1
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2025; 45:164-213. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Trybus E, Trybus W. H1 Antihistamines—Promising Candidates for Repurposing in the Context of the Development of New Therapeutic Approaches to Cancer Treatment. Cancers (Basel) 2024; 16:4253. [PMCID: PMC11674717 DOI: 10.3390/cancers16244253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/05/2025] Open
Abstract
The repurposing of old drugs has become an alternative strategy for the de novo synthesis of drugs for the treatment of various diseases, including cancer. This review focuses on existing information concerning the antitumor activity of H1 antihistamines, especially new-generation drugs originally intended for anti-allergic therapy, providing new insights into their potential use in oncology. In the context of a multi-targeted approach for the treatment of cancer, attention was given to data on the signaling pathways and cellular mechanisms in which these drugs may be involved. In order to understand the importance of antihistamines as good candidates for repurposing, this article addresses general issues related to the problems of oncological treatment, the desirable characteristics of a potential anticancer drug, and the role of histamine and its receptors, especially the H1R receptor, in the development and progression of cancer. Despite significant progress in the field of clinical oncology in terms of diagnostic and treatment methods, the results of anticancer therapy are still not fully satisfactory, especially due to limited response and high toxicity. This has forced the need for further research to finding alternative ways to improve success rates in oncological treatment. A good solution to this problem in the context of rapidly obtaining an effective drug that works on multiple levels of cancer and is also safe is the global strategy of repurposing an existing drug. Research into other applications of an existing drug enables a precise assessment of its possible mechanisms of action and, consequently, the broadening of therapeutic indications. This strategy is also supported by the fact that most non-oncological drugs have pleiotropic effects, and most of the diseases for which they were originally intended are multifactorial, which in turn is a very desirable phenomenon due to the heterogeneous and multifaceted biology of cancer. In this review, we will mainly focus on the anticancer potential of H1 antihistamines, especially the new generation that were not originally intended for cancer therapy, to highlight the relevant signaling pathways and discuss the properties of these agents for their judicious use based on the characteristic features of cancer.
Collapse
Affiliation(s)
- Ewa Trybus
- Department of Medical Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Wojciech Trybus
- Department of Medical Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
3
|
Sunildutt N, Ahmed F, Salih ARC, Kim HC, Choi KH. Unraveling new avenues in pancreatic cancer treatment: A comprehensive exploration of drug repurposing using transcriptomic data. Comput Biol Med 2024; 185:109481. [PMID: 39644581 DOI: 10.1016/j.compbiomed.2024.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Pancreatic cancer, a malignancy notorious for its late-stage diagnosis and low patient survival rates, remains a formidable global health challenge. The currently available FDA-approved treatments for pancreatic cancer, notably chemotherapeutic agents, exhibit suboptimal efficacy, often accompanied by concerns regarding toxicity. Given the intricate nature of pancreatic cancer pathogenesis and the time-intensive nature of in silico drug discovery approaches, drug repurposing emerges as a compelling strategy to expedite the development of novel therapeutic interventions. In our study, we harnessed transcriptomic data from an exhaustive exploration of four diverse databases, ensuring a rigorous and unbiased analysis of differentially expressed genes, with a particular focus on upregulated genes associated with pancreatic cancer. Leveraging these pancreatic cancer-associated host protein targets, we employed a battery of cutting-edge bioinformatics tools, including Cytoscape STRING, GeneMANIA, Connectivity Map, and NetworkAnalyst, to identify potential small molecule drug candidates and elucidate their interactions. Subsequently, we conducted meticulous docking and redocking simulations for the selected drug-protein target pairs. This rigorous computational approach culminated in the identification of two promising broad-spectrum drug candidates against four pivotal host genes implicated in pancreatic cancer. Our findings strongly advocate for further investigation and preclinical validation of these candidates. Specifically, we propose prioritizing Dasatinib for evaluation against MMP3, MMP9, and EGFR due to their remarkable binding affinities, as well as Pioglitazone against MMP3, MMP2 and MMP9. These discoveries hold great promise in advancing the therapeutic landscape for pancreatic cancer, offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea
| | - Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea
| | - Abdul Rahim Chethikkattuveli Salih
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, US; BioSpero, Inc, Jeju, Republic of Korea
| | - Hyung Chul Kim
- Department of Future Science and Technology Business, Korea University, Seoul, 02841, Republic of Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| |
Collapse
|
4
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
5
|
Tiwari MK, Goslinski T. Searching for the Holy Grail - Highly Potent Bridged Endoperoxides for Targeted Cancer Therapy. Bioorg Chem 2024; 153:107893. [PMID: 39454496 DOI: 10.1016/j.bioorg.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The International Agency for Research on Cancer (IARC) recently estimated the global cancer burden in 2050. The statistics are startling, with a 77% hike and 35 million new cancer cases per year. The present discoveries have recommended plant-derived bridged endoperoxides or artemisinin-based semisynthetic analogues as safe, well-tolerated and powerful substitutes that could be effectively utilized as a warhead to fight against global enemies like cancer. In addition, artemisinin-based drug repositioning crucially can reduce overriding drug development expenditures and establish accessibility of approved drugs with low risk to patients. Hence, the present review article provides a comprehensive account of the recent chemical and synthetic advancement of diverse cytotoxic artemisinin derivatives such as C(10)-O, C, N, S linked artemisinin analogues, artemisinin-derived metal complexes, artemisinin-derived hybrids/conjugates with other pharmaceutically active substances, and artemisinin-derived dimers, trimers and tetramers perceived during the last three decades (1997-2024). Moreover, the current preclinical and clinical anticancer application prospects of artemisinin derivatives with other defined drugs and their utilization in combination therapy and also nanoformulation approaches for targeted drug delivery have been discussed.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland.
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland
| |
Collapse
|
6
|
Al Khzem AH, Gomaa MS, Alturki MS, Tawfeeq N, Sarafroz M, Alonaizi SM, Al Faran A, Alrumaihi LA, Alansari FA, Alghamdi AA. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:12441. [PMID: 39596504 PMCID: PMC11595001 DOI: 10.3390/ijms252212441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer ranks among the primary contributors to global mortality. In 2022, the global incidence of new cancer cases reached about 20 million, while the number of cancer-related fatalities reached 9.7 million. In Saudi Arabia, there were 13,399 deaths caused by cancer and 28,113 newly diagnosed cases of cancer. Drug repurposing is a drug discovery strategy that has gained special attention and implementation to enhance the process of drug development due to its time- and money-saving effect. It involves repositioning existing medications to new clinical applications. Cancer treatment is a therapeutic area where drug repurposing has shown the most prominent impact. This review presents a compilation of medications that have been repurposed for the treatment of various types of cancers. It describes the initial therapeutic and pharmacological classes of the repurposed drugs and their new applications and mechanisms of action in cancer treatment. The review reports on drugs from various pharmacological classes that have been successfully repurposed for cancer treatment, including approved ones and those in clinical trials and preclinical development. It stratifies drugs based on their anticancer repurpose as multi-type, type-specific, and mechanism-directed, and according to their pharmacological classes. The review also reflects on the future potential that drug repurposing has in the clinical development of novel anticancer therapies.
Collapse
Affiliation(s)
- Abdulaziz H. Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mansour S. Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Shareefa M. Alonaizi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Alhassan Al Faran
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Laela Ahmed Alrumaihi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Fatimah Ahmed Alansari
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Abdullah Abbas Alghamdi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| |
Collapse
|
7
|
Kaur R, Suresh PK. Chemoresistance Mechanisms in Non-Small Cell Lung Cancer-Opportunities for Drug Repurposing. Appl Biochem Biotechnol 2024; 196:4382-4438. [PMID: 37721630 DOI: 10.1007/s12010-023-04595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 09/19/2023]
Abstract
Globally, lung cancer contributes significantly to the public health burden-associated mortality. As this form of cancer is insidious in nature, there is an inevitable diagnostic delay leading to chronic tumor development. Non-small cell lung cancer (NSCLC) constitutes 80-85% of all lung cancer cases, making this neoplasia form a prevalent subset of lung carcinoma. One of the most vital aspects for proper diagnosis, prognosis, and adequate therapy is the precise classification of non-small cell lung cancer based on biomarker expression profiling. This form of biomarker profiling has provided opportunities for improvements in patient stratification, mechanistic insights, and probable druggable targets. However, numerous patients have exhibited numerous toxic side effects, tumor relapse, and development of therapy-based chemoresistance. As a result of these exacting situations, there is a dire need for efficient and effective new cancer therapeutics. De novo drug development approach is a costly and tedious endeavor, with an increased attrition rate, attributed, in part, to toxicity-related issues. Drug repurposing, on the other hand, when combined with computer-assisted systems biology approach, provides alternatives to the discovery of new, efficacious, and safe drugs. Therefore, in this review, we focus on a comparison of the conventional therapy-based chemoresistance mechanisms with the repurposed anti-cancer drugs from three different classes-anti-parasitic, anti-depressants, and anti-psychotics for cancer treatment with a primary focus on NSCLC therapeutics. Certainly, amalgamating these novel therapeutic approaches with that of the conventional drug regimen in NSCLC-affected patients will possibly complement/synergize the existing therapeutic modalities. This approach has tremendous translational significance, since it can combat drug resistance and cytotoxicity-based side effects and provides a relatively new strategy for possible application in therapy of individuals with NSCLC.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - P K Suresh
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Ceci C, Ruffini F, Falconi M, Atzori MG, Falzon A, Lozzi F, Iacovelli F, D'Atri S, Graziani G, Lacal PM. Pharmacological inhibition of PDGF-C/neuropilin-1 interaction: A novel strategy to reduce melanoma metastatic potential. Biomed Pharmacother 2024; 176:116766. [PMID: 38788599 DOI: 10.1016/j.biopha.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Activation of neuropilin-1 (NRP-1) by platelet derived growth factor (PDGF)-C sustains melanoma invasiveness. Therefore, in the search of novel agents capable of reducing melanoma spreading, PDGF-C/NRP-1 interaction was investigated as a potential druggable target. Since the PDGF-C region involved in NRP-1 binding is not yet known, based on the sequence and structural homology between PDGF-C and vascular endothelial growth factor-A (VEGF-A), we hypothesized that the NRP-1 b1 domain region involved in the interaction with VEGF-A might also be required for PDGF-C binding. Hence, this region was selected from the protein crystal structure and used as target in the molecular docking procedure. In the following virtual screening, compounds from a DrugBank database were used as query ligands to identify agents potentially capable of disrupting NRP-1/PDGF-C interaction. Among the top 45 candidates with the highest affinity, five drugs were selected based on the safety profile, lack of hormonal effects, and current availability in the market: the antipsychotic pimozide, antidiabetic gliclazide, antiallergic cromolyn sodium, anticancer tyrosine kinase inhibitor entrectinib, and antihistamine azelastine. Analysis of drug influence on PDGF-C in vitro binding to NRP-1 and PDGF-C induced migration of human melanoma cells expressing NRP-1, indicated gliclazide and entrectinib as the most specific agents that were active at clinically achievable and non-toxic concentrations. Both drugs also reverted PDGF-C ability to stimulate extracellular matrix invasion by melanoma cells resistant to BRAF inhibitors. The inhibitory effect on tumor cell motility involved a decrease of p130Cas phosphorylation, a signal transduction pathway activated by PDGF-C-mediated stimulation of NRP-1.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Andrea Falzon
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Lozzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
9
|
Banerjee J, Tiwari AK, Banerjee S. Drug repurposing for cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:123-150. [PMID: 38942535 DOI: 10.1016/bs.pmbts.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In the dynamic landscape of cancer therapeutics, the innovative strategy of drug repurposing emerges as a transformative paradigm, heralding a new era in the fight against malignancies. This book chapter aims to embark on the comprehension of the strategic deployment of approved drugs for repurposing and the meticulous journey of drug repurposing from earlier times to the current era. Moreover, the chapter underscores the multifaceted and complex nature of cancer biology, and the evolving field of cancer drug therapeutics while emphasizing the mandate of drug repurposing to advance cancer therapeutics. Importantly, the narrative explores the latest tools, technologies, and cutting-edge methodologies including high-throughput screening, omics technologies, and artificial intelligence-driven approaches, for shaping and accelerating the pace of drug repurposing to uncover novel cancer therapeutic avenues. The chapter critically assesses the breakthroughs, expanding the repertoire of repurposing drug candidates in cancer, and their major categories. Another focal point of this book chapter is that it addresses the emergence of combination therapies involving repurposed drugs, reflecting a shift towards personalized and synergistic treatment approaches. The expert analysis delves into the intricacies of combinatorial regimens, elucidating their potential to target heterogeneous cancer populations and overcome resistance mechanisms, thereby enhancing treatment efficacy. Therefore, this chapter provides in-depth insights into the potential of repurposing towards bringing the much-needed big leap in the field of cancer therapeutics.
Collapse
Affiliation(s)
- Juni Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
10
|
Chen M, Cheng S, Dai X, Yu J, Wang H, Xu B, Luo H, Xu G. Design, Synthesis, and Biological Evaluation of Novel Quinazoline Derivatives Possessing a Trifluoromethyl Moiety as Potential Antitumor Agents. Chem Biodivers 2024; 21:e202301776. [PMID: 38602834 DOI: 10.1002/cbdv.202301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
A novel series of trifluoromethyl-containing quinazoline derivatives with a variety of functional groups was designed, synthesized, and tested for their antitumor activity by following a pharmacophore hybridization strategy. Most of the 20 compounds displayed moderate to excellent antiproliferative activity against five different cell lines (PC3, LNCaP, K562, HeLa, and A549). After three rounds of screening and structural optimization, compound 10 b was identified as the most potent one, with IC50 values of 3.02, 3.45, and 3.98 μM against PC3, LNCaP, and K562 cells, respectively, which were comparable to the effect of the positive control gefitinib. To further explore the mechanism of action of 10 b against cancer, experiments focusing on apoptosis induction, cell cycle arrest, and cell migration assay were conducted. The results showed that 10 b was able to induce apoptosis and prevent tumor cell migration, but had no effect on the cell cycle of tumor cells.
Collapse
Affiliation(s)
- Mingxiu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xing Dai
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - HuiDi Wang
- The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - BiXue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Guangcan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| |
Collapse
|
11
|
Rauf A, Joshi PB, Olatunde A, Hafeez N, Ahmad Z, Hemeg HA, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M, Viswanathan D, Rajakumar G, Thiruvengadam R. Comprehensive review of the repositioning of non-oncologic drugs for cancer immunotherapy. Med Oncol 2024; 41:122. [PMID: 38652344 DOI: 10.1007/s12032-024-02368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Drug repositioning or repurposing has gained worldwide attention as a plausible way to search for novel molecules for the treatment of particular diseases or disorders. Drug repurposing essentially refers to uncovering approved or failed compounds for use in various diseases. Cancer is a deadly disease and leading cause of mortality. The search for approved non-oncologic drugs for cancer treatment involved in silico modeling, databases, and literature searches. In this review, we provide a concise account of the existing non-oncologic drug molecules and their therapeutic potential in chemotherapy. The mechanisms and modes of action of the repurposed drugs using computational techniques are also highlighted. Furthermore, we discuss potential targets, critical pathways, and highlight in detail the different challenges pertaining to drug repositioning for cancer immunotherapy.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Payal B Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, Maharashtra, 421501, India
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hassan A Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Medinah, Al-Monawara, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dhivya Viswanathan
- Center for NanoBioscience, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Govindasamy Rajakumar
- Center for NanoBioscience, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
12
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
13
|
Rani N, Kaushik A, Kardam S, Kag S, Raj VS, Ambasta RK, Kumar P. Reimagining old drugs with new tricks: Mechanisms, strategies and notable success stories in drug repurposing for neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:23-70. [PMID: 38789181 DOI: 10.1016/bs.pmbts.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Recent evolution in drug repurposing has brought new anticipation, especially in the conflict against neurodegenerative diseases (NDDs). The traditional approach to developing novel drugs for these complex disorders is laborious, time-consuming, and often abortive. However, drug reprofiling which is the implementation of illuminating novel therapeutic applications of existing approved drugs, has shown potential as a promising strategy to accelerate the hunt for therapeutics. The advancement of computational approaches and artificial intelligence has expedited drug repurposing. These progressive technologies have enabled scientists to analyse extensive datasets and predict potential drug-disease interactions. By prospecting into the existing pharmacological knowledge, scientists can recognise potential therapeutic candidates for reprofiling, saving precious time and resources. Preclinical models have also played a pivotal role in this field, confirming the effectiveness and mechanisms of action of repurposed drugs. Several studies have occurred in recent years, including the discovery of available drugs that demonstrate significant protective effects in NDDs, relieve debilitating symptoms, or slow down the progression of the disease. These findings highlight the potential of repurposed drugs to change the landscape of NDD treatment. Here, we present an overview of recent developments and major advances in drug repurposing intending to provide an in-depth analysis of traditional drug discovery and the strategies, approaches and technologies that have contributed to drug repositioning. In addition, this chapter attempts to highlight successful case studies of drug repositioning in various therapeutic areas related to NDDs and explore the clinical trials, challenges and limitations faced by researchers in the field. Finally, the importance of drug repositioning in drug discovery and development and its potential to address discontented medical needs is also highlighted.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shefali Kardam
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Sonika Kag
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - V Samuel Raj
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
14
|
Chen X, Yang L, Wu Y, Wang L, Li H. Advances in the Application of Photothermal Composite Scaffolds for Osteosarcoma Ablation and Bone Regeneration. ACS OMEGA 2023; 8:46362-46375. [PMID: 38107965 PMCID: PMC10720008 DOI: 10.1021/acsomega.3c06944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Photothermal therapy is a promising approach to cancer treatment. The energy generated by the photothermal effect can effectively inhibit the growth of cancer cells without harming normal tissues, while the right amount of heat can also promote cell proliferation and accelerate tissue regeneration. Various nanomaterials have recently been used as photothermal agents (PTAs). The photothermal composite scaffolds can be obtained by introducing PTAs into bone tissue engineering (BTE) scaffolds, which produces a photothermal effect that can be used to ablate bone cancer with subsequent further use of the scaffold as a support to repair the bone defects created by ablation of osteosarcoma. Osteosarcoma is the most common among primary bone malignancies. However, a review of the efficacy of different types of photothermal composite scaffolds in osteosarcoma is lacking. This article first introduces the common PTAs, BTE materials, and preparation methods and then systematically summarizes the development of photothermal composite scaffolds. It would provide a useful reference for the combination of tumor therapy and tissue engineering in bone tumor-related diseases and complex diseases. It will also be valuable for advancing the clinical applications of photothermal composite scaffolds.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department
of Pediatric Internal Medicine, Haining
Central Hospital, Jiaxing 314400, China
| | - Liqun Yang
- Department
of Nursing, Tongxiang Traditional Chinese
Medicine Hospital, Jiaxing 314500, China
| | - Yanfang Wu
- Department
of Hematology, The First People’s
Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| | - Lina Wang
- Department
of Internal Medicine, The Second People’s
Hospital of Luqiao Taizhou, Taizhou 318058, China
| | - Huafeng Li
- Department
of General Surgery, Haining Central Hospital, Jiaxing 314400, China
| |
Collapse
|
15
|
Carels N, Sgariglia D, Junior MGV, Lima CR, Carneiro FRG, da Silva GF, da Silva FAB, Scardini R, Tuszynski JA, de Andrade CV, Monteiro AC, Martins MG, da Silva TG, Ferraz H, Finotelli PV, Balbino TA, Pinto JC. A Strategy Utilizing Protein-Protein Interaction Hubs for the Treatment of Cancer Diseases. Int J Mol Sci 2023; 24:16098. [PMID: 38003288 PMCID: PMC10671768 DOI: 10.3390/ijms242216098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 11/26/2023] Open
Abstract
We describe a strategy for the development of a rational approach of neoplastic disease therapy based on the demonstration that scale-free networks are susceptible to specific attacks directed against its connective hubs. This strategy involves the (i) selection of up-regulated hubs of connectivity in the tumors interactome, (ii) drug repurposing of these hubs, (iii) RNA silencing of non-druggable hubs, (iv) in vitro hub validation, (v) tumor-on-a-chip, (vi) in vivo validation, and (vii) clinical trial. Hubs are protein targets that are assessed as targets for rational therapy of cancer in the context of personalized oncology. We confirmed the existence of a negative correlation between malignant cell aggressivity and the target number needed for specific drugs or RNA interference (RNAi) to maximize the benefit to the patient's overall survival. Interestingly, we found that some additional proteins not generally targeted by drug treatments might justify the addition of inhibitors designed against them in order to improve therapeutic outcomes. However, many proteins are not druggable, or the available pharmacopeia for these targets is limited, which justifies a therapy based on encapsulated RNAi.
Collapse
Affiliation(s)
- Nicolas Carels
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Domenico Sgariglia
- Engenharia de Sistemas e Computação, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-972, RJ, Brazil;
| | - Marcos Guilherme Vieira Junior
- Computational Modeling of Biological Systems, Scientific Computing Program (PROCC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil or (M.G.V.J.); (F.A.B.d.S.)
| | - Carlyle Ribeiro Lima
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Flávia Raquel Gonçalves Carneiro
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (F.R.G.C.); (R.S.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, RJ, Brazil
| | - Gilberto Ferreira da Silva
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Fabricio Alves Barbosa da Silva
- Computational Modeling of Biological Systems, Scientific Computing Program (PROCC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil or (M.G.V.J.); (F.A.B.d.S.)
| | - Rafaela Scardini
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (F.R.G.C.); (R.S.)
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, RJ, Brazil
- Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-255, RJ, Brazil
| | - Jack Adam Tuszynski
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, 10129 Turin, Italy;
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2J1, Canada
| | - Cecilia Vianna de Andrade
- Department of Pathology, Instituto Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 22250-020, RJ, Brazil;
| | - Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro 24210-201, RJ, Brazil;
| | - Marcel Guimarães Martins
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Talita Goulart da Silva
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Helen Ferraz
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Priscilla Vanessa Finotelli
- Laboratório de Nanotecnologia Biofuncional, Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil;
| | - Tiago Albertini Balbino
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil;
| | - José Carlos Pinto
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| |
Collapse
|
16
|
Sherif AY, Harisa GI, Shahba AA, Nasr FA, Taha EI, Alqahtani AS. Assembly of nanostructured lipid carriers loaded gefitinib and simvastatin as hybrid therapy for metastatic breast cancer: Codelivery and repurposing approach. Drug Dev Res 2023; 84:1453-1467. [PMID: 37519092 DOI: 10.1002/ddr.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Breast cancer represents a life-threatening problem globally. The major challenge in the clinical setting is the management of cancer resistance and metastasis. Hybrid therapy can affect several cellular targets involved in carcinogenesis with a lessening of adverse effects. Therefore, the current study aims to assemble, and optimize a hybrid of gefitinib (GFT) and simvastatin (SIM)-loaded nanostructured lipid carrier (GFT/SIM-NLC) to combat metastatic and drug-resistant breast cancer. GFT/SIM-NLC cargos were prepared using design of experiments to investigate the impact of poloxamer-188 and fatty acids concentrations on the physicochemical and pharmaceutical behavior properties of NLC. Additionally, the biosafety of the prepared GFT/SIM-NLC was studied using a fresh blood sample. Afterward, the optimized formulation was subjected to an MTT assay to study the cytotoxic activity of GFT/SIM-NLC compared to free GFT/SIM using an MCF-7 cell line as a surrogate model for breast cancer. The present results revealed that the particle size of the prepared NLC ranged from (209 to 410 nm) with a negative zeta potential value ranging from (-17.2 to -23.9 mV). Moreover, the optimized GFT/SIM-NLC formulation showed favorable physicochemical properties and promising lymphatic delivery cargos. A biosafety study indicates that the prepared NLC has a gentle effect on erythrocyte hemolysis. Cytotoxicity studies revealed that GFT/SIM-NLC enhanced the killing of the MCF-7 cell line compared to free GFT/SIM. This study concluded that the hybrid therapy of GFT/SIM-NLC is a potential approach to combat metastatic and drug-resistant breast cancer.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad A Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab I Taha
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Zhou Y, Liao M, Li Z, Ye J, Wu L, Mou Y, Fu L, Zhen Y. Flubendazole Enhances the Inhibitory Effect of Paclitaxel via HIF1α/PI3K/AKT Signaling Pathways in Breast Cancer. Int J Mol Sci 2023; 24:15121. [PMID: 37894802 PMCID: PMC10606573 DOI: 10.3390/ijms242015121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Paclitaxel, a natural anticancer drug, is widely recognized and extensively utilized in the treatment of breast cancer (BC). However, it may lead to certain side effects or drug resistance. Fortunately, combination therapy with another anti-tumor agent has been explored as an option to improve the efficacy of paclitaxel in the treatment of BC. Herein, we first evaluated the synergistic effects of paclitaxel and flubendazole through combination index (CI) calculations. Secondly, flubendazole was demonstrated to synergize paclitaxel-mediated BC cell killing in vitro and in vivo. Moreover, we discovered that flubendazole could reverse the drug resistance of paclitaxel-resistant BC cells. Mechanistically, flubendazole was demonstrated to enhance the inhibitory effect of paclitaxel via HIF1α/PI3K/AKT signaling pathways. Collectively, our findings demonstrate the effectiveness of flubendazole in combination with paclitaxel for treating BC, providing an insight into exploiting more novel combination therapies for BC in the future.
Collapse
Affiliation(s)
- Yuxin Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.L.); (J.Y.); (L.W.); (Y.M.)
| | - Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.L.); (J.Y.); (L.W.); (Y.M.)
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;
| | - Jing Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.L.); (J.Y.); (L.W.); (Y.M.)
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.L.); (J.Y.); (L.W.); (Y.M.)
| | - Yi Mou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.L.); (J.Y.); (L.W.); (Y.M.)
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;
| | - Yongqi Zhen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (M.L.); (J.Y.); (L.W.); (Y.M.)
| |
Collapse
|
18
|
Pawar VA, Tyagi A, Verma C, Sharma KP, Ansari S, Mani I, Srivastva SK, Shukla PK, Kumar A, Kumar V. Unlocking therapeutic potential: integration of drug repurposing and immunotherapy for various disease targeting. Am J Transl Res 2023; 15:4984-5006. [PMID: 37692967 PMCID: PMC10492070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Drug repurposing, also known as drug repositioning, entails the application of pre-approved or formerly assessed drugs having potentially functional therapeutic amalgams for curing various disorders or disease conditions distinctive from their original remedial indication. It has surfaced as a substitute for the development of drugs for treating cancer, cardiovascular diseases, neurodegenerative disorders, and various infectious diseases like Covid-19. Although the earlier lines of findings in this area were serendipitous, recent advancements are based on patient centered approaches following systematic, translational, drug targeting practices that explore pathophysiological ailment mechanisms. The presence of definite information and numerous records with respect to beneficial properties, harmfulness, and pharmacologic characteristics of repurposed drugs increase the chances of approval in the clinical trial stages. The last few years have showcased the successful emergence of repurposed drug immunotherapy in treating various diseases. In this light, the present review emphasises on incorporation of drug repositioning with Immunotherapy targeted for several disorders.
Collapse
Affiliation(s)
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied ScienceDelhi 110054, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State UniversityColumbus, Ohio 43201, USA
| | - Kanti Prakash Sharma
- Department of Nutrition Biology, Central University of HaryanaMahendragarh 123029, India
| | - Sekhu Ansari
- Division of Pathology, Cincinnati Children’s Hospital Medical CenterCincinnati, Ohio 45229, USA
| | - Indra Mani
- Department of Microbiology, Gargi College, University of DelhiNew Delhi 110049, India
| | | | - Pradeep Kumar Shukla
- Department of Biological Sciences, Faculty of Science, Sam Higginbottom University of Agriculture, Technology of SciencePrayagraj 211007, UP, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of HaryanaMahendergarh 123031, Haryana, India
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, Ohio 43210, USA
| |
Collapse
|
19
|
Liu H, Huang Q, Fan Y, Li B, Liu X, Hu C. Dissecting the novel abilities of aripiprazole: The generation of anti-colorectal cancer effects by targeting G αq via HTR2B. Acta Pharm Sin B 2023; 13:3400-3413. [PMID: 37655314 PMCID: PMC10465950 DOI: 10.1016/j.apsb.2023.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is a type of malignant tumor that seriously threatens human health and life, and its treatment has always been a difficulty and hotspot in research. Herein, this study for the first time reports that antipsychotic aripiprazole (Ari) against the proliferation of CRC cells both in vitro and in vivo, but with less damage in normal colon cells. Mechanistically, the results showed that 5-hydroxytryptamine 2B receptor (HTR2B) and its coupling protein G protein subunit alpha q (Gαq) were highly distributed in CRC cells. Ari had a strong affinity with HTR2B and inhibited HTR2B downstream signaling. Blockade of HTR2B signaling suppressed the growth of CRC cells, but HTR2B was not found to have independent anticancer activity. Interestingly, the binding of Gαq to HTR2B was decreased after Ari treatment. Knockdown of Gαq not only restricted CRC cell growth, but also directly affected the anti-CRC efficacy of Ari. Moreover, an interaction between Ari and Gαq was found in that the mutation at amino acid 190 of Gαq reduced the efficacy of Ari. Thus, these results confirm that Gαq coupled to HTR2B was a potential target of Ari in mediating CRC proliferation. Collectively, this study provides a novel effective strategy for CRC therapy and favorable evidence for promoting Ari as an anticancer agent.
Collapse
Affiliation(s)
- Haowei Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiuming Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yunqi Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuemei Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| |
Collapse
|
20
|
Kumbhar N, Nimal S, Patil D, Kaiser VF, Haupt J, Gacche RN. Repurposing of neprilysin inhibitor 'sacubitrilat' as an anti-cancer drug by modulating epigenetic and apoptotic regulators. Sci Rep 2023; 13:9952. [PMID: 37336927 DOI: 10.1038/s41598-023-36872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
Modifications in the epigenetic landscape have been considered a hallmark of cancer. Histone deacetylation is one of the crucial epigenetic modulations associated with the aggressive progression of various cancer subtypes. Herein, we have repurposed the neprilysin inhibitor sacubitrilat as a potent anticancer agent using in-silico protein-ligand interaction profiler (PLIP) analysis, molecular docking, and in vitro studies. The screening of PLIP profiles between vorinostat/panobinostat and HDACs/LTA4H followed by molecular docking resulted in five (Sacubitrilat, B65, BDS, BIR, and NPV) FDA-approved, experimental and investigational drugs. Sacubitrilat has demonstrated promising anticancer activity against colorectal cancer (SW-480) and triple-negative breast cancer (MDA-MB-231) cells, with IC50 values of 14.07 μg/mL and 23.02 μg/mL, respectively. FACS analysis revealed that sacubitrilat arrests the cell cycle at the G0/G1 phase and induces apoptotic-mediated cell death in SW-480 cells. In addition, sacubitrilat inhibited HDAC isoforms at the transcriptomic level by 0.7-0.9 fold and at the proteomic level by 0.5-0.6 fold as compared to the control. Sacubitrilat increased the protein expression of tumor-suppressor (p53) and pro-apoptotic makers (Bax and Bid) by 0.2-2.5 fold while decreasing the expression of anti-apoptotic Bcl2 and Nrf2 proteins by 0.2-0.5 fold with respect to control. The observed cleaved PARP product indicates that sacubitrilat induces apoptotic-mediated cell death. This study may pave the way to identify the anticancer potential of sacubitrilat and can be explored in human clinical trials.
Collapse
Affiliation(s)
- Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India
| | - Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India
| | - Deeksha Patil
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India
| | | | | | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India.
| |
Collapse
|
21
|
Mukhtar RM, Abdelmoniem N, Elrufaie HA, Edris A, Ghaboosh H, Mahgoub MA, Garelnabi EAE, Osman W, Sherif AE, Ashour A, Ghazawi KF, Samman WA, Alhaddad AA, Bafail R, Ibrahim SRM, Mohamed GA, Alzain AA. Unlocking the potential of approved drugs for the allosteric inhibition of tropomyosin-receptor kinase A using molecular docking and molecular dynamics studies. Front Chem 2023; 11:1205724. [PMID: 37351516 PMCID: PMC10282146 DOI: 10.3389/fchem.2023.1205724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Tropomyosin-receptor kinase A (TrkA) is the primary isoform among the tropomyosin-receptor kinases that have been associated with human cancer development, contributing to approximately 7.4% of all cancer cases. TrkA represents an attractive target for cancer treatment; however, currently available TrkA inhibitors face limitations in terms of resistance development and potential toxicity. Hence, the objective of this study was to identify new allosteric-approved inhibitors of TrkA that can overcome these challenges and be employed in cancer therapy. To achieve this goal, a screening of 9,923 drugs from the ChEMBL database was conducted to assess their repurposing potential using molecular docking. The top 49 drug candidates, exhibiting the highest docking scores (-11.569 to -7.962 kcal/mol), underwent MM-GBSA calculations to evaluate their binding energies. Delanzomib and tibalosin, the top two drugs with docking scores of -10.643 and -10.184 kcal/mol, respectively, along with MM-GBSA dG bind values of -67.96 and -50.54 kcal/mol, were subjected to 200 ns molecular dynamic simulations, confirming their stable interactions with TrkA. Based on these findings, we recommend further experimental evaluation of delanzomib and tibalosin to determine their potential as allosteric inhibitors of TrkA. These drugs have the potential to provide more effective and less toxic therapeutic alternatives. The approach employed in this study, which involves repurposing drugs through molecular docking and molecular dynamics, serves as a valuable tool for identifying novel drug candidates with distinct therapeutic uses. This methodology can contribute to reducing the attrition rate and expediting the process of drug discovery.
Collapse
Affiliation(s)
- Rua M. Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Nihal Abdelmoniem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Hisham A. Elrufaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Alaa Edris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Hiba Ghaboosh
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Mohanad A. Mahgoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Elrashied A. E. Garelnabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Wadah Osman
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Asmaa E. Sherif
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kholoud F. Ghazawi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waad A. Samman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Aisha A. Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Rawan Bafail
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
22
|
Weng N, Zhang Z, Tan Y, Zhang X, Wei X, Zhu Q. Repurposing antifungal drugs for cancer therapy. J Adv Res 2023; 48:259-273. [PMID: 36067975 PMCID: PMC10248799 DOI: 10.1016/j.jare.2022.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Repurposing antifungal drugs in cancer therapy has attracted unprecedented attention in both preclinical and clinical research due to specific advantages, such as safety, high-cost effectiveness and time savings compared with cancer drug discovery. The surprising and encouraging efficacy of antifungal drugs in cancer therapy, mechanistically, is attributed to the overlapping targets or molecular pathways between fungal and cancer pathogenesis. Advancements in omics, informatics and analytical technology have led to the discovery of increasing "off-site" targets from antifungal drugs involved in cancerogenesis, such as smoothened (D477G) inhibition from itraconazole in basal cell carcinoma. AIM OF REVIEW This review illustrates several antifungal drugs repurposed for cancer therapy and reveals the underlying mechanism based on their original target and "off-site" target. Furthermore, the challenges and perspectives for the future development and clinical applications of antifungal drugs for cancer therapy are also discussed, providing a refresh understanding of drug repurposing. KEY SCIENTIFIC CONCEPTS OF REVIEW This review may provide a basic understanding of repurposed antifungal drugs for clinical cancer management, thereby helping antifungal drugs broaden new indications and promote clinical translation.
Collapse
Affiliation(s)
- Ningna Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian 350011, PR China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhan Tan
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
23
|
Wang Y, Sharma A, Ge F, Chen P, Yang Y, Liu H, Liu H, Zhao C, Mittal L, Asthana S, Schmidt-Wolf IGH. Non-oncology drug (meticrane) shows anti-cancer ability in synergy with epigenetic inhibitors and appears to be involved passively in targeting cancer cells. Front Oncol 2023; 13:1157366. [PMID: 37274234 PMCID: PMC10235775 DOI: 10.3389/fonc.2023.1157366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Emerging evidence suggests that chemotherapeutic agents and targeted anticancer drugs have serious side effects on the healthy cells/tissues of the patient. To overcome this, the use of non-oncology drugs as potential cancer therapies has been gaining momentum. Herein, we investigated one non-oncology drug named meticrane (a thiazide diuretic used to treat essential hypertension), which has been reported to indescribably improve the therapeutic efficacy of anti-CTLA4 in mice with AB1 HA tumors. In our hypothesis-driven study, we tested anti-cancer potential meticrane in hematological malignance (leukemia and multiple myeloma) and liver cancer cell lines. Our analysis showed that: 1) Meticrane induced alteration in the cell viability and proliferation in leukemia cells (Jurkat and K562 cells) and liver cancer (SK-hep-1), however, no evidence of apoptosis was detectable. 2) Meticrane showed additive/synergistic effects with epigenetic inhibitors (DNMT1/5AC, HDACs/CUDC-101 and HDAC6/ACY1215). 3) A genome-wide transcriptional analysis showed that meticrane treatment induces changes in the expression of genes associated with non-cancer associated pathways. Of importance, differentially expressed genes showed favorable correlation with the survival-related genes in the cancer genome. 4) We also performed molecular docking analysis and found considerable binding affinity scores of meticrane against PD-L1, TIM-3, CD73, and HDACs. Additionally, we tested its suitability for immunotherapy against cancers, but meticrane showed no response to the cytotoxicity of cytokine-induced killer (CIK) cells. To our knowledge, our study is the first attempt to identify and experimentally confirm the anti-cancer potential of meticrane, being also the first to test the suitability of any non-oncology drug in CIK cell therapy. Beyond that, we have expressed some concerns confronted during testing meticrane that also apply to other non-oncology drugs when considered for future clinical or preclinical purposes. Taken together, meticrane is involved in some anticancer pathways that are passively targeting cancer cells and may be considered as compatible with epigenetic inhibitors.
Collapse
Affiliation(s)
- Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Fangfang Ge
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Yu Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongjia Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunxia Zhao
- School of Nursing, Nanchang University, Nanchang, China
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
24
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
25
|
Small-molecule inhibitor of Fam20C in combination with paclitaxel suppresses tumor growth by LIF-JAK2/STAT3-modulated apoptosis in triple-negative breast cancer. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Nanostructures as Photothermal Agents in Tumor Treatment. Molecules 2022; 28:molecules28010277. [PMID: 36615470 PMCID: PMC9822183 DOI: 10.3390/molecules28010277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Traditional methods of tumor treatment such as surgical resection, chemotherapy, and radiation therapy have certain limitations, and their treatment effects are not always satisfactory. As a new tumor treatment method, photothermal therapy based on nanostructures has attracted the attention of researchers due to its characteristics of minimally invasive, low side effects, and inhibition of cancer metastasis. In recent years, there has been a variety of inorganic or organic nanostructures used in the field of photothermal tumor treatment, and they have shown great application prospects. In this paper, the advantages and disadvantages of a variety of nanomaterials/nanostructures as photothermal agents (PTAs) for photothermal therapy as well as their research progress are reviewed. For the sake of clarity, the recently reported nanomaterials/nanostructures for photothermal therapy of tumor are classified into five main categories, i.e., carbon nanostructures, noble metal nanostructures, transition metal sulfides, organic polymer, and other nanostructures. In addition, future perspectives or challenges in the related field are discussed.
Collapse
|
27
|
Meng X, Yan N, Guo T, Chen M, Sui D, Wang M, Zhang K, Liu X, Deng Y, Song Y. Antitumor Immunotherapy of Sialic Acid and/or GM1 Modified Coenzyme Q10 Submicron Emulsion. AAPS PharmSciTech 2022; 23:283. [PMID: 36253573 DOI: 10.1208/s12249-022-02426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Immunotherapy is a novel therapeutic approach for controlling and killing tumor cells by stimulating or reconstituting the immune system, among which T cells serve as immune targets. Herein, we used coenzyme Q10 (CoQ10), which has both immune activation and avoids adverse reactions, as a model drug and developed four CoQ10 submicron emulsions modified with sialic acid (SA) and/or monosialotetrahexosyl ganglioside (GM1). On the one hand, SA interacts with L-selectins on the surface of T cells after entering the circulatory system, leading to activation of T cells and enhancement of antitumor immune responses. On the other hand, owing to its immune camouflage, GM1 can prolong the circulation time of the preparation in the body, thereby increasing the accumulation of the drug at the tumor site. In vitro and in vivo experiments showed that SA-modified preparations exhibited stronger immune activation and inhibition of tumor proliferation. Pharmacokinetic experiments showed that GM1-modified preparations have longer circulation times in vivo. However, SA and GM1 co-modification did not produce a synergistic effect on the preparation. In conclusion, the SA-modified CoQ10 submicron emulsion (Q10-SE) showed optimal antitumor efficacy when administered at a medium dose (6 mg CoQ10 kg-1). In this study, the submicron emulsion model was used as a carrier, and the tumor-bearing mice were used as animal models. In addition, CoQ10 submicron emulsion was modified with SA-CH with active targeting function and/or GM1 with long-circulation function to explore the antitumor effects of different doses of CoQ10 submicron emulsion, and to screen the best tumor immunotherapy formulations of CoQ10.
Collapse
Affiliation(s)
- Xianmin Meng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, , Liaoning, 110016, People's Republic of China
| | - Na Yan
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, , Liaoning, 110016, People's Republic of China
| | - Tiantian Guo
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, , Liaoning, 110016, People's Republic of China
| | - Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, , Liaoning, 110016, People's Republic of China
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, , Liaoning, 110016, People's Republic of China
| | - Mingqi Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, , Liaoning, 110016, People's Republic of China
| | - Kaituo Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, , Liaoning, 110016, People's Republic of China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, , Liaoning, 110016, People's Republic of China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, , Liaoning, 110016, People's Republic of China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, , Liaoning, 110016, People's Republic of China.
| |
Collapse
|
28
|
Wang H, Zhou X, Li C, Yan S, Feng C, He J, Li Z, Tu C. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy. J Hematol Oncol 2022; 15:140. [PMID: 36209102 PMCID: PMC9547461 DOI: 10.1186/s13045-022-01365-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pediatric cancers are the driving cause of death for children and adolescents. Due to safety requirements and considerations, treatment strategies and drugs for pediatric cancers have been so far scarcely studied. It is well known that tumor cells tend to progressively evade cell death pathways, which is known as apoptosis resistance, one of the hallmarks of cancer, dominating tumor drug resistance. Recently, treatments targeting nonapoptotic cell death have drawn great attention. Pyroptosis, a newly specialized form of cell death, acts as a critical physiological regulator in inflammatory reaction, cell development, tissue homeostasis and stress response. The action in different forms of pyroptosis is of great significance in the therapy of pediatric cancers. Pyroptosis could be induced and consequently modulate tumorigenesis, progression, and metastasis if treated with local or systemic therapies. However, excessive or uncontrolled cell death might lead to tissue damage, acute inflammation, or even cytokine release syndrome, which facilitates tumor progression or recurrence. Herein, we aimed to describe the molecular mechanisms of pyroptosis, to highlight and discuss the challenges and opportunities for activating pyroptosis pathways through various oncologic therapies in multiple pediatric neoplasms, including osteosarcoma, neuroblastoma, leukemia, lymphoma, and brain tumors.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Xiaowen Zhou
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Shuxiang Yan
- Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
29
|
Mohapatra P, Chandrasekaran N. Wnt/β-catenin targeting in liver carcinoma through nanotechnology-based drug repurposing: A review. Biomed Pharmacother 2022; 155:113713. [PMID: 36126453 DOI: 10.1016/j.biopha.2022.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Liver cancer is the fifth most widespread in the world, with a high fatality rate and poor prognosis.However,surgicalresction,thermal/radiofrequencyablation,chemo/radioembolization and pathway targeting to the cancer cells are all possible options for treating Liver Carcinoma. Unfortunately, once the tumour has developed and spread, diagnosis often occurs too late. The targeted therapy has demonstrated notable, albeit modest, efficacy in some patients with advanced HCC. This demonstrates the necessity of creating additional focused treatments and, in pursuit of this end, the need to find ever-more pathways as prospective targets. Despite the critical need, there are currently no Wnt signalling directed therapy on the research field, only a few methods have progressed beyond the early stage of clinical studies. In the present study, we report that repurposing of drug previously licensed for other diseases is one possible strategy inhibit malignant cell proliferation and renewal by removing individuals protein expression in the Wnt/β-catenin pathway. Particularly β-catenin complex is present in Liver cancer, where tumour necrosis factor is indispensable for the complex formation and β-catenin interactions are disrupted upon drug in nano-carrier through nanotechnology. This study findings not only highlight that repurposing drug could improve liver cancer treatment outcomes but also focused to character traits and functions of the Wnt signalling cascade's molecular targets and how they could be used to get anti-tumour results method to targeting Wnt/β-catenin in liver carcinoma.
Collapse
|
30
|
Chen S, Zhang L, Chen Y, Fu L. Inhibiting Sodium Taurocholate Cotransporting Polypeptide in HBV-Related Diseases: From Biological Function to Therapeutic Potential. J Med Chem 2022; 65:12546-12561. [DOI: 10.1021/acs.jmedchem.2c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
31
|
Gu Z, Yao Y, Yang G, Zhu G, Tian Z, Wang R, Wu Q, Wang Y, Wu Y, Chen L, Wang C, Gao J, Kang X, Zhang J, Wang L, Duan S, Zhao Z, Zhang Z, Sun S. Pharmacogenomic landscape of head and neck squamous cell carcinoma informs precision oncology therapy. Sci Transl Med 2022; 14:eabo5987. [PMID: 36070368 DOI: 10.1126/scitranslmed.abo5987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and frequently lethal cancer with few therapeutic options. In particular, there are few effective targeted therapies. Development of highly effective therapeutic strategies tailored to patients with HNSCC remains a pressing challenge. To address this, we present a pharmacogenomic study to facilitate precision treatments for patients with HNSCC. We established a large collection of 56 HNSCC patient-derived cells (PDCs), which recapitulated the molecular features of the original tumors. Pharmacological assessment of HNSCCs was conducted using a three-tiered high-throughput drug screening using 2248 compounds across these PDC models and an additional 18 immortalized cell lines. We integrated genomic, transcriptomic, and pharmacological analysis to predict biomarkers, gene-drug associations, and validated biomarkers. These results supported drug repurposing for multiple HNSCC subtypes, including the JAK2 inhibitor fedratinib, for low KRT18-expressing HNSCC cases, and the topoisomerase inhibitor mitoxantrone, for IL6R-activated HNSCC cases. Our results demonstrated concordance between susceptibility predictions from the PDCs and the matched patients' responses to standard clinical medication. Moreover, we identified and experimentally confirmed that high expression of ITGB1 elicited therapeutic resistance to docetaxel and high SOD1 expression conferred resistance to afatinib. We further validated ITGB1 as a predictive biomarker for the efficacy of docetaxel therapy in a phase 2 clinical trial. In summary, our study shows that this HNSCC cell resource, as well as the resulting pharmacogenomic profiles, is effective for biomarker discovery and for guiding precision oncology therapies in HNSCCs.
Collapse
Affiliation(s)
- Ziyue Gu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yanli Yao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guizhu Yang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guopei Zhu
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.,Department of Oral and Maxillofacial-Head Neck Oncology, Division of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhen Tian
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.,Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Qi Wu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yujue Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yaping Wu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Lan Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Chong Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jiamin Gao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xindan Kang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jie Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Lizhen Wang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.,Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shengzhong Duan
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
32
|
Thuru X, Magnez R, El-Bouazzati H, Vergoten G, Quesnel B, Bailly C. Drug Repurposing to Enhance Antitumor Response to PD-1/PD-L1 Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:3368. [PMID: 35884428 PMCID: PMC9322126 DOI: 10.3390/cancers14143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have considerably improved the treatment of some cancers, but novel drugs, new combinations, and treatment modalities are needed to reinvigorate immunosurveillance in immune-refractory tumors. An option to elicit antitumor immunity against cancer consists of using approved and marketed drugs known for their capacity to modulate the expression and functioning of the PD-1/PD-L1 checkpoint. Here, we have reviewed several types of drugs known to alter the checkpoint, either directly via the blockade of PD-L1 or indirectly via an action on upstream effectors (such as STAT3) to suppress PD-L1 transcription or to induce its proteasomal degradation. Specifically, the repositioning of the approved drugs liothyronine, azelnidipine (and related dihydropyridine calcium channel blockers), niclosamide, albendazole/flubendazole, and a few other modulators of the PD-1/PD-L1 checkpoint (repaglinide, pimozide, fenofibrate, lonazolac, propranolol) is presented. Their capacity to bind to PD-L1 or to repress its expression and function offer novel perspectives for combination with PD-1 targeted biotherapeutics. These known and affordable drugs could be useful to improve the therapy of cancer.
Collapse
Affiliation(s)
- Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Romain Magnez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Hassiba El-Bouazzati
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Inserm, INFINITE—U1286, 3 Rue du Professeur Laguesse, BP-83, F-59006 Lille, France;
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | | |
Collapse
|
33
|
El Zarif T, Yibirin M, De Oliveira-Gomes D, Machaalani M, Nawfal R, Bittar G, Bahmad HF, Bitar N. Overcoming Therapy Resistance in Colon Cancer by Drug Repurposing. Cancers (Basel) 2022; 14:cancers14092105. [PMID: 35565237 PMCID: PMC9099737 DOI: 10.3390/cancers14092105] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite improvements in standardized screening methods and the development of promising therapies for colorectal cancer (CRC), survival rates are still low. Drug repurposing offers an affordable solution to achieve new indications for previously approved drugs that could play a protagonist or adjuvant role in the treatment of CRC. In this review, we summarize the current data supporting drug repurposing as a feasible option for patients with CRC. Abstract Colorectal cancer (CRC) is the third most common cancer in the world. Despite improvement in standardized screening methods and the development of promising therapies, the 5-year survival rates are as low as 10% in the metastatic setting. The increasing life expectancy of the general population, higher rates of obesity, poor diet, and comorbidities contribute to the increasing trends in incidence. Drug repurposing offers an affordable solution to achieve new indications for previously approved drugs that could play a protagonist or adjuvant role in the treatment of CRC with the advantage of treating underlying comorbidities and decreasing chemotherapy toxicity. This review elaborates on the current data that supports drug repurposing as a feasible option for patients with CRC with a focus on the evidence and mechanism of action promising repurposed candidates that are widely used, including but not limited to anti-malarial, anti-helminthic, anti-inflammatory, anti-hypertensive, anti-hyperlipidemic, and anti-diabetic agents.
Collapse
Affiliation(s)
- Talal El Zarif
- Faculty of Medicine, Lebanese University, Beirut 1003, Lebanon; (T.E.Z.); (M.M.); (R.N.)
| | - Marcel Yibirin
- Internal Medicine Residency Program, Department of Medicine, Boston University Medical Center, Boston, MA 02218, USA;
| | - Diana De Oliveira-Gomes
- Department of Research, Foundation for Clinic, Public Health, and Epidemiological Research of Venezuela (FISPEVEN), Caracas 1050, Venezuela;
| | - Marc Machaalani
- Faculty of Medicine, Lebanese University, Beirut 1003, Lebanon; (T.E.Z.); (M.M.); (R.N.)
| | - Rashad Nawfal
- Faculty of Medicine, Lebanese University, Beirut 1003, Lebanon; (T.E.Z.); (M.M.); (R.N.)
| | | | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence: ; Tel.: +1-786-961-0216
| | - Nizar Bitar
- Head of Hematology-Oncology Division, Sahel General Hospital, Beirut 1002, Lebanon;
- President of the Lebanese Society of Medical Oncology (LSMO), Beirut 1003, Lebanon
| |
Collapse
|