1
|
Lv L, Luo H, Zhang M, Wu C, Jiang Y, Tong W, Li G, Zhou Y, Li Y, Wang Z, Liu C. Comprehensive transcriptomic analysis identifies cholesterol transport pathway as a therapeutic target of porcine epidemic diarrhea coronavirus. Virus Res 2024; 350:199502. [PMID: 39580000 PMCID: PMC11625352 DOI: 10.1016/j.virusres.2024.199502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious virus that poses a serious threat to the global pig industry. Despite extensive efforts, the mechanism underlying virus entry for PEDV remains elusive. In this study, we first identified PEDV-susceptible and non-susceptible cell lines by using PEDV spike pseudotyped vesicular stomatitis virus. Subsequently, we conducted a comprehensive transcriptomic analysis on these cell lines. Through integrating differential expression gene analysis with weighted gene co-expression network analysis, we identified the key pathways that are correlated with the PEDV entry. Our analysis revealed a strong correlation between cholesterol, sterols, and lipid transport with PEDV entry, suggesting a potential role for cholesterol transport in the PEDV entry. For further investigation, we treated Huh7, Vero and LLC-PK1 cells with a cholesterol transport inhibitor, ezetimibe, and observed a significant inhibition of PEDV entry and subsequent viral replication in these cells. Interestingly, pre-treating Huh7 cells with ezetimibe resulted in an increase in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudoviruses. Moreover, we found that cholesterol could facilitate the entry of PEDV into Huh7 and Vero cells, and this promoting effect can be blocked by ezetimibe. These findings suggest that targeting cholesterol transport specifically inhibits PEDV entry into susceptible cells. Our study offers novel insights into the mechanism of PEDV entry and the development of new therapeutic strategies against this economically important virus.
Collapse
Affiliation(s)
- Lilei Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, Shanghai 200433, PR China
| | - Chuntao Wu
- Office of Academic Research, Dongying Vocational Institute, Dongying 257091, PR China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China.
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
2
|
Wang Y, Gao L. Cholesterol: A friend to viruses. Int Rev Immunol 2024; 43:248-262. [PMID: 38372266 DOI: 10.1080/08830185.2024.2314577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
3
|
Hou Q, Wang C, Xiong J, Wang H, Wang Z, Zhao J, Wu Q, Fu ZF, Zhao L, Zhou M. Cholesterol depletion inhibits rabies virus infection by restricting viral adsorption and fusion. Vet Microbiol 2024; 289:109952. [PMID: 38141399 DOI: 10.1016/j.vetmic.2023.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Rabies is an ancient zoonotic disease caused by the rabies virus (RABV), and a sharp increase in rabies cases and deaths were observed following the COVID-19 pandemic, indicating that it still poses a severe public health threat in most countries in the world. Cholesterol is one of the major lipid components in cells, and the exact role of cholesterol in RABV infection remains unclear. In this study, we initially observed that cellular cholesterol levels were significantly elevated in RABV infected cells, while cholesterol depletion by using methyl-β-cyclodextrin (MβCD) could restrict RABV entry. We further found that decreasing the cholesterol level of the viral envelope could change the bullet-shaped morphology of RABV and dislodge the glycoproteins on its surface to affect RABV entry. Moreover, the depletion of cholesterol could decrease lysosomal cholesterol accumulation to inhibit RABV fusion. Finally, it was found that the depletion of cholesterol by MβCD was due to the increase of oxygen sterol production in RABV-infected cells and the enhancement of cholesterol efflux by activating liver X receptor alpha (LXRα). Together, our study reveals a novel role of cholesterol in RABV infection, providing new insight into explore of effective therapeutics for rabies.
Collapse
Affiliation(s)
- Qingxiu Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyi Xiong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihui Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Juanjuan Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Ding C, Chen Y, Miao G, Qi Z. Research Advances on the Role of Lipids in the Life Cycle of Human Coronaviruses. Microorganisms 2023; 12:63. [PMID: 38257890 PMCID: PMC10820681 DOI: 10.3390/microorganisms12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) are emerging pathogens with a significant potential to cause life-threatening harm to human health. Since the beginning of the 21st century, three highly pathogenic and transmissible human CoVs have emerged, triggering epidemics and posing major threats to global public health. CoVs are enveloped viruses encased in a lipid bilayer. As fundamental components of cells, lipids can play an integral role in many physiological processes, which have been reported to play important roles in the life cycle of CoVs, including viral entry, uncoating, replication, assembly, and release. Therefore, research on the role of lipids in the CoV life cycle can provide a basis for a better understanding of the infection mechanism of CoVs and provide lipid targets for the development of new antiviral strategies. In this review, research advances on the role of lipids in different stages of viral infection and the possible targets of lipids that interfere with the viral life cycle are discussed.
Collapse
Affiliation(s)
- Cuiling Ding
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| | - Yibo Chen
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| | - Gen Miao
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| |
Collapse
|
5
|
Cesar-Silva D, Pereira-Dutra FS, Giannini ALM, Maya-Monteiro CM, de Almeida CJG. Lipid compartments and lipid metabolism as therapeutic targets against coronavirus. Front Immunol 2023; 14:1268854. [PMID: 38106410 PMCID: PMC10722172 DOI: 10.3389/fimmu.2023.1268854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Lipids perform a series of cellular functions, establishing cell and organelles' boundaries, organizing signaling platforms, and creating compartments where specific reactions occur. Moreover, lipids store energy and act as secondary messengers whose distribution is tightly regulated. Disruption of lipid metabolism is associated with many diseases, including those caused by viruses. In this scenario, lipids can favor virus replication and are not solely used as pathogens' energy source. In contrast, cells can counteract viruses using lipids as weapons. In this review, we discuss the available data on how coronaviruses profit from cellular lipid compartments and why targeting lipid metabolism may be a powerful strategy to fight these cellular parasites. We also provide a formidable collection of data on the pharmacological approaches targeting lipid metabolism to impair and treat coronavirus infection.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M. Maya-Monteiro
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratory of Endocrinology and Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Li J, Wang Y, Deng H, Li S, Qiu HJ. Cellular metabolism hijacked by viruses for immunoevasion: potential antiviral targets. Front Immunol 2023; 14:1228811. [PMID: 37559723 PMCID: PMC10409484 DOI: 10.3389/fimmu.2023.1228811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Cellular metabolism plays a central role in the regulation of both innate and adaptive immunity. Immune cells utilize metabolic pathways to modulate the cellular differentiation or death. The intricate interplay between metabolism and immune response is critical for maintaining homeostasis and effective antiviral activities. In recent years, immunometabolism induced by viral infections has been extensively investigated, and accumulating evidence has indicated that cellular metabolism can be hijacked to facilitate viral replication. Generally, virus-induced changes in cellular metabolism lead to the reprogramming of metabolites and metabolic enzymes in different pathways (glucose, lipid, and amino acid metabolism). Metabolic reprogramming affects the function of immune cells, regulates the expression of immune molecules and determines cell fate. Therefore, it is important to explore the effector molecules with immunomodulatory properties, including metabolites, metabolic enzymes, and other immunometabolism-related molecules as the antivirals. This review summarizes the relevant advances in the field of metabolic reprogramming induced by viral infections, providing novel insights for the development of antivirals.
Collapse
Affiliation(s)
| | | | | | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
A Review of Bioactive Compounds against Porcine Enteric Coronaviruses. Viruses 2022; 14:v14102217. [PMID: 36298772 PMCID: PMC9607050 DOI: 10.3390/v14102217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
Abstract
Pig diarrhea is a universal problem in the process of pig breeding, which seriously affects the development of the pig industry. Porcine enteric coronaviruses (PECoVs) are common pathogens causing diarrhea in pigs, currently including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV). With the prosperity of world transportation and trade, the spread of viruses is becoming wider and faster, making it even more necessary to prevent PECoVs. In this paper, the host factors required for the efficient replication of these CoVs and the compounds that exhibit inhibitory effects on them were summarized to promote the development of drugs against PECoVs. This study will be also helpful in discovering general host factors that affect the replication of CoVs and provide references for the prevention and treatment of other CoVs.
Collapse
|
8
|
Guo Y, Raev S, Kick MK, Raque M, Saif LJ, Vlasova AN. Rotavirus C Replication in Porcine Intestinal Enteroids Reveals Roles for Cellular Cholesterol and Sialic Acids. Viruses 2022; 14:v14081825. [PMID: 36016447 PMCID: PMC9416568 DOI: 10.3390/v14081825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rotaviruses (RVs) are a significant cause of severe diarrheal illness in infants and young animals, including pigs. Group C rotavirus (RVC) is an emerging pathogen increasingly reported in pigs and humans worldwide, and is currently recognized as the major cause of gastroenteritis in neonatal piglets that results in substantial economic losses to the pork industry. However, little is known about RVC pathogenesis due to the lack of a robust cell culture system, with the exception of the RVC Cowden strain. Here, we evaluated the permissiveness of porcine crypt-derived 3D and 2D intestinal enteroid (PIE) culture systems for RVC infection. Differentiated 3D and 2D PIEs were infected with porcine RVC (PRVC) Cowden G1P[1], PRVC104 G3P[18], and PRVC143 G6P[5] virulent strains, and the virus replication was measured by qRT-PCR. Our results demonstrated that all RVC strains replicated in 2D-PIEs poorly, while 3D-PIEs supported a higher level of replication, suggesting that RVC selectively infects terminally differentiated enterocytes, which were less abundant in the 2D vs. 3D PIE cultures. While cellular receptors for RVC are unknown, target cell surface carbohydrates, including histo-blood-group antigens (HBGAs) and sialic acids (SAs), are believed to play a role in cell attachment/entry. The evaluation of the selective binding of RVCs to different HBGAs revealed that PRVC Cowden G1P[1] replicated to the highest titers in the HBGA-A PIEs, while PRVC104 or PRVC143 achieved the highest titers in the HBGA-H PIEs. Further, contrasting outcomes were observed following sialidase treatment (resulting in terminal SA removal), which significantly enhanced Cowden and RVC143 replication, but inhibited the growth of PRVC104. These observations suggest that different RVC strains may recognize terminal (PRVC104) as well as internal (Cowden and RVC143) SAs on gangliosides. Finally, several cell culture additives, such as diethylaminoethyl (DEAE)-dextran, cholesterol, and bile extract, were tested to establish if they could enhance RVC replication. We observed that only DEAE-dextran significantly enhanced RVC attachment, but it had no effect on RVC replication. Additionally, the depletion of cellular cholesterol by MβCD inhibited Cowden replication, while the restoration of the cellular cholesterol partially reversed the MβCD effects. These results suggest that cellular cholesterol plays an important role in the replication of the PRVC strain tested. Overall, our study has established a novel robust and physiologically relevant system to investigate RVC pathogenesis. We also generated novel, experimentally derived evidence regarding the role of host glycans, DEAE, and cholesterol in RVC replication, which is critical for the development of control strategies.
Collapse
Affiliation(s)
- Yusheng Guo
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Sergei Raev
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Maryssa K. Kick
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Molly Raque
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J. Saif
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Correspondence:
| |
Collapse
|
9
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022; 13:791267. [PMID: 35529872 PMCID: PMC9069556 DOI: 10.3389/fimmu.2022.791267] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.
Collapse
Affiliation(s)
- Jun Dai
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi City, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| |
Collapse
|
10
|
Zandi M, Hosseini P, Soltani S, Rasooli A, Moghadami M, Nasimzadeh S, Behnezhad F. The role of lipids in the pathophysiology of coronavirus infections. Osong Public Health Res Perspect 2021; 12:278-285. [PMID: 34719219 PMCID: PMC8561023 DOI: 10.24171/j.phrp.2021.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022] Open
Abstract
Coronaviruses, which have been known to cause diseases in animals since the 1930s, utilize cellular components during their replication cycle. Lipids play important roles in viral infection, as coronaviruses target cellular lipids and lipid metabolism to modify their host cells to become an optimal environment for viral replication. Therefore, lipids can be considered as potential targets for the development of antiviral agents. This review provides an overview of the roles of cellular lipids in different stages of the life cycle of coronaviruses.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rasooli
- Department of Biochemistry, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | - Mona Moghadami
- Department of Medical Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sepideh Nasimzadeh
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzane Behnezhad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Orlowski S, Mourad JJ, Gallo A, Bruckert E. Coronaviruses, cholesterol and statins: Involvement and application for Covid-19. Biochimie 2021; 189:51-64. [PMID: 34153377 PMCID: PMC8213520 DOI: 10.1016/j.biochi.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.
Collapse
Affiliation(s)
- Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR 9198, and CEA / DRF / Institut des Sciences du Vivant Frédéric-Joliot / SB2SM, and Université Paris-Saclay, 91191, Gif-sur-Yvette, Cedex, France.
| | - Jean-Jacques Mourad
- Department of Internal Medicine and ESH Excellence Centre, Groupe Hospitalier Paris Saint-Joseph, Paris, France.
| | - Antonio Gallo
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Eric Bruckert
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| |
Collapse
|
12
|
Deng Y, Angelova A. Coronavirus-Induced Host Cubic Membranes and Lipid-Related Antiviral Therapies: A Focus on Bioactive Plasmalogens. Front Cell Dev Biol 2021; 9:630242. [PMID: 33791293 PMCID: PMC8006408 DOI: 10.3389/fcell.2021.630242] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses have lipid envelopes required for their activity. The fact that coronavirus infection provokes the formation of cubic membranes (CM) (denoted also as convoluted membranes) in host cells has not been rationalized in the development of antiviral therapies yet. In this context, the role of bioactive plasmalogens (vinyl ether glycerophospholipids) is not completely understood. These lipid species display a propensity for non-lamellar phase formation, facilitating membrane fusion, and modulate the activity of membrane-bound proteins such as enzymes and receptors. At the organism level, plasmalogen deficiency is associated with cardiometabolic disorders including obesity and type 2 diabetes in humans. A straight link is perceived with the susceptibility of such patients to SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) infection, the severity of illness, and the related difficulty in treatment. Based on correlations between the coronavirus-induced modifications of lipid metabolism in host cells, plasmalogen deficiency in the lung surfactant of COVID-19 patients, and the alterations of lipid membrane structural organization and composition including the induction of CM, we emphasize the key role of plasmalogens in the coronavirus (SARS-CoV-2, SARS-CoV, or MERS-CoV) entry and replication in host cells. Considering that plasmalogen-enriched lung surfactant formulations may improve the respiratory process in severe infected individuals, plasmalogens can be suggested as an anti-viral prophylactic, a lipid biomarker in SARS-CoV and SARS-CoV-2 infections, and a potential anti-viral therapeutic component of lung surfactant development for COVID-19 patients.
Collapse
Affiliation(s)
- Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR 8612, Châtenay-Malabry, France
| |
Collapse
|
13
|
Gelemanović A, Vidović T, Stepanić V, Trajković K. Identification of 37 Heterogeneous Drug Candidates for Treatment of COVID-19 via a Rational Transcriptomics-Based Drug Repurposing Approach. Pharmaceuticals (Basel) 2021; 14:87. [PMID: 33504008 PMCID: PMC7912585 DOI: 10.3390/ph14020087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
A year after the initial outbreak, the COVID-19 pandemic caused by SARS-CoV-2 virus remains a serious threat to global health, while current treatment options are insufficient to bring major improvements. The aim of this study is to identify repurposable drug candidates with a potential to reverse transcriptomic alterations in the host cells infected by SARS-CoV-2. We have developed a rational computational pipeline to filter publicly available transcriptomic datasets of SARS-CoV-2-infected biosamples based on their responsiveness to the virus, to generate a list of relevant differentially expressed genes, and to identify drug candidates for repurposing using LINCS connectivity map. Pathway enrichment analysis was performed to place the results into biological context. We identified 37 structurally heterogeneous drug candidates and revealed several biological processes as druggable pathways. These pathways include metabolic and biosynthetic processes, cellular developmental processes, immune response and signaling pathways, with steroid metabolic process being targeted by half of the drug candidates. The pipeline developed in this study integrates biological knowledge with rational study design and can be adapted for future more comprehensive studies. Our findings support further investigations of some drugs currently in clinical trials, such as itraconazole and imatinib, and suggest 31 previously unexplored drugs as treatment options for COVID-19.
Collapse
Affiliation(s)
- Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), Šetalište Ivana Meštrovića 45, 21000 Split, Croatia;
| | - Tinka Vidović
- Mediterranean Institute for Life Sciences (MedILS), Šetalište Ivana Meštrovića 45, 21000 Split, Croatia;
| | - Višnja Stepanić
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Katarina Trajković
- Mediterranean Institute for Life Sciences (MedILS), Šetalište Ivana Meštrovića 45, 21000 Split, Croatia;
| |
Collapse
|
14
|
Zhang S, Cao Y, Yang Q. Transferrin receptor 1 levels at the cell surface influence the susceptibility of newborn piglets to PEDV infection. PLoS Pathog 2020; 16:e1008682. [PMID: 32730327 PMCID: PMC7419007 DOI: 10.1371/journal.ppat.1008682] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/11/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) mainly infects the intestinal epithelial cells of newborn piglets causing acute, severe atrophic enteritis. The underlying mechanisms of PEDV infection and the reasons why newborn piglets are more susceptible than older pigs remain incompletely understood. Iron deficiency is common in newborn piglets. Here we found that high levels of transferrin receptor 1 (TfR1) distributed in the apical tissue of the intestinal villi of newborns, and intracellular iron levels influence the susceptibility of newborn piglets to PEDV. We show that iron deficiency induced by deferoxamine (DFO, an iron chelating agent) promotes PEDV infection while iron accumulation induced by ferric ammonium citrate (FAC, an iron supplement) impairs PEDV infection in vitro and in vivo. Besides, PEDV infection was inhibited by occluding TfR1 with antibodies or decreasing TfR1 expression. Additionally, PEDV infection was increased in PEDV-resistant Caco-2 and HEK 293T cells over-expressed porcine TfR1. Mechanistically, the PEDV S1 protein interacts with the extracellular region of TfR1 during PEDV entry, promotes TfR1 re-localization and clustering, then activates TfR1 tyrosine phosphorylation mediated by Src kinase, and heightens the internalization of TfR1, thereby promoting PEDV entry. Taken together, these data suggest that the higher expression of TfR1 in the apical tissue of the intestinal villi caused by iron deficiency, accounts for newborn piglets being acutely susceptible to PEDV. Newborn piglets are particularly susceptible to infection by PEDV, with 80–100% dying within days of infection. The reasons for newborns’ acute susceptibility to PEDV infection have not been elucidated clearly. The primarily target of PEDV is the porcine intestinal epithelial cells. Here, we show that the high expression of TfR1 in the apical tissue of intestinal villi in newborn piglets with iron deficiency is a reason for their susceptibility to PEDV. Further, we demonstrate that iron supplementation reduces PEDV infection. This study reveals that iron plays an important role in the susceptibility of newborn piglets to PEDV and provides insights into therapies for the prevention and treatment of PEDV infections.
Collapse
Affiliation(s)
- Shuai Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, PR China
| | - Yanan Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, PR China
| |
Collapse
|
15
|
J Alsaadi EA, Jones IM. Membrane binding proteins of coronaviruses. Future Virol 2019; 14:275-286. [PMID: 32201500 PMCID: PMC7079996 DOI: 10.2217/fvl-2018-0144] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Coronaviruses (CoVs) infect many species causing a variety of diseases with a range of severities. Their members include zoonotic viruses with pandemic potential where therapeutic options are currently limited. Despite this diversity CoVs share some common features including the production, in infected cells, of elaborate membrane structures. Membranes represent both an obstacle and aid to CoV replication - and in consequence - virus-encoded structural and nonstructural proteins have membrane-binding properties. The structural proteins encounter cellular membranes at both entry and exit of the virus while the nonstructural proteins reorganize cellular membranes to benefit virus replication. Here, the role of each protein in membrane binding is described to provide a comprehensive picture of their role in the CoV replication cycle.
Collapse
Affiliation(s)
- Entedar A J Alsaadi
- Biomedical Sciences, School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK.,Department of Microbiology, College of Medicine, Thiqar University, Thiqar, Iraq.,Biomedical Sciences, School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK.,Department of Microbiology, College of Medicine, Thiqar University, Thiqar, Iraq
| | - Ian M Jones
- Biomedical Sciences, School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK.,Biomedical Sciences, School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK
| |
Collapse
|
16
|
Yuan P, Huang S, Yang Z, Xie L, Wang K, Yang Y, Ran L, Yu Q, Song Z. UBXN1 interacts with the S1 protein of transmissible gastroenteritis coronavirus and plays a role in viral replication. Vet Res 2019; 50:28. [PMID: 31029162 PMCID: PMC6487014 DOI: 10.1186/s13567-019-0648-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 11/10/2022] Open
Abstract
Transmissible gastroenteritis coronavirus (TGEV) is an enteropathogenic coronavirus that causes diarrhea in pigs and is associated with high morbidity and mortality in sucking piglets. S1 is one of two protein domains in the spike (S) glycoprotein and is responsible for enteric tropism, sialic acid recognition, and host receptor binding. Although there has been extensive research on the S1 protein of TGEV, little is known about the intracellular role of TGEV-S1. In the present study, we used yeast two-hybrid screening of a cDNA library from porcine intestinal cells to identify proteins that interact with TGEV-S1. Among 120 positive clones from the library, 12 intracellular proteins were identified after sequencing and a BLAST search. These intracellular proteins are involved in protein synthesis and degradation, biological signal transduction, and negative control of signaling pathways. Using a glutathione-S-transferase (GST) pulldown assay and Co-IP, we found that UBXN1 interacts with the S1 protein. Here, we observed that TGEV infection led to increased UBXN1 expression levels during the late phase of infection in IPEC-J2 cells. Inhibition of UBXN1 in IPEC-J2 cells via siRNA interference significantly decreased the viral titer and downregulated the expression of S1. UBXN1 overexpression significantly increased the viral copy number. Additionally, we provided data suggesting that UBXN1 negatively regulates IFN-β expression after TGEV infection. Finally, our research indicated that UBXN1 plays a vital role in the process of TGEV infection, making it a candidate target for the development of a novel antiviral method.
Collapse
Affiliation(s)
- Peng Yuan
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Shilei Huang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Zhou Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Luyi Xie
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Kai Wang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Yang Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Lin Ran
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Qiuhan Yu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Zhenhui Song
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
17
|
Ye Y, Zhu J, Ai Q, Wang C, Liao M, Fan H. Quantitative Proteomics Reveals Changes in Vero Cells in Response to Porcine Epidemic Diarrhea Virus. J Proteome Res 2019; 18:1623-1633. [PMID: 30730140 DOI: 10.1021/acs.jproteome.8b00897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Outbreaks of porcine epidemic diarrhea virus (PEDV) have caused significant lethality rates in neonatal piglets, which pose a serious threat to the swine industry worldwide. Available commercial vaccines fail to protect against the emergence of high virulence of PEDV variants. Therefore, the endemic state of the PEDV infection in suckling piglets highlights the urgent need for uncovering the molecular determinants of the disease pathogenesis. In this study, stable isotope labeling by amino acids in cell culture (SILAC), combined with high-performance liquid chromatography/tandem mass spectrometry was performed to determine proteomic differences between PEDV-infected and mock-infected Vero cells at 18 h postinfection. The SILAC-based approach identified 4508 host-cell proteins, of which 120 were significantly up-regulated and 103 were significantly down-regulated at ≥95% confidence. Alterations in the expression of selected proteins were verified by Western blot. Several signaling metabolic pathways including mevalonate pathway I and the superpathway of cholesterol biosynthesis were triggered by the infection of the highly virulent strain and are linked to host innate immunity. 25-HC, an inhibitor of the mevalonate pathway, exhibited potent antiviral activity against PEDV infection. Meanwhile, the cell-cycle-related functions were significantly regulated, which may likely be responsible for the viral replication and pathogenicity of PEDV.
Collapse
Affiliation(s)
- Yu Ye
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Jun Zhu
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou 510642 , China
| | - Qiangyun Ai
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| | - Chengcheng Wang
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| | - Ming Liao
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| | - Huiying Fan
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| |
Collapse
|
18
|
Cellular cholesterol is required for porcine nidovirus infection. Arch Virol 2017; 162:3753-3767. [PMID: 28884395 PMCID: PMC7086867 DOI: 10.1007/s00705-017-3545-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 12/14/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine epidemic diarrhea virus (PEDV) are porcine nidoviruses that are considered emerging and re-emerging viral pathogens of pigs that pose a significant economic threat to the global pork industry. Although cholesterol is known to affect the replication of a broad range of viruses in vitro, its significance and role in porcine nidovirus infection remains to be elucidated. Therefore, the present study was conducted to determine whether cellular or/and viral cholesterol levels play a role in porcine nidovirus infection. Our results showed that depletion of cellular cholesterol by treating cells with methyl-β-cyclodextrin (MβCD) dose-dependently suppressed the replication of both nidoviruses. Conversely, cholesterol depletion from the viral envelope had no inhibitory effect on porcine nidovirus production. The addition of exogenous cholesterol to MβCD-treated cells moderately restored the infectivity of porcine nidoviruses, indicating that the presence of cholesterol in the target cell membrane is critical for viral replication. The antiviral activity of MβCD on porcine nidovirus infection was found to be predominantly exerted when used as a treatment pre-infection or prior to the viral entry process. Furthermore, pharmacological sequestration of cellular cholesterol efficiently blocked both virus attachment and internalization and, accordingly, markedly affected subsequent post-entry steps of the replication cycle, including viral RNA and protein biosynthesis and progeny virus production. Taken together, our data indicate that cell membrane cholesterol is required for porcine nidovirus entry into cells, and pharmacological drugs that hamper cholesterol-dependent virus entry may have antiviral potential against porcine nidoviruses.
Collapse
|
19
|
Wang L, Dai X, Song H, Yuan P, Yang Z, Dong W, Song Z. Inhibition of porcine transmissible gastroenteritis virus infection in porcine kidney cells using short hairpin RNAs targeting the membrane gene. Virus Genes 2017; 53:226-232. [PMID: 27848068 PMCID: PMC7089173 DOI: 10.1007/s11262-016-1409-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
The membrane (M) protein is the most abundant component of the porcine transmissible gastroenteritis virus (TGEV) particle. To exploit the possibility of using RNA interference (RNAi) as a strategy against TGEV infection, three plasmids (pRNAT-1, pRNAT-2, and pRNAT-3) expressing short hairpin RNAs were designed to target three different coding regions of the M gene of TGEV. The plasmids were constructed and transiently transfected into a porcine kidney cells, PK-15, to determine whether these constructs inhibited TGEV production. The analysis of cytopathic effects demonstrated that pRNAT-2 and pRNAT-3 could protect PK-15 cells against pathological changes specifically and efficiently. Additionally, indirect immunofluorescence and 50% tissue culture infectious dose (TCID50) assays showed that pRNAT-2 and pRNAT-3 inhibited the multiplication of the virus at the protein level effectively. Quantitative real-time PCR further confirmed that the amounts of viral RNAs in cell cultures pre-transfected with the three plasmids were reduced by 13, 68, and 70%, respectively. This is the first report showing that RNAi targeting of the M gene. Our results could promote studies of the specific function of viral genes associated with TGEV infection and might provide a theoretical basis for potential therapeutic applications.
Collapse
Affiliation(s)
- Li Wang
- Department of Veterinary Medicine, Southwest University, Rongchang Campus, Chongqing, 402460, People's Republic of China
| | - Xianjin Dai
- Department of Veterinary Medicine, Southwest University, Rongchang Campus, Chongqing, 402460, People's Republic of China
| | - Han Song
- Department of Veterinary Medicine, Southwest University, Rongchang Campus, Chongqing, 402460, People's Republic of China
| | - Peng Yuan
- Department of Veterinary Medicine, Southwest University, Rongchang Campus, Chongqing, 402460, People's Republic of China
| | - Zhou Yang
- Department of Veterinary Medicine, Southwest University, Rongchang Campus, Chongqing, 402460, People's Republic of China
| | - Wei Dong
- Department of Veterinary Medicine, Southwest University, Rongchang Campus, Chongqing, 402460, People's Republic of China
| | - Zhenhui Song
- Department of Veterinary Medicine, Southwest University, Rongchang Campus, Chongqing, 402460, People's Republic of China.
| |
Collapse
|
20
|
Cong Y, Li X, Bai Y, Lv X, Herrler G, Enjuanes L, Zhou X, Qu B, Meng F, Cong C, Ren X, Li G. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells. Virology 2015; 478:1-8. [PMID: 25681796 PMCID: PMC7112081 DOI: 10.1016/j.virol.2015.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 12/16/2022]
Abstract
Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells.
Collapse
Affiliation(s)
- Yingying Cong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yunyun Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090, China
| | - Georg Herrler
- Institute for Virology, University of Veterinary Medicine, Hannover D-30559, Germany
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Xingdong Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Qu
- Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fandan Meng
- Institute for Virology, University of Veterinary Medicine, Hannover D-30559, Germany
| | - Chengcheng Cong
- College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiaofeng Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
21
|
Abstract
Coronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope.
Collapse
Affiliation(s)
| | - Valeriana Colao
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
22
|
A phage-displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry. Virology 2014; 456-457:20-7. [PMID: 24889221 PMCID: PMC7112085 DOI: 10.1016/j.virol.2014.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/28/2013] [Accepted: 01/16/2014] [Indexed: 12/21/2022]
Abstract
Three phage-displayed peptides designated H, S and F that recognize porcine aminopeptidase N (pAPN), the cellular receptor of porcine transmissible gastroenteritis virus (TGEV) were able to inhibit cell infection by TGEV. These same peptides had no inhibitory effects on infection of Vero cells by porcine epidemic diarrhea virus (PEDV). However, when PEDV, TGEV and porcine pseudorabies virus were incubated with peptide H (HVTTTFAPPPPR), only infection of Vero cells by PEDV was inhibited. Immunofluoresence assays indicated that inhibition of PEDV infection by peptide H was independent of pAPN. Western blots demonstrated that peptide H interacted with PEDV spike protein and that pre-treatment of PEDV with peptide H led to a higher inhibition than synchronous incubation with cells. These results indicate direct interaction with the virus is necessary to inhibit infectivity. Temperature shift assays demonstrated that peptide H inhibited pre-attachment of the virus to the cells.
Collapse
|
23
|
Zou H, Zarlenga DS, Sestak K, Suo S, Ren X. Transmissible gastroenteritis virus: identification of M protein-binding peptide ligands with antiviral and diagnostic potential. Antiviral Res 2013; 99:383-90. [PMID: 23830854 PMCID: PMC7114267 DOI: 10.1016/j.antiviral.2013.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 05/18/2013] [Accepted: 06/22/2013] [Indexed: 01/12/2023]
Abstract
The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and characterized in more depth. A phage-based immunosorbent assay (phage-ELISA) capable of differentiating TGEV from other coronaviruses was developed using one phage, phTGEV-M7, as antigen. When the phage-ELISA was compared to conventional antibody-based ELISA for detecting infections, phage-ELISA exhibited greater sensitivity. A chemically synthesized, TGEV-M7 peptide (pepTGEV-M7; HALTPIKYIPPG) was evaluated for antiviral activity. Plaque-reduction assays revealed that pepTGEV-M7 was able to prevent TGEV infection in vitro (p<0.01) following pretreatment of the virus with the peptide. Indirect immunofluorescence and real-time RT-PCR confirmed the inhibitory effects of the peptide. These results indicate that pepTGEV-M7 might be utilized for virus-specific diagnostics and treatment.
Collapse
Affiliation(s)
- Hao Zou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | | | | | | | | |
Collapse
|
24
|
Requirement of cholesterol in the viral envelope for dengue virus infection. Virus Res 2013; 174:78-87. [PMID: 23517753 DOI: 10.1016/j.virusres.2013.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 12/27/2022]
Abstract
The role of cholesterol in the virus envelope or in the cellular membranes for dengue virus (DENV) infection was examined by depletion with methyl-beta-cyclodextrin (MCD) or nystatin. Pretreatment of virions with MCD or nystatin significantly reduced virus infectivity in a dose-dependent manner. By contrast, pre-treatment of diverse human cell lines with MCD or nystatin did not affect DENV infection. The four DENV serotypes were similarly inactivated by cholesterol-extracting drugs and infectivity was partially rescued when virion suspensions were treated with MCD in the presence of bovine serum. The addition of serum or exogenous water-soluble cholesterol after MCD treatment did not produce a reversion of MCD inactivating effect. Furthermore, virion treatment with extra cholesterol exerted also a virucidal effect. Binding and uptake of cholesterol-deficient DENV into the host cell were not impaired, whereas the next step of fusion between virion envelope and endosome membrane leading to virion uncoating and release of nucleocapsids to the cytoplasm appeared to be prevented, as determined by the retention of capsid protein in cells infected with MCD inactivated-DENV virions. Thereafter, the infection was almost completely inhibited, given the failure of viral RNA synthesis and viral protein expression in cells infected with MCD-treated virions. These data suggest that envelope cholesterol is a critical factor in the fusion process for DENV entry.
Collapse
|
25
|
Ren X, Liu B, Yin J, Zhang H, Li G. Phage displayed peptides recognizing porcine aminopeptidase N inhibit transmissible gastroenteritis coronavirus infection in vitro. Virology 2010; 410:299-306. [PMID: 21176936 PMCID: PMC7111919 DOI: 10.1016/j.virol.2010.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/22/2010] [Accepted: 11/16/2010] [Indexed: 12/03/2022]
Abstract
Porcine aminopeptidase N (pAPN) is a cellular receptor of transmissible gastroenteritis virus (TGEV), a porcine coronavirus. Interaction between the spike (S) protein of TGEV and pAPN initiates cell infection. Small molecules, especially peptides are an expanding area for therapy or diagnostic assays for viral diseases. Here, the peptides capable of binding the pAPN were, for the first time, identified by biopanning using a random 12-mer peptide library to the immobilized protein. Three chemically synthesized peptides recognizing the pAPN showed effective inhibition ability to TGEV infection in vitro. A putative TxxF motif was identified in the S protein of TGEV. Phages bearing the specific peptides interacted with the pAPN in ELISA. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays confirmed the protective effect of the peptides on cell infection by TGEV. Moreover, the excellent immune responses in mice induced by the identified phages provided the possibility to develop novel phage-based vaccines.
Collapse
Affiliation(s)
- Xiaofeng Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | |
Collapse
|