they have been theory-driven, culture-specific, and address certain aspects of gender-based inequalities (eg, gender-specific norms, relationship power and control, partner violence through assessment of personal risk and safety planning). However, no single intervention has addressed all of these issues. Moreover, HIV prevention interventions for drug-using women with histories of partner violence are not widespread and do not address multiple components of the risk environment. Efficacious interventions should target individuals, men, couples, and social networks. There is also a critical need for the development of culturally tailored combination HIV prevention interventions that not only incorporate evidence-based behavioral and biomedical approaches (eg, microbicides, pre-exposure prophylaxis, female-initiated barrier methods) but also take into account the risk environment at the physical, social, economic and political levels. Ultimately, this approach will have a significant impact on reducing HIV infections among drug-using women with histories of partner violence.
Collapse
Affiliation(s)
- Jamila K Stockman
- Division of Global Public Health, Department of Medicine, San Diego, La Jolla, CA
| | | | - Monica A Hoffman
- Department of Communication and Science Studies, San Diego, La Jolla, CA
| | - Monica D Ulibarri
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Typhanye V Penniman Dyer
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD, USA
| |
Collapse
|
48
|
Pozzetto B, Delézay O, Brunon-Gagneux A, Hamzeh-Cognasse H, Lucht F, Bourlet T. Current and future microbicide approaches aimed at preventing HIV infection in women. Expert Rev Anti Infect Ther 2012; 10:167-183. [DOI: 10.1586/eri.11.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
49
|
HIV gp120 binds to mannose receptor on vaginal epithelial cells and induces production of matrix metalloproteinases. PLoS One 2011; 6:e28014. [PMID: 22132194 PMCID: PMC3222676 DOI: 10.1371/journal.pone.0028014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/30/2011] [Indexed: 01/25/2023] Open
Abstract
Background During sexual transmission of HIV in women, the virus breaches the multi-layered CD4 negative stratified squamous epithelial barrier of the vagina, to infect the sub-epithelial CD4 positive immune cells. However the mechanisms by which HIV gains entry into the sub-epithelial zone is hitherto unknown. We have previously reported human mannose receptor (hMR) as a CD4 independent receptor playing a role in HIV transmission on human spermatozoa. The current study was undertaken to investigate the expression of hMR in vaginal epithelial cells, its HIV gp120 binding potential, affinity constants and the induction of matrix metalloproteinases (MMPs) downstream of HIV gp120 binding to hMR. Principal Findings Human vaginal epithelial cells and the immortalized vaginal epithelial cell line Vk2/E6E7 were used in this study. hMR mRNA and protein were expressed in vaginal epithelial cells and cell line, with a molecular weight of 155 kDa. HIV gp120 bound to vaginal proteins with high affinity, (Kd = 1.2±0.2 nM for vaginal cells, 1.4±0.2 nM for cell line) and the hMR antagonist mannan dose dependently inhibited this binding. Both HIV gp120 binding and hMR exhibited identical patterns of localization in the epithelial cells by immunofluorescence. HIV gp120 bound to immunopurified hMR and affinity constants were 2.9±0.4 nM and 3.2±0.6 nM for vaginal cells and Vk2/E6E7 cell line respectively. HIV gp120 induced an increase in MMP-9 mRNA expression and activity by zymography, which could be inhibited by an anti-hMR antibody. Conclusion hMR expressed by vaginal epithelial cells has high affinity for HIV gp120 and this binding induces production of MMPs. We propose that the induction of MMPs in response to HIV gp120 may lead to degradation of tight junction proteins and the extracellular matrix proteins in the vaginal epithelium and basement membrane, leading to weakening of the epithelial barrier; thereby facilitating transport of HIV across the vaginal epithelium.
Collapse
|
50
|
Fichorova RN, Yamamoto HS, Delaney ML, Onderdonk AB, Doncel GF. Novel vaginal microflora colonization model providing new insight into microbicide mechanism of action. mBio 2011; 2:e00168-11. [PMID: 22027006 PMCID: PMC3202752 DOI: 10.1128/mbio.00168-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/28/2011] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Several broad-spectrum microbicides, including cellulose sulfate (CS), have passed conventional preclinical and phase I clinical safety evaluation and yet have failed to protect women from acquiring HIV-1 in phase II/III trials. Concerns have been raised that current preclinical algorithms are deficient in addressing the complexity of the microflora-regulated vaginal mucosal barrier. We applied a novel microflora-colonized model to evaluate CS and hydroxyethylcellulose (HEC), which is used as a "universal placebo" in microbicide trials. Cervicovaginal epithelial cultures were colonized with normal vaginal microflora isolates representing common Lactobacillus species used as probiotics (L. acidophilus and L. crispatus) or Prevotella bivia and Atopobium vaginae, most prevalent in the disturbed microflora of bacterial vaginosis (BV). At baseline, all strains maintained constant epithelium-associated CFUs without inducing cytotoxicity and apoptosis. CS selectively reduced epithelium-associated CFUs and (to a lesser extent) planktonic CFUs, most significantly affecting L. crispatus. Inducing only minor changes in sterile epithelial cultures, CS induced expression of innate immunity mediators (RANTES, interleukin-8 [IL-8], and secretory leukocyte protease inhibitor [SLPI]) in microflora-colonized epithelia, most significantly potentiating effects of bacteria causing BV. In the absence of CS, all bacterial strains except L. acidophilus activated NF-κB, although IL-8 and RANTES levels were increased by the presence of BV-causing bacteria only. CS enhanced NF-κB activation in a dose-dependent manner under all conditions, including L. acidophilus colonization. HEC remained inert. These results offer insights into possible mechanisms of CS clinical failure. The bacterially colonized cervicovaginal model reveals unique aspects of microflora-epithelium-drug interactions and innate immunity in the female genital tract and should become an integral part of preclinical safety evaluation of anti-HIV microbicides and other vaginal formulations. IMPORTANCE This report provides experimental evidence supporting the concept that the vaginal microflora regulates the epithelial innate immunity in a species- and strain-specific manner and that topically applied microbicides may alter both the bacterial and epithelial components of this homeostatic interaction. Our data also highlight the importance of differentiating the effects of biomedical interventions on epithelium-associated versus conventional planktonic bacterial growth when assessing vaginal mucosal health and immunity.
Collapse
Affiliation(s)
- Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|