1
|
Khudadah K, Ramadan A, Othman A, Refaey N, Elrosasy A, Rezkallah A, Heseba T, Moawad M, Mektebi A, Elejla S, Abouzid M, Abdelazeem B. Surfactant replacement therapy as promising treatment for COVID-19: an updated narrative review. Biosci Rep 2023; 43:BSR20230504. [PMID: 37497603 PMCID: PMC10412525 DOI: 10.1042/bsr20230504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
Patients with COVID-19 exhibit similar symptoms to neonatal respiratory distress syndrome. SARS-CoV-2 spike protein has been shown to target alveolar type 2 lung cells which synthesize and secrete endogenous surfactants leading to acute respiratory distress syndrome in some patients. This was proven by post-mortem histopathological findings revealing desquamated alveolar type 2 cells. Surfactant use in patients with COVID-19 respiratory distress syndrome results in marked improvement in respiratory parameters but not mortality which needs further clinical trials comparing surfactant formulas and modes of administration to decrease the mortality. In addition, surfactants could be a promising vehicle for specific drug delivery as a liposomal carrier, which requires more and more challenging efforts. In this review, we highlight the current reviews and two clinical trials on exogenous surfactant therapy in COVID-19-associated respiratory distress in adults, and how surfactant could be a promising drug to help fight the COVID-19 infection.
Collapse
Affiliation(s)
| | - Alaa Ramadan
- Faculty of Medicine, South Valley University, Qena, Egypt
| | - Ahmed Othman
- Kuwait Oil Company Ahmadi Hospital, Al Ahmadi, Kuwait
| | - Neveen Refaey
- Women’s Health department, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Amr Elrosasy
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayoub Rezkallah
- Faculty of Medicine, University of Algeirs, Algeirs, Algeria
- Department of Hematology Laboratory and Blood Transfusion, Hospital Center University Lamine Debaghine, Algeirs, Algeria
| | - Toka Heseba
- Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria University, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ammar Mektebi
- Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Sewar A Elejla
- Faculty of Medicine, Alquds University, Jerusalem, Palestine
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Basel Abdelazeem
- McLaren Health Care, Flint, Michigan, U.S.A
- Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
2
|
Zouliati K, Stavropoulou P, Chountoulesi M, Naziris N, Demisli S, Mitsou E, Papadimitriou V, Chatzidaki M, Xenakis A, Demetzos C. Development and evaluation of liposomal nanoparticles incorporating dimethoxycurcumin. In vitro toxicity and permeability studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Overduin M, Kervin TA, Tran A. Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. iScience 2022; 25:104722. [PMID: 35813872 PMCID: PMC9251956 DOI: 10.1016/j.isci.2022.104722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 12/09/2022] Open
Abstract
Membrane recognition by viral spike proteins is critical for infection. Here we show the host cell membrane-binding surfaces of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike variants Alpha, Beta, Gamma, Delta, Epsilon, Kappa, and Omicron as well as SARS-CoV-1 and pangolin and bat relatives. They show increases in membrane binding propensities over time, with all spike head mutations in variants, and particularly BA.1, impacting the protein's affinity to cell membranes. Comparison of hundreds of structures yields a progressive model of membrane docking in which spike protein trimers shift from initial perpendicular stances to increasingly tilted positions that draw viral particles alongside host cell membranes before optionally engaging angiotensin-converting enzyme 2 (ACE2) receptors. This culminates in the assembly of the symmetric fusion apparatus, with enhanced membrane interactions of variants explaining their unique cell fusion capacities and COVID-19 disease transmission rates.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Tran A, Kervin TA, Overduin M. Multifaceted membrane binding head of the SARS-CoV-2 spike protein. Curr Res Struct Biol 2022; 4:146-157. [PMID: 35602928 PMCID: PMC9109970 DOI: 10.1016/j.crstbi.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 spike protein presents a surface with enormous membrane binding potential to host tissues and organelles of infected cells. Its exposed trimeric head binds not only the angiotensin-converting enzyme 2 (ACE2), but also host phospholipids which are missing from all existing structures. Hence, the membrane interaction surfaces that mediate viral fusion, entry, assembly and egress remain unclear. Here the spike:membrane docking sites are identified based on membrane optimal docking area (MODA) analysis of 3D structures of spike proteins in closed and open conformations at endocytic and neutral pH levels as well as ligand complexes. This reveals multiple membrane binding sites in the closed spike head that together prefer convex membranes and are modulated by pH, fatty acids and post-translational modifications including glycosylation. The exposure of the various membrane interaction sites adjusts upon domain repositioning within the trimer, allowing formation of intermediate bilayer complexes that lead to the prefusion state while also enabling ACE2 receptor recognition. In contrast, all antibodies that target the spike head would block the membrane docking process that precedes ACE2 recognition. Together this illuminates the engagements of the spike protein with plasma, endocytic, ER or exocytic vesicle membranes that help to drive the cycle of viral infection, and offers novel sites for intervention.
Collapse
Affiliation(s)
- Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Al-Dalawi L, Dunham SP, Rauch C. Lipid biophysics and/or soft matter-inspired approach for controlling enveloped virus infectivity. J R Soc Interface 2022; 19:20210943. [PMID: 35414213 PMCID: PMC9006039 DOI: 10.1098/rsif.2021.0943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Proven as a natural barrier against viral infection, pulmonary surfactant phospholipids have a biophysical and immunological role within the respiratory system, acting against microorganisms including viruses. Enveloped viruses have, in common, an outer bilayer membrane that forms the underlying structure for viral membrane proteins to function in an optimal way to ensure infectivity. Perturbating the membrane of viruses using exogenous lipids can be envisioned as a generic way to reduce their infectivity. In this context, the potential of exogenous lipids to be used against enveloped virus infectivity would be indicated by the resulting physical stress imposed to the viral membrane, and conical lipids, i.e. lyso-lipids, would be expected to generate stronger biophysical disturbances. We confirm that when treated with lyso-lipids the infectivity three strains of influenza virus (avian H2N3, equine H3N8 or pandemic human influenza H1N1) is reduced by up to 99% in a cell-based model. By contrast, lipids with a similar head group but two aliphatic chains were less effective (reducing infection by only 40–50%). This work opens a new path to merge concepts from different research fields, i.e. ‘soft matter physics' and virology.
Collapse
Affiliation(s)
- Lamyaa Al-Dalawi
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington LE12 5RD, UK
| | - Stephen P Dunham
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington LE12 5RD, UK
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
6
|
Qaisrani MN, Belousov R, Rehman JU, Goliaei EM, Girotto I, Franklin-Mergarejo R, Güell O, Hassanali A, Roldán É. Phospholipids dock SARS-CoV-2 spike protein via hydrophobic interactions: a minimal in-silico study of lecithin nasal spray therapy. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:132. [PMID: 34718875 PMCID: PMC8556817 DOI: 10.1140/epje/s10189-021-00137-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Understanding the physical and chemical properties of viral infections at molecular scales is a major challenge for the scientific community more so with the outbreak of global pandemics. There is currently a lot of effort being placed in identifying molecules that could act as putative drugs or blockers of viral molecules. In this work, we computationally explore the importance in antiviral activity of a less studied class of molecules, namely surfactants. We employ all-atoms molecular dynamics simulations to study the interaction between the receptor-binding domain of the SARS-CoV-2 spike protein and the phospholipid lecithin (POPC), in water. Our microsecond simulations show a preferential binding of lecithin to the receptor-binding motif of SARS-CoV-2 with binding free energies significantly larger than [Formula: see text]. Furthermore, hydrophobic interactions involving lecithin non-polar tails dominate these binding events, which are also accompanied by dewetting of the receptor binding motif. Through an analysis of fluctuations in the radius of gyration of the receptor-binding domain, its contact maps with lecithin molecules, and distributions of water molecules near the binding region, we elucidate molecular interactions that may play an important role in interactions involving surfactant-type molecules and viruses. We discuss our minimal computational model in the context of lecithin-based liposomal nasal sprays as putative mitigating therapies for COVID-19.
Collapse
Affiliation(s)
- Muhammad Nawaz Qaisrani
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany
| | - Roman Belousov
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Present Address: EMBL - European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jawad Ur Rehman
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Elham Moharramzadeh Goliaei
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ivan Girotto
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ricardo Franklin-Mergarejo
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Oriol Güell
- Comercial Douma S.L., Carrer de València 5, 08015 Barcelona, Spain
| | - Ali Hassanali
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Édgar Roldán
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
7
|
Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021; 22:6937. [PMID: 34203268 PMCID: PMC8269337 DOI: 10.3390/ijms22136937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mahdieh Shokrollahi Barough
- Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran 1316943551, Iran;
| | - Alireza Sheidary
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
| | - Kielan D. McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Chandra C. Ghosh
- Roger Williams Medical Center, Immuno-Oncology Institute (Ix2), Providence, RI 02908, USA;
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis Lung Center, Davis School of Medicine, University of California, Davis, CA 95817, USA;
- Veterans Affairs Medical Center, Mather, CA 95817, USA
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
8
|
Pramod K, Kotta S, Jijith US, Aravind A, Abu Tahir M, Manju CS, Gangadharappa HV. Surfactant-based prophylaxis and therapy against COVID-19: A possibility. Med Hypotheses 2020; 143:110081. [PMID: 32653736 PMCID: PMC7340033 DOI: 10.1016/j.mehy.2020.110081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Hand hygiene by washing with soap and water is recommended for the prevention of COVID-19 spread. Soaps and detergents are explained to act by damaging viral spike glycoproteins (peplomers) or by washing out the virus through entrapment in the micelles. Technically, soaps come under a functional category of molecules known as surfactants. Surfactants are widely used in pharmaceutical formulations as excipients. We wonder why surfactants are still not tried for prophylaxis or therapy against COVID-19? That too when many of them have proven antiviral properties. Moreover, lung surfactants have already shown benefits in respiratory viral infections. Therefore, we postulate that surfactant-based prophylaxis and therapy would be promising. We believe that our hypothesis would stimulate debate or new research exploring the possibility of surfactant-based prophylaxis and therapy against COVID-19. The success of a surfactant-based technique would save the world from any such pandemic in the future too.
Collapse
Affiliation(s)
- K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India.
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Saudi Arabia
| | - U S Jijith
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - A Aravind
- College of Pharmaceutical Sciences, Govt. Medical College, Thiruvananthapuram, Kerala, India
| | - M Abu Tahir
- Formulation & Development, Steril-gene Life Sciences, Puducherry, India
| | - C S Manju
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreshwara Nagar, Bannimantap, Mysuru 570015, Karnataka, India
| |
Collapse
|
9
|
Garikapati V, Karnati S, Bhandari DR, Baumgart-Vogt E, Spengler B. High-resolution atmospheric-pressure MALDI mass spectrometry imaging workflow for lipidomic analysis of late fetal mouse lungs. Sci Rep 2019; 9:3192. [PMID: 30816198 PMCID: PMC6395778 DOI: 10.1038/s41598-019-39452-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022] Open
Abstract
Mass spectrometry imaging (MSI) provides label-free, non-targeted molecular and spatial information of the biomolecules within tissue. Lipids play important roles in lung biology, e.g. as surfactant, preventing alveolar collapse during normal and forced respiration. Lipidomic characterization of late fetal mouse lungs at day 19 of gestation (E19) has not been performed yet. In this study we employed high-resolution atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization MSI for the lipidomic analysis of E19 mouse lungs. Molecular species of different lipid classes were imaged in E19 lung sections at high spatial and mass resolution in positive- and negative-ion mode. Lipid species were characterized based on accurate mass and on-tissue tandem mass spectrometry. In addition, a dedicated sample preparation protocol, homogenous deposition of matrices on tissue surfaces and data processing parameters were optimized for the comparison of signal intensities of lipids between different tissue sections of E19 lungs of wild type and Pex11β-knockout mice. Our study provides lipid information of E19 mouse lungs, optimized experimental and data processing strategies for the direct comparison of signal intensities of metabolites (lipids) among the tissue sections from MSI experiments. To best of our knowledge, this is the first MSI and lipidomic study of E19 mouse lungs.
Collapse
Affiliation(s)
- Vannuruswamy Garikapati
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany.,Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, Giessen, Germany.,Institute for Anatomy and Cell Biology, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
10
|
Quantitative lipidomic analysis of mouse lung during postnatal development by electrospray ionization tandem mass spectrometry. PLoS One 2018; 13:e0203464. [PMID: 30192799 PMCID: PMC6128551 DOI: 10.1371/journal.pone.0203464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Lipids play very important roles in lung biology, mainly reducing the alveolar surface tension at the air-liquid interface thereby preventing end-expiratory collapse of the alveoli. In the present study we performed an extensive quantitative lipidomic analysis of mouse lung to provide the i) total lipid quantity, ii) distribution pattern of the major lipid classes, iii) composition of individual lipid species and iv) glycerophospholipid distribution pattern according to carbon chain length (total number of carbon atoms) and degree of unsaturation (total number of double bonds). We analysed and quantified 160 glycerophospholipid species, 24 sphingolipid species, 18 cholesteryl esters and cholesterol from lungs of a) newborn (P1), b) 15-day-old (P15) and c) 12-week-old adult mice (P84) to understand the changes occurring during postnatal pulmonary development. Our results revealed an increase in total lipid quantity, correlation of lipid class distribution in lung tissue and significant changes in the individual lipid species composition during postnatal lung development. Interestingly, we observed significant stage-specific alterations during this process. Especially, P1 lungs showed high content of monounsaturated lipid species; P15 lungs exhibited myristic and palmitic acid containing lipid species, whereas adult lungs were enriched with polyunsaturated lipid species. Taken together, our study provides an extensive quantitative lipidome of the postnatal mouse lung development, which may serve as a reference for a better understanding of lipid alterations and their functions in lung development and respiratory diseases associated with lipids.
Collapse
|
11
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
12
|
Numata M, Nagashima Y, Moore ML, Berry KZ, Chan M, Kandasamy P, Peebles RS, Murphy RC, Voelker DR. Phosphatidylglycerol provides short-term prophylaxis against respiratory syncytial virus infection. J Lipid Res 2013; 54:2133-2143. [PMID: 23749985 DOI: 10.1194/jlr.m037077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Respiratory syncytial virus (RSV) causes respiratory tract infections in young children, and significant morbidity and mortality in the elderly, immunosuppressed, and immunocompromised patients and in patients with chronic lung diseases. Recently, we reported that the pulmonary surfactant phospholipid palmitoyl-oleoyl-phosphatidylglycerol (POPG) inhibited RSV infection in vitro and in vivo by blocking viral attachment to epithelial cells. Simultaneous application of POPG along with an RSV challenge to mice markedly attenuated infection and associated inflammatory responses. Based on these findings, we expanded our studies to determine whether POPG is effective for prophylaxis and postinfection treatment for RSV infection. In vitro application of POPG at concentrations of 0.2-1.0 mg/ml at 24 h after RSV infection of HEp-2 cells suppressed interleukin-8 production up to 80% and reduced viral plaque formation by 2-6 log units. In vivo, the turnover of POPG in mice is relatively rapid, making postinfection application impractical. Intranasal administration of POPG (0.8-3.0 mg), 45 min before RSV inoculation in mice reduced viral infection by 1 log unit, suppressed inflammatory cell appearance in the lung, and suppressed virus-elicited interferon-γ production. These findings demonstrate that POPG is effective for short-term protection of mice against subsequent RSV infection and that it has potential for application in humans.
Collapse
Affiliation(s)
- Mari Numata
- Department of Medicine, National Jewish Health, Denver, CO
| | - Yoji Nagashima
- Department of Pathology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Martin L Moore
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Karin Z Berry
- Department of Pharmacology, School of Medicine, University of Colorado - Denver, Aurora, CO; and
| | - Mallory Chan
- Department of Medicine, National Jewish Health, Denver, CO
| | | | - R Stokes Peebles
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Robert C Murphy
- Department of Pharmacology, School of Medicine, University of Colorado - Denver, Aurora, CO; and
| | | |
Collapse
|
13
|
Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:612-25. [PMID: 23026158 DOI: 10.1016/j.bbalip.2012.09.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/16/2022]
Abstract
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Medicine, Acute Lung Injury Center of Excellence, the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
14
|
Schmidt FI, Bleck CKE, Mercer J. Poxvirus host cell entry. Curr Opin Virol 2012; 2:20-7. [DOI: 10.1016/j.coviro.2011.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/10/2011] [Indexed: 12/20/2022]
|
15
|
Numata M, Kandasamy P, Nagashima Y, Posey J, Hartshorn K, Woodland D, Voelker DR. Phosphatidylglycerol suppresses influenza A virus infection. Am J Respir Cell Mol Biol 2011; 46:479-87. [PMID: 22052877 DOI: 10.1165/rcmb.2011-0194oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) is a worldwide public health problem causing 500,000 deaths each year. Palmitoyl-oleoyl-phosphatidylglycerol (POPG) is a minor component of pulmonary surfactant, which has recently been reported to exert potent regulatory functions upon the innate immune system. In this article, we demonstrate that POPG acts as a strong antiviral agent against IAV. POPG markedly attenuated IL-8 production and cell death induced by IAV in cultured human bronchial epithelial cells. The lipid also suppressed viral attachment to the plasma membrane and subsequent replication in Madin-Darby canine kidney cells. Two virus strains, H1N1-PR8-IAV and H3N2-IAV, bind to POPG with high affinity, but exhibit only low-affinity interactions with the structurally related lipid, palmitoyl-oleoyl-phosphatidylcholine. Intranasal inoculation of H1N1-PR8-IAV in mice, in the presence of POPG, markedly suppressed the development of inflammatory cell infiltrates, the induction of IFN-γ recovered in bronchoalveolar lavage, and viral titers recovered from the lungs after 5 days of infection. These findings identify supplementary POPG as a potentially important new approach for treatment of IAV infections.
Collapse
Affiliation(s)
- Mari Numata
- Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND INFORMATION Vaccinia virus (VACV) was used as a surrogate of variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection. VACV infects cells via attachment and fusion of the viral membrane with the host cell membrane. Glycosphingolipids, expressed in multiple organs, are major components of lipid rafts and have been associated with the infectious route of several pathogens. RESULTS We demonstrate that the VACV-WR (VACV Western-Reserve strain) displays no binding to Cer (ceramide) or to Gal-Cer (galactosylceramide), but binds to a natural sulfated derivative of these molecules: the Sulf (sulfatide) 3' sulfogalactosylceramide. The interaction between Sulf and VACV-WR resulted in a time-dependent inhibition of virus infection. Virus cell attachment was the crucial step inhibited by Sulf. Electron microscopy showed that SUVs (small unilamellar vesicles) enriched in Sulf bound to VACV particles. Both the A27 and L5 viral membrane proteins were shown to interact with Sulf, indicating that they could be the major viral ligands for Sulf. Soluble Sulf was successful in preventing mortality, but not morbidity, in a lethal mouse model infection with VACV-WR. CONCLUSIONS Together the results suggest that Sulf could play a role as an alternate receptor for VACV-WR and probably other Orthopoxviruses.
Collapse
|
17
|
Glasser JR, Mallampalli RK. Surfactant and its role in the pathobiology of pulmonary infection. Microbes Infect 2011; 14:17-25. [PMID: 21945366 DOI: 10.1016/j.micinf.2011.08.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 12/19/2022]
Abstract
Pulmonary surfactant is a complex surface-active substance comprised of key phospholipids and proteins that has many essential functions. Surfactant's unique composition is integrally related to its surface-active properties, its critical role in host defense, and emerging immunomodulatory activities ascribed to surfactant lipids. Together these effector functions provide for lung stability and protection from a barrage of potentially virulent infectious pathogens.
Collapse
Affiliation(s)
- Jennifer R Glasser
- Department of Medicine, Acute Lung Injury Center of Excellence, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
18
|
Debouzy JC, Crouzier D, Favier AL, Perino J. ESR and NMR studies provide evidence that phosphatidyl glycerol specifically interacts with poxvirus membranes. Virol J 2010; 7:379. [PMID: 21194478 PMCID: PMC3023795 DOI: 10.1186/1743-422x-7-379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/31/2010] [Indexed: 11/21/2022] Open
Abstract
Background The lung would be the first organ targeted in case of the use of Variola virus (the causative agent of smallpox) as a bioweapon. Pulmonary surfactant composed of lipids (90%) and proteins (10%) is considered the major physiological barrier against airborne pathogens. The principle phospholipid components of lung surfactant were examined in an in vitro model to characterize their interactions with VACV, a surrogate for variola virus. One of them, Dipalmitoyl phosphatidylglycerol (DPPG), was recently shown to inhibit VACV cell infection. Results The interactions of poxvirus particles from the Western Reserve strain (VACV-WR) and the Lister strain (VACV-List) with model membranes for pulmonary surfactant phospholipids, in particular DPPG, were studied by Electron Spin Resonance (ESR) and proton Nuclear Magnetic Resonance (1H-NMR). ESR experiments showed that DPPG exhibits specific interactions with both viruses, while NMR experiments allowed us to deduce its stoichiometry and to propose a model for the mechanism of interaction at the molecular level. Conclusions These results confirm the ability of DPPG to strongly bind to VACV and suggest that similar interactions occur with variola virus. Similar studies of the interactions between lipids and other airborne pathogens are warranted.
Collapse
Affiliation(s)
- Jean-Claude Debouzy
- Unité de biophysique cellulaire et moléculaire, CRSSA-IRBA, 24 avenue des maquis du Grésivaudan, 38702 La Tronche cedex, France
| | | | | | | |
Collapse
|