1
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
2
|
Lan T, He S, Luo X, Pi Z, Lai W, Jiang C, Gan J, Wei S, Wu Z, Yun C, Leng J, Li C. Disruption of NADPH homeostasis by total flavonoids from Adinandra nitida Merr. ex Li leaves triggers ROS-dependent p53 activation leading to apoptosis in non-small cell lung cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118340. [PMID: 38762212 DOI: 10.1016/j.jep.2024.118340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Adinandra nitida Merr. ex Li leaves serve as a herbal tea and hold a significant role in traditional Chinese medicine, being applied to assist in tumor treatment. Flavonoids present the primary bioactive constituents in Adinandra nitida Merr. ex Li leaves. AIM OF THE STUDY To explore the potential of total flavonoids from Adinandra nitida Merr. ex Li Leaves (TFAN) in inhibiting non-small cell lung cancer (NSCLC) and further elucidate the underlying mechanisms. MATERIALS AND METHODS Human NSCLC cell lines and normal lung cell line were employed to assess the impact of TFAN (0-160 μg/mL for 24, 28 and 72 h) on cell proliferation in vitro. Immunofluorescence (IF) staining gauged p53 expression changes in NSCLC cells under TFAN present condition (150 μg/mL for 24 h). In vivo study utilized NSCLC cell derived xenograft tumors in nude mice, administering TFAN orally (200 and 400 mg/kg) for 14 days. Immunohistochemistry assessed Cleaved Caspase 3 expression change in A549 xenograft tumors treated with TFAN (400 mg/kg for 14 days). RNA-seq and KEGG analysis identified gene expression changes and enriched processes in A549 xenograft tumors treated with TFAN. CM-H2DCFDA and metabolomics assessed ROS level and GSH/GSSG pool changes in A549 cells under TFAN present condition. Cell viability assay and IF staining assessed A549 cell proliferation and p53 expression changes under H2O2-induced oxidative stress (0-40 μM for 24 h) and TFAN present conditions. GSEA and N-Acetyl-L-cysteine (NAC) rescue (0-1 μM for 24 h) analyzed the impact of TFAN on GSH de novo synthesis. NADPH/NADP+ pool measurement and NADPH rescue (0-10 μM for 24 h) analyzed the impact of TFAN on GSH salvage synthesis. GC-FID and HPLC-MS were utilized to detect ethanol and ethyl acetate residues, and to characterize the chemical constituents in TFAN, respectively. The total flavonoid content of TFAN was determined using a 330 nm wavelength. RESULTS TFAN significantly inhibited A549 cells (wild-type p53) but not NCI-H1299 cells (p53-deficient), NCI-H596 cells (p53-mutant) or BEAS-2B in vitro. IF staining validated p53 genotype for the cell lines and revealed an increase in p53 expression in A549 cells after TFAN treatment. In vivo, TFAN selectively inhibited A549 xenograft tumor growth without discernible toxicity, inducing apoptosis evidenced by Cleaved Caspase 3 upregulation. RNA-seq and KEGG analysis suggested ROS biosynthesis was involved in TFAN-induced p53 activation in A549 cells. Elevated ROS level in TFAN-treated A549 cells were observed. Moreover, TFAN sensitized A549 cells to H2O2-induced oxidative stress, with higher p53 expression. Additionally, A549 cells compensated with GSH de novo synthesis under TFAN present condition, confirmed by GSEA and NAC rescue experiment. TFAN disrupted NADPH homeostasis to impair GSH salvage biosynthesis, supported by NADPH/NADP+ change and NADPH rescue experiment. The chemical constituents of TFAN, with acceptable limits for ethanol and ethyl acetate residues and a total flavonoid content of 68.87%, included Catechin, Epicatechin, Quercitroside, Camellianin A, and Apigenin. CONCLUSION The disruption of NADPH homeostasis by TFAN triggers ROS-dependent p53 activation that leads to apoptotic cell death, ultimately suppressing NSCLC growth. These findings offer potential therapeutic implications of Adinandra nitida Merr. ex Li leaves in combating NSCLC.
Collapse
Affiliation(s)
- Taijin Lan
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Key Laboratory of Integrative Translational Medicine of Guangxi High Incidence Infectious Diseases, Nanning 530200, China; School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Songhua He
- Guangxi Institute for Food and Drug Control, Nanning 530021, China
| | - Xuefei Luo
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhenyu Pi
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Weihui Lai
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chunhui Jiang
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jun Gan
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Suyun Wei
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhanshuai Wu
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenxia Yun
- Key Laboratory of Integrative Translational Medicine of Guangxi High Incidence Infectious Diseases, Nanning 530200, China.
| | - Jing Leng
- Key Laboratory of Integrative Translational Medicine of Guangxi High Incidence Infectious Diseases, Nanning 530200, China.
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Yuan F, Yan S, Zhao J. Elucidating the Phytochemical Landscape of Leaves, Stems, and Tubers of Codonopsis convolvulacea through Integrated Metabolomics. Molecules 2024; 29:3193. [PMID: 38999145 PMCID: PMC11243170 DOI: 10.3390/molecules29133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Codonopsis convolvulacea is a highly valued Chinese medicinal plant containing diverse bioactive compounds. While roots/tubers have been the main medicinal parts used in practice, leaves and stems may also harbor valuable phytochemicals. However, research comparing volatiles across tissues is lacking. This study performed metabolomic profiling of leaves, stems, and tubers of C. convolvulacea to elucidate tissue-specific accumulation patterns of volatile metabolites. Ultra-high performance liquid chromatography-tandem mass spectrometry identified 302 compounds, belonging to 14 classes. Multivariate analysis clearly differentiated the metabolic profiles of the three tissues. Numerous differentially accumulated metabolites (DAMs) were detected, especially terpenoids and esters. The leaves contained more terpenoids, ester, and alcohol. The stems accumulated higher levels of terpenoids, heterocyclics, and alkaloids with pharmaceutical potential. The tubers were enriched with carbohydrates like sugars and starch, befitting their storage role, but still retained reasonable amounts of valuable volatiles. The characterization of tissue-specific metabolic signatures provides a foundation for the selective utilization of C. convolvulacea parts. Key metabolites identified include niacinamide, p-cymene, tridecanal, benzeneacetic acid, benzene, and carveol. Leaves, stems, and tubers could be targeted for antioxidants, drug development, and tonics/nutraceuticals, respectively. The metabolomic insights can also guide breeding strategies to enhance the bioactive compound content in specific tissues. This study demonstrates the value of tissue-specific metabolite profiling for informing the phytochemical exploitation and genetic improvement of medicinal plants.
Collapse
Affiliation(s)
- Fang Yuan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Key Laboratory of Tibetan Medicine Resources Conservation and Utilization of Tibet Autonomous Region, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China
| | - Shiying Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Zhu H, Zhou X, Shen C, Ao Z, Cao X, Song C, Mehmood MA, Wu T, Mei J, He M, Ma Y, Wang N. Bacillus licheniformis-based intensive fermentation of Tibetan tea improved its bioactive compounds and reinforced the intestinal barrier in mice. Front Microbiol 2024; 15:1376757. [PMID: 38933031 PMCID: PMC11199413 DOI: 10.3389/fmicb.2024.1376757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Tibetan tea changes during microorganism fermentation. Research on microorganisms in Tibetan tea has focused on their identification, while studies on the influence of specific microorganisms on the components and health functions of Tibetan tea are lacking. Bacillus licheniformis was inoculated into Tibetan tea for intensive fermentation, and the components of B. licheniformis-fermented tea (BLT) were detected by liquid chromatography with tandem mass spectrometry (UHPLC-TOF-MS), and then the effects of BLT on intestinal probiotic functions were investigated by experiments on mice. The results revealed the metabolites of BLT include polyphenols, alkaloids, terpenoids, amino acids, and lipids. Intensified fermentation also improved the antioxidant capacity in vivo and the protective effect on the intestinal barrier of Tibetan tea. In addition, the enhanced fermentation of Tibetan tea exerted intestinal probiotic effects by modulating the relative abundance of short-chain fatty acid-producing bacteria in the intestinal flora. Therefore, intensive fermentation with B. licheniformis can improve the health benefits of Tibetan tea.
Collapse
Affiliation(s)
- Hui Zhu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | - Xiaoli Zhou
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | | | | | | | | | - Muhammad Aamer Mehmood
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tao Wu
- School of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Jie Mei
- Sichuan Jixiang Tea Co., Ltd., Ya'an, China
| | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Yi Ma
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | - Ning Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
- Luzhou Laojiao Co. Ltd., Luzhou, China
| |
Collapse
|
5
|
Yang X, Bi Z, Yin C, Huang H, Li Y. A novel hybrid sensor array based on the polyphenol oxidase and its nanozymes combined with the machine learning based dual output model to identify tea polyphenols and Chinese teas. Talanta 2024; 272:125842. [PMID: 38428131 DOI: 10.1016/j.talanta.2024.125842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
A novel sensor array was developed based on the enzyme/nanozyme hybridization for the identification of tea polyphenols (TPs) and Chinese teas. The enzyme/nanozyme with polyphenol oxidase activity can catalyze the reaction between TPs and 4-aminoantipyrine (4-AAP) to produce differences in color, and the sensor array was thus constructed to accurately identify TPs mixed in different species, concentrations, or ratios. In addition, a machine learning based dual output model was further used to effectively predict the classes and concentrations of unknown samples. Therefore, the qualitative and quantitative detection of TPs can be realized continuously and quickly. Furthermore, the sensor array combining the machine learning based dual output model was also utilized for the identification of Chinese teas. The method can distinguish the six teas series in China, and then precisely differentiate the more specific tea varieties. This study provides an efficient and facile strategy for the identification of teas and tea products.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Zhichun Bi
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Chenghui Yin
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, PR China.
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| |
Collapse
|
6
|
Wang L, Dang QL. Elevated CO 2 and ammonium nitrogen promoted the plasticity of two maple in great lakes region by adjusting photosynthetic adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1367535. [PMID: 38654907 PMCID: PMC11035798 DOI: 10.3389/fpls.2024.1367535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Introduction Climate change-related CO2 increases and different forms of nitrogen deposition are thought to affect the performance of plants, but their interactions have been poorly studied. Methods This study investigated the responses of photosynthesis and growth in two invasive maple species, amur maple (Acer ginnala Maxim.) and boxelder maple (Acer negundo L.), to elevated CO2 (400 µmol mol-1 (aCO2) vs. 800 µmol mol-1 (eCO2) and different forms of nitrogen fertilization (100% nitrate, 100% ammonium, and an equal mix of the two) with pot experiment under controlled conditions. Results and discussion The results showed that eCO2 significantly promoted photosynthesis, biomass, and stomatal conductance in both species. The biochemical limitation of photosynthesis was switched to RuBP regeneration (related to Jmax) under eCO2 from the Rubisco carboxylation limitation (related to Vcmax) under aCO2. Both species maximized carbon gain by lower specific leaf area and higher N concentration than control treatment, indicating robust morphological plasticity. Ammonium was not conducive to growth under aCO2, but it significantly promoted biomass and photosynthesis under eCO2. When nitrate was the sole nitrogen source, eCO2 significantly reduced N assimilation and growth. The total leaf N per tree was significantly higher in boxelder maple than in amur maple, while the carbon and nitrogen ratio was significantly lower in boxelder maple than in amur maple, suggesting that boxelder maple leaf litter may be more favorable for faster nutrient cycling. The results suggest that increases in ammonium under future elevated CO2 will enhance the plasticity and adaptation of the two maple species.
Collapse
Affiliation(s)
- Lei Wang
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, China
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Qing-Lai Dang
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
7
|
Nhu-Trang TT, Nguyen QD, Cong-Hau N, Anh-Dao LT, Behra P. Characteristics and Relationships between Total Polyphenol and Flavonoid Contents, Antioxidant Capacities, and the Content of Caffeine, Gallic Acid, and Major Catechins in Wild/Ancient and Cultivated Teas in Vietnam. Molecules 2023; 28:molecules28083470. [PMID: 37110703 PMCID: PMC10142074 DOI: 10.3390/molecules28083470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 04/29/2023] Open
Abstract
Vietnam has diverse and long-established tea plantations but scientific data on the characteristics of Vietnamese teas are still limited. Chemical and biological properties including total polyphenol and flavonoid contents (TPCs and TFCs), antioxidant activities (DPPH, ABTS, FRAP, and CUPRAC), as well as the contents of caffeine, gallic acid, and major catechins, were evaluated for 28 Vietnamese teas from North and South Vietnam. Higher values of TPCs and TFCs were found for green (non-oxidised) and raw Pu'erh (low-oxidised) teas from wild/ancient tea trees in North Vietnam and green teas from cultivated trees in South Vietnam, as compared to oolong teas (partly oxidised) from South Vietnam and black teas (fully oxidised) from North Vietnam. The caffeine, gallic acid, and major catechin contents depended on the processing, geographical origin, and the tea variety. Several good Pearson's correlations were found (r2 > 0.9) between TPCs, TFCs, the four antioxidant capacities, and the content of major catechins such as (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate. Results from principal component analysis showed good discriminations with cumulative variances of the first two principal components varying from 85.3% to 93.7% among non-/low-oxidised and partly/fully oxidised teas, and with respect to the tea origin.
Collapse
Affiliation(s)
- Tran-Thi Nhu-Trang
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Cong-Hau
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Le-Thi Anh-Dao
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Philippe Behra
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, Toulouse 31400, France
| |
Collapse
|
8
|
Wang W, Li H, Lv J, Khan GJ, Duan H, Zhu J, Bao N, Zhai K, Xue Z. Determination of the Anti-Oxidative Stress Mechanism of Isodon suzhouensis Leaves by Employing Bioinformatic and Novel Research Technology. ACS OMEGA 2023; 8:3520-3529. [PMID: 36713735 PMCID: PMC9878666 DOI: 10.1021/acsomega.2c07913] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Isodon suzhouensis from Suzhou, China, is a traditional Chinese herb with wide applications in medicine and food. The antioxidant activity against oxidative stress of the leaves of Isodon suzhouensis is a myth since long and is not explored earlier thoroughly. The present study is focused to explore the active components in Isodon suzhouensis leaf extracts responsible for antioxidant effects against oxidative stress and the potential mechanism of this activity. We obtained the chromatograms of Isodon suzhouensis leaf extracts by the high-performance liquid phase (HPLC) for possible detection of antioxidant constituents. Some compounds in Isodon suzhouensis leaf extracts were then further assessed through the luminol luminescence mechanism combined with HPLC analysis as well as with SwissTargetPrediction database that helped to screen out the other constituents. The targets for effects against oxidative stress were then further screened through the GeneCards database, and the PPI network was constructed. The targets were analyzed by GO and KEGG using the David database. The obtained results were then further studied by employing in vitro experimentation and protein expression analyses by Western blotting. It is found that Isodon suzhouensis leaf extracts contain rutin, isoquercetin, glaucocalyxin A, glaucocalyxin B, and other compounds with antioxidant activity. The activity map of the free radical scavenging signals from Isodon suzhouensis showed a strong ability to scavenge free radicals with the highest capacity of glaucocalyxin B followed by isoquercetin succeeding the glaucocalyxin A supervening the rutin. Further network pharmacological analyses and in vitro experimentation showed that Isodon suzhouensis leaf extracts interfere with TNF and the p38 MAPK signaling pathway for antioxidant effects against oxidative stress. Conclusively, it is found that Isodon suzhouensis leaf extracts possess strong antioxidant potential via targeting TNF and p38 MAPK signaling pathways against oxidative stress, providing scientific foundation for further studies on Isodon suzhouensis for the further therapeutic approach.
Collapse
Affiliation(s)
- Wei Wang
- College
of Biological and Food Engineering, Anhui
Polytechnic University, Wuhu, Anhui 241000, China
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Han Li
- College
of Biological and Food Engineering, Anhui
Polytechnic University, Wuhu, Anhui 241000, China
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Jiamin Lv
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Ghulam Jilany Khan
- Department
of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Hong Duan
- College
of Biological and Food Engineering, Anhui
Polytechnic University, Wuhu, Anhui 241000, China
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Juan Zhu
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
- Faculty
of Pharmacy, Bengbu Medical College, Bengbu 233030, P.R. China
| | - Nina Bao
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Kefeng Zhai
- College
of Biological and Food Engineering, Anhui
Polytechnic University, Wuhu, Anhui 241000, China
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
- Faculty
of Pharmacy, Bengbu Medical College, Bengbu 233030, P.R. China
| | - Zhenglian Xue
- College
of Biological and Food Engineering, Anhui
Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
9
|
Liu L, Bao GY, Zhang SS, Qin Y, Chen XP, Wang MD, Zhu JP, Yin H, Lin GQ, Feng CG, Zhang F, Guo YL. Analysis of the Amine Submetabolome Using Novel Isotope-Coded Pyrylium Salt Derivatization and LC-MS: Herbs and Cancer Tissues as Cases. Anal Chem 2022; 94:17606-17615. [PMID: 36473140 DOI: 10.1021/acs.analchem.2c04246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amine submetabolome, including amino acids (AAs) and biogenic amines (BAs), is a class of small molecular compounds exhibiting important physiological activities. Here, a new pyrylium salt named 6,7-dimethoxy-3-methyl isochromenylium tetrafluoroborate ([d0]-DMMIC) with stable isotope-labeled reagents ([d3]-/[d6]-DMMIC) was designed and synthesized for amino compounds. [d0]-/[d3]-/[d6]-DMMIC-derivatized had a charged tag and formed a set of molecular ions with an increase of 3.02 m/z and the characteristic fragment ions of m/z 204.1:207.1:210.1. When DMMIC coupled with liquid chromatography-mass spectrometry (LC-MS), a systematic methodology evaluation for quantitation proved to have good linearity (R2 between 0.9904 and 0.9998), precision (interday: 2.2-21.9%; intraday: 1.0-19.7%), and accuracy (recovery: 71.8-108.8%) through the test AAs. Finally, the methods based on DMMIC and LC-MS demonstrated the advantaged application by the nontargeted screening of BAs in a common medicinal herb Senecio scandens and an analysis of metabolic differences among the amine submetabolomes between the carcinoma and paracarcinoma tissues of esophageal squamous cell carcinoma (ESCC). A total of 20 BA candidates were discovered in S. scandens as well as the finding of 13 amine metabolites might be the highest-potential differential metabolites in ESCC. The results showed the ability of DMMIC coupled with LC-MS to analyze the amine submetabolome in herbs and clinical tissues.
Collapse
Affiliation(s)
- Li Liu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Geng-Yu Bao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Shu-Sheng Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yong Qin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xiu-Ping Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Ming-Dan Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Jian-Ping Zhu
- Guangxi Institute for Food and Drug Control, Nanning 530021, P. R. China
| | - Hang Yin
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Fang Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Guangxi Institute for Food and Drug Control, Nanning 530021, P. R. China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yin-Long Guo
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Ling Z, Zeng R, Zhou X, Chen F, Fan Q, Sun D, Chen X, Wei M, Wu R, Luo W. Component analysis using UPLC-Q-Exactive Orbitrap-HRMS and quality control of Kudingcha (Ligustrum robustum (Roxb.) Blume). Food Res Int 2022; 162:111937. [DOI: 10.1016/j.foodres.2022.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022]
|
11
|
Trisha AT, Shakil MH, Talukdar S, Rovina K, Huda N, Zzaman W. Tea Polyphenols and Their Preventive Measures against Cancer: Current Trends and Directions. Foods 2022; 11:3349. [PMID: 36359962 PMCID: PMC9658101 DOI: 10.3390/foods11213349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
Cancer is exerting an immense strain on the population and health systems all over the world. Green tea because of its higher simple catechin content (up to 30% on dry weight basis) is greatly popular as an anti-cancer agent which is found to reduce the risks of cancer as well as a range of other diseases. In addition, several in vitro and in vivo studies have shown that green tea possesses copious health benefits like anti-diabetic, anti-obese, anti-inflammatory, neuro-protective, cardio-protective, etc. This review highlights the anti-carcinogenic effects of green tea catechins integrating the recent information to gain a clear concept. Special emphasis was given to the effectiveness of green tea polyphenols (GTP) in the prevention of cancer. Overall, green tea has been found to be effective to reduce the risks of breast cancer, ovarian cancer, liver cancer, colorectal cancer, skin cancer, prostate cancer, oral cancer, etc. However, sufficient information was not found to support that green tea consumption reduces the risk of lung cancer, esophageal cancer, or stomach cancer. The exciting data integrated into this article will increase interest in future researchers to garner more fruitful information on the relevant topics.
Collapse
Affiliation(s)
- Anuva Talukder Trisha
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mynul Hasan Shakil
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Suvro Talukdar
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wahidu Zzaman
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
12
|
Meerasri J, Chollakup R, Sothornvit R. Factors affecting sericin hydrolysis and application of sericin hydrolysate in sericin films. RSC Adv 2022; 12:28441-28450. [PMID: 36320550 PMCID: PMC9533480 DOI: 10.1039/d2ra05220b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Sericin is a natural protein and a by-product obtained from silk processing. To enhance the antioxidant properties of sericin, sericin hydrolysis was studied. The solvent effects (distilled water, citric acid and hydrochloric acid) and hydrolysis methods (heat treatment (water bath) and mild ultrasonic treatment at 20%, 40% or 60% amplitude) were investigated on the properties of sericin hydrolysate (SH). Furthermore, solvent effects (distilled water and 15% ethanol) were examined for the properties of the sericin films incorporated with selected SH. The SH samples from acid hydrolysis and the ultrasonic method had a darkened visual appearance. However, the degree of hydrolysis and antioxidant activity of SH increased with ultrasonic-assisted acid hydrolysis. The molecular weight (MW) of sericin was notably reduced. As expected, hydrochloric acid hydrolysis resulted in a lower MW for the SH than from citric acid. Thus, SH from hydrochloric acid and 20% amplitude in the ultrasonic method were selected to produce a sericin film. As revealed, using distilled water as a general solvent provided films with lower solubility and water vapor permeability but higher tensile strength. Furthermore, the addition of SH enhanced the antioxidant properties of its hydrolysate as a novel protein packaging film material for various applications.
Collapse
Affiliation(s)
- Jitrawadee Meerasri
- Department of Food Engineering, Faculty of Engineering at Kamphaengsaen, Kasetsart University Kamphaengsaen Campus Nakhonpathom 73140 Thailand
| | - Rungsima Chollakup
- Kasetsart Agricultural and Agro-Industry Product Improvement Institute, Kasetsart University Bangkok 10900 Thailand
| | - Rungsinee Sothornvit
- Department of Food Engineering, Faculty of Engineering at Kamphaengsaen, Kasetsart University Kamphaengsaen Campus Nakhonpathom 73140 Thailand
| |
Collapse
|
13
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
14
|
Zhang Q, Wang L, Zhao Y. An Overview of Lithocarpus polystachyus, with Dihydrochalcones as Natural-Derived Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Qili Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zi bo, China
| | - Li Wang
- Adverse Drug Reaction Monitoring Deparment, Jinan Center for Food and Drug Control, Jinan, China
| | - Yanfang Zhao
- School of Life Science and Medicine, Shandong University of Technology, Zi bo, China
| |
Collapse
|
15
|
Li MY, Liu HY, Wu DT, Kenaan A, Geng F, Li HB, Gunaratne A, Li H, Gan RY. L-Theanine: A Unique Functional Amino Acid in Tea ( Camellia sinensis L.) With Multiple Health Benefits and Food Applications. Front Nutr 2022; 9:853846. [PMID: 35445053 PMCID: PMC9014247 DOI: 10.3389/fnut.2022.853846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Tea (Camellia sinensis L.) is a very popular health drink and has attracted increasing attention in recent years due to its various bioactive substances. Among them, L-theanine, a unique free amino acid, is one of the most important substances in tea and endows tea with a special flavor. Moreover, L-theanine is also a bioactive compound with plenty of health benefits, including antioxidant, anti-inflammatory, neuroprotective, anticancer, metabolic regulatory, cardiovascular protective, liver and kidney protective, immune regulatory, and anti-obesity effects. Due to the unique characteristics and beneficial functions, L-theanine has potential applications in the development of functional foods. This review summarized the influencing factors of L-theanine content in teas, the main health benefits and related molecular mechanisms of L-theanine, and its applications in food, understanding of which can provide updated information for the further research of L-theanine.
Collapse
Affiliation(s)
- Ming-Yue Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ahmad Kenaan
- National Graphene Institute, The University of Manchester, Manchester, United Kingdom
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Anil Gunaratne
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Hang Li
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
16
|
Tan SA, Yam HC, Cheong SL, Chow YC, Bok CY, Ho JM, Lee PY, Gunasekaran B. Inhibition of Porphyromonas gingivalis peptidyl arginine deiminase, a virulence factor, by antioxidant-rich Cratoxylum cochinchinense: In vitro and in silico evaluation. Saudi J Biol Sci 2022; 29:2573-2581. [PMID: 35531186 PMCID: PMC9073004 DOI: 10.1016/j.sjbs.2021.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023] Open
Abstract
Porphyromonas gingivalis, the cause of periodontitis, is also linked to many systemic disorders due to its citrullination capability from a unique peptidyl arginine deiminase (PPAD). Protein citrullination is able to trigger an autoimmune response, increasing the severity of rheumatoid arthritis. The main objective of this study is to evaluate the inhibitory activity of Cratoxylym cochinchinense leaves extract towards the PPAD in vitro and in silico. Methanolic extract of Cratoxylum cochinchinense (CCM) was tested for total phenolic and flavonoid contents along with antioxidative assays. Inhibition of PPAD activities was conducted thereafter using recombinant PPAD in cell lysate. Phytocompounds postulated present in the CCM such as mangiferin, vismiaquinone A, δ-tocotrienol and α-tocotrienol and canophyllol were used as ligands in a simulated docking study against PPAD. Results obtained indicated high antioxidant potential in CCM while recording abundant phenolic (129.0 ± 2.5495 mg GA/g crude extract) and flavonoid (159.0 ± 2.1529 mg QE/g crude extract) contents. A dose-dependent inhibition of PPAD was observed when CCM was evaluated at various concentrations. CCM at 1 mg/mL exhibited citrulline concentration of 24.37 ± 3.25 mM which was 5 times lower than the negative control (114.23 ± 3.31 mM). Molecular docking simulation revealed that mangiferin and vismiaquinone A engaged in H-bonding and pi-pi interactions with important active site residues (Asp130, Arg152, Arg154 and Trp127) of PPAD and could be the potential phytochemicals that accounted for the inhibitory activities observed in the methanolic leaves extract. As such, CCM could be further explored for its therapeutic properties not only for periodontitis, but also for other systemic diseases like rheumatoid arthritis.
Collapse
Key Words
- ABTS, 2,2′-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt
- ACPA, Anti-citrullinated peptide antibodies
- Anti-citrullination
- BAEE, Benzoyl-L-arginine ethyl ester
- Cratoxylum cochinchinense
- DNA, Deoxyribonucleic acid
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- DTT, Dithiothreitol
- EDTA, Ethylenediamine tetraacetic acid
- FRAP, Ferric reducing antioxidant power
- GAE, Gallic acid equivalence
- HPLC, High performance liquid chromatography
- IPTG, Isopropyl β- d-1-thiogalactopyranoside
- Mangiferin
- OPLS, Optimized potentials for liquid simulations
- PAD, Peptidylarginine deiminase
- PCR, Polymerase chain reaction
- PDB, Protein data bank
- PMSF, Phenylmethylsulfonyl fluoride
- PPAD, Porphyromonas gingivalis peptidylarginine deiminase
- Peptidyl arginine deiminase
- Porphyromonas gingivalis
- QE, Quercetin equivalence
- RA, Rheumatoid arthritis
- SD, Standard deviation
- SDS-PAGE, Sodium dodecyl sulphate–polyacrylamide gel electrophoresis
- TFC, Total flavonoid content
- TPC, Total phenolic content
- TPTZ, 2,4,6-Tripyridyl-S-triazine
- Vismiaquinone A
Collapse
Affiliation(s)
- Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Siew Lee Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Yoke Chan Chow
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia
| | - Chui Yin Bok
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia
| | - Jia Min Ho
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia
| | - Pei Yin Lee
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Li J, Ma J, Li Q, Fan S, Fan L, Ma H, Zhang Y, Zheng L. Determination of 35 Free Amino Acids in Tea Using Ultra-Performance Liquid Chromatography Coupled With Quadrupole Time-of-Flight Mass Spectrometry. Front Nutr 2021; 8:767801. [PMID: 34957181 PMCID: PMC8697017 DOI: 10.3389/fnut.2021.767801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022] Open
Abstract
The purpose of this research was to develop a simple, sensitive, and accurate method for simultaneous determination of 35 free amino acids using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Tea samples were extracted with boiling water bath, and then separated by XBridge BEH Amide column by gradient elution. The exact mass and MS/MS spectra of the target compound was detected under the TOF–MS and Information dependent acquisition (IDA)–MS/MS mode. The results demonstrated good linearity (R2 > 0.9980) in the range of 0.5–1,000 ng/mL. The limits of detection (LODs) were 0.13–25.00 mg/kg and the limits of quantitation (LOQs) were 0.25–50.00 mg/kg. The recovery rate ranged from 70.1 to 105.1% with relative standard deviations (RSDs) <11% (n = 6). This research provides a targeted strategy for developing an analysis method for amino acids in tea.
Collapse
Affiliation(s)
- Jian Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,College of Applied Arts and Science, Beijing Union University, Beijing, China
| | - Junmei Ma
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China.,Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Qiang Li
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Sufang Fan
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Lixin Fan
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Hongyu Ma
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Yan Zhang
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China.,Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
18
|
At the Origins of Tobacco-Smoking and Tea Consumption in a Virgin Population (Yakutia, 1650–1900 A.D.): Comparison of Pharmacological, Histological, Economic and Cultural Data. BIOLOGY 2021; 10:biology10121271. [PMID: 34943186 PMCID: PMC8698326 DOI: 10.3390/biology10121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
(1) Background: The way tobacco and tea spread among virgin populations is of major interest our understanding of how ancient economic and cultural practices could have influenced current habits. (2) Methods: hair concentrations of theobromine, theophylline, caffeine, nicotine, and cotinine were measured in hair samples from 47 frozen bodies of people from eastern Siberia, dated from the contact with Europeans to the assimilation of people into Russian society. (3) Results: hair concentration of theobromine, theophylline, and caffeine vary with the type of beverage consumed: green, black, or local herbal teas. Shortly after the first contacts, a few heavy consumers of tobacco were found among light or passive consumers. Tobacco-related co-morbidities began to be recorded one century after and heavy tea users were only found from the 19th century (4) Conclusions: Economic factors and social and family contacts seem to have played a decisive role in tobacco consumption very early on. Behavioral evolution governed the process of substance integration into Siberian culture and was a determinant for the continuity of its use across long periods of time. Analyzing the respective contributions of social and economic processes in the use of these substances opens avenues of investigation for today’s public health.
Collapse
|
19
|
Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn ( Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules 2021; 26:molecules26237189. [PMID: 34885771 PMCID: PMC8659002 DOI: 10.3390/molecules26237189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Sea buckthorn berries are rich in bioactive compounds and can be used for medicine and food. The variety and drying method used have an important influence on quality. In this study, different sea buckthorn varieties from China were selected and dried with four common drying methods. The total phenolic content (TPC), total flavonoids content (TFC), contents of 12 phenolic compounds and antioxidant capacity in vitro were analyzed. The results showed that the TPC, TFC and antioxidant activity of two wild sea buckthorn berries were higher than those of three cultivated berries, and for the same varieties, measured chemical contents and antioxidant activity of the freeze-dried fruit were significantly higher than those obtained with three conventional drying methods. In addition, forty-one compounds in sea buckthorn berry were identified by UPLC-PDA-Q/TOF-MS, most of which were isorhamnetin derivatives. Multivariate statistical analysis revealed narcissin and isorhamnetin-3-O-glucoside varied significantly in sea buckthorn berries of different varieties and with different drying methods; they were potential quality markers. Strong correlations were found between TPC, gallic acid and antioxidant capacity (p < 0.05). The results revealed how components and antioxidant activity varied in different sea buckthorn, which provides a valuable reference for quality control and further development and utilization of sea buckthorn.
Collapse
|
20
|
Cui Y, Li J, Deng D, Lu H, Tian Z, Liu Z, Ma X. Solid-state fermentation by Aspergillus niger and Trichoderma koningii improves the quality of tea dregs for use as feed additives. PLoS One 2021; 16:e0260045. [PMID: 34767609 PMCID: PMC8589212 DOI: 10.1371/journal.pone.0260045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
This study evaluated the ability of Aspergillus niger and Trichoderma koningii to improve the quality of tea dregs (TDs) through solid-state fermentation as well as the value of the fermented tea dregs (FTDs) produced for use as bio-feed additives. After fermentation, FTDs differed in color and structure. Fermentation with A. niger and T. koningii increased the contents of crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber of TDs. Compared to the unfermented group, the contents of reducing sugar, total flavonoids, total polyphenols, and theasaponins were increased in A. niger FTDs, while in T. koningii FTDs caffeine was completely degraded, the theasaponins were lower, and the contents of reducing sugar and caffeine higher. Regarding free amino acids, A. niger FTDs had the highest content of total amino acids, total essential amino acids, total non-essential amino acids, total aromatic amino acids, total branched-chain amino acids, and total non-protein amino acids, and all types of essential amino acids, followed by T. koningii FTDs and the control TDs. Fungal fermentation had similar effects on the content of various hydrolytic amino acids as those on above free amino acids, and increased the content of bitter and umami components. The composition of essential amino acids of TDs or FTDs was similar to that of the standard model, except for sulfur-containing amino acids and isoleucine. Solid-state fermentation with A. niger and T. koningii effectively improved the nutritional value of TDs, increased the contents of functional substances, and improved the flavor of TDs. This study demonstrated a feasible approach to utilize TDs that not only increases animal feed resources, but also reduces the production of resource waste and pollution.
Collapse
Affiliation(s)
- Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Jiazhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Huijie Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
21
|
Fiedot-Toboła M, Dmochowska A, Potaniec B, Czajkowska J, Jędrzejewski R, Wilk-Kozubek M, Carolak E, Cybińska J. Gallic Acid Based Black Tea Extract as a Stabilizing Agent in ZnO Particles Green Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1816. [PMID: 34361207 PMCID: PMC8308264 DOI: 10.3390/nano11071816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
In this work, zinc oxide particles (ZnO NPs) green synthesis with the application of black tea extract (BT) is presented. A thorough investigation of the properties of the extract and the obtained materials was conducted by using Fourier transform infrared spectroscopy (FTIR), liquid chromatography-mass spectrometry (LC-MS), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and quadrupole mass spectroscopy (QMS). The obtained results indicated that the amount of used BT strongly influenced the morphology, chemical, and crystalline structure of the obtained particles. The investigation demonstrated that the substance present in black tea (BT) extract, which was adsorbed on the ZnO surface, was in fact gallic acid. It was found that gallic acid controls the crystallization process of ZnO by temporarily blocking the zinc cations. Additionally, these organic molecules interact with the hydroxide group of the precipitant. This blocks the dehydration process stabilizing the zinc hydroxide forms and hinders its transformation into zinc oxide. Performed measurements indicated that obtained ZnO particles have great antioxidant and antimicrobial properties, which are significantly correlated with ZnO-gallic acid interactions.
Collapse
Affiliation(s)
- Marta Fiedot-Toboła
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; (A.D.); (B.P.); (J.C.); (R.J.); (M.W.-K.); (E.C.); (J.C.)
| | - Anna Dmochowska
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; (A.D.); (B.P.); (J.C.); (R.J.); (M.W.-K.); (E.C.); (J.C.)
| | - Bartłomiej Potaniec
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; (A.D.); (B.P.); (J.C.); (R.J.); (M.W.-K.); (E.C.); (J.C.)
| | - Joanna Czajkowska
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; (A.D.); (B.P.); (J.C.); (R.J.); (M.W.-K.); (E.C.); (J.C.)
| | - Roman Jędrzejewski
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; (A.D.); (B.P.); (J.C.); (R.J.); (M.W.-K.); (E.C.); (J.C.)
| | - Magdalena Wilk-Kozubek
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; (A.D.); (B.P.); (J.C.); (R.J.); (M.W.-K.); (E.C.); (J.C.)
| | - Ewa Carolak
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; (A.D.); (B.P.); (J.C.); (R.J.); (M.W.-K.); (E.C.); (J.C.)
| | - Joanna Cybińska
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; (A.D.); (B.P.); (J.C.); (R.J.); (M.W.-K.); (E.C.); (J.C.)
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie Str., 50-383 Wroclaw, Poland
| |
Collapse
|
22
|
Shen J, Li P, Liu S, Liu Q, Li Y, Zhang Z, Yang C, Hu M, Sun Y, He C, Xiao P. The chemopreventive effects of Huangqin-tea against AOM-induced preneoplastic colonic aberrant crypt foci in rats and omics analysis. Food Funct 2021; 11:9634-9650. [PMID: 33048099 DOI: 10.1039/d0fo01731k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite that colorectal cancer (CRC) is a severe global health problem, effective chemopreventive strategies against CRC are still lacking. Huang-qin tea (HQT), a healthy herbal tea, is prepared from the aerial parts of Scutellaria baicalensis Georgi and has been consumed in China for thousands of years. HQT contains abundant flavonoids, which display potent anticancer effects, but no research studies have investigated the cancer-preventive effects of HQT on CRC in vivo. Here, we found that HQT inhibits azoxymethane-induced aberrant crypt foci (ACF) formation in a preneoplastic colonic ACF rat model. The essential role of the gut microbiota in the chemopreventive effect of HQT on CRC in a pseudo-germ-free rat model was confirmed. Besides, HQT modulates inflammatory cytokine expression by significantly decreasing IL-1β, IL-6, IL-10, and TNF-α expression, and elevating IFN-γ production. 16S rDNA sequencing analysis indicated that HQT regulated the gut microbiota by increasing the abundance of beneficial bacteria (Lachnoclostridium, Alistipes, Roseburia, and Lactococcus) and reducing the levels of Bacteroides, Parasutterella, and unidentified_Clostridiales. Fecal metabolomics showed that HQT modulated the AOM-induced metabolomic disorder, and these altered metabolites were almost involved in the lipid metabolic pathways. The Spearman correlation analysis revealed a correlation between the gut microbiota and fecal metabolites. Collectively, these results suggested that HQT exerted beneficial effects on host health by inhibiting inflammation, and by regulating the gut microbiota profile and certain metabolic pathways. In conclusion, HQT inhibits AOM-induced ACF formation by modulating the gut microbiota composition and improving metabolomic disorders, indicating the potential of HQT as a functional beverage candidate for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ji X. Comparative investigation of volatile components and bioactive compounds in beers by multivariate analysis. FLAVOUR FRAG J 2021. [DOI: 10.1002/ffj.3649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyue Ji
- Advanced Analysis & Testing Center Nanjing Forestry University Nanjing China
| |
Collapse
|
24
|
Methodologies in the Analysis of Phenolic Compounds in Roselle (Hibiscus sabdariffa L.): Composition, Biological Activity, and Beneficial Effects on Human Health. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7020035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Roselle (Hibiscus sabdariffa L.), as an edible flower, has long provided an array of positive effects on human health. This benefit is a result of phenolic compounds that are naturally present mainly in the calyx. Plentiful medicinal remedies and functional foods based on this flower are available worldwide, as supported by the studies of phenolic compounds in recent decades. This paper aims to provide a comprehensive review of the composition, biological activity, and beneficial effects on human health of phenolic compounds in roselle. This review was performed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. A structured search in the published literature for phenolics compositions in roselle was required prior to the evaluation on the validity of the reported analytical methods. Reliable identification and quantification of phenolic compounds in roselle can be achieved by employing the proper extraction and separation methods. With ample alternative analytical methods discussed here, this review provided an aid for comprehending and selecting the most appropriate method for a particular study. The applications of the analytical methods highlighted indicated that phenolic acids, flavonoids, and their derivatives have been identified and quantified in roselle with a range of biological activities and beneficial effects on human health. It was also disclosed that the composition and concentration of phenolic compounds in roselle vary due to the growth factors, cultivars, and environmental influence. Finally, apart from the research progress carried out with roselle during the last ten years, this review also proposed relevant future works.
Collapse
|
25
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:E6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
26
|
Gong Y, Wang Q, Ma S, Ma Y, Meng Q, Zhang Z, Shi J. Short‐time water immersion inhibits browning of fresh‐cut potato by enhancing antioxidant capability and tyrosine scavenging. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ying Gong
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Qingguo Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Su Ma
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Yurong Ma
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | | | - Zigang Zhang
- Zichuan District Inspection and Test Center Zibo China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering Shandong Agricultural University Tai’an China
| |
Collapse
|
27
|
Tang GY, Zhao CN, Xu XY, Gan RY, Cao SY, Liu Q, Shang A, Mao QQ, Li HB. Phytochemical Composition and Antioxidant Capacity of 30 Chinese Teas. Antioxidants (Basel) 2019; 8:E180. [PMID: 31216700 PMCID: PMC6617242 DOI: 10.3390/antiox8060180] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Tea has been reported to prevent and manage many chronic diseases, such as cancer, diabetes, obesity, and cardiovascular diseases, and the antioxidant capacity of tea may be responsible for these health benefits. In this study, the antioxidant capacities of fat-soluble, water-soluble, and bound-insoluble fractions of 30 Chinese teas belonging to six categories, namely green, black, oolong, dark, white, and yellow teas, were systematically evaluated, applying ferric-reducing antioxidant power and Trolox equivalent antioxidant capacity assays. In addition, total phenolic contents of teas were determined by Folin-Ciocalteu method, and the contents of 18 main phytochemical compounds in teas were measured by high-performance liquid chromatography (HPLC). The results found that several teas possessed very strong antioxidant capacity, and caffeine, theaflavine, gallic acid, chlorogenic acid, ellagic acid, and kaempferol-3-O-glucoside, as well as eight catechins, were the main antioxidant compounds in them. Thus, these teas could be good natural sources of dietary antioxidants, and their extracts might be developed as food additives, nutraceuticals, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
28
|
Jin Y, Yang Wang C, Hu W, Huang Y, Li Xu M, Wang H, Kong X, Chen Y, Dong TT, Qin Q, Keung Tsim KW. An optimization of ultra-sonication-assisted extraction from flowers of Apocynum venetum in targeting to amount of free amino acids determined by UPLC-MS/MS. FOOD QUALITY AND SAFETY 2019; 3:52-60. [DOI: 10.1093/fqsafe/fyz001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yan Jin
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Caroline Yang Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Weihui Hu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yun Huang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Miranda Li Xu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huaiyou Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiangpeng Kong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yicun Chen
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Pharmacology Department, Shantou University Medical College, Shantou, China
| | - Tina Tingxia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, PR China
| | - Karl Wah Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
29
|
Active Components, Antioxidant, Inhibition on Metabolic Syndrome Related Enzymes, and Monthly Variations in Mature Leaf Hawk Tea. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24040657. [PMID: 30781736 PMCID: PMC6413118 DOI: 10.3390/molecules24040657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/28/2019] [Accepted: 02/09/2019] [Indexed: 11/16/2022]
Abstract
Hawk tea is a rich and edible resource, traditionally used as a beverage in South China. This drink has many pharmacologic effects, such as acting as an antioxidant and reducing blood sugar and lipids. The objective of this work was to explore the active compound contents, bioactivities and their monthly changes, and optimize the harvest time. In the present study, Hawk tea from each month in 2017 was collected and extracted with 70% (v/v) ethanol. The contents of the total flavonoids and total phenols were determined using the colorimetric method. We determined the contents of seven characteristic active substances—hyperin, isoquercitrin, trifolin, quercitrin, astragalin, quercetin, and kaempferol—using high-performance liquid chromatography. The crude extract was tested for its antioxidant and inhibitory properties on enzymes involved in metabolic syndrome. Specifically, 2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), ferric-reducing power assay, and the inhibition capacity test on α-glucosidase and lipase were conducted to determine the antioxidant effect in vitro, as well as the reduction of blood sugar and lipids. Monthly variations in activities and components were determined by numeric analysis and comparison. Correlation analysis revealed that antioxidant effects are significantly correlated with the total flavonoids. The hierarchical cluster analysis of bioactivities and their contents indicates that October and November are the best harvesting months, which differs with the habitual collection of Hawk tea.
Collapse
|
30
|
Lv X, Cong Z, Liu Z, Ma X, Xu M, Tian Y, Zhang X, Xu B, Zhang J, Tang Z. Improvement of the solubility, photostability, antioxidant activity and UVB photoprotection of trans-resveratrol by essential oil based microemulsions for topical application. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Dziągwa-Becker M, Weber R, Zajączkowska O, Oleszek W. Free amino acids in Viola tricolor in relation to different habitat conditions. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe purpose of this study was to establish the free amino acids profile of Viola tricolor collected from different habitats in Poland. Viola tricolor (heartsease) is a very popular plant found worldwide, classified both as weed and medicinal plant. Based on a validated method, the following nineteen free amino acids were analyzed using liquid chromatography-electrospray ionization coupled to a triple quadrupole mass spectrometer (LC-ESI-MS/MS):alanine, glycine, leucine, valine, isoleucine, proline, phenylalanine, tryptophan, tyrosine, serine, threonine, methionine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid, glutamic acid. The total free amino acids (TAA) ranged from 9938.0 to 11393.8 mg/kg of fresh weight. The variability of the investigated amino acids with respect to different habitat conditions was statistically assessed using the method of discriminant and cluster analysis. Alanine, valine, glutamine and aspartic acid were the most abundant free amino acids present in both localizations. The ratio of total essential amino acids (EAA) to TAA was 0.27 and 0.11 in Zagródki and Wrocław, respectively. Discriminant analysis has demonstrated that the investigated habitats significantly differentiated the free amino acids content of Viola tricolor. Only methionine showed a similar concentration in both Viola tricolor populations.
Collapse
Affiliation(s)
- Magdalena Dziągwa-Becker
- Institute of Soil Science and Plant CuItivation, State Research Institute, Department of Weed Science and Tillage Systems, Wrocław, 50-540, Poland
| | - Ryszard Weber
- Institute of Soil Science and Plant CuItivation, State Research Institute, Department of Weed Science and Tillage Systems, Wrocław, 50-540, Poland
| | - Olga Zajączkowska
- Institute of Soil Science and Plant CuItivation, State Research Institute, Department of Weed Science and Tillage Systems, Wrocław, 50-540, Poland
| | - Wiesław Oleszek
- Institute of Soil Science and Plant Cultivation, State Research Institute, Department of Biochemistry and Crop Quality, Puławy, 24-100, Poland
| |
Collapse
|
32
|
Chen BY, Liao JH, Hsu AW, Tsai PW, Hsueh CC. Exploring optimal supplement strategy of medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells. BIORESOURCE TECHNOLOGY 2018; 256:95-101. [PMID: 29433051 DOI: 10.1016/j.biortech.2018.01.152] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 05/22/2023]
Abstract
This first-attempt study used extracts of appropriate antioxidant abundant Camellia and non-Camellia tea and medicinal herbs as model ESs to stably intensify bioelectricity generation performance in microbial fuel cells (MFCs). As electron shuttles (ESs) could stimulate electron transport phenomena by significant reduction of electron transfer resistance, the efficiency of power generation for energy extraction in microbial fuel cells (MFCs) could be appreciably augmented. Using environmentally friendly natural bioresource as green bioresource of ESs is the most promising to sustainable practicability. As comparison of power-density profiles indicated, supplement of Camellia tea extracts would be the most appropriate, then followed non-Camellia Chrysanthemum tea and medicinal herbs. Antioxidant activities, total phenolic contents and power stimulating activities were all electrochemically associated. In particular, the extract of unfermented Camellia tea (i.e., green tea) was the most promising ESs to augment bioenergy extraction compared to other refreshing medicinal herb extracts.
Collapse
Affiliation(s)
- Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan.
| | - Jia-Hui Liao
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - An-Wei Hsu
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - Po-Wei Tsai
- Department of Medical Sciences Industry, Chang Jung Christian University, Tainan City 71101, Taiwan
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| |
Collapse
|
33
|
Liu L, Yin X, Wang X, Li X. Determination of dihydromyricetin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. PHARMACEUTICAL BIOLOGY 2017; 55:657-662. [PMID: 27951743 PMCID: PMC6130699 DOI: 10.1080/13880209.2016.1266669] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT The pharmacokinetics properties of dihydromyricetin (DHM) are still unknown. OBJECTIVE This study investigates the pharmacokinetic characteristics of DHM using a sensitive and reliable LC-MS/MS method. MATERIALS AND METHODS A rapid and sensitive LC-MS/MS method was developed for the determination of DHM in male Sprague-Dawley rat plasma. Twelve rats were equally randomized into two groups, including the intravenous group (2 mg/kg) and the oral group (20 mg/kg). Blood samples (250 μL) were collected at designated time points and analyzed using this method. The pharmacokinetic parameters were calculated using DAS 3.0 pharmacokinetic software. RESULTS The calibration curve was linear within the range of 0.5-200 ng/mL (r > 0.998) with the lower limit of quantification at 0.5 ng/mL. After the intravenous injection, DHM reached a maximum concentration of 165.67 ± 16.35 ng/mL, and t1/2 was 2.05 ± 0.52 h. However, DHM was not readily absorbed and reached Cmax 21.63 ± 3.62 ng/mL at approximately 2.67 h following the oral administration of DHM, and t1/2 was 3.70 ± 0.99 h. The MRT for the intravenous group and the oral group were 2.62 ± 0.36 and 5.98 ± 0.58 h, respectively. The AUC(0-t) for the intravenous group and the oral group were 410.73 ± 78.12 and 164.97 ± 41.76 ng·L/mL, respectively, so the absolute bioavailability of DHM was 4.02% which was poor. DISCUSSION AND CONCLUSION The results indicated that the bioavailability was poor. Further work needs to be conducted to investigate the reason for poor bioavailability and improve this situation.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Xiaolan Yin
- Gamaknife Center, No 411 Hospital of the Chinese People's Liberation Army, Shanghai, China
| | - Xu Wang
- Department of CT, First Affiliated Hospital of Nanyang Medical College, Nanyang, Henan, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
- CONTACT Xiaohua LiDepartment of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, No. 358, Datong Road, Shanghai200137, China
| |
Collapse
|
34
|
Liu L, Sun S, Rui H, Li X. In vitro inhibitory effects of dihydromyricetin on human liver cytochrome P450 enzymes. PHARMACEUTICAL BIOLOGY 2017; 55:1868-1874. [PMID: 28614988 PMCID: PMC7012011 DOI: 10.1080/13880209.2017.1339284] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/18/2017] [Accepted: 06/03/2017] [Indexed: 05/21/2023]
Abstract
CONTEXT Dihydromyricetin (DHM) is the most abundant and active flavonoid component isolated from Ampelopsis grossedentata (Hand-Mazz) W.T. Wang (Vitaceae) and it possesses numerous pharmacological activities. However, whether DHM affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear. MATERIALS AND METHODS The inhibitory effects of DHM on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro using human liver microsomes (HLMs). RESULTS The results showed that DHM could inhibit the activity of CYP3A4, CYP2E1 and CYP2D6, with IC50 values of 14.75, 25.74 and 22.69 μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that DHM was not only a non-competitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2E1 and CYP2D6, with Ki values of 6.06, 9.24 and 10.52 μM, respectively. In addition, DHM is a time-dependent inhibitor for CYP3A4 with KI/Kinact value of 12.17/0.057 min-1 μM-1. DISCUSSION AND CONCLUSION The in vitro studies of DHM with CYP isoforms indicate that DHM has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4, CYP2E1 and CYP2D6. Further clinical studies are needed to evaluate the significance of this interaction.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Sen Sun
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hongbing Rui
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
- CONTACT Xiaohua LiDepartment of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, No. 358, Datong Road, Shanghai 200137, China
| |
Collapse
|
35
|
Huang Y, Zhao J, Jian W, Wang G. Effects of verapamil on the pharmacokinetics of dihydromyricetin in rats and its potential mechanism. Xenobiotica 2017; 48:839-844. [PMID: 28795912 DOI: 10.1080/00498254.2017.1366576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. This study investigates the effects of verapamil on the pharmacokinetics of dihydromyricetin in rats and clarifies its main mechanism. 2. The pharmacokinetic profiles of oral or intravenous administration of dihydromyricetin in Sprague-Dawley rats with or without pretreatment with verapamil were investigated. In addition, the effects of verapamil on the transport and metabolic stability of dihydromyricetin were investigated using Caco-2 cell transwell model and rat liver microsomes. 3. In the oral group, verapamil could significantly increase Cmax, and decrease oral clearance of dihydromyricetin (p < 0.05). In the intravenous group, the Cmax also increased compared with the control group, but the difference was not significant. However, the t1/2 and clearance rate decreased than that of the control (p < 0.05). The oral bioavailability increased significantly (p < 0.05) from 3.84% to 6.84% with the pretreatment of verapamil. A markedly higher transport of dihydromyricetin across the Caco-2 cells was observed in the basolateral-to-apical direction and was abrogated in the presence of the P-gp inhibitor, verapamil. Additionally, the intrinsic clearance rate of dihydromyricetin was decreased by the pretreatment with verapamil (27.0 versus 32.5 μL/min/mg protein). 4. Those results indicated that verapamil could significantly change the pharmacokinetic profiles of dihydromyricetin in rats, and it might exert these effects through increasing the absorption of dihydromyricetin by inhibiting the activity of P-gp, or through inhibiting the metabolism of dihydromyricetin in rat liver.
Collapse
Affiliation(s)
- Yixiang Huang
- a Department of General Surgery, Tenth People's Hospital of Tongji University , Shanghai , China
| | - Junyong Zhao
- a Department of General Surgery, Tenth People's Hospital of Tongji University , Shanghai , China
| | - Wei Jian
- a Department of General Surgery, Tenth People's Hospital of Tongji University , Shanghai , China
| | - Gang Wang
- a Department of General Surgery, Tenth People's Hospital of Tongji University , Shanghai , China
| |
Collapse
|
36
|
Schimidt HL, Garcia A, Martins A, Mello-Carpes PB, Carpes FP. Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Res Int 2017; 100:442-448. [PMID: 28873707 DOI: 10.1016/j.foodres.2017.07.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 02/04/2023]
Abstract
Green tea from Camellia sinensis plays a neuroprotective role in different neurodegenerative conditions, such as memory deficits in Alzheimer disease (AD). However, whether other teas from Camellia sinensis present similar neuroprotective effect still is not clear. Here we investigate effects of green, red and black tea supplementation on memory and hippocampus oxidative status in a rat model of Alzheimer-like disease (AD-like). METHOD Wistar male rats were supplemented with green, red or black tea during 8weeks before Aβ intra-hippocampal injection (2μL of Aβ-25-35, CA1 region). AD and sham rats were submitted to memory tests. After euthanasia, oxidative status in the bilateral hippocampus was quantified. Green and red teas avoid memory deficits in AD rats, but only green tea also avoids oxidative stress and damage in the hippocampus. Green tea was more effective for neuroprotection than red and black teas from the Camellia sinensis in the AD rat model.
Collapse
Affiliation(s)
- Helen L Schimidt
- Applied Neuromechanics Group, Laboratory of Neuromechanics, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Alexandre Garcia
- Physiology Research Group, Stress, Memory and Behavior Lab, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Alexandre Martins
- Physiology Research Group, Stress, Memory and Behavior Lab, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Pamela B Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Felipe P Carpes
- Applied Neuromechanics Group, Laboratory of Neuromechanics, Universidade Federal do Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
37
|
Hazra A, Saha J, Dasgupta N, Sengupta C, Kumar PM, Das S. Health-Benefit Assets of Different Indian Processed Teas: A Comparative Approach. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajps.2017.87111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Bi W, Shen J, Gao Y, He C, Peng Y, Xiao P. Ku-jin tea (Acer tataricum subsp. ginnala or A. tataricum subsp. theiferum), an underestimated functional beverage rich in antioxidant phenolics. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|