1
|
Fujimoto J, Kawahara K, Takeda K, Takeo S, Sato K, Nakashima K, Mase N, Yokoyama M, Suzuki T, Narumi T. Identification of peptide-based hepatitis B virus capsid inhibitors based on the viral core protein. Bioorg Med Chem Lett 2025; 117:130054. [PMID: 39643018 DOI: 10.1016/j.bmcl.2024.130054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
In this study, we have identified two novel peptides, 19Ac (comprising residues 91-105) and 20Ac (encompassing residues 96-110), from a systematically designed peptide library based on the Hepatitis B virus (HBV) core protein, that inhibit the assembly of HBV capsid. Peptide 20Ac exhibited about twofold the inhibitory potency of 19Ac and proved effective against both standard and morphothiadin (GLS4)-resistant HBV strains. Molecular dynamics simulations revealed that despite their overlapping sequence, 19Ac and 20Ac bonded to different regions of the core protein, thereby inhibiting capsid assembly through distinct mechanisms. These peptides could serve as valuable seed compounds for the further development of HBV capsid inhibitors, including GLS4-resistant strains.
Collapse
Affiliation(s)
- Junko Fujimoto
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Kazutoshi Kawahara
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Kazuma Takeda
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Sayuri Takeo
- Graduate School of Medical Photonics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Kohei Sato
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Kenji Nakashima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, Japan
| | - Nobuyuki Mase
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, Japan
| | - Tetsuo Narumi
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Graduate School of Medical Photonics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan.
| |
Collapse
|
2
|
Jin Y, Wang S, Tang K, Zhan P, Liu X. Recent advances in screening methods enabling the discovery of novel anti-hepatitis B virus drug candidates. Eur J Med Chem 2025; 282:117093. [PMID: 39612566 DOI: 10.1016/j.ejmech.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The global population affected by Hepatitis B virus (HBV) is approximately 296 million, but few drugs have been able to completely eradicate HBV and the range of effective treatments remains limited. Recent advancements in molecular biology and artificial intelligence, as well as a comprehensive understanding of the molecular structure of HBV, have greatly aided the rational development of anti-HBV agents. Such advancements have facilitated an increasing array of candidate drugs transitioning into clinical trials, however, no novel target-based compounds have been approved for clinical application. To expedite the progression of anti-HBV drug development, establishing a reliable and robust in vitro HBV infection system is of great importance. However, owing to the host and tissue specificity of HBV, identifying a stable and dependable cell culture system for screening all anti-HBV agents poses significant challenges. In this review, we summarize recent advances in screening methods for small-molecule inhibitors that target key stages of the HBV replication cycle from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Yu Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
3
|
Kornyeyev D, Song Z, Eng S, Soulette C, Ramirez R, Tang J, Yue Q, Subramanian R, Zaboli S, Moon C, Tam J, Brodbeck J, Aggarwal A, Diehl L, Fletcher SP, Hyrina A, Holdorf MM, Burdette D. Selective depletion of HBV-infected hepatocytes by class A capsid assembly modulators requires high levels of intrahepatic HBV core protein. Antimicrob Agents Chemother 2024; 68:e0042024. [PMID: 38780261 PMCID: PMC11232385 DOI: 10.1128/aac.00420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Capsid assembly mediated by hepatitis B virus (HBV) core protein (HBc) is an essential part of the HBV replication cycle, which is the target for different classes of capsid assembly modulators (CAMs). While both CAM-A ("aberrant") and CAM-E ("empty") disrupt nucleocapsid assembly and reduce extracellular HBV DNA, CAM-As can also reduce extracellular HBV surface antigen (HBsAg) by triggering apoptosis of HBV-infected cells in preclinical mouse models. However, there have not been substantial HBsAg declines in chronic hepatitis B (CHB) patients treated with CAM-As to date. To investigate this disconnect, we characterized the antiviral activity of tool CAM compounds in HBV-infected primary human hepatocytes (PHHs), as well as in HBV-infected human liver chimeric mice and mice transduced with adeno-associated virus-HBV. Mechanistic studies in HBV-infected PHH revealed that CAM-A, but not CAM-E, induced a dose-dependent aggregation of HBc in the nucleus which is negatively regulated by the ubiquitin-binding protein p62. We confirmed that CAM-A, but not CAM-E, induced HBc-positive cell death in both mouse models via induction of apoptotic and inflammatory pathways and demonstrated that the degree of HBV-positive cell loss was positively correlated with intrahepatic HBc levels. Importantly, we determined that there is a significantly lower level of HBc per hepatocyte in CHB patient liver biopsies than in either of the HBV mouse models. Taken together, these data confirm that CAM-As have a unique secondary mechanism with the potential to kill HBc-positive hepatocytes. However, this secondary mechanism appears to require higher intrahepatic HBc levels than is typically observed in CHB patients, thereby limiting the therapeutic potential.
Collapse
Affiliation(s)
| | - Zhijuan Song
- Gilead Sciences, Inc., Foster City, California, USA
| | - Stacey Eng
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | - Qin Yue
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Shiva Zaboli
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Jane Tam
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | - Lauri Diehl
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | |
Collapse
|
4
|
Du K, Wang X, Bai Y, Zhang X, Xue J, Li S, Xie Y, Sang Z, Tang Y, Wang X. Development of benzimidazole-based compounds as novel capsid assembly modulators for the treatment of HBV infection. Eur J Med Chem 2024; 271:116402. [PMID: 38636128 DOI: 10.1016/j.ejmech.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, the hit compound CDI (IC50 = 2.46 ± 0.33 μM) was identified by screening of an in-house compound library. And then novel potent benzimidazole derivatives were designed and synthesized as core assembly modulators, and their antiviral effects were evaluated in vitro and in vivo biological experiments. The results indicated that compound 26f displayed the most optimized modulator of HBV capsid assembly (IC50 = 0.51 ± 0.20 μM, EC50 = 2.24 ± 0.43 μM, CC50 = 84.29 μM) and high selectivity index. Moreover, treatment with compound 26f for 14 days significantly decreased serum levels of HBV DNA levels in the Hydrodynamic-Injection (HDI) mouse model. Therefore, compound 26f could be considered as a promising candidate drug for further development of novel HBV CAMs with the desired potency and safety.
Collapse
Affiliation(s)
- Kaixin Du
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xianyang Wang
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuxin Bai
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xue Zhang
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Jie Xue
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Shanshan Li
- Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhipei Sang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Zhao S, Wang Y, Zhang X, Qiao L, Wang S, Jin Y, Wu S, Li Y, Zhan P, Liu X. Discovery of carboxyl-containing heteroaryldihydropyrimidine derivatives as novel HBV capsid assembly modulators with significantly improved metabolic stability. RSC Med Chem 2023; 14:2380-2400. [PMID: 37974964 PMCID: PMC10650354 DOI: 10.1039/d3md00461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 11/19/2023] Open
Abstract
Interfering with the assembly of hepatitis B virus (HBV) capsid is a promising approach for treating chronic hepatitis B (CHB). In order to enhance the metabolic stability and reduce the strong hERG inhibitory effect of HBV capsid assembly modulator (CAM) GLS4, we rationally designed a series of carboxyl-containing heteroaryldihydropyrimidine (HAP) derivatives based on structural biology information combined with medicinal chemistry strategies. The results from biological evaluation demonstrated that compound 6a-25 (EC50 = 0.020 μM) exhibited greater potency than the positive drug lamivudine (EC50 = 0.09 μM), and was comparable to the lead compound GLS4 (EC50 = 0.007 μM). Furthermore, it was observed that 6a-25 reduced levels of core protein (Cp) and capsid in cells. Preliminary assessment of drug-likeness revealed that 6a-25 exhibited superior water solubility (pH 2.0: 374.81 μg mL-1; pH 7.0: 6.85 μg mL-1; pH 7.4: 25.48 μg mL-1), liver microsomal metabolic stability (t1/2 = 108.2 min), and lower hERG toxicity (10 μM inhibition rate was 72.66%) compared to the lead compound GLS4. Overall, compound 6a-25 holds promise for further investigation.
Collapse
Affiliation(s)
- Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Ya Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Lijun Qiao
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Yu Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| |
Collapse
|
6
|
Mak LY, Hui RWH, Seto WK, Yuen MF. Novel Drug Development in Chronic Hepatitis B Infection: Capsid Assembly Modulators and Nucleic Acid Polymers. Clin Liver Dis 2023; 27:877-893. [PMID: 37778775 DOI: 10.1016/j.cld.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Currently approved treatment of patients with chronic hepatitis B infection is insufficient to achieve functional cure. Numerous new compounds are identified, and among many, capsid assembly modulators (CAMs) and nucleic acid polymers (NAPs) are 2 classes of virus-directing agents in clinical development. CAMs interfere with viral pregenomic RNA encapsidation and are effective in viral load reduction but have limited effects on hepatitis B surface antigen (HBsAg). NAPs prevent HBsAg release from hepatocytes and induce intracellular degradation, leading to potent suppression of serum HBsAg when combined with nucleoside analogues and pegylated interferon demonstrated by initial data, but awaiting further confirmation studies.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, Pokfulam Road 102, Hong Kong, China; State Key Laboratory of Liver Research, 7/F, HK Jockey Club Building of Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, Pokfulam Road 102, Hong Kong, China
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, Pokfulam Road 102, Hong Kong, China; State Key Laboratory of Liver Research, 7/F, HK Jockey Club Building of Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, Pokfulam Road 102, Hong Kong, China; State Key Laboratory of Liver Research, 7/F, HK Jockey Club Building of Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
7
|
Vanrusselt H, Kum DB, Taverniti V, Liu C, Acosta Sanchez A, Corthout N, Munck S, Baumert TF, Beigelman L, Blatt LM, Symons JA, Deval J, Raboisson P, Verrier ER, Jekle A, Vendeville S, Debing Y. Novel non-HAP class A HBV capsid assembly modulators have distinct in vitro and in vivo profiles. J Virol 2023; 97:e0072223. [PMID: 37754761 PMCID: PMC10617565 DOI: 10.1128/jvi.00722-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.
Collapse
Affiliation(s)
| | - Dieudonné Buh Kum
- Aligos Belgium BV, Leuven, Belgium
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | - Valerio Taverniti
- Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR S1110, Université de Strasbourg, Strasbourg, France
| | - Cheng Liu
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | | | | | | | - Thomas F. Baumert
- Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR S1110, Université de Strasbourg, Strasbourg, France
- Service d’Hépato-gastroenterologie, Pôle Hépato-digestif, IHU Strasbourg, Strasbourg University Hospitals, Strasbourg, France
| | | | | | | | - Jerome Deval
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | | | - Eloi R. Verrier
- Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR S1110, Université de Strasbourg, Strasbourg, France
| | - Andreas Jekle
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | | | | |
Collapse
|
8
|
Detta E, Corcuera A, Urban A, Goldner T, Bonsmann S, Engel F, May MM, Buschmann H, Fianchini M, Alza E, Pericàs MA, Pushkarev PA, Varenyk AO, Yakovyuk TY, Homon AA, Sokoliuk PA, Smaliy R, Donald A. Structure-based Design of Novel Hepatitis B Virus Capsid Assembly Modulators. Bioorg Med Chem Lett 2023; 93:129412. [PMID: 37499987 DOI: 10.1016/j.bmcl.2023.129412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Small-molecule capsid assembly modulators (CAMs) have been recently recognized as promising antiviral agents for curing chronic hepatitis B virus (HBV) infection. A target-based in silico screening study is described, aimed towards the discovery of novel HBV CAMs. Initial optimization of four weakly active screening hits was performed via focused library synthesis. Lead compound 42 and close analogues 56 and 57 exhibited in vitro potency in the sub- and micromolar range along with good physico-chemical properties and were further evaluated in molecular docking and mechanism of action studies.
Collapse
Affiliation(s)
- Elena Detta
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany; Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Angelica Corcuera
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Andreas Urban
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Thomas Goldner
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany.
| | - Susanne Bonsmann
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Florian Engel
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Marina M May
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Helmut Buschmann
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Esther Alza
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Miquel A Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | | | | | | | - Anton A Homon
- Enamine Ltd, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | | | - Radomyr Smaliy
- Enamine Ltd, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Alastair Donald
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| |
Collapse
|
9
|
McFadden WM, Sarafianos SG. Biology of the hepatitis B virus (HBV) core and capsid assembly modulators (CAMs) for chronic hepatitis B (CHB) cure. Glob Health Med 2023; 5:199-207. [PMID: 37655181 PMCID: PMC10461335 DOI: 10.35772/ghm.2023.01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) is a hepadnavirus, a small DNA virus that infects liver tissue, with some unusual replication steps that share similarities to retroviruses. HBV infection can lead to chronic hepatitis B (CHB), a life-long infection associated with significant risks of liver disease, especially if untreated. HBV is a significant global health problem, with hundreds of millions currently living with CHB. Currently approved strategies to prevent or inhibit HBV are highly effective, however, a cure for CHB has remained elusive. To achieve a cure, elimination of the functionally integrated HBV covalently closed chromosomal DNA (cccDNA) genome is required. The capsid core is an essential component of HBV replication, serving roles when establishing infection and in creating new virions. Over the last two and a half decades, significant efforts have been made to find and characterize antivirals that target the capsid, specifically the HBV core protein (Cp). The antivirals that interfere with the kinetics and morphology of the capsid, termed capsid assembly modulators (CAMs), are extremely potent, and clinical investigations indicate they are well tolerated and highly effective. Several CAMs offer the potential to cure CHB by decreasing the cccDNA pools. Here, we review the biology of the HBV capsid, focused on Cp, and the development of inhibitors that target it.
Collapse
Affiliation(s)
- William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
10
|
Jia H, Mai J, Wu M, Chen H, Li X, Li C, Liu J, Liu C, Hu Y, Zhu X, Jiang X, Hua B, Xia T, Liu G, Deng A, Liang B, Guo R, Lu H, Wang Z, Chen H, Zhang Z, Zhang H, Niu J, Ding Y. Safety, tolerability, pharmacokinetics, and antiviral activity of the novel core protein allosteric modulator ZM-H1505R (Canocapavir) in chronic hepatitis B patients: a randomized multiple-dose escalation trial. BMC Med 2023; 21:98. [PMID: 36927420 PMCID: PMC10022191 DOI: 10.1186/s12916-023-02814-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) core protein-targeting antivirals (CpTAs) are promising therapeutic agents for treating chronic hepatitis B (CHB). In this study, the antiviral activity, pharmacokinetics (PK), and tolerability of ZM-H1505R (Canocapavir), a chemically unique HBV CpTA, were evaluated in patients with CHB. METHODS This study was a double-blind, randomized, placebo-controlled phase 1b trial in Chinese CHB patients. Noncirrhotic and treatment-naive CHB patients were divided into three cohorts (10 patients per cohort) and randomized within each cohort in a ratio of 4:1 to receive a single dose of 50, 100, or 200 mg of Canocapavir or placebo once a day for 28 consecutive days. RESULTS Canocapavir was well tolerated, with the majority of adverse reactions being grade I or II in severity. There were no serious adverse events, and no patients withdrew from the study. Corresponding to 50, 100, and 200 mg doses of Canocapavir, the mean plasma trough concentrations of the drug were 2.7-, 7.0-, and 14.6-fold of its protein-binding adjusted HBV DNA EC50 (135 ng/mL), respectively, with linear PK and a low-to-mild accumulation rate (1.26-1.99). After 28 days of treatment, the mean maximum HBV DNA declines from baseline were -1.54, -2.50, -2.75, and -0.47 log10 IU/mL for the 50, 100, and 200 mg of Canocapavir or placebo groups, respectively; and the mean maximum pregenomic RNA declines from baseline were -1.53, -2.35, -2.34, and -0.17 log10 copies/mL, respectively. CONCLUSIONS Canocapavir treatment is tolerated with efficacious antiviral activity in CHB patients, supporting its further development in treating HBV infection. TRIAL REGISTRATION ClinicalTrials.gov, number NCT05470829).
Collapse
Affiliation(s)
- Haiyan Jia
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
- Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, China
| | - Jiajia Mai
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Min Wu
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Hong Chen
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Xiaojiao Li
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Cuiyun Li
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Jingrui Liu
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Chengjiao Liu
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Yue Hu
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Xiaoxue Zhu
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Xiuhong Jiang
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Bo Hua
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Tian Xia
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Gang Liu
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Aiyun Deng
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Bo Liang
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Ruoling Guo
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Hui Lu
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Zhe Wang
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Huanming Chen
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Zhijun Zhang
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Hong Zhang
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China.
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Disease and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| | - Yanhua Ding
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China.
| |
Collapse
|
11
|
Molecular elucidation of drug-induced abnormal assemblies of the hepatitis B virus capsid protein by solid-state NMR. Nat Commun 2023; 14:471. [PMID: 36709212 PMCID: PMC9884277 DOI: 10.1038/s41467-023-36219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a recent class of anti-HBV antivirals. CAMs disturb proper nucleocapsid assembly, by inducing formation of either aberrant assemblies (CAM-A) or of apparently normal but genome-less empty capsids (CAM-E). Classical structural approaches have revealed the CAM binding sites on the capsid protein (Cp), but conformational information on the CAM-induced off-path aberrant assemblies is lacking. Here we show that solid-state NMR can provide such information, including for wild-type full-length Cp183, and we find that in these assemblies, the asymmetric unit comprises a single Cp molecule rather than the four quasi-equivalent conformers typical for the icosahedral T = 4 symmetry of the normal HBV capsids. Furthermore, while in contrast to truncated Cp149, full-length Cp183 assemblies appear, on the mesoscopic level, unaffected by CAM-A, NMR reveals that on the molecular level, Cp183 assemblies are equally aberrant. Finally, we use a eukaryotic cell-free system to reveal how CAMs modulate capsid-RNA interactions and capsid phosphorylation. Our results establish a structural view on assembly modulation of the HBV capsid, and they provide a rationale for recently observed differences between in-cell versus in vitro capsid assembly modulation.
Collapse
|
12
|
Liu L, Wang M, Li C, Han X, Xie Y, Feng K, Zhang L, Chen Y, Jia H. Design, synthesis and biological evaluation of novel dihydrobenzodioxine derivatives as HBV capsid protein inhibitors. Bioorg Chem 2022; 128:106052. [DOI: 10.1016/j.bioorg.2022.106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
|
13
|
Vermes T, Kielpinski M, Henkel T, Pericàs MA, Alza E, Corcuera A, Buschmann H, Goldner T, Urban A. An automated microfluidic platform for the screening and characterization of novel hepatitis B virus capsid assembly modulators. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:135-146. [PMID: 34918017 DOI: 10.1039/d1ay01227d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To date, hepatitis B virus (HBV) capsid assembly modulators (CAMs), which target the viral core protein and induce the formation of non-functional viral capsids, have been identified and characterized in microtiter plate-based biochemical or cell-based in vitro assays. In this work, we developed an automated microfluidic screening assay, which uses convection-dominated Taylor-Aris dispersion to generate high-resolution dose-response curves, enabling the measurements of compound EC50 values at very short incubation times. The measurement of early kinetics down to 7.7 seconds in the microfluidic format was utilized to discriminate between the two different classes of CAMs known so far. The CAM (-N), leading to the formation of morphologically normal capsids and the CAM (-A), leading to aberrant HBV capsid structures. CAM-A compounds like BAY 41-4109 and GLS4 showed rapid kinetics, with assembly rates above 80% of the core protein after only a 7 second exposure to the compound, whereas CAM-N compounds like ABI-H0731 and JNJ-56136379 showed significantly slower kinetics. Using our microfluidic system, we characterized two of our in-house screening compounds. Interestingly, one compound showed a CAM-N/A intermediate behavior, which was verified with two standard methods for CAM classification, size exclusion chromatography, and anti-HBc immunofluorescence microscopy. With this proof-of-concept study, we believe that this microfluidic system is a robust primary screening tool for HBV CAM drug discovery, especially for the hit finding and hit-to-lead optimization phases. In addition to EC50 values, this system gives valuable first information about the mode of action of novel CAM screening compounds.
Collapse
Affiliation(s)
- Tamás Vermes
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007, Tarragona, Spain
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany.
| | - Mark Kielpinski
- Leibniz-Institut für Photonische Technologien e.V. Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Thomas Henkel
- Leibniz-Institut für Photonische Technologien e.V. Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Miquel A Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Esther Alza
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Angelica Corcuera
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany.
| | - Helmut Buschmann
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany.
| | - Thomas Goldner
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany.
| | - Andreas Urban
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany.
| |
Collapse
|
14
|
Lin J, Yin L, Xu XZ, Sun HC, Huang ZH, Ni XY, Chen Y, Lin X. Bay41-4109-induced aberrant polymers of hepatitis b capsid proteins are removed via STUB1-promoted p62-mediated macroautophagy. PLoS Pathog 2022; 18:e1010204. [PMID: 35030230 PMCID: PMC8824320 DOI: 10.1371/journal.ppat.1010204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 02/08/2022] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
The hepatitis B virus (HBV) core protein (HBc) functions in multiple steps of the viral life cycle. Heteroaryldihydropyrimidine compounds (HAPs) such as Bay41-4109 are capsid protein allosteric modulators that accelerate HBc degradation and inhibit the virion secretion of HBV, specifically by misleading HBc assembly into aberrant non-capsid polymers. However, the subsequent cellular fates of these HAP-induced aberrant non-capsid polymers are not well understood. Here, we discovered that that the chaperone-binding E3 ubiquitin ligase protein STUB1 is required for the removal of Bay41-4109-induced aberrant non-capsid polymers from HepAD38 cells. Specifically, STUB1 recruits BAG3 to transport Bay41-4109-induced aberrant non-capsid polymers to the perinuclear region of cells, thereby initiating p62-mediated macroautophagy and lysosomal degradation. We also demonstrate that elevating the STUB1 level enhances the inhibitory effect of Bay41-4109 on the production of HBeAg and HBV virions in HepAD38 cells, in HBV-infected HepG2-NTCP cells, and in HBV transgenic mice. STUB1 overexpression also facilitates the inhibition of Bay41-4109 on the cccDNA formation in de novo infection of HBV. Understanding these molecular details paves the way for applying HAPs as a potentially curative regimen (or a component of a combination treatment) for eradicating HBV from hepatocytes of chronic infection patients. Hepatitis B virus (HBV) infects more than 250 million people worldwide chronically. It is a major pathogen causing liver cirrhosis and hepatocellular carcinoma now. The HBV capsid protein (HBc) plays multiple roles in the viral life cycle, and many antivirals targeting HBc such as Heteroaryldihydropyrimidine compounds (HAPs) are under clinical trial recently. This study aimed to investigate how a HAP compound Bay41-4109 induces the degradation of HBc protein. Bay41-4109 induces aberrant non-capsid polymers, which form in complex with the chaperone-binding E3 ubiquitin ligase protein STUB1 and co-chaperone BAG3 and are transported to the perinuclear compartment. Subsequently, Bay41-4109-induced aberrant non-capsid polymers are removed by p62-mediated macroautophagy and lysosomal degradation. STUB1 overexpression accelerates Bay41-4109-induced degradation of HBc protein, and thus enhances the effect of Bay41-4109 on inhibiting secretion of HBeAg and HBV virions. When Bay41-4109 are enforced during HBV infection, de novo cccDNA formation were also negatively regulated by STUB1 overexpression. Altogether, this study provides novel mechanistic insights into developing more potent and safe HAP-based antiviral treatment.
Collapse
Affiliation(s)
- Jiacheng Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Limin Yin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xia-Zhen Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - He-Chen Sun
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhi-Hua Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xue-Yun Ni
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Yan Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Kim H, Ko C, Lee JY, Kim M. Current Progress in the Development of Hepatitis B Virus Capsid Assembly Modulators: Chemical Structure, Mode-of-Action and Efficacy. Molecules 2021; 26:molecules26247420. [PMID: 34946502 PMCID: PMC8705634 DOI: 10.3390/molecules26247420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) is a major causative agent of human hepatitis. Its viral genome comprises partially double-stranded DNA, which is complexed with viral polymerase within an icosahedral capsid consisting of a dimeric core protein. Here, we describe the effects of capsid assembly modulators (CAMs) on the geometric or kinetic disruption of capsid construction and the virus life cycle. We highlight classical, early-generation CAMs such as heteroaryldihydropyrimidines, phenylpropenamides or sulfamoylbenzamides, and focus on the chemical structure and antiviral efficacy of recently identified non-classical CAMs, which consist of carboxamides, aryl ureas, bithiazoles, hydrazones, benzylpyridazinones, pyrimidines, quinolines, dyes, and antimicrobial compounds. We summarize the therapeutic efficacy of four representative classical compounds with data from clinical phase 1 studies in chronic HBV patients. Most of these compounds are in phase 2 trials, either as monotherapy or in combination with approved nucleos(t)ides drugs or other immunostimulatory molecules. As followers of the early CAMs, the therapeutic efficacy of several non-classical CAMs has been evaluated in humanized mouse models of HBV infection. It is expected that these next-generation HBV CAMs will be promising candidates for a series of extended human clinical trials.
Collapse
Affiliation(s)
- Hyejin Kim
- Correspondence: (H.K.); (M.K.); Tel.: +82-42-860-7130 (H.K.); +82-42-860-7540 (M.K.)
| | | | | | - Meehyein Kim
- Correspondence: (H.K.); (M.K.); Tel.: +82-42-860-7130 (H.K.); +82-42-860-7540 (M.K.)
| |
Collapse
|
16
|
Watanabe T, Inoue T, Tanaka Y. Hepatitis B Core-Related Antigen and New Therapies for Hepatitis B. Microorganisms 2021; 9:microorganisms9102083. [PMID: 34683404 PMCID: PMC8537336 DOI: 10.3390/microorganisms9102083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B core-related antigen (HBcrAg) is an unprecedented novel HBV biomarker that plays an essential role in reflecting covalently closed circular DNA (cccDNA) in chronic hepatitis B (CHB) because its levels correlate with intrahepatic cccDNA and serum HBV DNA. In this review, we describe the clinical application of serum HBcrAg in CHB patients, with a particular focus on new therapies targeting intrahepatic HBV replication. (1) HBcrAg can be detected in clinical cases where serum HBV DNA is undetectable during anti-HBV therapy. (2) A highly sensitive HBcrAg assay (iTACT-HBcrAg) may be useful for monitoring HBV reactivation, as an alternative to HBV DNA. (3) Decreased HBcrAg levels have been significantly associated with promising outcomes in CHB patients, reducing the risk of progression or recurrence of hepatocellular carcinoma. Additionally, we focus on and discuss several drugs in development that target HBV replication, and monitoring HBcrAg may be useful for determining the therapeutic efficacies of such novel drugs. In conclusion, HBcrAg, especially when measured by the recently developed iTACT-HBcrAg assay, may be the most appropriate surrogate marker, over other HBV biomarkers, to predict disease progression and treatment response in CHB patients.
Collapse
Affiliation(s)
- Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan;
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
- Correspondence:
| |
Collapse
|
17
|
Inoue T, Kusumoto S, Iio E, Ogawa S, Suzuki T, Yagi S, Kaneko A, Matsuura K, Aoyagi K, Tanaka Y. Clinical efficacy of a novel, high-sensitivity HBcrAg assay in the management of chronic hepatitis B and HBV reactivation. J Hepatol 2021; 75:302-310. [PMID: 33762167 DOI: 10.1016/j.jhep.2021.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS A fully automated, novel high-sensitivity hepatitis B core-related antigen assay (iTACT-HBcrAg) has been developed. We demonstrate the clinical utility of iTACT-HBcrAg for monitoring chronic hepatitis B (CHB) and for the early detection of HBV reactivation. METHODS After fundamental assessments, the clinical performance of iTACT-HBcrAg was compared with other HBV markers. i) Serial sera, available from 161 HBeAg-negative patients with CHB and persistently undetectable HBV DNA, were measured by iTACT-HBcrAg and a conventional HBcrAg assay (G-HBcrAg). ii) Serial sera from 13 HBV-reactivated patients were measured by iTACT-HBcrAg and an ultra-high-sensitivity HBsAg immune complex transfer-chemiluminescent enzyme immunoassay (lower limit of detection; 0.0005 IU/ml, ICT-CLEIA) to compare HBV DNA detection. iii) To elucidate the various HBcrAg components detected by iTACT-HBcrAg, OptiPrep density gradient centrifugation analysis was performed on sera obtained before and after HBV reactivation. RESULTS The analytical performance of iTACT-HBcrAg was satisfactory. The sensitivity of iTACT-HBcrAg (2.1 Log U/ml) was approximately 10-fold greater than that of G-HBcrAg (2.8 Log U/ml). i) HBcrAg was detectable in the sera of 97.5% (157/161) of patients with CHB by iTACT-HBcrAg, of whom 75.2% (121/161) had ≥2.8 Log U/ml HBcrAg and 22.4% (36/161) had 2.1-2.8 Log U/ml HBcrAg, which was undetectable by G-HBcrAg. ii) 9 and 2 of 13 HBV-reactivated patients were HBcrAg-positive by iTACT-HBcrAg before and at HBV DNA positivity, respectively; 7 and 4 were HBcrAg-positive by iTACT-HBcrAg before and at HBsAg-positivity by ICT-CLEIA, respectively. iii) The HBcrAg detected by iTACT-HBcrAg before HBV reactivation was contained in empty particles (22 KDa precore protein). CONCLUSIONS iTACT-HBcrAg could be used to better monitor responses to anti-HBV treatments in HBeAg-negative patients and for the early detection of HBV reactivation. LAY SUMMARY A fully automated, novel high-sensitivity hepatitis B core-related antigen assay (iTACT-HBcrAg) has been developed. iTACT-HBcrAg can be used to monitor HBeAg-negative patients with chronic hepatitis B, as well as for the early detection of HBV reactivation. iTACT-HBcrAg could be used as a general marker of disease progression and treatment response.
Collapse
Affiliation(s)
- Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Etsuko Iio
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shintaro Ogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takanori Suzuki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shintaro Yagi
- Research and Development Department, Advanced Life Science Institute, Inc., Hachioji, Tokyo, Japan
| | - Atsushi Kaneko
- Research and Development Division, Fujirebio Inc., Hachioji, Tokyo, Japan
| | - Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsumi Aoyagi
- Research and Development Department, Advanced Life Science Institute, Inc., Hachioji, Tokyo, Japan; Research and Development Division, Fujirebio Inc., Hachioji, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya, Japan; Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
18
|
Schultz A, Knoll T, Urban A, Schuck H, von Briesen H, Germann A, Velten T. Novel Cost-Efficient Graphene-Based Impedance Biosensor for the Analysis of Viral Cytopathogenicity and the Effect of Antiviral Drugs. Front Bioeng Biotechnol 2021; 9:718889. [PMID: 34381768 PMCID: PMC8350578 DOI: 10.3389/fbioe.2021.718889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Biosensors become increasingly relevant for medical diagnostics, pharmaceutical industry, and environmental technology, for example, to test new drugs easily and reliably or to detect cell growth in changing environmental conditions. Novel materials like graphene are promising candidates to produce biosensors on an industrial scale by means of printing processes. To reach this aim, methods for the reliable and automated production of electrode structures and their coating are required. We present an impedance biosensor in the format of a microtiter plate, fabricated by highly efficient roll-to-roll printing of graphene-based microstructures on large-area polymer foils. Proof-of-principle experiments show the evidence of the suitability of the printed graphene biosensors for impedance-based monitoring of viral cytopathogenicity and its inhibition in the presence of antiviral drugs. The developed system is a promising approach toward cost-efficient impedimetric biosensors for high-throughput screening in vaccine research and antiviral drug development.
Collapse
Affiliation(s)
- Anke Schultz
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Thorsten Knoll
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | | | - Herbert Schuck
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Hagen von Briesen
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Anja Germann
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Thomas Velten
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| |
Collapse
|
19
|
Yuen MF, Zhou X, Gane E, Schwabe C, Tanwandee T, Feng S, Jin Y, Triyatni M, Lemenuel-Diot A, Cosson V, Xue Z, Kazma R, Bo Q. Safety, pharmacokinetics, and antiviral activity of RO7049389, a core protein allosteric modulator, in patients with chronic hepatitis B virus infection: a multicentre, randomised, placebo-controlled, phase 1 trial. Lancet Gastroenterol Hepatol 2021; 6:723-732. [PMID: 34237271 DOI: 10.1016/s2468-1253(21)00176-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND RO7049389, a hepatitis B virus (HBV) core protein allosteric modulator being developed for the treatment of chronic HBV infection, was found to be safe and well tolerated in healthy participants (part 1 of this study). The objective of this proof-of-mechanism study (part 2) was to evaluate the safety, pharmacokinetics, and antiviral activity of RO7049389 in patients with chronic HBV infection. METHODS This was a multicentre, randomised, placebo-controlled, phase 1 study. Patients with chronic HBV infection who were not currently on anti-HBV therapy were enrolled at 11 liver disease centres in Hong Kong, New Zealand, Singapore, Taiwan, and Thailand. Seven patients per dose cohort were randomly assigned (6:1) to receive oral administration of RO7049389 at 200 mg or 400 mg twice a day, or 200 mg, 600 mg, or 1000 mg once a day, for 4 weeks, or matching placebo. Randomisation was via interactive voice web response system-generated numbers, with study participants, investigators, and site personnel masked to treatment allocation. The primary endpoint of the study was safety of RO7049389 and its antiviral effect on HBV DNA concentration at the end of treatment, assessed in all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT02952924. FINDINGS Between May 21, 2017, and April 3, 2019, 62 patients were screened for eligibility, and 37 eligible patients were enrolled in five dose cohorts sequentially. All adverse events were of mild or moderate intensity. Among the 31 patients who received RO7049389, the most common adverse events were headache (in five [16%] of 31 patients), increased alanine aminotransferase (ALT; five [16%]), increased aspartate aminotransferase (AST; four [13%]), upper respiratory tract infection (four [13%]), and diarrhoea (three [10%]). The most common moderate adverse events were ALT increase (three [10%]) and AST increase (two [6%]), and there were no serious adverse events. At the end of 4 weeks treatment, mean HBV DNA declines from baseline in RO7049389-treated patients were 2·44 log10 IU/mL (SD 0·98) in the 200 mg twice a day group, 3·33 log10 IU/mL (1·14) in the 400 mg twice a day group, 3·00 log10 IU/mL (0·54) in the 200 mg once a day group, 2·86 log10 IU/mL (0·79) in the 600 mg once a day group, and 3·19 log10 IU/mL (0·33) in the 1000 mg once a day group versus 0·34 log10 IU/mL (0·54) in the pooled placebo patients. INTERPRETATION RO7049389 was safe and well tolerated and demonstrated antiviral activity over 4 weeks of treatment in patients with chronic HBV infection. These findings support further clinical development of RO7049389 as a component of novel combination treatment regimens for patients with chronic HBV infection. FUNDING F Hoffmann-La Roche.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region, China
| | - Xue Zhou
- Roche Innovation Centre Shanghai, Shanghai, China
| | - Edward Gane
- New Zealand Liver Transplant Unit, The University of Auckland, Auckland, New Zealand
| | | | - Tawesak Tanwandee
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sheng Feng
- Roche Innovation Centre Shanghai, Shanghai, China
| | - Yuyan Jin
- Roche Innovation Centre Shanghai, Shanghai, China
| | | | | | | | | | - Remi Kazma
- Roche Innovation Centre Basel, Basel, Switzerland
| | - Qingyan Bo
- Roche Innovation Centre Shanghai, Shanghai, China.
| |
Collapse
|
20
|
Identification of hepatitis B virus core protein residues critical for capsid assembly, pgRNA encapsidation and resistance to capsid assembly modulators. Antiviral Res 2021; 191:105080. [PMID: 33933516 DOI: 10.1016/j.antiviral.2021.105080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Assembly of hepatitis B virus (HBV) capsids is driven by the hydrophobic interaction of core protein (Cp) at dimer-dimer interface. Binding of core protein allosteric modulators (CpAMs) to a hydrophobic "HAP" pocket formed between the inter-dimer interface strengths the dimer-dimer interaction and misdirects the assembly of Cp dimers into non-capsid Cp polymers or morphologically normal capsids devoid of viral pregenomic (pg) RNA and DNA polymerase. In this study, we performed a systematic mutagenesis analysis to identify Cp amino acid residues at Cp dimer-dimer interface that are critical for capsid assembly, pgRNA encapsidation and resistance to CpAMs. By analyzing 70 mutant Cp with a single amino acid substitution of 25 amino acid residues around the HAP pocket, our study revealed that residue W102 and Y132 are critical for capsid assembly. However, substitution of many other residues did not significantly alter the amount of capsids, but reduced the amount of encapsidated pgRNA, suggesting their critical roles in pgRNA packaging. Interestingly, several mutant Cp with a single amino acid substitution of residue P25, T33 or I105 supported high levels of DNA replication, but conferred strong resistance to multiple chemotypes of CpAMs. In addition, we also found that WT Cp, but not the assembly incompetent Cp, such as Y132A Cp, interacted with HBV DNA polymerase (Pol). This later finding implies that encapsidation of viral DNA polymerase may depend on the interaction of Pol with a capsid assembly intermediate, but not free Cp dimers. Taking together, our findings reported herein shed new light on the mechanism of HBV nucleocapsid assembly and mode of CpAM action.
Collapse
|
21
|
Sauviller S, Vergauwen K, Jaensch S, Gustin E, Peeters D, Vermeulen P, Wuyts D, Vandyck K, Pauwels F, Berke JM. Development of a cellular high-content, immunofluorescent HBV core assay to identify novel capsid assembly modulators that induce the formation of aberrant HBV core structures. J Virol Methods 2021; 293:114150. [PMID: 33839187 DOI: 10.1016/j.jviromet.2021.114150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 01/05/2023]
Abstract
Hepatitis B Virus (HBV) core protein has multiple functions in the viral life cycle and is an attractive target for new anti-viral therapies. Capsid assembly modulators (CAMs) target the core protein and induce the formation of either morphologically normal (CAM-N) or aberrant structures (CAM-A), both devoid of genomic material. To date a diverse family of CAM-N chemotypes has been identified, but in contrast, described CAM-As are based on the heteroaryldihydropyrimidine (HAP) scaffold. We used the HBV-inducible HepG2.117 cell line with immunofluorescent labeling of HBV core to develop and validate a cellular high-content image-based assay where aggregated core structures are identified using image analysis spot texture features. Treatment with HAPs led to a dose- and time-dependent formation of aggregated core appearing as dot-like structures in the cytoplasm and nucleus. By combining a biochemical and cellular screening approach, a compound was identified as a novel non-HAP scaffold able to induce dose-dependent formation of aberrant core structures, which was confirmed by electron microscopy and native gel electrophoresis. This compound displayed anti-HBV activity in HepG2.117 cells, providing proof-of-concept for our screening approach. We believe our combined biochemical and cellular high-content screening method will aid in expanding the range of CAM-A chemotypes.
Collapse
Affiliation(s)
- Sarah Sauviller
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Karen Vergauwen
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Steffen Jaensch
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Emmanuel Gustin
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Danielle Peeters
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Peter Vermeulen
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dirk Wuyts
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Koen Vandyck
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Frederik Pauwels
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jan Martin Berke
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium.
| |
Collapse
|
22
|
Viswanathan U, Mani N, Hu Z, Ban H, Du Y, Hu J, Chang J, Guo JT. Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. Antiviral Res 2020; 182:104917. [PMID: 32818519 DOI: 10.1016/j.antiviral.2020.104917] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
The core (capsid) protein of hepatitis B virus (HBV) is the building block of nucleocapsids where viral DNA reverse transcriptional replication takes place and mediates virus-host cell interaction important for the persistence of HBV infection. The pleiotropic role of core protein (Cp) in HBV replication makes it an attractive target for antiviral therapies of chronic hepatitis B, a disease that affects more than 257 million people worldwide without a cure. Recent clinical studies indicate that core protein allosteric modulators (CpAMs) have a great promise as a key component of hepatitis B curative therapies. Particularly, it has been demonstrated that modulation of Cp dimer-dimer interactions by several chemical series of CpAMs not only inhibit nucleocapsid assembly and viral DNA replication, but also induce the disassembly of double-stranded DNA-containing nucleocapsids to prevent the synthesis of cccDNA. Moreover, the different chemotypes of CpAMs modulate Cp assembly by interaction with distinct amino acid residues at the HAP pocket between Cp dimer-dimer interfaces, which results in the assembly of Cp dimers into either non-capsid Cp polymers (type I CpAMs) or empty capsids with distinct physical property (type II CpAMs). The different CpAMs also differentially modulate Cp metabolism and subcellular distribution, which may impact cccDNA metabolism and host antiviral immune responses, the critical factors for the cure of chronic HBV infection. This review article highlights the recent research progress on the structure and function of core protein in HBV replication cycle, the mode of action of CpAMs, as well as the current status and perspectives on the discovery and development of core protein-targeting antivirals. This article forms part of a symposium in Antiviral Research on "Wide-ranging immune and direct-acting antiviral approaches to curing HBV and HDV infections."
Collapse
Affiliation(s)
- Usha Viswanathan
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Nagraj Mani
- Arbutus Biopharma Inc., 701 Veterans Circle, Warminster, PA, 18974, USA
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| |
Collapse
|
23
|
Wang C, Pei Y, Wang L, Li S, Jiang C, Tan X, Dong Y, Xiang Y, Ma Y, Liu G. Discovery of (1 H-Pyrazolo[3,4- c]pyridin-5-yl)sulfonamide Analogues as Hepatitis B Virus Capsid Assembly Modulators by Conformation Constraint. J Med Chem 2020; 63:6066-6089. [PMID: 32421339 DOI: 10.1021/acs.jmedchem.0c00292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) have been suggested to be effective anti-HBV agents in both preclinical and clinical studies. In addition to blocking HBV replication, CAMs could reduce the formation of covalently closed circular DNA (cccDNA), which accounts for the persistence of HBV infection. Here, we describe the discovery of (1H-indazole-5-yl)sulfonamides and (1H-pyrazolo[3,4-c]pyridin-5-yl)sulfonamides as new CAM chemotypes by constraining the conformation of the sulfamoylbenzamide derivatives. Lead optimization resulted in compound 56 with an EC50 value of 0.034 μM and good metabolic stability in mouse liver microsomes. To increase the solubility, the amino acid prodrug (65) and its citric acid salt (67) were prepared. Compound 67 dose dependently inhibited HBV replication in a hydrodynamic injection-based mouse model of HBV infection, while 56 did not show in vivo anti-HBV activity, likely owing to its suboptimal solubility. This class of compounds may serve as a starting point to develop novel anti-HBV drugs.
Collapse
Affiliation(s)
- Chunting Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yameng Pei
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Wang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuo Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chao Jiang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yi Dong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yao Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Parvez MK, Al-Dosari MS, Arbab AH, Al-Rehaily AJ, Abdelwahid MA. Bioassay-guided isolation of anti-hepatitis B virus flavonoid myricetin-3- O-rhamnoside along with quercetin from Guiera senegalensis leaves. Saudi Pharm J 2020; 28:550-559. [PMID: 32435135 PMCID: PMC7229332 DOI: 10.1016/j.jsps.2020.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, we have shown in vitro anti-hepatitis B virus (HBV) activity of G. senegalensis J.F. Gmel leaves, and Identified quercetin and other flavonoids by HPTLC. Here we report bioassay-directed fractionation of G. senegalensis leaves using column chromatography and isolation of two flavonoinds from the n-butanol fraction, their structure determination (1H NMR, 13C NMR and 2D-NMR) and assessment of antiviral activities (HBsAg and HBeAg assay) in HBV-reporter HepG2.2.2.15 cells. Further molecular docking was performed against HBV polymerase (Pol/RT) and capsid (Core) proteins as well as host-receptor sodium taurocholate co-transporting polypeptide (NTCP). The two isolated bioactive compounds were identified as quercetin and myricetin-3-O-rhamnoside. Quercetin significantly inhibited synthesis of HBsAg and HBeAg by about 60% and 62%, respectively as compared to myricetin-3-O-rhamnoside by 44% and 35%, respectively. Molecular docking of the two anti-HBV flavonoids revealed their higher binding affinities towards Pol/RT than Core and NTCP. In conclusion, this is the first report on anti-HBV active myricetin-3-O-rhamnoside along with quercetin isolated from G. senegalensis leaves. Their possible mode of anti-HBV activities are suggested through binding with viral Pol/RT and Core as well as host NTCP proteins.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed H. Arbab
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Adnan J. Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
25
|
CuI catalyzed synthesis of Dibenzo[b,f]imidazo[1,2-d][1,4]thiazepines via C–N and C–S bond Ullmann cross-coupling reaction. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Novel Hepatitis B Virus Capsid Assembly Modulator Induces Potent Antiviral Responses In Vitro and in Humanized Mice. Antimicrob Agents Chemother 2020; 64:AAC.01701-19. [PMID: 31712213 DOI: 10.1128/aac.01701-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) affects an estimated 250 million chronic carriers worldwide. Though several vaccines exist, they are ineffective for those already infected. HBV persists due to the formation of covalently closed circular DNA (cccDNA)-the viral minichromosome-in the nucleus of hepatocytes. Current nucleoside analogs and interferon therapies rarely clear cccDNA, requiring lifelong treatment. Our group identified GLP-26, a novel glyoxamide derivative that alters HBV nucleocapsid assembly and prevents viral DNA replication. GLP-26 exhibited single-digit nanomolar anti-HBV activity, inhibition of HBV e antigen (HBeAg) secretion, and reduced cccDNA amplification, in addition to showing a promising preclinical profile. Strikingly, long term combination treatment with entecavir in a humanized mouse model induced a decrease in viral loads and viral antigens that was sustained for up to 12 weeks after treatment cessation.
Collapse
|
27
|
Toyama M, Sakakibara N, Takeda M, Okamoto M, Watashi K, Wakita T, Sugiyama M, Mizokami M, Ikeda M, Baba M. Pyrimidotriazine derivatives as selective inhibitors of HBV capsid assembly. Virus Res 2019; 271:197677. [PMID: 31376401 DOI: 10.1016/j.virusres.2019.197677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is currently treated with nucleoside/nucleotides analogs. They are potent inhibitors of HBV DNA polymerase, which also functions as reverse transcriptase. Although nucleoside/nucleotide analogs efficiently suppress HBV replication in liver cells, they cannot eradicate HBV DNA from liver cells and cure the disease. Therefore, it is still mandatory to identify and develop effective inhibitors that target a step other than reverse transcription in the viral replication cycle. HBV capsid assembly is a critical step for viral replication and an attractive target for inhibition of HBV replication. We conducted in silico screening of compounds expected to bind to the HBV capsid dimer-dimer interaction site. The selected compounds were further examined for their anti-HBV activity in vitro. Among the test compounds, novel pyrimidotriazine derivatives were found to be selective inhibitors of HBV replication in HepG2.2.15.7 cells. Among the compounds, 2-[(2,3-dichlorophenyl)amino]-4-(4-tert-butylphenyl)-8-methyl-4H,9H-pyrimido[1,2-a][1,3,5]triazin-6-one was the most active against HBV replication. Studies on its mechanism of action revealed that the compound interfered with HBV capsid assembly determined by a cell-free capsid assembly system. Thus, the pyrimidotriazine derivatives are considered to be potential leads for novel HBV capsid assembly inhibitors.
Collapse
Affiliation(s)
- Masaaki Toyama
- Division of Antiviral Chemotherapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Norikazu Sakakibara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Japan
| | - Midori Takeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Mika Okamoto
- Division of Antiviral Chemotherapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaya Sugiyama
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Masanori Baba
- Division of Antiviral Chemotherapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
28
|
Rat V, Seigneuret F, Burlaud-Gaillard J, Lemoine R, Hourioux C, Zoulim F, Testoni B, Meunier JC, Tauber C, Roingeard P, de Rocquigny H. BAY 41-4109-mediated aggregation of assembled and misassembled HBV capsids in cells revealed by electron microscopy. Antiviral Res 2019; 169:104557. [PMID: 31302151 DOI: 10.1016/j.antiviral.2019.104557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
HBc is a small protein essential for the formation of the icosahedral HBV capsid. Its multiple roles in the replication cycle make this protein a promising target for the development of antiviral molecules. Based on the structure of HBc, a series of HBV assembly inhibitors, also known as capsid assembly modulators, were identified. We investigated the effect of BAY 41-4109, a heteroaryldihydropyrimidine derivative that promotes the assembly of a non-capsid polymer. We showed, by confocal microscopy, that BAY 41-4109 mediated HBc aggregation, mostly in the cytoplasm of Huh7 cells. Image analysis revealed that aggregate size depended on BAY 41-4109 concentration and treatment duration. Large aggregates in the vicinity of the nucleus were enclosed by invaginations of the nuclear envelope. This deformation of the nuclear envelope was confirmed by transmission electron microscopy (TEM) and immuno-TEM. These two techniques also revealed that the HBc aggregates were accumulations of capsid-like shells with an electron-dense material consisting of HBV core fragments. These findings, shedding light on the ultrastructural organization of HBc aggregates, provide insight into the mechanisms of action of BAY 41-4109 against HBV and will serve as a basis for comparison with other HBV capsid assembly inhibitors.
Collapse
Affiliation(s)
- Virgile Rat
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Florian Seigneuret
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Julien Burlaud-Gaillard
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Roxane Lemoine
- B-Cell Resources Platform, EA4245 "Transplantation, Immunologie et Inflammation", Université de Tours, 10 Boulevard Tonnellé, 37032, Tours Cedex 1, France
| | - Christophe Hourioux
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France; Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Fabien Zoulim
- INSERM U1052-Cancer Research Center of Lyon (CRCL), 69008, Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008, Lyon, France; Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, France
| | - Barbara Testoni
- INSERM U1052-Cancer Research Center of Lyon (CRCL), 69008, Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008, Lyon, France; Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, France
| | - Jean-Christophe Meunier
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Clovis Tauber
- UMRS Inserm U1253 - Université de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Philippe Roingeard
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France; Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Hugues de Rocquigny
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France.
| |
Collapse
|
29
|
Kondylis P, Schlicksup CJ, Katen SP, Lee LS, Zlotnick A, Jacobson SC. Evolution of Intermediates during Capsid Assembly of Hepatitis B Virus with Phenylpropenamide-Based Antivirals. ACS Infect Dis 2019; 5:769-777. [PMID: 30616343 PMCID: PMC6510601 DOI: 10.1021/acsinfecdis.8b00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Self-assembly of virus capsids is a potential target for antivirals due to its importance in the virus lifecycle. Here, we investigate the effect of phenylpropenamide derivatives B-21 and AT-130 on the assembly of hepatitis B virus (HBV) core protein. Phenylpropenamides are widely believed to yield assembly of spherical particles resembling native, empty HBV capsids. Because the details of assembly can be overlooked with ensemble measurements, we performed resistive-pulse sensing on nanofluidic devices with four pores in series to characterize the size distributions of the products in real time. With its single particle sensitivity and compatibility with typical assembly buffers, resistive-pulse sensing is well-suited for analyzing virus assembly in vitro. We observed that assembly with B-21 and AT-130 produced a large fraction of partially complete virus particles that may be on-path, off-path, or trapped. For both B-21 and AT-130, capsid assembly was more sensitive to disruption under conditions where the interprotein association energy was low at lower salt concentrations. Dilution of the reaction solutions led to the rearrangement of the incomplete particles and demonstrated that these large intermediates may be on-path, but are labile, and exist in a frustrated dynamic equilibrium. During capsid assembly, phenylpropenamide molecules modestly increase the association energy of dimers, prevent intermediates from dissociating, and lead to kinetic trapping where the formation of too many capsids has been initiated, which results in both empty and incomplete particles.
Collapse
Affiliation(s)
| | | | - Sarah P. Katen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Lye Siang Lee
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | | |
Collapse
|
30
|
Huber AD, Pineda DL, Liu D, Boschert KN, Gres AT, Wolf JJ, Coonrod EM, Tang J, Laughlin TG, Yang Q, Puray-Chavez MN, Ji J, Singh K, Kirby KA, Wang Z, Sarafianos SG. Novel Hepatitis B Virus Capsid-Targeting Antiviral That Aggregates Core Particles and Inhibits Nuclear Entry of Viral Cores. ACS Infect Dis 2019; 5:750-758. [PMID: 30582687 DOI: 10.1021/acsinfecdis.8b00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An estimated 240 million are chronically infected with hepatitis B virus (HBV), which can lead to liver disease, cirrhosis, and hepatocellular carcinoma. Currently, HBV treatment options include only nucleoside reverse transcriptase inhibitors and the immunomodulatory agent interferon alpha, and these treatments are generally not curative. New treatments with novel mechanisms of action, therefore, are highly desired for HBV therapy. The viral core protein (Cp) has gained attention as a possible therapeutic target because of its vital roles in the HBV life cycle. Several classes of capsid assembly effectors (CAEs) have been described in detail, and these compounds all increase capsid assembly rate but inhibit HBV replication by different mechanisms. In this study, we have developed a thermal shift-based screening method for CAE discovery and characterization, filling a much-needed gap in high-throughput screening methods for capsid-targeting molecules. Using this approach followed by cell-based screening, we identified the compound HF9C6 as a CAE with low micromolar potency against HBV replication. HF9C6 caused large multicapsid aggregates when capsids were assembled in vitro and analyzed by transmission electron microscopy. Interestingly, when HBV-expressing cells were treated with HF9C6, Cp was excluded from cell nuclei, suggesting that this compound may inhibit nuclear entry of Cp and capsids. Furthermore, mutational scanning of Cp suggested that HF9C6 binds the known CAE binding pocket, indicating that key Cp-compound interactions within this pocket have a role in determining the CAE mechanism of action.
Collapse
Affiliation(s)
- Andrew D. Huber
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
| | - Dallas L. Pineda
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Dandan Liu
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Kelsey N. Boschert
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, Missouri 65211, United States
| | - Anna T. Gres
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Jennifer J. Wolf
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Emily M. Coonrod
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, Missouri 65211, United States
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota, 312 Church St. SE, Minneapolis, Minnesota 55455, United States
| | - Thomas G. Laughlin
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Qiongying Yang
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Maritza N. Puray-Chavez
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Juan Ji
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Karen A. Kirby
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, 312 Church St. SE, Minneapolis, Minnesota 55455, United States
| | - Stefan G. Sarafianos
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| |
Collapse
|
31
|
Inoue T, Tanaka Y. The Role of Hepatitis B Core-Related Antigen. Genes (Basel) 2019; 10:genes10050357. [PMID: 31075974 PMCID: PMC6562807 DOI: 10.3390/genes10050357] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) cannot be completely eliminated from infected hepatocytes due to the existence of intrahepatic covalently closed circular DNA (cccDNA). Serological biomarkers reflect intrahepatic viral replicative activity as non-invasive alternatives to liver biopsy. Hepatitis B core-related antigen (HBcrAg) is a novel biomarker that has an important role in chronic hepatitis B (CHB), because it correlates with serum HBV DNA and intrahepatic cccDNA. In clinical cases with undetectable serum HBV DNA or loss of HBsAg, HBcrAg still can be detected and the decrease in HBcrAg levels is significantly associated with promising outcomes for CHB patients. HBcrAg can predict spontaneous or treatment-induced hepatitis B envelope antigen (HBeAg) seroconversion, persistent responses before and after cessation of nucleos(t)ide analogues, potential HBV reactivation, HBV reinfection after liver transplantation, and risk of hepatocellular carcinoma progression or recurrence. In this review, the clinical applications of HBcrAg in CHB patients based on its virological features are described. Furthermore, new potential therapeutic anti-HBV agents that affect intrahepatic cccDNA are under development, and the monitoring of HBcrAg might be useful to judge therapeutic effects. In conclusion, HBcrAg might be a suitable surrogate marker beyond other HBV markers to predict the disease progression and treatment responses of CHB patients.
Collapse
Affiliation(s)
- Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan.
| | - Yasuhito Tanaka
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan.
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
32
|
Zhang Y, Zhang H, Zhang J, Zhang J, Guo H. Naturally occurring core protein mutations compensate for the reduced replication fitness of a lamivudine-resistant HBV isolate. Antiviral Res 2019; 165:47-54. [PMID: 30902704 DOI: 10.1016/j.antiviral.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of an RNA intermediate. The lack of proofreading capacity of the viral DNA polymerase results in a high mutation rate of HBV genome. Under the selective pressure created by the nucleos(t)ide analogue (NA) antiviral drugs, viruses with resistance mutations are selected. However, the replication fitness of NA-resistant mutants is markedly reduced compared to wild-type. Compensatory mutations in HBV polymerase, which restore the viral replication capacity, have been reported to arise under continuous treatment with lamivudine (LMV). We have previously identified a highly replicative LMV-resistant HBV isolate from a chronic hepatitis B patient experiencing acute disease exacerbation. Besides the common YMDD drug-resistant mutations, this isolate possesses multiple additional mutations in polymerase and core regions. The transcomplementation assay demonstrated that the enhanced viral replication is due to the mutations of core protein. Further mutagenesis study revealed that the P5T mutation of core protein plays an important role in the enhanced viral replication through increasing the levels of capsid formation and pregenomic RNA encapsidation. However, the LMV-resistant virus harboring compensatory core mutations remains sensitive to capsid assembly modulators (CpAMs). Taken together, our study suggests that the enhanced HBV nucleocapsid formation resulting from core mutations represents an important viral strategy to surmount the antiviral drug pressure and contribute to viral pathogenesis, and CpAMs hold promise for developing the combinational antiviral therapy for hepatitis B.
Collapse
Affiliation(s)
- Yongmei Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Junjie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOH & MOE), Fudan University, Shanghai, China.
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|