1
|
Zhang X, Wang LX, Hao R, Huang JJ, Zargar M, Chen MX, Zhu FY, Dai HF. Sesquiterpenoids in Agarwood: Biosynthesis, Microbial Induction, and Pharmacological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23039-23052. [PMID: 39378105 DOI: 10.1021/acs.jafc.4c06383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Agarwood, derived from the Aquilaria genus, is widely utilized in perfumery, traditional medicine, and cultural practices throughout Asia. Agarwood is rich in terpenes, especially sesquiterpenes, which are considered to be the source of its rare and exquisite fragrance. This Review consolidates recent research on sesquiterpene biosynthesis in agarwood and the influence of fungi on these processes, alongside a discussion of the potential medicinal value of agarwood sesquiterpenes. This Review commences by elucidating the general biosynthesis of sesquiterpenes and identifying the main enzymes and transcription factors involved in the production of agarwood sesquiterpenes. This Review also summarizes the fungi associated with agarwood and highlights how commensal fungi stimulate agarwood and sesquiterpene production. We then scrutinize the pharmacological properties of sesquiterpenes, underscoring their anti-inflammatory and antimicrobial effects, which are closely linked to cellular signaling pathways, such as the NF-κB and MAPK pathways. Additionally, we review the potential therapeutic benefits of agarwood essential oil for its antidepressant properties, which are linked to the regulation of stress-related neurochemical and hormonal pathways. This Review also addresses the challenges of sustainable agarwood production, highlighting issues such as overharvesting and habitat loss while discussing the potential strategy of harnessing microbes in agarwood production to support the ecological preservation of wild resources. By advancing our knowledge of agarwood and sesquiterpene characteristics, we propose potential directions for the future application and sustainable development of agarwood research.
Collapse
Affiliation(s)
- Xinghao Zhang
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Lan Xiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Instituteof Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ruirui Hao
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jing Jing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent University, Ghent, 9052, Belgium
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Mo-Xian Chen
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Fu-Yuan Zhu
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Hao-Fu Dai
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Rd. Xueyuan No. 4, Haikou, 571101, China
| |
Collapse
|
2
|
Hu Y, Chen L, Huang L, Wang G. The expression of AcIDI1 reveals diterpenoid alkaloids' allocation strategies in the roots of Aconitum carmichaelii Debx. Gene 2024; 920:148529. [PMID: 38703864 DOI: 10.1016/j.gene.2024.148529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Isopentenyl diphosphate isomerase (IDI), a key enzyme in the biosynthetic pathway of diterpenoid alkaloids (DAs), plays an essential regulatory role in the synthesis and accumulation of DAs. In this study, the coding sequence (CDS) of AcIDI1 was isolated from the mother roots of Aconitum carmichaelii Debx. (GeneBank accession number OR915879). Bioinformatics analysis showed that the CDS of AcIDI1 was 894 bp, encoding a protein with 297 amino acids and the putative protein localized in the chloroplast. AcIDI1 exhibited significant homology with sequences encoding IDI in other species, and was most closely related to Aconitum vilmorinianum. Furthermore, the fusion protein has been successfully expressed in Escherichia coli (E. coli), providing a basis for future functional studies of AcIDI1. The expression pattern of AcIDI1 was analyzed by real-time quantitative PCR (qPCR), which demonstrates that AcIDI1 is a tissue-specific gene in the roots of A. carmichaelii and exhibits high expression in both daughter and mother roots. By comparing the expression levels of AcIDI1 in three tissues of the roots of A. carmichaelii at different growth stages, we propose that the mother roots (MRs) are the centers of resources allocation. The roots of A. carmichaelii continuously absorb the energy from external environment, while resources transfer behavior from MRs to both daughter roots (DRs) and axillary buds (ABs) occurs as the plant grows. This study establishes a foundation for applying the IDI gene to regulate the biosynthesis and accumulation of DAs in A. carmichaelii.
Collapse
Affiliation(s)
- Yiwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lijuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Guangzhi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Zheng J, Jiang H, Yan Y, Yin T. Overview of the chemistry and biological activities of natural atisine-type diterpenoid alkaloids. RSC Adv 2024; 14:22882-22893. [PMID: 39040692 PMCID: PMC11261430 DOI: 10.1039/d4ra03305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Atisine-type C20-diterpenoid alkaloids (DAs) are a very important class of diterpenoid alkaloids, which play an important role in the biosynthesis of DAs. To date, 87 atisine-type DAs and 11 bis-DAs containing an atisine unit have been reported from five genera in two families. The genus Spiraea in Rosaceae family could be regarded as the richest resource for atisine-type DAs, followed by the genera Delphinium and Aconitum in the Ranunculaceae family. Among the reported atisine-type DAs, several possess unprecedented skeletons. Natural atisine-type DAs have a wide range of biological activities, including antitumor, antiplatelet aggregation, biological control, and anti-inflammatory, analgesic, antiarrhythmic, and cholinesterase inhibitory effects, which are closely related to their structures. In particular, the antiparasitic effect of atisine-type DAs is more prominent than that of other types of DAs, which highlights their potential in antiparasite drug discovery. In summary, the high chemical and biological diversity of atisine-type DAs indicates their great potential as a vast resource for drug discovery.
Collapse
Affiliation(s)
- Jiaqi Zheng
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Hongjun Jiang
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Yuanfeng Yan
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Tianpeng Yin
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| |
Collapse
|
4
|
Li Q, Wang ZW, Wang MX, Yu HL, Chen L, Cai Z, Zhang Y, Gu MM, Shao YL, Han HP, Liao ZX. Brunonianines A-C, C 20-diterpenoid alkaloids with cyano group from Delphinium brunonianum Royle. PHYTOCHEMISTRY 2024; 219:113987. [PMID: 38218306 DOI: 10.1016/j.phytochem.2024.113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Cyano tends to have better biological activity, but it is rarely reported in natural products, especially in the C20-diterpene alkaloids. Herein, three unprecedented C20-diterpenoid alkaloids, brunonianines A-C (1-3), possessing rare cyano functional group as well as an atisine backbone constructed from a phenethyl substituent and a tetrahydropyran ring, along with four C19-alkaloids (4-7) and one amide alkaloids (8), were isolated from the whole plant of Delphinium brunonianum Royle. Compounds 1-3 are also the first atisine type diterpenoid alkaloids with cyano group obtained from nature. The structures of the previously undescribed compounds were elucidated by HR-ESI-MS, 1D/2D NMR spectroscopic data and electronic circular dichroism calculations and single-crystal X-ray diffraction. Reasonable speculations have also been made regarding the biogenic synthetic pathways of compounds 1-3. In addition, the inhibitory activity of all compounds was also tested against four tumor lines: A549, Caco-2, H460 and Skov-3, where compound 2 (IC50 2.20 ± 0.21 μM) showed better inhibitory activity against Skov-3 cells than the hydroxycamptothecin. Using flow cytometry, cell staining, migration and invasion analysis, and Western blot, compound 2 was found to arrest cells in the G2/M phase and was able to effectively inhibit cell motility to achieve potent anti-tumor effects. In addition, compound 2 can effectively induce apoptosis by activating the Bax/Bcl-2/Caspase-3 signaling pathway.
Collapse
Affiliation(s)
- Qing Li
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Zhi-Wei Wang
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Mu-Xuan Wang
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hao-Lin Yu
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Lei Chen
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Zhuoer Cai
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Yu Zhang
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Min-Min Gu
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Yuan-Ling Shao
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hong-Ping Han
- . the Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, China
| | - Zhi-Xin Liao
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Zhao D, Zhang Y, Ren H, Shi Y, Dong D, Li Z, Cui G, Shen Y, Mou Z, Kennelly EJ, Huang L, Ruan J, Chen S, Yu D, Cun Y. Multi-omics analysis reveals the evolutionary origin of diterpenoid alkaloid biosynthesis pathways in Aconitum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2320-2335. [PMID: 37688324 DOI: 10.1111/jipb.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/10/2023]
Abstract
Diterpenoid alkaloids (DAs) have been often utilized in clinical practice due to their analgesic and anti-inflammatory properties. Natural DAs are prevalent in the family Ranunculaceae, notably in the Aconitum genus. Nevertheless, the evolutionary origin of the biosynthesis pathway responsible for DA production remains unknown. In this study, we successfully assembled a high-quality, pseudochromosome-level genome of the DA-rich species Aconitum vilmorinianum (A. vilmorinianum) (5.76 Gb). An A. vilmorinianum-specific whole-genome duplication event was discovered using comparative genomic analysis, which may aid in the evolution of the DA biosynthesis pathway. We identified several genes involved in DA biosynthesis via integrated genomic, transcriptomic, and metabolomic analyses. These genes included enzymes encoding target ent-kaurene oxidases and aminotransferases, which facilitated the activation of diterpenes and insertion of nitrogen atoms into diterpene skeletons, thereby mediating the transformation of diterpenes into DAs. The divergence periods of these genes in A. vilmorinianum were further assessed, and it was shown that two major types of genes were involved in the establishment of the DA biosynthesis pathway. Our integrated analysis offers fresh insights into the evolutionary origin of DAs in A. vilmorinianum as well as suggestions for engineering the biosynthetic pathways to obtain desired DAs.
Collapse
Affiliation(s)
- Dake Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Ya Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Huanxing Ren
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yana Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ding Dong
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Zonghang Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Guanghong Cui
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Zongmin Mou
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, 10468, New York, USA
- Graduate Center, City University of New York, Bronx, 10468, New York, USA
| | - Luqi Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jue Ruan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Suiyun Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Yupeng Cun
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
6
|
Tian M, Jin B, Chen L, Ma R, Ma Q, Li X, Chen T, Guo J, Ge H, Zhao X, Lai C, Tang J, Cui G, Huang L. Functional diversity of diterpene synthases in Aconitum plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107968. [PMID: 37619270 DOI: 10.1016/j.plaphy.2023.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Members of the Aconitum genus within the Ranunculaceae family are known to accumulate a broad array of medicinal and toxic diterpenoid alkaloids (DAs). Historically, ent-copalyl diphosphate (ent-CPP) was considered the sole precursor in DAs biosynthesis. However, the recent discovery of ent-8,13-CPP synthase in A. gymnandrum Maxim., which participates in ent-atiserene biosynthesis, raises the question of whether this gene is conserved throughout the Aconitum genus. In this study, RNA sequencing and PacBio Iso-sequencing were employed to identify diterpene synthases (diTPSs) in four additional Aconitum species with distinct DA compositions. In vitro and in vivo analyses functionally characterized a diverse array of 10 class II and 9 class I diTPSs. In addition to the identification of seven class II diTPSs as ent-CPP synthases, three other synthases generating ent-8,13-CPP, 8,13-CPP, and 8α-hydroxy-CPP were also discovered. Four class I kaurene synthases-like (KSLs) were observed to react with ent-CPP to yield ent-kaurene. Three KSLs not only reacted with ent-CPP but also ent-8,13-CPP to produce ent-atiserene. AsiKSL2-1 was found to react with 8α-hydroxy-CPP to produce Z-abienol and AsiKSL2-2 exhibited no activity with any of the four intermediates. This research delineates the known diterpene biosynthesis pathways in six Aconitum species and explores the highly divergent diterpene synthases within the genus, which are consistent with their phylogeny and may be responsible for the differential distribution of diterpenoid alkaloids in root and aerial parts. These findings contribute valuable insights into the diversification of diterpene biosynthesis and establish a solid foundation for future investigation into DA biosynthetic pathways in Aconitum.
Collapse
Affiliation(s)
- Mei Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baolong Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lingli Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Traditional Chinese Medicine, Anhui Food and Drug Inspection and Research Institute, Hefei, 230051, China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, Henan, 450046, China
| | - Qing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolin Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hui Ge
- Gansu University of Traditional Chinese Medicine, Gansu, 730000, China
| | - Xin Zhao
- Gansu University of Traditional Chinese Medicine, Gansu, 730000, China
| | - Changjiangsheng Lai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinfu Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Cui B, Zheng T, Deng P, Zhang S, Zhao Z. Chemotaxonomic Variation in Volatile Component Contents in Ancient Platycladus orientalis Leaves with Different Tree Ages in Huangdi Mausoleum. Molecules 2023; 28:molecules28052043. [PMID: 36903288 PMCID: PMC10003951 DOI: 10.3390/molecules28052043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 02/24/2023] Open
Abstract
To gain insight into the differences in the composition and volatile components content in ancient Platycladus orientalis leaves with different tree ages in Huangdi Mausoleum, the volatile components were identified by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS) method. The volatile components were statistically analyzed by orthogonal partial least squares discriminant analysis and hierarchical cluster analysis, and the characteristic volatile components were screened. The results exhibited that a total of 72 volatile components were isolated and identified in 19 ancient Platycladus orientalis leaves with different tree ages, and 14 common volatile components were screened. Among them, the contents of α-pinene (6.40-16.76%), sabinene (1.11-7.29%), 3-carene (1.14-15.12%), terpinolene (2.17-4.95%), caryophyllene (8.04-13.53%), α-caryophyllene (7.34-14.41%), germacrene D (5.27-12.13%), (+)-Cedrol (2.34-11.30%) and α-terpinyl acetate (1.29-25.68%) were relatively higher (>1%), accounting for 83.40-87.61% of the total volatile components. Nineteen ancient Platycladus orientalis trees were clustered into three groups through the HCA method based on the 14 common volatile components content. Combined with the results of OPLS-DA analysis, (+)-cedrol, germacrene D, α-caryophyllene, α-terpinyl acetate, caryophyllene, β-myrcene, β-elemene and epiglobulol were the differential volatile components to distinguish ancient Platycladus orientalis with different tree ages. The results revealed that the composition of the volatile components in ancient Platycladus orientalis leaves with different tree ages was different, showing different aroma characteristics, which provided a theoretical reference for the differential development and application of volatile components in ancient Platycladus orientalis leaves.
Collapse
Affiliation(s)
- Bei Cui
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Research Center for the Conservation and Breeding Engineering of Ancient Trees, Xianyang 712100, China
| | - Tao Zheng
- College of Biology Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Ping Deng
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Sheng Zhang
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Research Center for the Conservation and Breeding Engineering of Ancient Trees, Xianyang 712100, China
- Correspondence: (S.Z.); (Z.Z.)
| | - Zhong Zhao
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Research Center for the Conservation and Breeding Engineering of Ancient Trees, Xianyang 712100, China
- Correspondence: (S.Z.); (Z.Z.)
| |
Collapse
|
8
|
Pu T, Liu J, Dong J, Qian J, Zhou Z, Xia C, Wei G, Duan B. Microbial community diversity and function analysis of Aconitum carmichaelii Debeaux in rhizosphere soil of farmlands in Southwest China. Front Microbiol 2022; 13:1055638. [PMID: 36590406 PMCID: PMC9797738 DOI: 10.3389/fmicb.2022.1055638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Understanding how microbial communities affect plant growth is crucial for sustainable productivity and ecological health. However, in contrast with the crop system, there is limited information on the microbial community associated with the medicinal plant. We observed that altitude was the most influential factor on the soil microbial community structures of Aconitum carmichaelii Debeaux. For community composition, bacterial reads were assigned to 48 phyla, with Proteobacteria, Acidobacteriota, and Actinobacteriota being the dominant phyla. The fungal reads were assigned to seven phyla, and Ascomycota was the predominant phylum detected in most groups. The four dominant phyla were categorized as keystone taxa in the co-occurrence networks, suggesting that they may be involved in soil disease suppression and nutrient mobility. Bacterial co-occurrence networks had fewer edges, lower average degree, and lower density at YL1, HQ1, HQ2, BC, and DL than fungal networks, creating less intricate rhizosphere network patterns. Furthermore, the bacterial and fungal communities showed strong distance decay of similarity across the sampling range. Overall, this study improves our understanding of regulating rhizosphere microbial communities in soil systems and also provides potential production strategies for planting A. carmichaelii.
Collapse
Affiliation(s)
- Tingting Pu
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jie Liu
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jingjing Dong
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jun Qian
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Zhongyu Zhou
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Guangfei Wei
- College of Pharmaceutical Science, Dali University, Dali, China,Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Guangfei Wei, ; Baozhong Duan,
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China,*Correspondence: Guangfei Wei, ; Baozhong Duan,
| |
Collapse
|
9
|
Chen L, Tian M, Jin B, Yin B, Chen T, Guo J, Tang J, Cui G, Huang L. Integrating Metabolomics and Transcriptomics to Unveil Atisine Biosynthesis in Aconitum gymnandrum Maxim. Int J Mol Sci 2022; 23:13463. [PMID: 36362268 PMCID: PMC9655601 DOI: 10.3390/ijms232113463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2024] Open
Abstract
Diterpene alkaloids (DAs) are characteristic compounds in Aconitum, which are classified into four skeletal types: C18, C19, C20, and bisditerpenoid alkaloids. C20-DAs are thought to be the precursor of the other types. Their biosynthetic pathway, however, is largely unclear. Herein, we combine metabolomics and transcriptomics to unveil the methyl jasmonate (MJ) inducible biosynthesis of DAs in the sterile seedling of A. gymnandrum, the only species in the Subgenus Gymnaconitum (Stapf) Rapaics. Target metabolomics based on root and aerial portions identified 51 C19-DAs and 15 C20-DAs, with 40 inducible compounds. The highest content of C20-DA atisine was selected for further network analysis. PacBio Isoform sequencing integrated with RNA sequencing not only provided the full-length transcriptome but also their response to induction, revealing 1994 genes that exhibited up-regulated expression. Further, 38 genes involved in terpenoid biosynthesis were identified, including 7 diterpene synthases. In addition to the expected function of the four diterpene synthases, AgCPS5 was identified to be a new ent-8,13-CPP synthase in Aconitum and could also combine with AgKSL1 to form the C20-DAs precursor ent-atiserene. Combined with multiple network analyses, six CYP450 and seven 2-ODD genes predicted to be involved in the biosynthesis of atisine were also identified. This study not only sheds light on diterpene synthase evolution in Aconitum but also provides a rich dataset of full-length transcriptomes, systemic metabolomes, and gene expression profiles, setting the groundwork for further investigation of the C20-DAs biosynthesis pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
10
|
New understanding of aconitine hydrolysis pathway: isolation, identification and toxicity evaluation based on intermediate products. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Alternative Splicing and Its Roles in Plant Metabolism. Int J Mol Sci 2022; 23:ijms23137355. [PMID: 35806361 PMCID: PMC9266299 DOI: 10.3390/ijms23137355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
Plant metabolism, including primary metabolism such as tricarboxylic acid cycle, glycolysis, shikimate and amino acid pathways as well as specialized metabolism such as biosynthesis of phenolics, alkaloids and saponins, contributes to plant survival, growth, development and interactions with the environment. To this end, these metabolic processes are tightly and finely regulated transcriptionally, post-transcriptionally, translationally and post-translationally in response to different growth and developmental stages as well as the constantly changing environment. In this review, we summarize and describe the current knowledge of the regulation of plant metabolism by alternative splicing, a post-transcriptional regulatory mechanism that generates multiple protein isoforms from a single gene by using alternative splice sites during splicing. Numerous genes in plant metabolism have been shown to be alternatively spliced under different developmental stages and stress conditions. In particular, alternative splicing serves as a regulatory mechanism to fine-tune plant metabolism by altering biochemical activities, interaction and subcellular localization of proteins encoded by splice isoforms of various genes.
Collapse
|
12
|
Liu X, Gong X, Liu Y, Liu J, Zhang H, Qiao S, Li G, Tang M. Application of High-Throughput Sequencing on the Chinese Herbal Medicine for the Data-Mining of the Bioactive Compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:900035. [PMID: 35909744 PMCID: PMC9331165 DOI: 10.3389/fpls.2022.900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 05/11/2023]
Abstract
The Chinese Herbal Medicine (CHM) has been used worldwide in clinic to treat the vast majority of human diseases, and the healing effect is remarkable. However, the functional components and the corresponding pharmacological mechanism of the herbs are unclear. As one of the main means, the high-throughput sequencing (HTS) technologies have been employed to discover and parse the active ingredients of CHM. Moreover, a tremendous amount of effort is made to uncover the pharmacodynamic genes associated with the synthesis of active substances. Here, based on the genome-assembly and the downstream bioinformatics analysis, we present a comprehensive summary of the application of HTS on CHM for the synthesis pathways of active ingredients from two aspects: active ingredient properties and disease classification, which are important for pharmacological, herb molecular breeding, and synthetic biology studies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sen Qiao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- Gang Li,
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Min Tang,
| |
Collapse
|