1
|
Zhang S, Li J, Gao H, Wang Y, Cao H, Li X, Gao L, Zheng SJ. TMT-based quantitative proteomic analysis of IBDV-infected CEF cells reveals a favorable role of chicken IRF10 in IBDV replication via suppressing type-I interferon expression. Poult Sci 2024; 103:104421. [PMID: 39442197 PMCID: PMC11532768 DOI: 10.1016/j.psj.2024.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious disease caused by infectious bursal disease virus (IBDV), causing huge economic losses to the poultry industry worldwide. Currently, the emerging variant strains of IBDV and new recombinants in the field are circulating in many countries and poses severe threats to the development of poultry industry. Elucidation of the pathogenesis of IBDV infection will be of great help to the development of vaccines for control of IBDV infection. In this study, liquid chromatography tandem-mass spectrometry (LC-MS/MS) combined with tandem mass tag (TMT) labeling was performed to determine the expressions of nucleus proteins in IBDV-infected chicken embryonic fibroblast (CEF) cells 24 h post-infection (hpi). Our data show that a total of 236 nucleus proteins were differentially expressed in IBDV-infected cells vs mock-infected controls, and that among those proteins, 171 were significantly upregulated while 65 downregulated. Bioinformatics analysis reveals that the differentially expressed proteins (DEPs) were mainly involved in immune response, DNA replication, mismatch repair, and RIG-I-like receptor (RLR) signaling. Consistently, the expression of ten selected upregulated genes (IRF10, IRF7, IRF1, STAT1, ATF3, GTF3A, CSRP3, RARB, BASP1, and NF-κB1) markedly increased as examined by quantitative real-time PCR (qRT-PCR). Furthermore, the expression of IRF10 was upregulated both in the cytoplasm and nucleus of DF-1 cells as examined by Western Blot. Moreover, knockdown of IRF10 remarkably inhibited IBDV replication via promoting IFN-I response, and overexpression of IRF10 significantly suppressed type I interferon and ISGs expression in both mock and IBDV-infected cells, suggesting that IRF10 serve as a negative regulator for host antiviral response. These results provide clues to further investigation into host-IBDV interactions and the underlying mechanisms of IBDV infection.
Collapse
Affiliation(s)
- Shujun Zhang
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Li
- China Institute of Veterinary Drug Control
| | - Hui Gao
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Yuan M, Liu X, Wang M, Li Z, Li H, Leng L, Wang S. A Functional Variant Alters the Binding of Bone morphogenetic protein 2 to the Transcription Factor NF-κB to Regulate Bone morphogenetic protein 2 Gene Expression and Chicken Abdominal Fat Deposition. Animals (Basel) 2023; 13:3401. [PMID: 37958155 PMCID: PMC10650395 DOI: 10.3390/ani13213401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we employed a dual-luciferase reporter assay and electrophoretic mobility shift analysis (EMSA) in vitro to explore whether a 12-base pair (bp) insertion/deletion (InDel) variant (namely g.14798187_14798188insTCCCTGCCCCCT) within intron 2 of the chicken BMP2 gene, which was significantly associated with chicken abdominal fat weight and abdominal fat percentage, is a functional marker and its potential regulatory mechanism. The reporter analysis demonstrated that the luciferase activity of the deletion allele was extremely significantly higher than that of the insertion allele (p < 0.01). A bioinformatics analysis revealed that compared to the deletion allele, the insertion allele created a transcription factor binding site of nuclear factor-kappa B (NF-κB), which exhibited an inhibitory effect on fat deposition. A dual-luciferase reporter assay demonstrated that the inhibitory effect of NF-κB on the deletion allele was stronger than that on the insertion allele. EMSA indicated that the binding affinity of NF-κB for the insertion allele was stronger than that for the deletion allele. In conclusion, the 12-bp InDel chicken BMP2 gene variant is a functional variant affecting fat deposition in chickens, which may partially regulate BMP2 gene expression by affecting the binding of transcription factor NF-κB to the BMP2 gene.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xin Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mengdie Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ziwei Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Chen Z, Leng M, Liang Z, Zhu P, Chen S, Xie Q, Chen F, Lin W. gga-miR-20b-5p inhibits infectious bursal disease virus replication via targeting Netrin 4. Vet Microbiol 2023; 279:109676. [PMID: 36796296 DOI: 10.1016/j.vetmic.2023.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) involved host-virus interaction, affecting the replication or pathogenesis of several viruses. Frontier evidences suggested that miRNAs play essential roles in infectious bursal disease virus (IBDV) replication. However, the biological function of miRNAs and the underlying molecular mechanisms are still unclear. Here, we reported that gga-miR-20b-5p acted as a negative factor affecting IBDV infection. We found that gga-miR-20b-5p was significantly up-regulated during IBDV infection in host cells, and that gga-miR-20b-5p effectively inhibited IBDV replication via targeting the expression of host protein netrin 4 (NTN4). In contrast, inhibition of endogenous miR-20b-5p markedly facilitated viral replication associated with enhancing NTN4 expression. Collectively, these findings highlight a crucial role of gga-miR-20b-5p in IBDV replication.
Collapse
Affiliation(s)
- Zixian Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Mei Leng
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhishan Liang
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Puduo Zhu
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Sheng Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Feng Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| | - Wencheng Lin
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
4
|
Zhang S, Zheng S. Host Combats IBDV Infection at Both Protein and RNA Levels. Viruses 2022; 14:v14102309. [PMID: 36298864 PMCID: PMC9607458 DOI: 10.3390/v14102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, with the emergence of IBDV variants and recombinant strains, IBDV still threatens the poultry industry worldwide. It seems that the battle between host and IBDV will never end. Thus, it is urgent to develop a more comprehensive and effective strategy for the control of this disease. A better understanding of the mechanisms underlying virus-host interactions would be of help in the development of novel vaccines. Recently, much progress has been made in the understanding of the host response against IBDV infection. If the battle between host and IBDV at the protein level is considered the front line, at the RNA level, it can be taken as a hidden line. The host combats IBDV infection at both the front and hidden lines. Therefore, this review focuses on our current understanding of the host response to IBDV infection at both the protein and RNA levels.
Collapse
Affiliation(s)
- Shujun Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-(10)-6273-4681
| |
Collapse
|
5
|
Morenikeji OB, Adegbaju MS, Okoh OS, Babalola AE, Grytsay A, Braimah OA, Akinyemi MO, Thomas BN. Deciphering inhibitory mechanism of coronavirus replication through host miRNAs-RNA-dependent RNA polymerase interactome. Front Genet 2022; 13:973252. [PMID: 36092931 PMCID: PMC9459146 DOI: 10.3389/fgene.2022.973252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite what we know so far, Covid-19, caused by SARS-CoV-2 virus, remains a pandemic that still require urgent healthcare intervention. The frequent mutations of the SARS-CoV-2 virus has rendered disease control with vaccines and antiviral drugs quite challenging, with newer variants surfacing constantly. There is therefore the need for newer, effective and efficacious drugs against coronaviruses. Considering the central role of RNA dependent, RNA polymerase (RdRp) as an enzyme necessary for the virus life cycle and its conservation among coronaviruses, we investigated potential host miRNAs that can be employed as broad-range antiviral drugs averse to coronaviruses, with particular emphasis on BCoV, MERS-CoV, SARS-CoV and SARS-CoV-2. miRNAs are small molecules capable of binding mRNA and regulate expression at transcriptional or translational levels. Our hypothesis is that host miRNAs have the potential of blocking coronavirus replication through miRNA-RdRp mRNA interaction. To investigate this, we retrieved the open reading frame (ORF1ab) nucleotide sequences and used them to interrogate miRNA databases for miRNAs that can bind them. We employed various bioinformatics tools to predict and identify the most effective host miRNAs. In all, we found 27 miRNAs that target RdRp mRNA sequence of multiple coronaviruses, of which three - hsa-miR-1283, hsa-miR-579-3p, and hsa-miR-664b-3p target BCoV, SARS-CoV and SARS-CoV-2. Additionally, hsa-miR-374a-5p has three bovine miRNA homologs viz bta-miR-374a, bta-miR-374b, and bta-miR-374c. Inhibiting the expression of RdRp enzyme via non-coding RNA is novel and of great therapeutic importance in the control of coronavirus replication, and could serve as a broad-spectrum antiviral, with hsa-miR-1283, hsa-miR-579-3p, and hsa-miR-664b-3p as highly promising.
Collapse
Affiliation(s)
- Olanrewaju B. Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA, United States
- *Correspondence: Olanrewaju B. Morenikeji,
| | - Muyiwa S. Adegbaju
- Institute for Plant Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Olayinka S. Okoh
- Department of Chemical Sciences, Anchor University, Lagos, Nigeria
| | | | - Anastasia Grytsay
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA, United States
| | - Olubumi A. Braimah
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA, United States
| | - Mabel O. Akinyemi
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, United States
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
6
|
Liu XN, Guo XR, Han Y, Tian T, Sun J, Lei BS, Zhang WC, Yuan WZ, Zhao K. The Cellular and Viral circRNAs Induced by Fowl Adenovirus Serotype 4 Infection. Front Microbiol 2022; 13:925953. [PMID: 35722302 PMCID: PMC9201442 DOI: 10.3389/fmicb.2022.925953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a new class of noncoding RNAs that play vital roles in many biological processes. Virus infection induces modifications in cellular circRNA transcriptomes and expresses viral circRNAs. The outbreaks of Hydropericardium-hepatitis syndrome (HHS) caused by fowl adenovirus serotype 4 (FAdV-4) have resulted in huge economic losses to the poultry industry worldwide. To investigate the expression of circRNAs during FAdV-4 infection, we performed transcriptome analysis of FAdV-4-infected leghorn male hepatoma (LMH) cells. In total, 19,154 cellular circRNAs and 135 differentially expressed (DE) cellular circRNAs were identified. The characteristics of the DE cellular circRNAs were analyzed and most of them were related to multiple biological processes according to GO and KEGG enrichment analysis. The accuracy of 10 cellular circRNAs were verified by semiquantitative RT-PCR and sequencing. The change trend was consistent with the RNA sequencing results. Moreover, 2014 viral circRNAs were identified and 10 circRNAs were verified by the same methods. Our analysis showed that seven circRNAs with the same 3′ terminal and variable 5′ terminal regions were located at pTP protein and DNA pol protein of FAdV-4, which may be generated via alternative splicing events. Moreover, the expression level of viral circRNAs was closely related to the replication efficiency of the virus and partial of the viral circRNAs promoted the replication of FAdV-4. Competing endogenous RNA analysis further showed that the effects of cellular and viral circRNAs on host or viral genes may act via miRNAs. Collectively, our findings first indicate that FAdV-4 infection induced the differential expression of cellular circRNAs and FAdV-4 also expressed viral circRNAs, some of which affected FAdV-4 replication. These findings will provide new clues for further understanding FAdV-4 and provide a basis for investigating host-virus interactions.
Collapse
Affiliation(s)
- Xiao-Na Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiao-Ran Guo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ying Han
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Tian Tian
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jian Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Bai-Shi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wu-Chao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wan-Zhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.,Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.,Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Lei L, Cheng A, Wang M, Jia R. The Influence of Host miRNA Binding to RNA Within RNA Viruses on Virus Multiplication. Front Cell Infect Microbiol 2022; 12:802149. [PMID: 35531344 PMCID: PMC9069554 DOI: 10.3389/fcimb.2022.802149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
microRNAs (miRNAs), non-coding RNAs about 22 nt long, regulate the post-transcription expression of genes to influence many cellular processes. The expression of host miRNAs is affected by virus invasion, which also affects virus replication. Increasing evidence has demonstrated that miRNA influences RNA virus multiplication by binding directly to the RNA virus genome. Here, the knowledge relating to miRNAs’ relationships between host miRNAs and RNA viruses are discussed.
Collapse
Affiliation(s)
- Lin Lei
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia,
| |
Collapse
|
8
|
Abstract
Recognition of viral RNAs by melanoma differentiation associated gene-5 (MDA5) initiates chicken antiviral response by producing type I interferons. Our previous studies showed that chicken microRNA-155-5p (gga-miR-155-5p) enhanced IFN-β expression and suppressed the replication of infectious burse disease virus (IBDV), a double-stranded RNA (dsRNA) virus causing infectious burse disease in chickens. However, the mechanism underlying IBDV-induced gga-miR-155-5p expression in host cells remains elusive. Here, we show that IBDV infection or poly(I:C) treatment of DF-1 cells markedly increased the expression of GATA-binding protein 3 (GATA3), a master regulator for TH2 cell differentiation, and that GATA3 promoted gga-miR-155-5p expression in IBDV-infected or poly(I:C)-treated cells by directly binding to its promoter. Surprisingly, ectopic expression of GATA3 significantly reduced IBDV replication in DF-1 cells, and this reduction could be completely abolished by treatment with gga-miR-155-5p inhibitors, whereas knockdown of GATA3 by RNA interference enhanced IBDV growth, and this enhancement could be blocked with gga-miR-155-5p mimics, indicating that GATA3 suppressed IBDV replication by gga-miR-155-5p. Furthermore, our data show that MDA5 is required for GATA3 expression in host cells with poly(I:C) treatment, so are the adaptor protein TBK1 and transcription factor IRF7, suggesting that induction of GATA3 expression in IBDV-infected cells relies on MDA5-TBK1-IRF7 signaling pathway. These results uncover a novel role for GATA3 as an antivirus transcription factor in innate immune response by promoting miR-155 expression, further our understandings of host response against pathogenic infection, and provide valuable clues to the development of antiviral reagents for public health. IMPORTANCE Gga-miR-155-5p acts as an important antivirus factor against IBDV infection, which causes a severe immunosuppressive disease in chicken. Elucidation of the mechanism regulating gga-miR-155-5p expression in IBDV-infected cells is essential to our understandings of the host response against pathogenic infection. This study shows that transcription factor GATA3 initiated gga-miR-155-5p expression in IBDV-infected cells by directly binding to its promoter, suppressing viral replication. Furthermore, induction of GATA3 expression was attributable to the recognition of dsRNA by MDA5, which initiates signal transduction via TBK1 and IRF7. Thus, it is clear that IBDV induces GATA3 expression via MDA5-TBK1-IRF7 signaling pathway, thereby suppressing IBDV replication by GATA3-mediated gga-miR-155-5p expression. This information remarkably expands our knowledge of the roles for GATA3 as an antivirus transcription factor in host innate immune response particularly at an RNA level and may prove valuable in the development of antiviral drugs for public health.
Collapse
|
9
|
Wu Y, Wen J, Han J, Tian Y, Man C. Stress-induced immunosuppression increases levels of certain circulating miRNAs and affects the immune response to an infectious bursal disease virus vaccine in chickens. Res Vet Sci 2021; 142:141-148. [PMID: 34954461 DOI: 10.1016/j.rvsc.2021.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Stress-induced immunosuppression can affect the immune effect of vaccine. However, the mechanism of stress-induced immunosuppression affecting immune response to infectious bursal disease virus (IBDV) vaccine in chicken is still unclear. In this study, thirteen IBDV related circulating miRNAs were selected to study their expressions, possible functions and mechanisms in dexamethasone (Dex)-induced immunosuppressed chicken vaccinated with IBDV attenuated vaccine. The experiment aimed to explore the relationship between the expressions of IBDV related circulating miRNAs and stress-induced immunosuppression. The quantitative real-time PCR (qRT-PCR) results showed that Dex-induced immunosuppression could induce the differential expressions of the candidate serum circulating miRNAs, especially on the 2nd, 5th, 7th and 28th day after dexamethasone treatment. Dex-induced immunosuppression could affect the immune response to the IBDV vaccine, which was possibly achieved by partially regulating the differential expressions of the IBDV related circulating miRNAs. Bioinformatics analysis showed that the candidate miRNAs could regulate the immune function mainly through targeting genes (such as CREB1 and MAPK1) in TGF-β and MAPK signaling pathways. This study can provide a preliminary reference for further studying the function and mechanism of circulating miRNAs in immune regulation.
Collapse
Affiliation(s)
- Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jianwei Han
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin, China.
| |
Collapse
|
10
|
Pang Y, Yan Y, Zhang X, Chen F, Luo Q, Xie Q, Lin W. gga-miR-200b-3p promotes avian leukosis virus subgroup J replication via targeting dual-specificity phosphatase 1. Vet Microbiol 2021; 264:109278. [PMID: 34808431 DOI: 10.1016/j.vetmic.2021.109278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) involved host-virus interaction, affecting the replication or pathogenesis of several viruses. Although avian leukosis virus subgroup J (ALV-J) has been one of the most studied avian viruses, the effects of various host miRNAs on ALV-J infection and its underlying molecular mechanisms are still unclear. Here, we reported that gga-miR-200b-3p acts as a positive host factor enhancing ALV-J replication. We found that gga-miR-200b-3p was increased in response to ALV-J infection in host cells, and that gga-miR-200b-3p effectively enhanced ALV-J replication via targeting host protein dual-specificity phosphatase 1 (DUSP1). Collectively, these findings highlight a crucial role of gga-miR-200b-3p in ALV-J replication.
Collapse
Affiliation(s)
- Yanling Pang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, PR China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, PR China
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, PR China.
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
11
|
Millard RS, Bickley LK, Bateman KS, Farbos A, Minardi D, Moore K, Ross SH, Stentiford GD, Tyler CR, van Aerle R, Santos EM. Global mRNA and miRNA Analysis Reveal Key Processes in the Initial Response to Infection with WSSV in the Pacific Whiteleg Shrimp. Viruses 2021; 13:v13061140. [PMID: 34199268 PMCID: PMC8231841 DOI: 10.3390/v13061140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
White Spot Disease (WSD) presents a major barrier to penaeid shrimp production. Mechanisms underlying White Spot Syndrome Virus (WSSV) susceptibility in penaeids are poorly understood due to limited information related to early infection. We investigated mRNA and miRNA transcription in Penaeus vannamei over 36 h following infection. Over this time course, 6192 transcripts and 27 miRNAs were differentially expressed—with limited differential expression from 3–12 h post injection (hpi) and a more significant transcriptional response associated with the onset of disease symptoms (24 hpi). During early infection, regulated processes included cytoskeletal remodelling and alterations in phagocytic activity that may assist WSSV entry and translocation, novel miRNA-induced metabolic shifts, and the downregulation of ATP-dependent proton transporter subunits that may impair cellular recycling. During later infection, uncoupling of the electron transport chain may drive cellular dysfunction and lead to high mortalities in infected penaeids. We propose that post-transcriptional silencing of the immune priming gene Dscam (downregulated following infections) by a novel shrimp miRNA (Pva-pmiR-78; upregulated) as a potential mechanism preventing future recognition of WSSV that may be suppressed in surviving shrimp. Our findings improve our understanding of WSD pathogenesis in P. vannamei and provide potential avenues for future development of prophylactics and treatments.
Collapse
Affiliation(s)
- Rebecca S. Millard
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Correspondence: (R.S.M.); (E.M.S.); Tel.: +44-(0)-1392-724607 (E.M.S.)
| | - Lisa K. Bickley
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
| | - Kelly S. Bateman
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Audrey Farbos
- Exeter Sequencing Service, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK; (A.F.); (K.M.)
| | - Diana Minardi
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Karen Moore
- Exeter Sequencing Service, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK; (A.F.); (K.M.)
| | - Stuart H. Ross
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Grant D. Stentiford
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
| | - Ronny van Aerle
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Eduarda M. Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Correspondence: (R.S.M.); (E.M.S.); Tel.: +44-(0)-1392-724607 (E.M.S.)
| |
Collapse
|
12
|
Wang WJ, Guo YQ, Xie KJ, Li YD, Li ZW, Wang N, Xiao F, Guo HS, Li H, Wang SZ. A functional variant in the promoter region of IGF1 gene is associated with chicken abdominal fat deposition. Domest Anim Endocrinol 2021; 75:106584. [PMID: 33276215 DOI: 10.1016/j.domaniend.2020.106584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
Insulin-like growth factor 1 (IGF1) plays an important role in the regulation of cell growth, proliferation, differentiation, and apoptosis. Previously several studies revealed that genotypes of chicken IGF1 c.-366A > C were significantly associated with abdominal fat weight and body weight in chickens. But the underlying mechanism is still unknown. To investigate the mechanism underlying the association, herein, we performed IGF1 gene mRNA expression profiling, a dual-luciferase reporter assay and electrophoretic mobility shift assay (EMSA). Quantitative real-time PCR results showed that IGF1 gene was widely expressed in 14 tissues. The mRNA expression levels of IGF1 gene in both abdominal fat and jejunum were significantly higher in fat broilers than in lean broilers. However, the opposite results were observed in the pancreas. The reporter gene assay showed that the promoter luciferase activity of allele A was significantly higher than that of allele C (P < 0.05). In addition, the luciferase activity of allele A promoted by the transcription factor AP1 and OCT1 was higher than that of allele C (P < 0.05). Electrophoretic mobility shift assay result showed that allele A binding to the transcription factor AP1 and OCT1 was stronger than that of allele C. All in all, our data indicated that the IGF1 gene c.-366A > C is a functional SNP responsible for chicken adipose deposition.
Collapse
Affiliation(s)
- W J Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Q Guo
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - K J Xie
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y D Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Z W Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co, Ltd, Guangze, Fujian Province 354100, China
| | - H S Guo
- Fujian Sunnzer Biotechnology Development Co, Ltd, Guangze, Fujian Province 354100, China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - S Z Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
He G, Ding J, Zhang Y, Cai M, Yang J, Cho WC, Zheng Y. microRNA-21: a key modulator in oncogenic viral infections. RNA Biol 2021; 18:809-817. [PMID: 33499700 DOI: 10.1080/15476286.2021.1880756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Oncogenic viruses are associated with approximately 15% of human cancers. In viral infections, microRNAs play an important role in host-pathogen interactions. miR-21 is a highly conserved non-coding RNA that not only regulates the development of oncogenic viral diseases, but also responds to the regulation of intracellular signal pathways. Oncogenic viruses, including HBV, HCV, HPV, and EBV, co-evolve with their hosts and cause persistent infections. The upregulation of host miR-21 manipulates key cellular pathways to evade host immune responses and then promote viral replication. Thus, a better understanding of the role of miR-21 in viral infections may help us to develop effective genetically-engineered oncolytic virus-based therapies against cancer.
Collapse
Affiliation(s)
- Guitian He
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Juntao Ding
- College of Life Science and Technology, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Mengting Cai
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou China
| |
Collapse
|
14
|
Chen Y, Zhu S, Hu J, Hu Z, Liu X, Wang X, Gu M, Hu S, Liu X. gga-miR-1603 and gga-miR-1794 directly target viral L gene and function as a broad-spectrum antiviral factor against NDV replication. Virulence 2020; 12:45-56. [PMID: 33372825 PMCID: PMC7781659 DOI: 10.1080/21505594.2020.1864136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As the causative agent of Newcastle disease (ND), Newcastle disease virus (NDV) has seriously restricted the development of the poultry industry. Previous research has shown that miRNAs, members of the small noncoding RNA family, are implicated in the regulation NDV replication through extensive interactions with host mRNAs, but whether miRNAs affect NDV replication by directly binding to the NDV antigenome remains unclear. In this study, potential Gallus gallus miRNAs targeting the antigenome of NDV were bioinformatically predicted using the online software RegRNA 2.0, and gga-miR-1603 and gga-miR-1794 were identified as targeting the viral L gene directly through dual-luciferase reporter assays. Sequence alignment analysis demonstrated that multiple genotypes of NDVs harbored highly conserved binding sites for gga-miR-1603 and gga-miR-1794 in the viral antigenome located at 8611–8634 nt and 14,490–14,514 nt, respectively. Meanwhile, we found that gga-miR-1603 and gga-miR-1794 negatively regulated the expression of viral L gene at both the RNA and protein levels, as well as viral replication in vitro. Furthermore, NDV infection had no effect on endogenous gga-miR-1603 and gga-miR-1794 expression in various avian cell lines. Overall, our present study demonstrated that gga-miR-1603 and gga-miR-1794 directly bind to the viral L gene to facilitate ts degradation and inhibit the replication of multiple genotypes of NDVs in vitro. These findings will provide us with important clues for antiviral therapy against NDV infection.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Shanshan Zhu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University , Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University , Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University , Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University , Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou, China
| |
Collapse
|
15
|
Wang W, Li Y, Li Z, Wang N, Xiao F, Gao H, Guo H, Li H, Wang S. Polymorphisms of KLF3 gene coding region and identification of their functionality for abdominal fat in chickens. Vet Med Sci 2020; 7:792-799. [PMID: 33369233 PMCID: PMC8136968 DOI: 10.1002/vms3.422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
KLF3 is a member of the Kruppel‐like factor (KLF) family of transcription factors, and plays an important role in several biological processes, including adipogenesis, erythropoiesis and B‐cell development. The purposes of this study are to search for polymorphisms of KLF3 coding region and to provide functional evidence for abdominal fat in chickens. A total of 168 SNPs in KLF3 coding region were detected in a unique chicken population, the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). Of which three single nucleotide polymorphisms (g.3452T > C, g.8663A > G and g.10751G > A) were significantly correlated with abdominal fat weight (AFW) and abdominal fat percentage (AFP) of 329 birds from the 19th generation of NEAUHLF (FDR < 0.05). The reporter gene assay was performed to verify functionality of these three SNPs in both ICP‐1 and DF1 cells. Results showed that the luciferase activity of G allele was significantly higher than that of A allele in g.10751G > A (p < 0.05). However, there were no significant differences between different alleles of others two SNPs in luciferase activity. Overall, KLF3 is an important candidate gene that affects chicken abdominal fat content, and the g.10751G > A is a functional variant that potential would be applied to marker‐assisted selection (MAS) for selective breeding programme.
Collapse
Affiliation(s)
- Weijia Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yudong Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ziwei Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fan Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Guangze, Fujian Province, China
| | - Haihe Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Guangze, Fujian Province, China
| | - Huaishun Guo
- Fujian Sunnzer Biotechnology Development Co., Ltd., Guangze, Fujian Province, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
17
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Duan X, Zhao M, Li X, Gao L, Cao H, Wang Y, Zheng SJ. gga-miR-27b-3p enhances type I interferon expression and suppresses infectious bursal disease virus replication via targeting cellular suppressors of cytokine signaling 3 and 6 (SOCS3 and 6). Virus Res 2020; 281:197910. [PMID: 32126296 DOI: 10.1016/j.virusres.2020.197910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023]
Abstract
MicroRNAs are small noncoding RNAs playing an important role in host response to pathogenic infection. Here we show that IBDV infection induced the demethylation of the pre-miR-27 promoter and upregulated gga-miR-27b-3p expression. We found that ectopic expression of miR-27b-3p in DF-1 cells enhanced the expression of chicken IFN-β, IRF3 and NF-κB, via directly targeting cellular suppressors of cytokine signaling 3 and 6 (SOCS3 and 6), inhibiting IBDV replication in host cells, while inhibition of endogenous miR-27b-3p by its inhibitors suppressed the expression of IFN-β, IRF3 and NF-κB, enhancing SOCS3 and 6 expressions and facilitating IBDV replication. Furthermore, transfection of DF-1 cells with miR-27b-3p markedly increased phosphorylation of STAT1 on Tyr701 in cells post chIFN-γ treatment. On the contrary, inhibition of endogenous miR-27b-3p reduced phosphorylation of STAT1 on Tyr701 in cells with chIFN-γ treatment. These findings indicate that gga-miR-27b-3p serves as an inducible antiviral mediator in host response to IBDV infection.
Collapse
Affiliation(s)
- Xueyan Duan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mingliang Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Shijun J Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Duan X, Wang L, Sun G, Yan W, Yang Y. Understanding the cross-talk between host and virus in poultry from the perspectives of microRNA. Poult Sci 2020; 99:1838-1846. [PMID: 32241464 PMCID: PMC7587795 DOI: 10.1016/j.psj.2019.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
In poultry, viral infections (e.g., Marek's disease virus, avian leukosis virus, influenza A virus, and so on) can cause devastating mortality and economic losses. Because viruses are solely dependent on host cells to propagate, they alter the host intracellular microenvironment. Thus, understanding the virus-host interaction is important for antiviral immunity and drug development in the poultry industry. MicroRNAs are crucial posttranscriptional regulators of gene expression in a wide spectrum of biological processes, including viral infection. Recently, microRNAs have been identified as key players in virus-host interactions. In this review, we will discuss the intricacies involved in the virus-host cross-talk mediated by host and viral microRNAs in poultry (i.e., chicken and ducks), as well as recent trends and challenges in this field. These findings may provide some insights into the rapidly developing area of research regarding viral pathogenesis and antiviral immunity in poultry production.
Collapse
Affiliation(s)
- Xiujun Duan
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; National Gene Bank of Waterfowl Resources, Taizhou 225300, China
| | - Lihua Wang
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Guobo Sun
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; National Gene Bank of Waterfowl Resources, Taizhou 225300, China
| | - Wenying Yan
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.
| | - Yang Yang
- School of Computer Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
20
|
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that inhibit protein translation from target mRNAs. Accumulating evidence suggests that miRNAs can regulate a broad range of biological pathways, including cell differentiation, apoptosis, and carcinogenesis. With the development of miRNAs, the investigation of miRNA functions has emerged as a hot research field. Due to the intensive farming in recent decades, chickens are easily influenced by various pathogen transmissions, and this has resulted in large economic losses. Recent reports have shown that miRNAs can play critical roles in the regulation of chicken diseases. Therefore, the aim of this review is to briefly discuss the current knowledge regarding the effects of miRNAs on chickens suffering from common viral diseases, mycoplasmosis, necrotic enteritis, and ovarian tumors. Additionally, the detailed targets of miRNAs and their possible functions are also summarized. This review intends to highlight the key role of miRNAs in regard to chickens and presents the possibility of improving chicken disease resistance through the regulation of miRNAs.
Collapse
|
21
|
Epigenetic Upregulation of Chicken MicroRNA-16-5p Expression in DF-1 Cells following Infection with Infectious Bursal Disease Virus (IBDV) Enhances IBDV-Induced Apoptosis and Viral Replication. J Virol 2020; 94:JVI.01724-19. [PMID: 31694944 DOI: 10.1128/jvi.01724-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally by silencing or degrading their targets and play important roles in the host response to pathogenic infection. Although infectious bursal disease virus (IBDV)-induced apoptosis in host cells has been established, the underlying molecular mechanism is not completely unraveled. Here, we show that infection of DF-1 cells by IBDV induced gga-miR-16-5p (chicken miR-16-5p) expression via demethylation of the pre-miR-16-2 (gga-miR-16-5p precursor) promoter. We found that ectopic expression of gga-miR-16-5p in DF-1 cells enhanced IBDV-induced apoptosis by directly targeting the cellular antiapoptotic protein B-cell lymphoma 2 (Bcl-2), facilitating IBDV replication in DF-1 cells. In contrast, inhibition of endogenous miR-16-5p markedly suppressed apoptosis associated with enhanced Bcl-2 expression, arresting viral replication in DF-1 cells. Furthermore, infection of DF-1 cells with IBDV reduced Bcl-2 expression, and this reduction could be abolished by inhibition of gga-miR-16-5p expression. Moreover, transfection of DF-1 cells with gga-miR-16-5p mimics enhanced IBDV-induced apoptosis associated with increased cytochrome c release and caspase-9 and -3 activation, and inhibition of caspase-3 decreased IBDV growth in DF-1 cells. Thus, epigenetic upregulation of gga-miR-16-5p expression by IBDV infection enhances IBDV-induced apoptosis by targeting the cellular antiapoptotic protein Bcl-2, facilitating IBDV replication in host cells.IMPORTANCE Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive disease in young chickens, causing severe economic losses to stakeholders across the globe. Although IBD virus (IBDV)-induced apoptosis in the host has been established, the underlying mechanism is not very clear. Here, we show that infection of DF-1 cells by IBDV upregulated gga-miR-16-5p expression via demethylation of the pre-miR-16-2 promoter. Overexpression of gga-miR-16-5p enhanced IBDV-induced apoptosis associated with increased cytochrome c release and caspase-9 and -3 activation. Importantly, we found that IBDV infection induced expression of gga-miR-16-5p that triggered apoptosis by targeting Bcl-2, favoring IBDV replication, while inhibition of gga-miR-16-5p in IBDV-infected cells restored Bcl-2 expression, slowing down viral growth, indicating that IBDV induces apoptosis by epigenetic upregulation of gga-miR-16-5p expression. These findings uncover a novel mechanism employed by IBDV for its own benefit, which may be used as a potential target for intervening IBDV infection.
Collapse
|
22
|
The Roles of MicroRNAs (miRNAs) in Avian Response to Viral Infection and Pathogenesis of Avian Immunosuppressive Diseases. Int J Mol Sci 2019; 20:ijms20215454. [PMID: 31683847 PMCID: PMC6862082 DOI: 10.3390/ijms20215454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in the regulation of various biological processes including cell development and differentiation, apoptosis, tumorigenesis, immunoregulation and viral infections. Avian immunosuppressive diseases refer to those avian diseases caused by pathogens that target and damage the immune organs or cells of the host, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. As such, once a disease with an immunosuppressive feature occurs in flocks, it would be difficult for the stakeholders to have an optimal economic income. Infectious bursal disease (IBD), avian leukemia (AL), Marek’s disease (MD), chicken infectious anemia (CIA), reticuloendotheliosis (RE) and avian reovirus infection are on the top list of commonly-seen avian diseases with a feature of immunosuppression, posing an unmeasurable threat to the poultry industry across the globe. Understanding the pathogenesis of avian immunosuppressive disease is the basis for disease prevention and control. miRNAs have been shown to be involved in host response to pathogenic infections in chickens, including regulation of immunity, tumorigenesis, cell proliferation and viral replication. Here we summarize current knowledge on the roles of miRNAs in avian response to viral infection and pathogenesis of avian immunosuppressive diseases, in particular, MD, AL, IBD and RE.
Collapse
|
23
|
Zhao Y, Zou M, Sun Y, Zhang K, Peng X. gga-miR-21 modulates Mycoplasma gallisepticum (HS strain)-Induced inflammation via targeting MAP3K1 and activating MAPKs and NF-κB pathways. Vet Microbiol 2019; 237:108407. [PMID: 31585644 DOI: 10.1016/j.vetmic.2019.108407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 01/16/2023]
Abstract
Mycoplasma gallisepticum (MG) can target host cells and cause chronic respiratory disease (CRD) in chickens that is characterized by pMGA and concomitant. Although microRNAs (miRNAs) have been manifested are crucial regulatory noncoding RNAs with important effects on microbial pathogenesis and inflammatory response, how miRNAs regulate MG-induced inflammation remains to be discovered. The results showed that gga-miR-21 was up-regulated in MG-infected chicken embryonic lungs and MG infection of chicken embryo fibroblast cells (DF-1) compared with the control group. Overexpression of gga-miR-21 increased the inflammatory cytokines production, including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8) after MG infection, knockdown of gga-miR-21 had thoroughly inverse effects. Gene expression data combined with bioinformatics analysis and luciferase reporter assays demonstrated that mitogen-activated protein kinase kinase kinase 1(MAP3K1) was a novel target of gga-miR-21. The inhibition of MAP3K1 by gga-miR-21 resulted in the accumulation of NF-κB in the nucleus, which in turn generate higher inflammatory cytokines. Furthermore, upregulation of gga-miR-21 significantly inhibited MG propagation and promoted MG-infected DF-1 cells proliferation by increasing the cell cycle progression and suppressing cell apoptosis. Our study provides evidence for proinflammatory effects of gga-miR-21 which is mediated at least in part by targeting MAP3K1 in the MG-infected DF-1 cells. gga-miR-21 activates MAPKs and NF-κB signaling pathways via targeting MAP3K1, and then promotes the production of inflammatory cytokines and cell proliferation by increasing the cell cycle progression and suppressing cell apoptosis to defend against MG infection.
Collapse
Affiliation(s)
- Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Lin J, Wang Z, Wang J, Yang Q. Microarray analysis of infectious bronchitis virus infection of chicken primary dendritic cells. BMC Genomics 2019; 20:557. [PMID: 31286855 PMCID: PMC6615177 DOI: 10.1186/s12864-019-5940-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Avian infectious bronchitis virus (IBV) is a major respiratory disease-causing agent in birds that leads to significant losses. Dendritic cells (DCs) are specialised cells responsible for sampling antigens and presenting them to T cells, which also play an essential role in recognising and neutralising viruses. Recent studies have suggested that non-coding RNAs may regulate the functional program of DCs. Expression of host non-coding RNAs changes markedly during infectious bronchitis virus infection, but their role in regulating host immune function has not been explored. Here, microarrays of mRNAs, miRNAs, and lncRNAs were globally performed to analyse how avian DCs respond to IBV. Results First, we found that IBV stimulation did not enhance the maturation ability of avian DCs. Interestingly, inactivated IBV was better able than IBV to induce DC maturation and activate lymphocytes. We identified 1093 up-regulated and 845 down-regulated mRNAs in IBV-infected avian DCs. Gene Ontology analysis suggested that cellular macromolecule and protein location (GO-BP) and transcription factor binding (GO-MF) were abundant in IBV-stimulated avian DCs. Meanwhile, pathway analysis indicated that the oxidative phosphorylation and leukocyte transendothelial migration signalling pathways might be activated in the IBV group. Moreover, alteration of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) was detected in IBV-stimulated avian DCs. In total, 19 significantly altered (7 up and 12 down) miRNAs and 101 (75 up and 26 down) lncRNAs were identified in the IBV-treated group. Further analysis showed that the actin cytoskeleton and MAPK signal pathway were related to the target genes of IBV-stimulated miRNAs. Finally, our study identified 2 TF-microRNA and 53 TF–microRNA–mRNA interactions involving 1 TF, 2 miRNAs, and 53 mRNAs in IBV-stimulated avian DCs. Conclusions Our research suggests a new mechanism to explain why IBV actively blocks innate responses needed for inducing immune gene expression and also provides insight into the pathogenic mechanisms of avian IBV. Electronic supplementary material The online version of this article (10.1186/s12864-019-5940-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Lin
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.,College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Zhisheng Wang
- National Veterinary Product Engineering Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jialu Wang
- College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qian Yang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China. .,College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
25
|
Upregulated gga-miR-16-5p Inhibits the Proliferation Cycle and Promotes the Apoptosis of MG-Infected DF-1 Cells by Repressing PIK3R1-Mediated the PI3K/Akt/NF-κB Pathway to Exert Anti-Inflammatory Effect. Int J Mol Sci 2019; 20:ijms20051036. [PMID: 30818821 PMCID: PMC6429190 DOI: 10.3390/ijms20051036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Mycoplasma gallisepticum (MG) mainly infects chickens to initiate chronic respiratory disease (CRD). microRNAs (miRNAs) play vital roles according to previously reported studies. Our previous study showed that gga-miR-16-5p, in MG-infected lungs of chicken embryo, was upregulated by Illumina sequencing. The study aimed to reveal what role gga-miR-16-5p plays in CRD progression. gga-miR-16-5p was upregulated in MG-infected fibroblast cells (DF-1). Phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) was demonstrated as the target gene of gga-miR-16-5p. Furthermore, PIK3R1 expression was lower in MG-infected groups than it in noninfected controls measured by qPCR. Additionally, overexpressed gga-miR-16-5p could downregulate PIK3R1 and phosphorylated serine/threonine kinase (p-Akt) to express protein, whereas there is an opposite effect on inhibition. Overexpressed gga-miR-16-5p resulted in decreased activity of tumor necrosis factor alpha (TNF-α) and the nuclear factor-kappaB (NF-κB) by qPCR. Furthermore, overexpressed gga-miR-16-5p restricted cell multiplication, cycle progression, and increased apoptosis of MG-infected DF-1 cells, whereas inhibited gga-miR-16-5p led to the opposite effect. Collectively, upregulated gga-miR-16-5p could decrease multiplication, cycle progression, and increase apoptosis of MG-infected DF-1 cells, at least partly through directly targeting PIK3R1 and inhibiting PI3K/Akt/NF-κB pathway to exert an anti-inflammatory effect. Our results will provide more experimental evidence to bring pathogenesis of MG infection to light.
Collapse
|
26
|
Fu M, Wang B, Chen X, He Z, Wang Y, Li X, Cao H, Zheng SJ. gga-miR-454 suppresses infectious bursal disease virus (IBDV) replication via directly targeting IBDV genomic segment B and cellular Suppressors of Cytokine Signaling 6 (SOCS6). Virus Res 2018; 252:29-40. [PMID: 29777734 DOI: 10.1016/j.virusres.2018.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs), as post-transcriptional regulators, play important roles in the process of viral infection through inhibiting virus replication or modulating host immune response. However, the role of miRNAs in host response against infectious bursal disease virus (IBDV) infection is still unclear. In this study, we found that gga-miR-454 of the host was decreased in response to IBDV infection and that transfection of DF-1 cells with miR-454 inhibited IBDV replication via directly targeting the specific sequence of IBDV genomic segment B, while blockage of endogenous miR-454 by inhibitors enhanced virus replication. Furthermore, gga-miR-454 increased the expression of IFN-β by targeting Suppressors of Cytokine Signaling 6 (SOCS6), enhancing the antiviral response of host cells. These findings highlight a crucial role of gga-miR-454 in host defense against IBDV infection.
Collapse
Affiliation(s)
- Mengjiao Fu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bin Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiang Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhiyuan He
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
27
|
Zhang K, Cheng BH, Yang LL, Wang ZP, Zhang HL, Xu SS, Wang SZ, Wang YX, Zhang H, Li H. Identification of a potential functional single nucleotide polymorphism for fatness and growth traits in the 3'-untranslated region of the PCSK1 gene in chickens. J Anim Sci 2018; 95:4776-4786. [PMID: 29293721 DOI: 10.2527/jas2017.1706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prohormone convertase 1/3 is a serine endoprotease belonging to the subtilisin-like proprotein convertase family that is encoded by the () gene, and its major function is the processing and bioactivation of the proproteins of many kinds of neuroendocrine hormones, including insulin, cholecystokinin, and adrenocorticotropic hormone. The results of our previous genomewide association study indicated that the gene might be an important candidate gene for fatness traits in chickens. The objectives of this study were to investigate the tissue expression profiles of gene and to identify functional variants associated with fatness and growth traits in the chicken. The results indicated that mRNA was widely expressed in various tissues, especially neuroendocrine and intestinal tissues. Of these 2 tissue types, mRNA expression in lean males was significantly higher than in fat males. A SNP in the 3' untranslated region of (c.*900G > A) was identified. Association analysis in the Arbor Acres commercial broiler population and Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) population showed that the SNP c.*900G > A was associated with abdominal fat weight, abdominal fat percentage, BW, metatarsus length, and metatarsal circumference. In the 5th to 19th generation (G to G) of NEAUHLF, the allele frequency of c.*900G > A changed along with selection for abdominal fat content. At G, allele G of c.*900G > A was predominate in the lean line, whereas allele A was predominate in the fat line. Functional analysis demonstrated that allele A of c.*900G > A reduced mRNA stability and consequently downregulated gene expression. These results suggested that c.*900G > A was a functional SNP for fatness and growth traits in the chicken. The results of this study provide basic molecular information for the role of gene in avian growth and development, especially obesity.
Collapse
|
28
|
Wang B, Fu M, Liu Y, Wang Y, Li X, Cao H, Zheng SJ. gga-miR-155 Enhances Type I Interferon Expression and Suppresses Infectious Burse Disease Virus Replication via Targeting SOCS1 and TANK. Front Cell Infect Microbiol 2018; 8:55. [PMID: 29564226 PMCID: PMC5845882 DOI: 10.3389/fcimb.2018.00055] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). MicroRNAs (miRNAs) are involved in host-pathogen interactions and innate immune response to viral infection. However, the role of miRNAs in host response to IBDV infection is not clear. We report here that gga-miR-155 acts as an anti-virus host factor inhibiting IBDV replication. We found that transfection of DF-1 cells with gga-miR-155 suppressed IBDV replication, while blockage of the endogenous gga-miR-155 by inhibitors enhanced IBDV replication. Furthermore, our data showed that gga-miR-155 enhanced the expression of type I interferon in DF-1 cells post IBDV infection. Importantly, we found that gga-miR-155 enhanced type I interferon expression via targeting SOCS1 and TANK, two negative regulators of type I IFN signaling. These results indicate that gga-miR-155 plays a critical role in cell response to IBDV infection.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengjiao Fu
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Liu
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoqi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
MicroRNA gga-miR-130b Suppresses Infectious Bursal Disease Virus Replication via Targeting of the Viral Genome and Cellular Suppressors of Cytokine Signaling 5. J Virol 2017; 92:JVI.01646-17. [PMID: 29046449 DOI: 10.1128/jvi.01646-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/10/2017] [Indexed: 01/29/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally through silencing or degrading their targets, thus playing important roles in the immune response. However, the role of miRNAs in the host response against infectious bursal disease virus (IBDV) infection is not clear. In this study, we show that the expression of a series of miRNAs was significantly altered in DF-1 cells after IBDV infection. We found that the miRNA gga-miR-130b inhibited IBDV replication via targeting the specific sequence of IBDV segment A and enhanced the expression of beta interferon (IFN-β) by targeting suppressors of cytokine signaling 5 (SOCS5) in host cells. These findings indicate that gga-miR-130b-3p plays a crucial role in host defense against IBDV infection.IMPORTANCE This work shows that gga-miR-130b suppresses IBDV replication via directly targeting the viral genome and cellular SOCS5, the negative regulator for type I interferon expression, revealing the mechanism underlying gga-miR-130-induced inhibition of IBDV replication. This information will be helpful for the understanding of how host cells combat pathogenic infection by self-encoded small RNA and furthers our knowledge of the role of microRNAs in the cell response to viral infection.
Collapse
|
30
|
Zhang C, Yi L, Feng S, Liu X, Su J, Lin L, Tu J. MicroRNA miR-214 inhibits snakehead vesiculovirus replication by targeting the coding regions of viral N and P. J Gen Virol 2017; 98:1611-1619. [PMID: 28699870 DOI: 10.1099/jgv.0.000854] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Snakeheadvesiculovirus (SHVV), a new member of the family Rhabdoviridae, has caused enormous economic losses in snakehead fish culture during the past years in China; however, little is known about the molecular mechanisms of its pathogenicity. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in virus infection. In this study, we identified that SHVV infection downregulated miR-214 in striped snakehead (SSN-1) cells in a time- and dose-dependent manner. Notably, transfecting SSN-1 cells with miR-214 mimic significantly inhibitedSHVV replication, whereas miR-214 inhibitor promoted it, suggesting that miR-214 acted as a negative regulator of SHVV replication. Our study further demonstrated that N and P of SHVV were the target genes of miR-214. Over-expression of P, but not N, inhibited IFN-α production in SHVV-infected cells, which could be restored by over-expression of miR-214. Taken together, these results suggest that miR-214 is downregulated during SHVV infection, and the downregulated miR-214 in turn increased N and P expression and decreased IFN-α production, thus facilitating SHVV replication. This study provides a better understanding of the molecular mechanisms on the pathogenesis of SHVV and a potential antiviral strategy against SHVV infection.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lizhu Yi
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shuangshuang Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.,College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
31
|
Zhao Y, Wang Z, Hou Y, Zhang K, Peng X. gga-miR-99a targets SMARCA5 to regulate Mycoplasma gallisepticum (HS strain) infection by depressing cell proliferation in chicken. Gene 2017; 627:239-247. [PMID: 28652181 DOI: 10.1016/j.gene.2017.06.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Mycoplasma gallisepticum (MG), one of the primary etiological agents of poultry chronic respiratory disease, has caused significant economic losses worldwide, and increasing evidence has recently indicated that miRNAs are involved in its microbial pathogenesis. gga-miR-99a, a member of the miR-99 family, plays an essential role in a variety of diseases. Through miRNA Solexa sequencing, we previously found that gga-miR-99a is significantly down-regulated in the lungs of MG-infected chicken embryos. In this study, we further verified that the expression of gga-miR-99 was significantly down-regulated in both MG-infected lungs and a chicken embryonic fibroblast cell line (DF-1) by qPCR. Moreover, we predicted and validated SMARCA5 as its target gene through a luciferase reporter assay, qPCR, and western blot analysis. The over-expression of gga-miR-99a significantly depressed SMARCA5 expression, whereas a gga-miR-99a inhibitor enhanced the expression of SMARCA5. Inversely, SMARCA5 was significantly up-regulated and gga-miR-99a was obviously down-regulated in MG-HS-infected chicken embryonic lungs and DF-1 cells. At 72h post-transfection, the over-expression of gga-miR-99a significantly repressed the proliferation of DF-1 cells by inhibiting the transition from the G1 phase to the S and G2 phases. This study reveals that gga-miR-99a plays a key role in MG infection through the regulation of SMARCA5 expression and provides new insights regarding the mechanisms of MG pathogenesis.
Collapse
Affiliation(s)
- Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiwei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Zhao Y, Hou Y, Zhang K, Yuan B, Peng X. Identification of differentially expressed miRNAs through high-throughput sequencing in the chicken lung in response to Mycoplasma gallisepticum HS. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:146-156. [PMID: 28433919 DOI: 10.1016/j.cbd.2017.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022]
Abstract
Mycoplasma gallisepticum (MG) infects chickens, causes chronic respiratory diseases (CRD) and severely damages the poultry industry. It has been suggested that micro-ribonucleic acids (miRNAs) are involved in microbial pathogenesis. Here, we identified miRNAs that are associated with MG infection in chicken lungs at 3 and 10days post-infection by deep sequencing. Thirty-six down-regulated and 9 up-regulated miRNAs belonging to 31 miRNA families were detected at 3days post-infection, whereas 50 down-regulated and 18 up-regulated miRNAs belonging to 41 miRNA families were found at 10days post-infection. The 45 and 68 differentially expressed miRNAs at 3 and 10days target 6280 and 7181 genes, respectively. In this study, 8 candidate novel chicken miRNAs were identified. Analyses via GO, KEGG, miRNA-GO-network, path-net and gene-net showed that these altered miRNAs might be involved in regulating the host response to MG infection by targeting genes in many pathways, such as the MAPK pathway, focal adhesion, Wnt pathway, endocytosis, Jak/STAT pathway, phosphatidylinositol pathway, adherens junctions, regulation of actin cytoskeleton among others. These analyses indicate that the MAPK pathway may be a key regulatory route. Also, the miR-8 family, miR-499 family, miR-17 family, and PIK3 family genes, as well as the MAP2K1 and RAC1 genes, might be important in MG infection. miR-20 of the miR-17 family was further confirmed by RT-qPCR. The important miRNAs, mRNAs and pathways associated with MG infection in chicken are valuable for further research. Our data provide new insights into the mechanism of these miRNAs on the regulation of host-MG interactions.
Collapse
Affiliation(s)
- Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yue Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
33
|
Trobaugh DW, Klimstra WB. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol Med 2016; 23:80-93. [PMID: 27989642 PMCID: PMC5836316 DOI: 10.1016/j.molmed.2016.11.003] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/30/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) are non-coding RNAs that regulate many processes within a cell by manipulating protein levels through direct binding to mRNA and influencing translation efficiency, or mRNA abundance. Recent evidence demonstrates that miRNAs can also affect RNA virus replication and pathogenesis through direct binding to the RNA virus genome or through virus-mediated changes in the host transcriptome. Here, we review the current knowledge on the interaction between RNA viruses and cellular miRNAs. We also discuss how cell and tissue-specific expression of miRNAs can directly affect viral pathogenesis. Understanding the role of cellular miRNAs during viral infection may lead to the identification of novel mechanisms to block RNA virus replication or cell-specific regulation of viral vector targeting. Some RNA viruses possess miRNA-binding sites in a range of locations within the viral genome, including the 5′ and 3′ non-translated regions. Host cell miRNAs can bind to RNA virus genomes, enhancing genome stability, repressing translation of the viral genome, or altering free miRNA levels within the cell. miRNAs contribute to viral pathogenesis by promoting evasion of the host antiviral immune response, enhancing viral replication, or, potentially, altering miRNA-mediated host gene regulation. RNA virus infection can lead to widespread changes in the host transcriptome by modulating cell-specific miRNA levels.
Collapse
Affiliation(s)
- Derek W Trobaugh
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
34
|
Lin J, Xia J, Zhang K, Yang Q. Genome-wide profiling of chicken dendritic cell response to infectious bursal disease. BMC Genomics 2016; 17:878. [PMID: 27816055 PMCID: PMC5097849 DOI: 10.1186/s12864-016-3157-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Avian infectious bursal disease virus (IBDV) is a highly contagious, immunosuppressive disease of young chickens, which causes high mortality rates and large economic losses in the poultry industry. Dendritic cells (DCs), which are antigen-presenting cells, have the unique ability to induce both innate and acquired immune responses and may significantly influence virus pathogenicity. To understand the interaction between IBDV and DCs, a microarray was used to analyse the response of DCs infected by IBDV. RESULTS IBDV infection induced 479 upregulated and 466 downregulated mRNAs in chicken DCs. Analysis of Gene Ontology suggested that transcription from the RNA polymerase II promoter and the RNA biosynthetic process were enriched, and pathway analyses suggested that oxidative phosphorylation, as well as the T cell receptor and Interleukin-17 (IL-17) signalling pathways might be activated by IBDV infection. Moreover, microRNA (miRNA) and long non-coding RNA (lncRNA) alterations in IBDV-infected chicken DCs were observed. A total of 18 significantly upregulated or downregulated miRNAs and 441 significantly upregulated or downregulated lncRNAs were identified in IBDV-stimulated DCs. We constructed 42 transcription factor (TF)-miRNA-mRNA interactions involving 1 TF, 3 miRNAs, and 42 mRNAs in IBDV-stimulated DCs. Finally, we predicted the target genes of differentially expressed lncRNAs, and constructed lncRNA-mRNA regulatory networks. CONCLUSIONS The results of this study suggest a mechanism to explain how IBDV infection triggers an effective immune response in chicken DCs.
Collapse
Affiliation(s)
- Jian Lin
- College of Life Science, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Jing Xia
- College of Life Science, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Keyun Zhang
- College of Life Science, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Qian Yang
- College of Life Science, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| |
Collapse
|
35
|
Samir M, Vaas LAI, Pessler F. MicroRNAs in the Host Response to Viral Infections of Veterinary Importance. Front Vet Sci 2016; 3:86. [PMID: 27800484 PMCID: PMC5065965 DOI: 10.3389/fvets.2016.00086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The discovery of small regulatory non-coding RNAs has been an exciting advance in the field of genomics. MicroRNAs (miRNAs) are endogenous RNA molecules, approximately 22 nucleotides in length, that regulate gene expression, mostly at the posttranscriptional level. MiRNA profiling technologies have made it possible to identify and quantify novel miRNAs and to study their regulation and potential roles in disease pathogenesis. Although miRNAs have been extensively investigated in viral infections of humans, their implications in viral diseases affecting animals of veterinary importance are much less understood. The number of annotated miRNAs in different animal species is growing continuously, and novel roles in regulating host–pathogen interactions are being discovered, for instance, miRNA-mediated augmentation of viral transcription and replication. In this review, we present an overview of synthesis and function of miRNAs and an update on the current state of research on host-encoded miRNAs in the genesis of viral infectious diseases in their natural animal host as well as in selected in vivo and in vitro laboratory models.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany; Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lea A I Vaas
- TWINCORE, Center for Experimental and Clinical Infection Research , Hannover , Germany
| | - Frank Pessler
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
36
|
Luo J, Liu J, Liu H, Zhang T, Wang J, He H, Han C. Enrichment and verification of differentially expressed miRNAs in bursa of Fabricius in two breeds of duck. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:920-929. [PMID: 27660025 PMCID: PMC5495669 DOI: 10.5713/ajas.16.0325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/03/2022]
Abstract
Objective The bursa of Fabricius (BF) is a central humoral immune organ belonging specifically to avians. Recent studies had suggested that miRNAs were active regulators involved in the immune processes. This study was to investigate the possible differences of the BF at miRNA level between two genetically disparate duck breeds. Methods Using Illumina next-generation sequencing, the miRNAs libraries of ducks were established. Results The results showed that there were 66 differentially expressed miRNAs and 28 novel miRNAs in bursa. A set of abundant miRNAs (i.e., let-7, miR-146a-5p, miR-21-5p, miR-17~92) which are involved in immunity and disease were detected and the predicted target genes of the novel miRNAs were associated with duck high anti-adversity ability. By gene ontology analysis and enriching KEGG pathway, the targets of differential expressed miRNAs were mainly involved in immunity and disease, supporting that there were differences in the BF immune functions between the two duck breeds. In addition, the metabolic pathway had the maximum enriched target genes and some enriched pathways that were related to cell cycle, protein synthesis, cell proliferation and apoptosis. It indicted that the difference of metabolism may be one of the reasons leading the immune difference between the BF of two duck breeds. Conclusion This data lists the main differences in the BF at miRNAs level between two genetically disparate duck breeds and lays a foundation to carry out molecular assisted breeding of poultry in the future.
Collapse
Affiliation(s)
- Jun Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Junying Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Tao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
37
|
Hu Q, Zhao Y, Wang Z, Hou Y, Bi D, Sun J, Peng X. Chicken gga-miR-19a Targets ZMYND11 and Plays an Important Role in Host Defense against Mycoplasma gallisepticum (HS Strain) Infection. Front Cell Infect Microbiol 2016; 6:102. [PMID: 27683641 PMCID: PMC5021716 DOI: 10.3389/fcimb.2016.00102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022] Open
Abstract
Mycoplasma gallisepticum (MG), one of the most pathogenic Mycoplasmas, can cause chronic respiratory disease (CRD) in chickens. It has been suggested that micro-ribonucleic acids (miRNAs) are involved in microbial pathogenesis. However, little is known about the roles of miRNAs in MG infection. Previously, we found by deep sequencing that gga-miR-19a was significantly up-regulated in the lungs of MG-infected chicken embryos. In this work, we confirmed that gga-miR-19a was up-regulated in both MG-infected chicken embryonic lungs and MG-infected DF-1 (chicken embryo fibroblast) cells. At 72 h post-transfection, we found that the over-expression of gga-miR-19a significantly enhanced the proliferation of MG-infected DF-1 cells by promoting the transition from the G1 phase to the S and G2 phases, while a gga-miR-19a inhibitor repressed the proliferation of MG-infected DF-1 cells by arresting the cell cycle in the G1 phase. Moreover, we found that gga-miR-19a regulated the expression of the host zinc-finger protein, MYND-type containing 11 (ZMYND11), through binding to its 3′ untranslated region (3′-UTR). DAVID analysis revealed that ZMYND11 could negatively regulate the NF-kappaB (NF-κB) signaling pathway in chickens (Gallus gallus). Upon MG infection, gga-miR-19a, NF-κB, MyD88, and TNF-α were all up-regulated, whereas ZMYND11 was down-regulated. The over-expression of gga-miR-19a in the DF-1 cells did not affect the above gene expression patterns, and gga-miR-19a inhibitor repressed the expression of NF-κB, MyD88, and TNF-α, but enhanced the expression of ZMYND11. In conclusion, gga-miR-19a might suppress the expression of ZMYND11 in MG-infected chicken embryonic lungs and DF-1 cells, activate the NF-κB signaling pathway, and promote pro-inflammatory cytokines expression, the cell cycle progression and cell proliferation to defend against MG infection.
Collapse
Affiliation(s)
- Qingchang Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Zaiwei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Yue Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University Wuhan, China
| | - Dingren Bi
- China National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso El Paso, TX, USA
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
38
|
Gga-miR-101-3p Plays a Key Role in Mycoplasma gallisepticum (HS Strain) Infection of Chicken. Int J Mol Sci 2015; 16:28669-82. [PMID: 26633386 PMCID: PMC4691068 DOI: 10.3390/ijms161226121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma gallisepticum (MG), one of the most pathogenic Mycoplasma, has caused tremendous economic loss in the poultry industry. Recently, increasing evidence has suggested that micro ribonucleic acids (miRNAs) are involved in microbial pathogenesis. However, little is known about potential roles of miRNAs in MG infection of chicken. In the present study, using miRNA Solexa sequencing we have found that gga-miR-101-3p was up-regulated in the lungs of MG-infected chicken embryos. Moreover, gga-miR-101-3p regulated expression of the host enhancer of zeste homolog 2 (EZH2) through binding to the 3’ un-translated region (3’-UTR) of EZH2 gene. Over-expression of gga-miR-101-3p significantly inhibited EZH2 expression and hence inhibited proliferation of chicken embryonic fibroblast (DF-1 cells) by blocking the G1-to-S phase transition. Similar results were obtained in MG-infected chicken embryos and DF-1 cells, where gga-miR-101-3p was significantly up-regulated, while EZH2 was significantly down-regulated. This study reveals that gga-miR-101-3p plays an important role in MG infection through regulation of EZH2 expression and provides a new insight into the mechanisms of MG pathogenesis.
Collapse
|
39
|
Ouyang W, Wang YS, Du XN, Liu HJ, Zhang HB. gga-miR-9* inhibits IFN production in antiviral innate immunity by targeting interferon regulatory factor 2 to promote IBDV replication. Vet Microbiol 2015; 178:41-9. [PMID: 25975521 DOI: 10.1016/j.vetmic.2015.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that contribute to the repertoire of host-pathogen interactions during viral infections. In the current study, miRNA analysis showed that a panel of microRNAs, including gga-miR-9*, were markedly upregulated in specific-pathogen-free (SPF) chickens upon infection with infectious bursal disease virus (IBDV); however, the biological function of gga-miR-9* during viral infection remains unknown. Using a TCID50 assay, it was found that ectopic expression of gga-miR-9* significantly promoted IBDV replication. In turn, gga-miR-9* negatively regulated IBDV-triggered type I IFN production, thus promoting IBDV replication in DF-1 cells. Bioinformatics analysis indicates that the 3' untranslated region (UTR) of interferon regulatory factor 2 (IRF2) has two putative binding sites for gga-miR-9*. Targeting of IRF2 3'UTR by gga-miR-9* was determined by luciferase assay. Functional overexpression of gga-miR-9*, using gga-miR-9* mimics, inhibited IRF2 mRNA and protein expression. Transfection of the gga-miR-9* inhibitor abolished the suppression of IRF2 protein expression. Furthermore, IRF2 knockdown mediated the enhancing effect of gga-miR-9* on the type I IFN-mediated antiviral response. These findings indicate that inducible gga-miR-9* feedback negatively regulates the host antiviral innate immune response by suppressing type I IFN production via targeting IRF2.
Collapse
Affiliation(s)
- Wei Ouyang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture/National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yong-shan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture/National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Xi-ning Du
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture/National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Hua-jie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture/National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Hai-bin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|