1
|
Increased temperature during incubation increases the sociality of male broilers in later life. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Michel V, Berk J, Bozakova N, van der Eijk J, Estevez I, Mircheva T, Relic R, Rodenburg TB, Sossidou EN, Guinebretière M. The Relationships between Damaging Behaviours and Health in Laying Hens. Animals (Basel) 2022; 12:986. [PMID: 35454233 PMCID: PMC9029779 DOI: 10.3390/ani12080986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/23/2023] Open
Abstract
Since the ban in January 2012 of conventional cages for egg production in the European Union (Council Directive 1999/74/EC), alternative systems such as floor, aviary, free-range, and organic systems have become increasingly common, reaching 50% of housing for hens in 2019. Despite the many advantages associated with non-cage systems, the shift to a housing system where laying hens are kept in larger groups and more complex environments has given rise to new challenges related to management, health, and welfare. This review examines the close relationships between damaging behaviours and health in modern husbandry systems for laying hens. These new housing conditions increase social interactions between animals. In cases of suboptimal rearing and/or housing and management conditions, damaging behaviour or infectious diseases are likely to spread to the whole flock. Additionally, health issues, and therefore stimulation of the immune system, may lead to the development of damaging behaviours, which in turn may result in impaired body conditions, leading to health and welfare issues. This raises the need to monitor both behaviour and health of laying hens in order to intervene as quickly as possible to preserve both the welfare and health of the animals.
Collapse
Affiliation(s)
- Virginie Michel
- Direction de la Stratégie et des Programmes, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701 Maisons-Alfort, France
| | - Jutta Berk
- Institute for Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, 29223 Celle, Germany;
| | - Nadya Bozakova
- Department of General Animal Breeding, Animal Hygiene, Ethology and Animal Protection Section, Faculty of Veterinary Medicine, Student’s Campus, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Jerine van der Eijk
- Animal Health and Welfare, Wageningen Livestock Research, Wageningen University and Research, De Elst 1, 6708 Wageningen, The Netherlands;
| | - Inma Estevez
- Department of Animal Production, Neiker-Basque Institute for Agricultural Research and Development, 01080 Vitoria-Gasteiz, Spain;
| | - Teodora Mircheva
- Section of Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Renata Relic
- Faculty of agriculture, University of Belgrade, 11080 Belgrade, Serbia;
| | - T. Bas Rodenburg
- Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 Utrecht, The Netherlands;
| | - Evangelia N. Sossidou
- Laboratory of Farm Animal Health and Welfare, Veterinary Research Institute, Ellinikos Georgikos Or-Ganismos-DIMITRA (ELGO-DIMITRA), 57001 Thessaloniki, Greece;
| | - Maryse Guinebretière
- Epidemiology, Health and Welfare Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France;
| |
Collapse
|
3
|
Erensoy K, Sarıca M, Noubandiguim M, Dur M, Aslan R. Effect of light intensity and stocking density on the performance, egg quality, and feather condition of laying hens reared in a battery cage system over the first laying period. Trop Anim Health Prod 2021; 53:320. [PMID: 33987733 DOI: 10.1007/s11250-021-02765-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
The present study aimed to determine the effects of varying light intensity (high 121.8, medium 57.4 and low 11.9 lux) and stocking density (high 552.3, medium 736.3, and low 1104.5 cm2 cage floor area per hen) treatments on the performance, egg quality, and certain feather condition traits of Lohmann-Brown hens reared in a battery cage system between 20 and 40 weeks of age. Body weight was determined individually at 19 weeks and at 50% yield age (sexual maturity). Feed intake, egg yield, egg weight, and feed conversion ratio were determined weekly. Feather condition was also evaluated individually at 40 weeks of age. Hens reared under high light intensity and low stocking density reached sexual maturity and peak yield earlier than others. The highest body weight was determined for hens reared under high light intensity (1536.6 g), while the lowest in the medium light intensity group (1461.2 g). Hens reared under high and medium light intensity showed higher egg yield than those reared in low intensity (120.5, 120.0 and 112.8 eggs, respectively). In addition, hens reared at low and medium stocking density had higher egg yield than high density (119.7, 120.7, and 112.9 eggs, respectively). Hens reared under low (61.6 g) and medium (61.0 g) light intensity produced heavier eggs than hens in high light intensity (59.6 g). While feed intake was not affected in any treatment, hens reared at low and medium stocking density had a better feed conversion ratio than hens at high density (2.19, 2.20, and 2.40, respectively). Our study results showed that a sustainable production is possible by maintaining the welfare-performance balance when 50-60 lux light intensity and 700-800 cm2 cage floor area per hen are provided.
Collapse
Affiliation(s)
- Kadir Erensoy
- Department of Animal Science, Agricultural Faculty, Ondokuz Mayis University, 55139, Samsun, Turkey.
| | - Musa Sarıca
- Department of Animal Science, Agricultural Faculty, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Moise Noubandiguim
- National High Institute of Sciences and Techniques, Institut National Supérieur des Sciences et Techniques d'Abéché (INSTA), 40823, Abeche, Chad
| | - Mete Dur
- Department of Animal Science, Agricultural Faculty, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Resul Aslan
- Department of Animal Science, Agricultural Faculty, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
4
|
High and low feather pecking selection lines of laying hens differ in response to a judgment bias test. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
van der Eijk JAJ, Rodenburg TB, de Vries H, Kjaer JB, Smidt H, Naguib M, Kemp B, Lammers A. Early-life microbiota transplantation affects behavioural responses, serotonin and immune characteristics in chicken lines divergently selected on feather pecking. Sci Rep 2020; 10:2750. [PMID: 32066789 PMCID: PMC7026165 DOI: 10.1038/s41598-020-59125-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota influences host behaviour and physiology, such as anxiety, stress, serotonergic and immune systems. These behavioural and physiological characteristics are related to feather pecking (FP), a damaging behaviour in chickens that reduces animal welfare and productivity. Moreover, high FP (HFP) and low FP (LFP) lines differed in microbiota composition. However, it is unknown whether microbiota can influence the development of FP. For the first time, we identified the effects of microbiota transplantation on FP, and behavioural and physiological characteristics related to FP. HFP and LFP chicks received sterile saline (control), HFP or LFP microbiota transplantation during the first two weeks post-hatch. Microbiota transplantation influenced behavioural responses of the HFP line during treatment and of the LFP line after treatment. In both lines, homologous microbiota transplantation (i.e., receiving microbiota from their line) resulted in more active behavioural responses. Furthermore, microbiota transplantation influenced immune characteristics (natural antibodies) in both lines and peripheral serotonin in the LFP line. However, limited effects on microbiota composition, stress response (corticosterone) and FP were noted. Thus, early-life microbiota transplantation had immediate and long-term effects on behavioural responses and long-term effects on immune characteristics and peripheral serotonin; however, the effects were dependent on host genotype. Since early-life microbiota transplantation influenced behavioural and physiological characteristics that are related to FP, it could thus influence the development of FP later in life.
Collapse
Affiliation(s)
- Jerine A J van der Eijk
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
| | - T Bas Rodenburg
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hugo de Vries
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Joergen B Kjaer
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Marc Naguib
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
6
|
The prevention and control of feather pecking in laying hens: identifying the underlying principles. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933913000354] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Richter SH, Hintze S. From the individual to the population – and back again? Emphasising the role of the individual in animal welfare science. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
van der Eijk JA, Lammers A, Li P, Kjaer JB, Rodenburg TB. Feather pecking genotype and phenotype affect behavioural responses of laying hens. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Kops M, Kjaer J, Güntürkün O, Westphal K, Korte-Bouws G, Olivier B, Korte S, Bolhuis J. Brain monoamine levels and behaviour of young and adult chickens genetically selected on feather pecking. Behav Brain Res 2017; 327:11-20. [DOI: 10.1016/j.bbr.2017.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
|
10
|
Abstract
Feather pecking is a serious economic and welfare problem in laying hens. Feather damage occurs mainly through severe feather pecking (SFP). Selection experiments have proved that this behavior is heritable and lines have been divergently selected for high (HFP) and low feather pecking (LFP). The number of bouts of SFP per hen follows a Poisson distribution with a maximum nearby 0. A few studies indicate that the distribution within flocks is not homogenous but contains sub-groups of birds showing extremely high levels of feather pecking (EFP). It was the aim of the current study to re-analyze data on SFP of lines selected for HFP/LFP and their F2 cross so as to uncover hidden sub-populations of EFP birds. Data of seven selection generations of HFP and LFP selection lines as well as their F2 cross have been used. We fitted a two-component mixture of Poisson distributions in order to separate the sub-group of EFP from the remaining birds. HFP and LFP lines differed mainly in mean bouts per bird. The proportion of EFP was only marginal in the LFP as compared with the HFP and the F2 population. Selection for LFP did not result in total elimination of EFP. The presence of even small proportions of EFP may play an important role in initiating outbreaks of feather pecking in large flocks. Further studies on feather pecking should pay special attention to the occurrence of EFP sub-groups.
Collapse
|
11
|
Brunberg EI, Rodenburg TB, Rydhmer L, Kjaer JB, Jensen P, Keeling LJ. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens. Front Vet Sci 2016; 3:57. [PMID: 27500137 PMCID: PMC4956668 DOI: 10.3389/fvets.2016.00057] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/11/2016] [Indexed: 01/15/2023] Open
Abstract
Pigs and poultry are by far the most omnivorous of the domesticated farm animals and it is in their nature to be highly explorative. In the barren production environments, this motivation to explore can be expressed as abnormal oral manipulation directed toward pen mates. Tail biting (TB) in pigs and feather pecking (FP) in laying hens are examples of unwanted behaviors that are detrimental to the welfare of the animals. The aim of this review is to draw these two seemingly similar abnormalities together in a common framework, in order to seek underlying mechanisms and principles. Both TB and FP are affected by the physical and social environment, but not all individuals in a group express these behaviors and individual genetic and neurobiological characteristics play an important role. By synthesizing what is known about environmental and individual influences, we suggest a novel possible mechanism, common for pigs and poultry, involving the brain-gut-microbiota axis.
Collapse
Affiliation(s)
- Emma I. Brunberg
- NORSØK – Norwegian Centre for Organic Agriculture, Tingvoll, Norway
- NIBIO – Norwegian Institute for Bioeconomy Research, Tingvoll, Norway
| | - T. Bas Rodenburg
- Behavioural Ecology Group, Wageningen University, Wageningen, Netherlands
| | - Lotta Rydhmer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Joergen B. Kjaer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Celle, Germany
| | - Per Jensen
- AVIAN Behaviour Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Linda J. Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Dennis RL. Adrenergic and noradrenergic regulation of poultry behavior and production. Domest Anim Endocrinol 2016; 56 Suppl:S94-S100. [PMID: 27345328 DOI: 10.1016/j.domaniend.2016.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Norepinephrine and epinephrine (noradrenaline and adrenaline) are integral in maintaining behavioral and physiological homeostasis during both aversive and rewarding events. They regulate the response to stressful stimuli through direct activation of adrenergic receptors in the central and sympathetic nervous systems, hormonal activity and through the interaction of the brain, gut, and microbiome. The multiple functions of these catecholamines work synergistically to prepare an individual for a "fight or flight" response. However, hyper-reactivity of this system can lead to increased fearfulness and aggression, decreased health and productivity, and a reduction in overall well-being. Behaviors, such as aggression and certain fear-related behaviors, are a serious problem in the poultry industry that can lead to injury and cannibalism. For decades, catecholamines have been used as a measure of stress in animals. However, few studies have specifically targeted the adrenergic systems as means to reduce behaviors that are damaging or maladapted to their rearing environments and improve animal well-being. This article attempts to address our current understanding of specific, adrenergic-regulated behaviors that impact chicken well-being and production.
Collapse
Affiliation(s)
- R L Dennis
- Department of Animal and Avian Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
13
|
Riber AB, Guzman DA. Effects of Dark Brooders on Behavior and Fearfulness in Layers. Animals (Basel) 2016; 6:E3. [PMID: 26751482 PMCID: PMC4730120 DOI: 10.3390/ani6010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 11/18/2022] Open
Abstract
Chicks require heat to maintain body temperature during the first weeks after hatch. This may be provided by dark brooders; i.e. , horizontal heating elements equipped with curtains. The objective was to test effects of rearing layer chicks with dark brooders on time budget and fearfulness. Behavioral observations were performed during the first six weeks of age. Three different fear tests were conducted when the birds were age 3-6, 14-15 and 26-28 weeks. During the first four days, brooder chicks rested more than control chicks whereas they spent less time drinking, feather pecking and on locomotion ( p ≤ 0.009). On days 16, 23, 30 and 42, brooder chicks spent less time on feather pecking, locomotion and fleeing ( p ≤ 0.01) whereas foraging and dust bathing occurred more often on day 42 ( p ≤ 0.032). Brooder birds had shorter durations of tonic immobility at all ages ( p = 0.0032), moved closer to the novel object at age 15 weeks ( p < 0.0001), and had shorter latencies to initiate locomotion in the open-field test at age 28 weeks ( p < 0.0001). Results support the suggestion that dark brooders can be a successful method of reducing or preventing fear and feather pecking in layers.
Collapse
Affiliation(s)
- Anja B Riber
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, P.O. Box 50, Tjele DK-8830, Denmark.
| | - Diego A Guzman
- Instituto de Investigaciones Biológicas y Tecnológicas (CONICET-UNC) and Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611 (5000), Córdoba X5016, Argentina.
| |
Collapse
|
14
|
Grams V, Wellmann R, Preuß S, Grashorn MA, Kjaer JB, Bessei W, Bennewitz J. Genetic parameters and signatures of selection in two divergent laying hen lines selected for feather pecking behaviour. Genet Sel Evol 2015; 47:77. [PMID: 26419343 PMCID: PMC4589119 DOI: 10.1186/s12711-015-0154-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/14/2015] [Indexed: 11/10/2022] Open
Abstract
Background Feather pecking (FP) in laying hens is a well-known and multi-factorial behaviour with a genetic background. In a selection experiment, two lines were developed for 11 generations for high (HFP) and low (LFP) feather pecking, respectively. Starting with the second generation of selection, there was a constant difference in mean number of FP bouts between both lines. We used the data from this experiment to perform a quantitative genetic analysis and to map selection signatures. Methods Pedigree and phenotypic data were available for the last six generations of both lines. Univariate quantitative genetic analyses were conducted using mixed linear and generalized mixed linear models assuming a Poisson distribution. Selection signatures were mapped using 33,228 single nucleotide polymorphisms (SNPs) genotyped on 41 HFP and 34 LFP individuals of generation 11. For each SNP, we estimated Wright’s fixation index (FST). We tested the null hypothesis that FST is driven purely by genetic drift against the alternative hypothesis that it is driven by genetic drift and selection. Results The mixed linear model failed to analyze the LFP data because of the large number of 0s in the observation vector. The Poisson model fitted the data well and revealed a small but continuous genetic trend in both lines. Most of the 17 genome-wide significant SNPs were located on chromosomes 3 and 4. Thirteen clusters with at least two significant SNPs within an interval of 3 Mb maximum were identified. Two clusters were mapped on chromosomes 3, 4, 8 and 19. Of the 17 genome-wide significant SNPs, 12 were located within the identified clusters. This indicates a non-random distribution of significant SNPs and points to the presence of selection sweeps. Conclusions Data on FP should be analysed using generalised linear mixed models assuming a Poisson distribution, especially if the number of FP bouts is small and the distribution is heavily peaked at 0. The FST-based approach was suitable to map selection signatures that need to be confirmed by linkage or association mapping. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0154-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vanessa Grams
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Michael A Grashorn
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Jörgen B Kjaer
- Institute for Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Doernbergstrasse 25-27, 29223, Celle, Germany.
| | - Werner Bessei
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
15
|
Alm M, Wall H, Holm L, Wichman A, Palme R, Tauson R. Welfare and performance in layers following temporary exclusion from the litter area on introduction to the layer facility. Poult Sci 2015; 94:565-73. [PMID: 25681475 DOI: 10.3382/ps/pev021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When introduced to the laying facility, pullets are sometimes temporarily excluded from the litter area in order to help them locate food and water, and to prevent floor-laid eggs. This procedure is not permitted in Sweden, because it involves denying access to both litter and space, which may have a negative effect on bird welfare. The present study investigated how the welfare and performance of layers were affected by this temporary exclusion on introduction of hens to the laying facility. The study included 600 floor-reared Dekalb White layers obtained at 16 wk age and housed in 6 groups of 100 in a conventional single-tier floor-laying system. Birds were either given full access to the litter area during the whole study or were excluded from the litter area during the first 2 wk after transfer to the laying facility. From 18 to 72 wk age, birds in both treatments had full access to the litter area. Excluding birds from the litter area for 2 wk resulted in better feather cover and reduced fearfulness, according to novel object and tonic immobility tests. Furthermore, birds initially excluded from the litter area produced eggs with a lower proportion of shell irregularities than birds with full access to the litter area throughout. No difference was found in corticosterone metabolites in droppings rate of lay, mortality, or proportion of floor-laid eggs. In conclusion, none of the parameters studied indicated that the welfare of laying hens was compromised by temporary exclusion from the litter area on introduction to the laying facility. In fact, some of the data suggested that bird welfare had improved.
Collapse
Affiliation(s)
- M Alm
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, SE-750 07 Uppsala, Sweden
| | - H Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, SE-750 07 Uppsala, Sweden
| | - L Holm
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-750 07 Uppsala, Sweden
| | - A Wichman
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Box 7068, SE-750 07 Uppsala, Sweden
| | - R Palme
- Department of Biomedical Sciences/Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - R Tauson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, SE-750 07 Uppsala, Sweden
| |
Collapse
|
16
|
Ursinus WW, Van Reenen CG, Reimert I, Bolhuis JE. Tail biting in pigs: blood serotonin and fearfulness as pieces of the puzzle? PLoS One 2014; 9:e107040. [PMID: 25188502 PMCID: PMC4154847 DOI: 10.1371/journal.pone.0107040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/14/2014] [Indexed: 12/04/2022] Open
Abstract
Tail biting in pigs is a widespread problem in intensive pig farming. The tendency to develop this damaging behaviour has been suggested to relate to serotonergic functioning and personality characteristics of pigs. We investigated whether tail biting in pigs can be associated with blood serotonin and with their behavioural and physiological responses to novelty. Pigs (n = 480) were born in conventional farrowing pens and after weaning at four weeks of age they were either housed barren (B) or in straw-enriched (E) pens. Individual pigs were exposed to a back test and novel environment test before weaning, and after weaning to a novel object (i.e. bucket) test in an unfamiliar arena. A Principal Component Analysis on behaviours during the tests and salivary cortisol (novel object test only) revealed five factors for both housing systems, labeled ‘Early life exploration’, ‘Near bucket’, ‘Cortisol’, ‘Vocalizations & standing alert’, and ‘Back test activity’. Blood samples were taken at 8, 9 and 22 weeks of age to determine blood platelet serotonin. In different phases of life, pigs were classified as tail biter/non-tail biter based on tail biting behaviour, and as victim/non-victim based on tail wounds. A combination of both classifications resulted in four pig types: biters, victims, biter/victims, and neutrals. Generally, only in phases of life during which pigs were classified as tail biters, they seemed to have lower blood platelet serotonin storage and higher blood platelet uptake velocities. Victims also seemed to have lower blood serotonin storage. Additionally, in B housing, tail biters seemed to consistently have lower scores of the factor ‘Near bucket’, possibly indicating a higher fearfulness in tail biters. Further research is needed to elucidate the nature of the relationship between peripheral 5-HT, fearfulness and tail biting, and to develop successful strategies and interventions to prevent and reduce tail biting.
Collapse
Affiliation(s)
- Winanda W. Ursinus
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
- Animal behaviour & Welfare, Wageningen UR Livestock Research, Wageningen, The Netherlands
- * E-mail:
| | - Cornelis G. Van Reenen
- Animal behaviour & Welfare, Wageningen UR Livestock Research, Wageningen, The Netherlands
| | - Inonge Reimert
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
17
|
Erasmus M, Swanson J. Temperamental turkeys: Reliability of behavioural responses to four tests of fear. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
|