1
|
Udom GJ, Abdulyekeen BR, Osakwe MO, Ezejiofor AN, Orish CN, Orish FC, Frazzoli C, Orisakwe OE. Reconsideration of the health effects of monosodium glutamate: from bench to bedside evidence. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024:1-31. [PMID: 39435965 DOI: 10.1080/26896583.2024.2415202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Monosodium glutamate (MSG) is a food additive that enhances the palatability of foods, thus its frequent use both domestically and industrially. Based on the dose-factor, frequency, and duration of exposure, MSG may provoke adverse health outcomes both in animals and humans. The present report aims at providing a comprehensive analysis of the scientifically proven untoward health effects of MSG. To achieve our aim, we adopted the PRISMA guidelines and checklist and searched four databases (Scopus, Web of Science, PubMed, and Google Scholar) from 2014 to 2024. Retrieved research papers were critically appraised for quality using the ARRIVE and Joanna Briggs (JB) checklists and data analysis was conducted via the narrative synthesis method. Our analysis reveals that though MSG is generally considered safe at low doses; however, high doses and repeated exposure to MSG are associated with embryotoxicity and teratogenicity, obesity, cardiotoxicity, hepatotoxicity, kidney toxicity, neurotoxicity, endothelial dysfunction, reproductive toxicities, alteration of lipid, and glucose metabolism. Thus, chronic exposure to MSG may be of human pathological importance. The findings of the present narrative synthesis provide a rationale for informed decisions on the use and labeling of this widely used food additive.
Collapse
Affiliation(s)
- Godswill J Udom
- Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Ishaka, Uganda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Federal University Oye-Ekiti, Nigeria
| | - Babatunde R Abdulyekeen
- African Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, Choba, Nigeria
| | - Maryann O Osakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, College of Health Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| | | | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Mersin, Turkey
| |
Collapse
|
2
|
Yu XY, He JY, Tang F, Yu P, Wu L, Xiao ZL, Sun LX, Cao Z, Yu D. Highly sensitive determination of L-glutamic acid in pig serum with an enzyme-free molecularly imprinted polymer on a carbon-nanotube modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5589-5597. [PMID: 37850367 DOI: 10.1039/d3ay01499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Through electrochemical polymerization using L-glutamic acid (L-Glu) as a template and 4,6-diaminoresorcinol as a functional monomer, an enzyme-free molecularly imprinted polymer (MIP) based L-Glu sensor with multi-walled carbon nanotubes (MWCNTs) decorated on a glassy carbon electrode (GCE), namely G-MIP/MWCNTs/GCE, was developed in this work. The reaction conditions were optimized as follows: electrochemical polymerization of 23 cycles, pH of 3.0, molar ratio of template/monomer of 1 : 4, volume ratio of elution reagents of acetonitrile/formic acid of 1 : 1, and elution time of 2 min. The prepared materials and molecularly imprinted polymer were characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as well as electrochemical methods. The electrochemical properties of different electrodes were investigated via differential pulse voltammetry (DPV), showing that the electrode of G-MIP/MWCNTs/GCE exhibited excellent catalytic oxidation activity towards L-Glu. A good linear relationship between peak-currents and L-Glu concentrations in a range from 1.00 × 10-8 to 1.00 × 10-5 mol L-1 was observed, with a detection limit of 5.13 × 10-9 mol L-1 (S/N = 3). The imprinted sensor possesses excellent selectivity, high sensitivity, and good stability, which have been successfully applied for the detection of L-Glu in pig serum samples with a recovery rate of 97.4-105.5%, being comparable to commercial high-performance liquid chromatography, demonstrating a simple, rapid, and accurate way for the determination of L-Glu in the fields of animal nutrition and biomedical engineering.
Collapse
Affiliation(s)
- Xin-Yao Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Jun-Yi He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Fei Tang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Peng Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ling Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Zhong-Liang Xiao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Li-Xian Sun
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, East, Denmark.
| |
Collapse
|
3
|
Yu H, Wang R, Zhao Y, Song Y, Sui H, Wu Y, Miao H, Lyu B. Monosodium Glutamate Intake and Risk Assessment in China Nationwide, and a Comparative Analysis Worldwide. Nutrients 2023; 15:nu15112444. [PMID: 37299405 DOI: 10.3390/nu15112444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The sixth Total Diet Study (TDS) of China included a countrywide study to assess the health effects of MSG (monosodium glutamate). MSG detection, consumption analysis, and risk assessment were conducted on 168 samples from seven food categories of the most typical Chinese daily diet. The highest value of MSG in the daily diet of the Chinese population was 8.63 g/kg. An MSG intake of 17.63 mg/kg bw/d for the general population of China was obtained from content measurements combined with food consumption, while the data from the apparent consumption survey alone gave 40.20 mg/kg bw/d. The apparent consumption did not consider the loss of MSG during food cooking, resulting in an overestimate. To offer a global perspective, MSG content, food category contributions, and ingestion levels across nations were summarized and thoroughly investigated. A realistic, logical, and precise risk assessment protocol for MSG daily intake was developed in this article.
Collapse
Affiliation(s)
- Hangyu Yu
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yunfeng Zhao
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Yan Song
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Haixia Sui
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Hongjian Miao
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| |
Collapse
|
4
|
Zhu Y, Liu J, Liu Y. Understanding the relationship between umami taste sensitivity and genetics, food-related behavior and nutrition. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
El Tabbal J. Monosodium glutamate in a type 2 diabetes context: A large scoping review. Regul Toxicol Pharmacol 2022; 133:105223. [PMID: 35817208 DOI: 10.1016/j.yrtph.2022.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
This scoping review aimed to map and elaborate the heterogenous and inconclusive body of evidence relating monosodium glutamate (MSG) and type 2 diabetes (T2DM). For this reason, multiple health outcomes related to T2DM were included and a systematic search was conducted. Experimental and observational trials between 1995 and January 2021 were collected. The tests were highly heterogenous in their samples, doses, route of exposures, durations, diets and conclusions. There was a pattern of negative effects of MSG at oral doses ≥2,000 mg/kg of body weight, and by gavage or injection at any given dose. Evidence was lacking in many areas and most of the evidence relied on short term tests. Further research should focus on standardizing and justifying methodologies, conducting long term studies and toxicokinetic tests, and avoiding bias. Focusing on the gaps highlighted and investigating mechanisms of action of MSG is crucial. Evidence-based toxicology is encouraged.
Collapse
Affiliation(s)
- Jana El Tabbal
- Department of Health Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
6
|
Nouri M, Pourghassem Gargari B, Tajfar P, Tarighat-Esfanjani A. A systematic review of whey protein supplementation effects on human glycemic control: A mechanistic insight. Diabetes Metab Syndr 2022; 16:102540. [PMID: 35772356 DOI: 10.1016/j.dsx.2022.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND/AIMS Some studies showed that dietary factors such as whey protein (WP) are effective on glycemic regulation. Due to the current controversy about WP effects and mechanisms of its action on glycemic control, we conducted this systematic review to shed light on the subject. METHODS Web of Science, Medline (Pubmed), and Scopus online databases were searched from 2012 up to February 2022 using the following keywords: "whey protein" and "glycemic control"/"glycemia"/"glucose"/"insulin". The search included original English articles, human clinical trials with WP supplementation and measurement of glucose or insulin as an outcome, studies on healthy individuals/patients with diabetes mellitus (DM)/impaired fasting glucose (IFG). RESULTS Title/abstract of 1991 studies were reviewed. After excluding studies due to inappropriate full title and duplication, and exercising inclusion criteria, 58 studies were reviewed in detail. Ample evidence showed that WP decreased postprandial glucose incremental area under the curve (iAUC) and increased iAUCs of insulin and incretin hormones. WP affects glycemic control mainly through stimulating insulin and incretins secretion, slowing gastric emptying, and appetite suppression. CONCLUSION Although most of the recent evidence showed beneficial effects of WP supplementation on glycemic response, further long-term clinical trials are required which assess the long-term impact of WP supplementation and its exact mechanisms.
Collapse
Affiliation(s)
- Maryam Nouri
- Student Research Committee, Student Research Center, Tabriz University of Medical Sciences, Tabriz, IR, Iran; Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| | - Pedram Tajfar
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| |
Collapse
|
7
|
Abstract
The prototypical stimuli for umami taste is monosodium glutamate (MSG), which is the sodium salt form of glutamic acid. A proportion of the population has a reduced or complete inability to taste l-glutamate independent to the sodium ion. To determine individuals’ umami discrimination status, many studies use a series of triangle tests containing isomolar (29 mM) sodium chloride (NaCl) and MSG, requiring participants to correctly identify the odd sample. Across studies, inconsistent categorization criteria have been applied. The aim of this study was to determine the optimal classification criterion based on the number of tests assessed to ascertain an individual’s ability to discriminate between MSG and NaCl. Thirty-eight participants attended 3 taste assessment sessions, each involving 24 triangle tests (2 blocks of 12 tests) containing 29 mM NaCl and 29 mM MSG, detection and recognition threshold were measured for MSG, monopotassium glutamate (MPG), and sweet (sucrose) tastes. There was no learning, or fatigue trend over n = 24 (P = 0.228), and n = 12 (P = 0.940) triangle tests across each testing session. Twenty-four triangle tests produced the most consistent categorization of tasters across sessions (68.4%). The test–retest correlation across each testing session was highest for n = 24 triangle tests (ICC = 0.50), in comparison to 12 (ICC = 0.37). Overall, conducting n = 24 compared with n = 12 triangle tests provided the optimal classification to determine an individual’s ability to discriminate l-glutamate from NaCl and thus their umami discrimination status, based on the number of tests assessed in this study.
Collapse
Affiliation(s)
- Isabella Hartley
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | | | - Djin Gie Liem
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
- Corresponding author: Russell Keast, CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia. e-mail:
| |
Collapse
|
8
|
Obesity-induced taste dysfunction, and its implications for dietary intake. Int J Obes (Lond) 2021; 45:1644-1655. [PMID: 34031530 DOI: 10.1038/s41366-021-00855-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
The incidence of obesity has dramatically increased in recent years, and poses a public health challenge for which an effective and scalable intervention strategy is yet to be found. Our food choices are one of the primary drivers of obesity, where the overconsumption of energy from foods high in fat and sugar can be particularly problematic. Unfortunately, these same foods also tend to be highly palatable. We select foods more on their sensory properties than on any other factor, such as price, convenience, or healthfulness. Previous evidence from human sensory studies has suggested a depressed sense of taste in panelists with obesity. Evidence from animal models also demonstrates a clear deficiency in taste buds occurring with obesity, suggesting that damage to the taste system may result from an obese state. In this review only taste, as opposed to smell, will be examined. Here we seek to bring together evidence from a diverse array of human and animal studies into taste response, dietary intake, and physiology, to better understand changes in taste with obesity, with the goal of understanding whether taste may provide a novel target for intervention in the treatment of obesity.
Collapse
|
9
|
Macronutrient Sensing in the Oral Cavity and Gastrointestinal Tract: Alimentary Tastes. Nutrients 2021; 13:nu13020667. [PMID: 33669584 PMCID: PMC7922037 DOI: 10.3390/nu13020667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
There are numerous and diverse factors enabling the overconsumption of foods, with the sense of taste being one of these factors. There are four well established basic tastes: sweet, sour, salty, and bitter; all with perceptual independence, salience, and hedonic responses to encourage or discourage consumption. More recently, additional tastes have been added to the basic taste list including umami and fat, but they lack the perceptual independence and salience of the basics. There is also emerging evidence of taste responses to kokumi and carbohydrate. One interesting aspect is the link with the new and emerging tastes to macronutrients, with each macronutrient having two distinct perceptual qualities that, perhaps in combination, provide a holistic perception for each macronutrient: fat has fat taste and mouthfeel; protein has umami and kokumi; carbohydrate has sweet and carbohydrate tastes. These new tastes can be sensed in the oral cavity, but they have more influence post- than pre-ingestion. Umami, fat, kokumi, and carbohydrate tastes have been suggested as an independent category named alimentary. This narrative review will present and discuss evidence for macronutrient sensing throughout the alimentary canal and evidence of how each of the alimentary tastes may influence the consumption of foods.
Collapse
|
10
|
Li T, Zhao M, Raza A, Guo J, He T, Zou T, Song H. The effect of taste and taste perception on satiation/satiety: a review. Food Funct 2020; 11:2838-2847. [PMID: 32195512 DOI: 10.1039/c9fo02519g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As the prevalence of being overweight and obesity has increased worldwide, there is an increasing concern about satiation/satiety that can be achieved by eating. The ability of an individual to perceive tastes in the mouth is believed to be one of the many factors that influence food intake; the taste may affect appetite regulation and energy intake, playing an important role in promoting satiation/satiety. Satiation/satiety is actually induced by food and may be related to physiological and psychological factors such as several basic tastes, the exposure time of the taste and the cognition of different groups and individuals. This paper reviews the mechanism by which taste regulates satiation/satiety and demonstrates how taste and the taste perception of food prompt the brain to send satiation/satiety signals. Existing problems in taste and satiation/satiety and the prospective application of related research in the food industry are addressed, providing a scientific basis and theoretical guidance for the development and utilization of satiation/satiety from the perspective of taste.
Collapse
Affiliation(s)
- Ting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing 100048, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Total glutamate (Glu) intake is 5-20 g/day in adults and about 40 mg/kg in breast-fed infant. Glu intake is constituted by Glu from protein and free Glu from certain foods and flavor-enhancing additive. The admissible intake of free Glu additive is addressed. RECENT FINDING In the gut, Glu is actively metabolized by enterocytes and because of this metabolism, the systemic availability of ingested Glu remains relatively low. Human studies are preferred to assess the transfer in blood of dietary free Glu salts and their possible risks. When human data are not available, experimental animal models provide the basis to assess the risks to humans but toxicity studies in rodents remain for a part controversial. A No Observable Adverse Effect Level (NOAEL) in rodent of 3200 mg/kg/day and an uncertainty factor of 100 lead to an acceptable daily intake (ADI) of 30 mg/kg/day for free Glu salts used as additives, whereas a NOAEL higher than 6000 mg/kg/day and an uncertainty factor of 25 leads to an ADI of 240 mg/kg/day for free Glu salts. SUMMARY Current discussions indicate an ADI from 30 to 240 mg/kg/day depending on the chosen NOAEL in animal model and compound-specific uncertainty factor (from 25 to 100).
Collapse
Affiliation(s)
- Daniel Tomé
- UMR PNCA, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| |
Collapse
|
12
|
Lasschuijt MP, Camps G, Koopman Y, Smeets PAM. Unaware of the amount consumed: Systematic error in estimating food- and drink intake. Physiol Behav 2019; 209:112591. [PMID: 31255647 DOI: 10.1016/j.physbeh.2019.112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Our current food environment promotes overconsumption due to the overrepresentation of foods that have a high calorie density and can be easily consumed. These food characteristics lead to limited oro-sensory exposure, which may lead to overconsumption due to insufficient perception of the amount consumed. Better perception of the amount eaten and thus a better ability to estimate intake may help control actual food intake through prolonged inter-meal interval and smaller meal sizes. OBJECTIVE The aim of this study was to determine whether food form, flavor and portion size influence the error in estimated intake (EiE). METHOD Participants (n = 72) were recruited at a science festival where the study was also performed. The experiment had a 2 × 2 × 3 design with a reference condition. Experimental conditions differed in food form (liquid vs. solid stimuli), taste category (savory vs. sweet) and portion size (small, medium, large). Water was used as a reference condition. RESULTS Participants overestimated the amount consumed of all stimuli. The overestimation was ten times greater for solid compared to liquid products (104 ± 12 vs 12 ± 9% overestimation) and was more pronounced for sweet (75 ± 9%) than for savory products (41 ± 12%). There was a trend for larger EiE% of smaller portions. No differences were found among the differently flavored liquids including the water reference. CONCLUSION People overestimate the amount they consume of solid and sweet products more than that of liquid and savory products. This overestimation may be due to overvaluation of the oro-sensory stimulation when visual cues and intake effort are controlled for or because of learned associations. However, the uncontrolled setting of the experiment should be taken into account when drawing conclusions. Future research may replicate the study in a more controlled setting and should determine whether the overestimation of sweet solid product intake also leads to lower intake at a subsequent meal.
Collapse
Affiliation(s)
- Marlou P Lasschuijt
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands.
| | - Guido Camps
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Ylva Koopman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul A M Smeets
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands; Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
13
|
Zhang Y, Zhang L, Venkitasamy C, Pan Z, Ke H, Guo S, Wu D, Wu W, Zhao L. Potential effects of umami ingredients on human health: Pros and cons. Crit Rev Food Sci Nutr 2019; 60:2294-2302. [PMID: 31272187 DOI: 10.1080/10408398.2019.1633995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Umami taste is the most recent confirmed basic taste in addition to sour, sweet, bitter, and salty. It has been controversial because of its effects on human nutritional benefit. Based on the available literatures, this review categorized 13 positive and negative effects of umami taste on human health. On the positive side, umami taste can improve food flavor and consumption, improve nutrition intake of the elderly and patients, protect against duodenal cancer, reduce ingestion of sodium chloride, decrease consumption of fat, and improve oral functions. On the other hand, umami taste can also induce hepatotoxicity, cause asthma, induce migraine headaches, damage the nervous system, and promote obesity. Due to its novelty, there are many functions and effects of umami taste waiting to be discovered. With further investigation, more information regarding the effects of umami taste on human health will be discerned.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Longyi Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Chandrasekar Venkitasamy
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA.,Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, USA
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA.,Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, USA
| | - Huan Ke
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Siya Guo
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Di Wu
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Wanxia Wu
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Liming Zhao
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China.,State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Umami as an 'Alimentary' Taste. A New Perspective on Taste Classification. Nutrients 2019; 11:nu11010182. [PMID: 30654496 PMCID: PMC6356469 DOI: 10.3390/nu11010182] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 01/29/2023] Open
Abstract
Applied taste research is increasingly focusing on the relationship with diet and health, and understanding the role the sense of taste plays in encouraging or discouraging consumption. The concept of basic tastes dates as far back 3000 years, where perception dominated classification with sweet, sour, salty, and bitter consistently featuring on basic taste lists throughout history. Advances in molecular biology and the recent discovery of taste receptors and ligands has increased the basic taste list to include umami and fat taste. There is potential for a plethora of other new basic tastes pending the discovery of taste receptors and ligands. Due to the possibility for an ever-growing list of basic tastes it is pertinent to critically evaluate whether new tastes, including umami, are suitably positioned with the four classic basic tastes (sweet, sour, salty, and bitter). The review critically examines the evidence that umami, and by inference other new tastes, fulfils the criteria for a basic taste, and proposes a subclass named ‘alimentary’ for tastes not meeting basic criteria.
Collapse
|
15
|
Tey SL, Salleh N, Henry CJ, Forde CG. Effects of Consuming Preloads with Different Energy Density and Taste Quality on Energy Intake and Postprandial Blood Glucose. Nutrients 2018; 10:E161. [PMID: 29385055 PMCID: PMC5852737 DOI: 10.3390/nu10020161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 01/21/2023] Open
Abstract
Consumption of reduced energy dense foods and drink has the potential to reduce energy intake and postprandial blood glucose concentrations. In addition, the taste quality of a meal (e.g., sweet or savoury) may play a role in satiation and food intake. The objective of this randomised crossover study was to examine whether energy density and taste quality has an impact on energy intake and postprandial blood glucose response. Using a preload design, participants were asked to consume a sweet ("Cheng Teng") or a savoury (broth) preload soup in high energy density (HED; around 0.50 kcal/g; 250 kcal) or low energy density (LED; around 0.12 kcal/g; 50 kcal) in mid-morning and an ad libitum lunch was provided an hour after the preload. Participants recorded their food intake for the rest of the day after they left the study site. Energy compensation and postprandial blood glucose response were measured in 32 healthy lean males (mean age = 28.9 years, mean BMI = 22.1 kg/m²). There was a significant difference in ad libitum lunch intake between treatments (p = 0.012), with higher intake in sweet LED and savoury LED compared to sweet HED and savoury HED. Energy intake at subsequent meals and total daily energy intake did not differ between the four treatments (both p ≥ 0.214). Consumption of HED preloads resulted in a larger spike in postprandial blood glucose response compared with LED preloads, irrespective of taste quality (p < 0.001). Energy density rather than taste quality plays an important role in energy compensation and postprandial blood glucose response. This suggests that regular consumption of low energy-dense foods has the potential to reduce overall energy intake and to improve glycemic control.
Collapse
Affiliation(s)
- Siew Ling Tey
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), National University Health System, Singapore 117599, Singapore.
| | - Nurhazwani Salleh
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), National University Health System, Singapore 117599, Singapore.
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), National University Health System, Singapore 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.
| | - Ciaran G Forde
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), National University Health System, Singapore 117599, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|