1
|
Gupta S, Vera-Ponce de León A, Kodama M, Hoetzinger M, Clausen CG, Pless L, Verissimo ARA, Stengel B, Calabuig V, Kvingedal R, Skugor S, Westereng B, Harvey TN, Nordborg A, Bertilsson S, Limborg MT, Mørkøre T, Sandve SR, Pope PB, Hvidsten TR, La Rosa SL. The need for high-resolution gut microbiome characterization to design efficient strategies for sustainable aquaculture production. Commun Biol 2024; 7:1391. [PMID: 39455736 PMCID: PMC11511968 DOI: 10.1038/s42003-024-07087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microbiome-directed dietary interventions such as microbiota-directed fibers (MDFs) have a proven track record in eliciting responses in beneficial gut microbes and are increasingly being promoted as an effective strategy to improve animal production systems. Here we used initial metataxonomic data on fish gut microbiomes as well as a wealth of a priori mammalian microbiome knowledge on α-mannooligosaccharides (MOS) and β-mannan-derived MDFs to study effects of such feed supplements in Atlantic salmon (Salmo salar) and their impact on its gut microbiome composition and functionalities. Our multi-omic analysis revealed that the investigated MDFs (two α-mannans and an acetylated β-galactoglucomannan), at a dose of 0.2% in the diet, had negligible effects on both host gene expression, and gut microbiome structure and function under the studied conditions. While a subsequent trial using a higher (4%) dietary inclusion of β-mannan significantly shifted the gut microbiome composition, there were still no biologically relevant effects on salmon metabolism and physiology. Only a single Burkholderia-Caballeronia-Paraburkholderia (BCP) population demonstrated consistent and significant abundance shifts across both feeding trials, although with no evidence of β-mannan utilization capabilities or changes in gene transcripts for producing metabolites beneficial to the host. In light of these findings, we revisited our omics data to predict and outline previously unreported and potentially beneficial endogenous lactic acid bacteria that should be targeted with future, conceivably more suitable, MDF strategies for salmon.
Collapse
Affiliation(s)
- Shashank Gupta
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Hoetzinger
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cecilie G Clausen
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Louisa Pless
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ana R A Verissimo
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anna Nordborg
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Turid Mørkøre
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R Sandve
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
2
|
Thormar EA, Hansen SB, Jørgensen LVG, Limborg MT. Sampling fish gut microbiota - A genome-resolved metagenomic approach. Ecol Evol 2024; 14:e70302. [PMID: 39290662 PMCID: PMC11407903 DOI: 10.1002/ece3.70302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Despite a surge in microbiota-focused studies in teleosts, few have reported functional data on whole metagenomes as it has proven difficult to extract high biomass microbial DNA from fish intestinal samples. The zebrafish is a promising model organism in functional microbiota research, yet studies on the functional landscape of the zebrafish gut microbiota through shotgun based metagenomics remain scarce. Thus, a consensus on an appropriate sampling method accurately representing the zebrafish gut microbiota, or any fish species is lacking. Addressing this, we systematically tested four methods of sampling the zebrafish gut microbiota: collection of faeces from the tank, the whole gut, intestinal content, and the application of ventral pressure to facilitate extrusion of gut material. Additionally, we included water samples as an environmental control to address the potential influence of the environmental microbiota on each sample type. To compare these sampling methods, we employed a combination of genome-resolved metagenomics and 16S metabarcoding techniques. We observed differences among sample types on all levels including sampling, bioinformatic processing, metagenome co-assemblies, generation of metagenome-assembled genomes (MAGs), functional potential, MAG coverage, and population level microdiversity. Comparison to the environmental control highlighted the potential impact of the environmental contamination on data interpretation. While all sample types tested are informative about the zebrafish gut microbiota, the results show that optimal sample type for studying fish microbiomes depends on the specific objectives of the study, and here we provide a guide on what factors to consider for designing functional metagenome-based studies on teleost microbiomes.
Collapse
Affiliation(s)
- Eiríkur A. Thormar
- Globe Institute, Faculty of Health and Medical Sciences, Center for Evolutionary HologenomicsUniversity of CopenhagenCopenhagen KDenmark
| | - Søren B. Hansen
- Globe Institute, Faculty of Health and Medical Sciences, Center for Evolutionary HologenomicsUniversity of CopenhagenCopenhagen KDenmark
| | - Louise von Gersdorff Jørgensen
- Section for Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Morten T. Limborg
- Globe Institute, Faculty of Health and Medical Sciences, Center for Evolutionary HologenomicsUniversity of CopenhagenCopenhagen KDenmark
| |
Collapse
|
3
|
Knobloch S, Skirnisdóttir S, Dubois M, Mayolle L, Kolypczuk L, Leroi F, Leeper A, Passerini D, Marteinsson VÞ. The gut microbiome of farmed Arctic char ( Salvelinus alpinus) is shaped by feeding stage and nutrient presence. FEMS MICROBES 2024; 5:xtae011. [PMID: 38745980 PMCID: PMC11092275 DOI: 10.1093/femsmc/xtae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays an important role in maintaining health and productivity of farmed fish. However, the functional role of most gut microorganisms remains unknown. Identifying the stable members of the gut microbiota and understanding their functional roles could aid in the selection of positive traits or act as a proxy for fish health in aquaculture. Here, we analyse the gut microbial community of farmed juvenile Arctic char (Salvelinus alpinus) and reconstruct the metabolic potential of its main symbionts. The gut microbiota of Arctic char undergoes a succession in community composition during the first weeks post-hatch, with a decrease in Shannon diversity and the establishment of three dominant bacterial taxa. The genome of the most abundant bacterium, a Mycoplasma sp., shows adaptation to rapid growth in the nutrient-rich gut environment. The second most abundant taxon, a Brevinema sp., has versatile metabolic potential, including genes involved in host mucin degradation and utilization. However, during periods of absent gut content, a Ruminococcaceae bacterium becomes dominant, possibly outgrowing all other bacteria through the production of secondary metabolites involved in quorum sensing and cross-inhibition while benefiting the host through short-chain fatty acid production. Whereas Mycoplasma is often present as a symbiont in farmed salmonids, we show that the Ruminococcaceae species is also detected in wild Arctic char, suggesting a close evolutionary relationship between the host and this symbiotic bacterium.
Collapse
Affiliation(s)
- Stephen Knobloch
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Food Technology, University of Applied Sciences Fulda, Leipziger Strasse 123, 36037 Fulda, Germany
| | | | - Marianne Dubois
- ESBS/University of Strasbourg, 300 Bd Sébastien Brant, 67085 Strasbourg, France
| | - Lucie Mayolle
- University of Technology of Compiègne, Rue Roger Couttolenc, 60203 Compiègne, France
| | - Laetitia Kolypczuk
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Françoise Leroi
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Alexandra Leeper
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Arboretveien 6, 1430 Ås, Norway
- Iceland Ocean Cluster, Department of Research and Innovation, Grandagarður 16, 101 Reykjavík, Iceland
| | - Delphine Passerini
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Viggó Þ Marteinsson
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Sæmundargata 2, 101 Reykjavik, Iceland
| |
Collapse
|
4
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
5
|
Griffin TW, Darsan MA, Collins HI, Holohan BA, Pierce ML, Ward JE. A multi-study analysis of gut microbiome data from the blue mussel (Mytilus edulis) emphasises the impact of depuration on biological interpretation. Environ Microbiol 2023; 25:3435-3449. [PMID: 37941484 DOI: 10.1111/1462-2920.16537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
The blue mussel (Mytilus edulis) is a suspension feeder which has been used in gut-microbiome surveys. Although raw 16S sequence data are often publicly available, unifying secondary analyses are lacking. The present work analysed raw data from seven projects conducted by one group over 7 years. Although each project had different motivations, experimental designs and conclusions, all selected samples were from the guts of M. edulis collected from a single location in Long Island Sound. The goal of this analysis was to determine which independent factors (e.g., collection date, depuration status) were responsible for governing composition and diversity in the gut microbiomes. Results indicated that whether mussels had undergone depuration, defined here as voidance of faeces in a controlled, no-food period, was the primary factor that governed gut microbiome composition. Gut microbiomes from non-depurated mussels were mixtures of resident and transient communities and were influenced by temporal factors. Resident communities from depurated mussels were influenced by the final food source and length of time host mussels were held under laboratory conditions. These findings reinforce the paradigm that gut microbiota are divided into resident and transient components and suggest that depuration status should be taken into consideration when designing and interpreting future experiments.
Collapse
Affiliation(s)
- Tyler W Griffin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Mya A Darsan
- Department of Biological Sciences, University at Albany, Albany, New York, USA
- Department of Marine and Environmental Science, Northeastern University, Nahant, Massachusetts, USA
| | - Hannah I Collins
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Bridget A Holohan
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Melissa L Pierce
- Discovery Partners Institute, Applied R&D, University of Illinois System, Chicago, Illinois, USA
| | - J Evan Ward
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
6
|
Lokesh J, Delaygues M, Defaix R, Le Bechec M, Pigot T, Dupont-Nivet M, Kerneis T, Labbé L, Goardon L, Terrier F, Panserat S, Ricaud K. Interaction between genetics and inulin affects host metabolism in rainbow trout fed a sustainable all plant-based diet. Br J Nutr 2023; 130:1105-1120. [PMID: 36690577 DOI: 10.1017/s0007114523000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inulin affects nutrition and metabolism in many animals. Although inulin is widely used in the diet of teleosts, its mechanism of action is unknown. Here, we investigated the effect of inulin (2 %) on the intestinal microbiome and metabolism in rainbow trout (Oncorhynchus mykiss) selected for growth and survival when fed a 100 % plant-based diet (suave) and a control line (temoin). Metabolic responses to the two factors (line and inulin) in liver, intestine, muscle and adipose were tissue-specific, with line and interaction between the two factors influencing overall expression in liver. In the intestine, inulin and line and in muscle, line influenced the expression of metabolic genes. Microbiota between the mucus and digestive contents was significantly different, with genera from Proteobacteria being more abundant in the mucus, whereas genera from the Firmicutes and Planctomycetes being more abundant in contents. Effect of inulin and interaction between factors on the microbiome was evident in contents. The significant taxa of control and inulin-fed groups differed greatly with Streptococcus and Weissella being significantly abundant in the inulin-fed group. There was a general trend showing higher levels of all SCFA in temoin group with propionic acid levels being significantly higher. An operational taxonomic unit (OTU) belonging to the Ruminococcaceae was significantly abundant in suave. The tissue-specific correlations between OTU and gene expression may indicate the link between microbiome and metabolism. Together, these results suggest that line and inulin impact the gene expression in a tissue-specific manner, possibly driven by specific OTUs enriched in inulin-fed groups and suave.
Collapse
Affiliation(s)
- Jep Lokesh
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Marine Delaygues
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Raphaël Defaix
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Mickael Le Bechec
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue Président Angot, 64 053 PAU cedex 9, France
| | - Thierry Pigot
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue Président Angot, 64 053 PAU cedex 9, France
| | | | | | | | | | - Frédéric Terrier
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Karine Ricaud
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
7
|
Wang J, Li Y, Jaramillo-Torres A, Einen O, Jakobsen JV, Krogdahl Å, Kortner TM. Exploring gut microbiota in adult Atlantic salmon (Salmo salar L.): Associations with gut health and dietary prebiotics. Anim Microbiome 2023; 5:47. [PMID: 37789427 PMCID: PMC10548677 DOI: 10.1186/s42523-023-00269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The importance of the gut microbiota for physiological processes in mammals is well established, but the knowledge of their functional roles in fish is still limited. The aims of this study were to investigate associations between variation in taxonomical composition of the gut microbiota and gut health status in Atlantic salmon and to explore possible modulatory effects of dietary prebiotics in one net-pen farm in open water. The fish with initial mean body weight of around 240 g were fed diets based on the same basal composition, either without (Ref diet) or with (Test diet) yeast cell wall based-prebiotics, during the marine production phase from December to September the following year. Sampling was conducted at three sampling time points: January, April, and September, with average water temperature of 3.9 ℃, 3.4 ℃ and 9.6 ℃, respectively. RESULTS As the fish progressed towards September, growth, brush border membrane enzyme activities, and the expression in the gut of most of the observed genes involved in immune (e.g., il8, cd4a, myd88, il1b, gilt, tgfb, cd8b and cd3), barrier (e.g., zo1, occludin, ecad, claudin25b and claudin15), and metabolism increased significantly. Lipid accumulation in pyloric enterocytes decreased remarkably, suggesting improvement of gut health condition. The growth of the fish did not differ between dietary treatments. Further, dietary prebiotics affected the gut health only marginally regardless of duration of administration. Regarding gut microbiota composition, a decrease in alpha diversity (Observed species, Pielou and Shannon) over time was observed, which was significantly associated with an increase in the relative abundance of genus Mycoplasma and decrease in 32 different taxa in genus level including lactic acid bacteria (LAB), such as Lactobacillus, Leuconostoc, and Lactococcus. This indicates that developmental stage of Atlantic salmon is a determinant for microbial composition. Multivariate association analysis revealed that the relative abundance of Mycoplasma was positively correlated with gut barrier gene expression, negatively correlated with plasma glucose levels, and that its relative abundance slightly increased by exposure to prebiotics. Furthermore, certain LAB (e.g., Leuconostoc), belonging to the core microbiota, showed a negative development with time, and significant associations with plasma nutrients levels (e.g., triglyceride and cholesterol) and gene expression related to gut immune and barrier function. CONCLUSIONS As Atlantic salmon grew older under large-scale, commercial farm settings, the Mycoplasma became more prominent with a concomitant decline in LAB. Mycoplasma abundance correlated positively with time and gut barrier genes, while LAB abundance negatively correlated to time. Dietary prebiotics affected gut health status only marginally.
Collapse
Affiliation(s)
- Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing, China.
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway.
| | - Yanxian Li
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway
| | | | - Olai Einen
- Cermaq Group AS, Dronning Eufemias gate 16, Oslo, 0191, Norway
| | - Jan Vidar Jakobsen
- Cargill Aqua Nutrition, Prof. Olav Hanssensvei 7A, Stavanger, 4021, Norway
| | - Åshild Krogdahl
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway
| | - Trond M Kortner
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway
| |
Collapse
|
8
|
Suhr M, Fichtner-Grabowski FT, Seibel H, Bang C, Franke A, Schulz C, Hornburg SC. The microbiota knows: handling-stress and diet transform the microbial landscape in the gut content of rainbow trout in RAS. Anim Microbiome 2023; 5:33. [PMID: 37386608 DOI: 10.1186/s42523-023-00253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The aim of the present study was to characterize the effects of handling stress on the microbiota in the intestinal gut contents of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet from two different breeding lines (initial body weights: A: 124.69 g, B: 147.24 g). Diets were formulated in accordance with commercial trout diets differing in their respective protein sources: fishmeal (35% in fishmeal-based diet F, 7% in plant protein-based diet V) and plant-based proteins (47% in diet F, 73% in diet V). Experimental diets were provided for 59 days to all female trout in two separate recirculating aquaculture systems (RASs; mean temperature: A: 15.17 °C ± 0.44, B: 15.42 °C ± 0.38). Half of the fish in each RAS were chased with a fishing net twice per day to induce long-term stress (Group 1), while the other half were not exposed to stress (Group 0). RESULTS No differences in performance parameters were found between the treatment groups. By using 16S rRNA amplicon sequencing of the hypervariable region V3/V4, we examined the microbial community in the whole intestinal content of fish at the end of the trial. We discovered no significant differences in alpha diversity induced by diet or stress within either genetic trout line. However, the microbial composition was significantly driven by the interaction of stress and diet in trout line A. Otherwise, in trout line B, the main factor was stress. The communities of both breeding lines were predominantly colonized by bacteria from the phyla Fusobacteriota, Firmicutes, Proteobacteria, Actinobacteriota, and Bacteroidota. The most varying and abundant taxa were Firmicutes and Fusobacteriota, whereas at the genus level, Cetobacterium and Mycoplasma were key components in terms of adaptation. In trout line A, Cetobacterium abundance was affected by factor stress, and in trout line B, it was affected by the factor diet. CONCLUSION We conclude that microbial gut composition, but neither microbial diversity nor fish performance, is highly influenced by stress handling, which also interacts with dietary protein sources. This influence varies between different genetic trout lines and depends on the fish's life history.
Collapse
Affiliation(s)
- Marvin Suhr
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 9, 24118, Kiel, Germany.
| | | | - Henrike Seibel
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Hafentörn 3, 25761, Büsum, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany
| | - Carsten Schulz
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Hafentörn 3, 25761, Büsum, Germany
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 6, 24118, Kiel, Germany
| | - Stéphanie Céline Hornburg
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 9, 24118, Kiel, Germany
| |
Collapse
|
9
|
Rasmussen JA, Kiilerich P, Madhun AS, Waagbø R, Lock EJR, Madsen L, Gilbert MTP, Kristiansen K, Limborg MT. Co-diversification of an intestinal Mycoplasma and its salmonid host. THE ISME JOURNAL 2023; 17:682-692. [PMID: 36807409 PMCID: PMC10119124 DOI: 10.1038/s41396-023-01379-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Understanding the evolutionary relationships between a host and its intestinal resident bacteria can transform how we understand adaptive phenotypic traits. The interplay between hosts and their resident bacteria inevitably affects the intestinal environment and, thereby, the living conditions of both the host and the microbiota. Thereby this co-existence likely influences the fitness of both bacteria and host. Whether this co-existence leads to evolutionary co-diversification in animals is largely unexplored, mainly due to the complexity of the environment and microbial communities and the often low host selection. We present the gut metagenome from wild Atlantic salmon (Salmo salar), a new wild organism model with an intestinal microbiota of low complexity and a well-described population structure, making it well-suited for investigating co-evolution. Our data reveal a strong host selection of a core gut microbiota dominated by a single Mycoplasma species. We found a clear co-diversification between the population structure of Atlantic salmon and nucleotide variability of the intestinal Mycoplasma populations conforming to expectations from co-evolution between host and resident bacteria. Our results show that the stable microbiota of Atlantic salmon has evolved with its salmonid host populations while potentially providing adaptive traits to the salmon host populations, including defence mechanisms, biosynthesis of essential amino acids, and metabolism of B vitamins. We highlight Atlantic salmon as a novel model for studying co-evolution between vertebrate hosts and their resident bacteria.
Collapse
Affiliation(s)
- Jacob A Rasmussen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Pia Kiilerich
- Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, 2300, Copenhagen, Denmark
| | | | - Rune Waagbø
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
An Evaluation of Laminarin Additive in the Diets of Juvenile Largemouth Bass ( Micropterus salmoides): Growth, Antioxidant Capacity, Immune Response and Intestinal Microbiota. Animals (Basel) 2023; 13:ani13030459. [PMID: 36766348 PMCID: PMC9913627 DOI: 10.3390/ani13030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
A 28 day feeding trial was conducted to investigate the growth performance, immune response and intestinal microbiota of laminarin (LAM) supplemented diets in juvenile largemouth bass (Micropterus salmoides). Four hundred and eighty fish (initial average weight: 0.72 ± 0.04 g) were randomly divided into four groups (40 fish per tank with three replicates in each group) Four diets were prepared with LAM supplementation at the doses of 0 (control), 5 g Kg-1 (LL), 10 g Kg-1 (ML) and 15 g Kg-1 (HL), respectively. No significant difference in the specific growth rate (SGR) and hepatosomatic index (HSI) was observed in fish among the four groups, or in the lipid and ash content of fish flesh. In addition, fish in the LL group exhibited much higher antioxidant capacity (p < 0.05), while the diets with the inclusion of 5 and 10 g Kg-1 LAM remarkably decreased the antioxidant capacity of fish (p > 0.05). Dietary LAM at the dose of 5 g Kg-1 inhibited the transcription of interleukin-1β (il-1β) and tumor necrosis factor-α (tnf-α), while promoting the expression of transforming growth factor-β (tgf-β) in fish intestine. Moreover, the beneficial intestinal bacteria Bacteroide, Comamonas and Mycoplasma abundance significantly increased in fish from the LL group, while the content of opportunistic pathogens Plesiomonas, Aeromonas and Brevinema in fish of the HL group was substantially higher than the control group. Overall, the appropriate dose of supplemented LAM in the diet was 5 g Kg-1, while an excessive supplementation of LAM in the diet led to microbial community instability in largemouth bass.
Collapse
|
11
|
Zhang T, Wang X, Qu Y, Zhang X, Zhang Q, Yang D, Wang Q, Dong Z, Zhao J. Intestinal microbiota perturbations in the gastropod Trochus niloticus concurrently exposed to ocean acidification and environmentally relevant concentrations of sulfamethoxazole. CHEMOSPHERE 2023; 311:137115. [PMID: 36356817 DOI: 10.1016/j.chemosphere.2022.137115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Ocean acidification (OA) and antibiotic pollution pose severe threats to the fitness of keystone species in marine ecosystems. However, the combined effects of OA and antibiotic pollution on the intestinal microbiota of marine organisms are still not well known. In this study, we exposed the herbivorous gastropod Trochus niloticus, a keystone species to maintains the stability of coral reef ecosystems, to acidic seawater (pH 7.6) and/or sulfamethoxazole (SMX, 100 ng/L, 1000 ng/L) for 28 days and determined their impacts on (1) the accumulation of SMX in the intestine of T. niloticus; (2) the characteristics of the intestinal microbiota in T. niloticus; (3) the relative abundances of sulfonamide resistance genes (i.e., sul1 and sul2) and intI1 in the intestinal microbiota of T. niloticus. Our results show that OA exposure leads to dramatic microbiota dysbiosis in the intestine of T. niloticus, including changes in bacterial community diversity and structure, decreased abundances of dominant species, existences of characteristic taxa, and altered functional predictions. In addition, SMX exposure at environmentally relevant concentrations had little effect on the intestinal microbiota of T. niloticus, whether in isolation or in combination with OA. However, after exposure to the higher SMX concentration (1000 ng/L), the accumulation of SMX in the intestine of T. niloticus could induce an increase in the copies of sul2 in the intestinal microbiota. These results suggest that the intestinal health of T. niloticus might be affected by OA and SMX, which might lead to fitness loss of the keystone species in coral reef ecosystems.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi Qu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China.
| |
Collapse
|
12
|
Hines IS, Markov Madanick J, Smith SA, Kuhn DD, Stevens AM. Analysis of the core bacterial community associated with consumer-ready Eastern oysters (Crassostrea virginica). PLoS One 2023; 18:e0281747. [PMID: 36812164 PMCID: PMC9946220 DOI: 10.1371/journal.pone.0281747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Shellfish, such as the Eastern oyster (Crassostrea virginica), are an important agricultural commodity. Previous research has demonstrated the importance of the native microbiome of oysters against exogenous challenges by non-native pathogens. However, the taxonomic makeup of the oyster microbiome and the impact of environmental factors on it are understudied. Research was conducted quarterly over a calendar year (February 2020 through February 2021) to analyze the taxonomic diversity of bacteria present within the microbiome of consumer-ready-to-eat live Eastern oysters. It was hypothesized that a core group of bacterial species would be present in the microbiome regardless of external factors such as the water temperature at the time of harvest or post-harvesting processing. At each time point, 18 Chesapeake Bay (eastern United States) watershed aquacultured oysters were acquired from a local grocery store, genomic DNA was extracted from the homogenized whole oyster tissues, and the bacterial 16S rRNA gene hypervariable V4 region was PCR-amplified using barcoded primers prior to sequencing via Illumina MiSeq and bioinformatic analysis of the data. A core group of bacteria were identified to be consistently associated with the Eastern oyster, including members of the phyla Firmicutes and Spirochaetota, represented by the families Mycoplasmataceae and Spirochaetaceae, respectively. The phyla Cyanobacterota and Campliobacterota became more predominant in relation to warmer or colder water column temperature, respectively, at the time of oyster harvest.
Collapse
Affiliation(s)
- Ian S. Hines
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Justin Markov Madanick
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephen A. Smith
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David D. Kuhn
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lokesh J, Ghislain M, Reyrolle M, Bechec ML, Pigot T, Terrier F, Roy J, Panserat S, Ricaud K. Prebiotics modify host metabolism in rainbow trout (Oncorhynchus mykiss) fed with a total plant-based diet: Potential implications for microbiome-mediated diet optimization. AQUACULTURE 2022; 561:738699. [DOI: 10.1016/j.aquaculture.2022.738699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
A
Mollicutes
Metagenome-Assembled Genome from the Gut of the Pteropod
Limacina rangii. Microbiol Resour Announc 2022; 11:e0075222. [DOI: 10.1128/mra.00752-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A nearly complete genome of an uncultured
Mollicutes
sp. was obtained from the metagenome of the gut of
Limacina rangii
(open-ocean snail), an important grazer and prey for higher trophic animals along the rapidly warming region of the western Antarctic Peninsula.
Collapse
|
15
|
Fei H, Cheng Y, Zhang H, Yu X, Yi S, Huang M, Yang S. Effect of Autolyzed Yarrowia lipolytica on the Growth Performance, Antioxidant Capacity, Intestinal Histology, Microbiota, and Transcriptome Profile of Juvenile Largemouth Bass (Micropterus salmoides). Int J Mol Sci 2022; 23:ijms231810780. [PMID: 36142687 PMCID: PMC9503160 DOI: 10.3390/ijms231810780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
The improper components of formulated feed can cause the intestinal dysbiosis of juvenile largemouth bass and further affect fish health. A 28 day feeding trial was conducted to investigate the effect of partially replacing fish meal (FM) with autolyzed Yarrowia lipolytica (YL) on juvenile largemouth bass (Micropterus salmoides). We considered four diets—control, YL25, YL50, and YL75—in which 0%, 25%, 50%, and 75% of the FM content, respectively, was replaced with YL. According to results, the weight gain rate (WGR) and specific growth rate (SGR) of the fish with the YL25 and YL50 diets were significantly higher than the WGR and SGR with the control diet, while the YL75 diet significantly reduced fish growth and antioxidant enzymes activities, and shortened the villus height in the intestinal mucosa. The 16S rRNA analysis of the intestinal microbiota showed that the relative abundance of Mycoplasma was significantly increased with the YL25 and YL50 diets, while the Enterobacteriacea content was increased with the YL75 diet. Moreover, our transcriptome analysis revealed that certain differentially expressed genes (DEGs) that are associated with growth, metabolism, and immunity were modulated by YL inclusion treatment. Dietary YL25 and YL50 significantly reduced the mRNA level of ERBB receptor feedback inhibitor 1 (errfi1) and dual-specificity phosphatases (dusp), while the expression of the suppressor of cytokine signaling 1 (socs1), the transporter associated with antigen processing 2 subunit type a (tap2a), and the major histocompatibility complex class I-related gene (MHC-I-l) were sharply increased with YL75 treatment. We determined that the optimum dose of dietary YL required for maximum growth without any adverse influence on intestinal health was 189.82 g/kg (with 31.63% of the fishmeal replaced by YL), while an excessive substitution of YL for fishmeal led to suppressed growth and antioxidant capacity, as well as intestinal damage for juvenile largemouth bass.
Collapse
Affiliation(s)
- Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yan Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huimin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Yu
- Zhejiang Development &Planning Institute, Hangzhou 310012, China
| | - Shunfa Yi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: ; Tel.: +86-0571-8684-3199
| |
Collapse
|
16
|
Scheuring I, Rasmussen JA, Bozzi D, Limborg MT. A strategic model of a host–microbe–microbe system reveals the importance of a joint host–microbe immune response to combat stress-induced gut dysbiosis. Front Microbiol 2022; 13:912806. [PMID: 35992720 PMCID: PMC9386248 DOI: 10.3389/fmicb.2022.912806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Microbiomes provide key ecological functions to their host; however, most host-associated microbiomes are too complicated to allow a model of essential host–microbe–microbe interactions. The intestinal microbiota of salmonids may offer a solution since few dominating species often characterize it. Healthy fish coexist with a mutualistic Mycoplasma sp. species, while stress allows the spread of pathogenic strains, such as Aliivibrio sp. Even after a skin infection, the Mycoplasma does not recover; Aliivibrio sp. often remains the dominant species, or Mycoplasma–Aliivibrio coexistence was occasionally observed. We devised a model involving interactions among the host immune system, Mycoplasma sp. plus a toxin-producing pathogen. Our model embraces a complete microbiota community and is in harmony with experimental results that host–Mycoplasma mutualism prevents the spread of pathogens. Contrary, stress suppresses the host immune system allowing dominance of pathogens, and Mycoplasma does not recover after stress disappears.
Collapse
Affiliation(s)
- István Scheuring
- Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- MTA-ELTE, Research Group of Theoretical Biology and Evolutionary Ecology, Eötvõs University, Budapest, Hungary
| | - Jacob A. Rasmussen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Davide Bozzi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Morten T. Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Morten T. Limborg
| |
Collapse
|
17
|
Bellec L, Le Du-Carré J, Almeras F, Durand L, Cambon-Bonavita MA, Danion M, Morin T. Glyphosate-based herbicide exposure: effects on gill microbiota of rainbow trout (Oncorhynchus mykiss) and the aquatic bacterial ecosystem. FEMS Microbiol Ecol 2022; 98:fiac076. [PMID: 35749560 DOI: 10.1093/femsec/fiac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/28/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
The herbicide glyphosate has been widely used in the past 40 years, under the assumption that side effects were minimal. In recent years, its impact on microbial compositions and potential indirect effects on plant, animal and human health have been strongly suspected. Glyphosate and co-formulates have been detected in various water sources, but our understanding of their potential effects on aquatic animals is still in its infancy compared with mammals. In this study, we investigated the effect of chronic exposure to an environmentally relevant concentration of glyphosate on bacterial communities of rainbow trout (Oncorhynchus mykiss). Gills, gut contents and gut epithelia were then analyzed by metabarcoding targeting the 16S rRNA gene. Our results revealed that rainbow trout has its own bacterial communities that differ from their surrounding habitats and possess microbiomes specific to these three compartments. The glyphosate-based herbicide treatment significantly affected the gill microbiome, with a decrease in diversity. Glyphosate treatments disrupted microbial taxonomic composition and some bacteria seem to be sensitive to this environmental pollutant. Lastly, co-occurrence networks showed that microbial interactions in gills tended to decrease with chemical exposure. These results demonstrate that glyphosate could affect microbiota associated with aquaculture fish.
Collapse
Affiliation(s)
- Laure Bellec
- University of Bordeaux - UMR EPOC 5805 CNRS - Aquatic Ecotoxicology team - Place du Dr Peyneau, F-33120 Arcachon, France
| | - Jessy Le Du-Carré
- ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie, immunologie et écotoxicologie des poissons, F-29280 Plouzané, France
| | - Fabrice Almeras
- ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie, immunologie et écotoxicologie des poissons, F-29280 Plouzané, France
| | - Lucile Durand
- University of Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Marie-Anne Cambon-Bonavita
- University of Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Morgane Danion
- ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie, immunologie et écotoxicologie des poissons, F-29280 Plouzané, France
| | - Thierry Morin
- ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie, immunologie et écotoxicologie des poissons, F-29280 Plouzané, France
| |
Collapse
|
18
|
Host phylogeny, habitat, and diet are main drivers of the cephalopod and mollusk gut microbiome. Anim Microbiome 2022; 4:30. [PMID: 35527289 PMCID: PMC9082898 DOI: 10.1186/s42523-022-00184-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Invertebrates are a very attractive subject for studying host-microbe interactions because of their simple gut microbial community and host diversity. Studying the composition of invertebrate gut microbiota and the determining factors is essential for understanding their symbiotic mechanism. Cephalopods are invertebrates that have similar biological properties to vertebrates such as closed circulation system, an advanced nervous system, and a well-differentiated digestive system. However, it is not currently known whether their microbiomes have more in common with vertebrates or invertebrates. This study reports on the microbial composition of six cephalopod species and compares them with other mollusk and marine fish microbiomes to investigate the factors that shape the gut microbiota.
Results
Each cephalopod gut consisted of a distinct consortium of microbes, with Photobacterium and Mycoplasma identified as core taxa. The gut microbial composition of cephalopod reflected their host phylogeny, the importance of which was supported by a detailed oligotype-level analysis of operational taxonomic units assigned to Photobacterium and Mycoplasma. Photobacterium typically inhabited multiple hosts, whereas Mycoplasma tended to show host-specific colonization. Furthermore, we showed that class Cephalopoda has a distinct gut microbial community from those of other mollusk groups or marine fish. We also showed that the gut microbiota of phylum Mollusca was determined by host phylogeny, habitat, and diet.
Conclusion
We have provided the first comparative analysis of cephalopod and mollusk gut microbial communities. The gut microbial community of cephalopods is composed of distinctive microbes and is strongly associated with their phylogeny. The Photobacterium and Mycoplasma genera are core taxa within the cephalopod gut microbiota. Collectively, our findings provide evidence that cephalopod and mollusk gut microbiomes reflect host phylogeny, habitat, and diet. It is hoped that these data can contribute to future studies on invertebrate–microbe interactions.
Collapse
|
19
|
Bledsoe JW, Pietrak MR, Burr GS, Peterson BC, Small BC. Functional feeds marginally alter immune expression and microbiota of Atlantic salmon (Salmo salar) gut, gill, and skin mucosa though evidence of tissue-specific signatures and host-microbe coadaptation remain. Anim Microbiome 2022; 4:20. [PMID: 35272695 PMCID: PMC8908560 DOI: 10.1186/s42523-022-00173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mucosal surfaces of fish provide cardinal defense against environmental pathogens and toxins, yet these external mucosae are also responsible for maintaining and regulating beneficial microbiota. To better our understanding of interactions between host, diet, and microbiota in finfish and how those interactions may vary across mucosal tissue, we used an integrative approach to characterize and compare immune biomarkers and microbiota across three mucosal tissues (skin, gill, and gut) in Atlantic salmon receiving a control diet or diets supplemented with mannan-oligosaccharides, coconut oil, or both. Dietary impacts on mucosal immunity were further evaluated by experimental ectoparasitic sea lice (Lepeophtheirus salmonis) challenge. RESULTS Fish grew to a final size of 646.5 g ± 35.8 during the 12-week trial, with no dietary effects on growth or sea lice resistance. Bacterial richness differed among the three tissues with the highest richness detected in the gill, followed by skin, then gut, although dietary effects on richness were only detected within skin and gill. Shannon diversity was reduced in the gut compared to skin and gill but was not influenced by diet. Microbiota communities clustered separately by tissue, with dietary impacts on phylogenetic composition only detected in the skin, although skin and gill communities showed greater overlap compared to the gut according to overall composition, differential abundance, and covariance networks. Inferred metagenomic functions revealed preliminary evidence for tissue-specific host-microbiota coadaptation, as putative microbiota functions showed ties to the physiology of each tissue. Immune gene expression profiles displayed tissue-specific signatures, yet dietary effects were also detected within each tissue and peripheral blood leukocytes. Procrustes analysis comparing sample-matched multivariate variation in microbiota composition to that of immune expression profiles indicated a highly significant correlation between datasets. CONCLUSIONS Diets supplemented with functional ingredients, namely mannan-oligosaccharide, coconut oil, or a both, resulted in no difference in Atlantic salmon growth or resistance to sea lice infection. However, at the molecular level, functional ingredients caused physiologically relevant changes to mucosal microbiota and host immune expression. Putative tissue-specific metagenomic functions and the high correlation between expression profiles and microbiota composition suggest host and microbiota are interdependent and coadapted in a tissue-specific manner.
Collapse
Affiliation(s)
- Jacob W. Bledsoe
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, 3059-F National Fish Hatchery Rd., Hagerman, ID 83332 USA
| | - Michael R. Pietrak
- Agricultural Research Service, National Cold Water Marine Aquaculture Center, United States Department of Agriculture, 25 Salmon Farm Road, Franklin, ME 04634 USA
| | - Gary S. Burr
- Agricultural Research Service, National Cold Water Marine Aquaculture Center, United States Department of Agriculture, 25 Salmon Farm Road, Franklin, ME 04634 USA
| | - Brian C. Peterson
- Agricultural Research Service, National Cold Water Marine Aquaculture Center, United States Department of Agriculture, 25 Salmon Farm Road, Franklin, ME 04634 USA
| | - Brian C. Small
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, 3059-F National Fish Hatchery Rd., Hagerman, ID 83332 USA
| |
Collapse
|
20
|
Rasmussen JA, Villumsen KR, Ernst M, Hansen M, Forberg T, Gopalakrishnan S, Gilbert MTP, Bojesen AM, Kristiansen K, Limborg MT. A multi-omics approach unravels metagenomic and metabolic alterations of a probiotic and synbiotic additive in rainbow trout (Oncorhynchus mykiss). MICROBIOME 2022; 10:21. [PMID: 35094708 PMCID: PMC8802455 DOI: 10.1186/s40168-021-01221-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Animal protein production is increasingly looking towards microbiome-associated services such as the design of new and better probiotic solutions to further improve gut health and production sustainability. Here, we investigate the functional effects of bacteria-based pro- and synbiotic feed additives on microbiome-associated functions in relation to growth performance in the commercially important rainbow trout (Oncorhynchus mykiss). We combine complementary insights from multiple omics datasets from gut content samples, including 16S bacterial profiling, whole metagenomes, and untargeted metabolomics, to investigate bacterial metagenome-assembled genomes (MAGs) and their molecular interactions with host metabolism. RESULTS Our findings reveal that (I) feed additives changed the microbiome and that rainbow trout reared with feed additives had a significantly reduced relative abundance of the salmonid related Candidatus Mycoplasma salmoninae in both the mid and distal gut content, (II) genome resolved metagenomics revealed that alterations of microbial arginine biosynthesis and terpenoid backbone synthesis pathways were directly associated with the presence of Candidatus Mycoplasma salmoninae, and (III) differences in the composition of intestinal microbiota among feed types were directly associated with significant changes of the metabolomic landscape, including lipids and lipid-like metabolites, amino acids, bile acids, and steroid-related metabolites. CONCLUSION Our results demonstrate how the use of multi-omics to investigate complex host-microbiome interactions enable us to better evaluate the functional potential of probiotics compared to studies that only measure overall growth performance or that only characterise the microbial composition in intestinal environments. Video Abstract.
Collapse
Affiliation(s)
- Jacob Agerbo Rasmussen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Kasper Rømer Villumsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Copenhagen, Denmark
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, 2300, Copenhagen, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Aarhus, Denmark
| | | | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark
- University Museum NTNU, Trondheim, Norway
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Copenhagen, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Morten Tønsberg Limborg
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
21
|
Rasmussen JA, Villumsen KR, von Gersdorff Jørgensen L, Forberg T, Zuo S, Kania PW, Buchmann K, Kristiansen K, Bojesen AM, Limborg MT. Integrative analyses of probiotics, pathogenic infections, and host immune response highlight the importance of gut microbiota in understanding disease recovery in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 2022; 132:3201-3216. [PMID: 35032344 DOI: 10.1111/jam.15433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
AIMS Given the pivotal role played by the gut microbiota in regulating the host immune system, interest has arisen in the possibility of controlling fish health by modulating the gut microbiota. Hence, the need for a better understanding of the host-microbiota interactions after disease responses to optimise the use of probiotics to strengthen disease resilience and recovery. METHODS AND RESULTS We tested the effects of a probiotic feed additive in rainbow trout and challenged the fish with the causative agent for enteric redmouth disease, Yersinia ruckeri. We evaluated the survival, host immune gene expression and on the gut microbiota composition. Results revealed that provision of probiotics and exposure to Y. ruckeri induced immune gene expression in the host associated with changes in the gut microbiota. Subsequently, infection with Y. ruckeri had very little effect on microbiota composition when probiotics were applied, indicating that probiotics increased stabilisation of the microbiota. Our analysis revealed potential biomarkers for monitoring infection status and fish health. Finally, we used modelling approaches to decipher interactions between gut bacteria and the host immune gene responses, indicating removal of endogenous bacteria elicited by non-specific immune responses. CONCLUSIONS We discuss the relevance of these results emphasising the importance of host-microbiota interactions, including the protective potential of the gut microbiota in disease responses. SIGNIFICANCE AND IMPACT OF THE STUDY Our results highlight the functional consequences of probiotic-induced changes in the gut microbiota and the resulting host immune response.
Collapse
Affiliation(s)
- Jacob Agerbo Rasmussen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kasper Rømer Villumsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Denmark
| | | | | | - Shaozhi Zuo
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Denmark
| | - Per Walter Kania
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Denmark
| | - Kurt Buchmann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute of Metagenomics, BGI- Shenzhen, Shenzhen, China
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
22
|
Rasmussen JA, Villumsen KR, Duchêne DA, Puetz LC, Delmont TO, Sveier H, Jørgensen LVG, Præbel K, Martin MD, Bojesen AM, Gilbert MTP, Kristiansen K, Limborg MT. Genome-resolved metagenomics suggests a mutualistic relationship between Mycoplasma and salmonid hosts. Commun Biol 2021; 4:579. [PMID: 33990699 PMCID: PMC8121932 DOI: 10.1038/s42003-021-02105-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/14/2021] [Indexed: 11/08/2022] Open
Abstract
Salmonids are important sources of protein for a large proportion of the human population. Mycoplasma species are a major constituent of the gut microbiota of salmonids, often representing the majority of microbiota. Despite the frequent reported dominance of salmonid-related Mycoplasma species, little is known about the phylogenomic placement, functions and potential evolutionary relationships with their salmonid hosts. In this study, we utilise 2.9 billion metagenomic reads generated from 12 samples from three different salmonid host species to I) characterise and curate the first metagenome-assembled genomes (MAGs) of Mycoplasma dominating the intestines of three different salmonid species, II) establish the phylogeny of these salmonid candidate Mycoplasma species, III) perform a comprehensive pangenomic analysis of Mycoplasma, IV) decipher the putative functionalities of the salmonid MAGs and reveal specific functions expected to benefit the host. Our data provide a basis for future studies examining the composition and function of the salmonid microbiota.
Collapse
Affiliation(s)
- Jacob A Rasmussen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Kasper R Villumsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Copenhagen, Denmark
| | - David A Duchêne
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lara C Puetz
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tom O Delmont
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Louise von Gersdorff Jørgensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Copenhagen, Denmark
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anders M Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Institute of Metagenomics, BGI-Shenzhen, Shenzhen, China
| | - Morten T Limborg
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|