1
|
Flasz B, Tarnawska M, Kędziorski A, Napora-Rutkowski Ł, Szczygieł J, Gajda Ł, Nowak N, Augustyniak M. Ascorbic Acid and Graphene Oxide Exposure in the Model Organism Acheta domesticus Can Change the Reproduction Potential. Molecules 2024; 29:4594. [PMID: 39407524 PMCID: PMC11478226 DOI: 10.3390/molecules29194594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The use of nanoparticles in the industry carries the risk of their release into the environment. Based on the presumption that the primary graphene oxide (GO) toxicity mechanism is reactive oxygen species production in the cell, the question arises as to whether well-known antioxidants can protect the cell or significantly reduce the effects of GO. This study focused on the possible remedial effect of vitamin C in Acheta domesticus intoxicated with GO for whole lives. The reproduction potential was measured at the level of Vitellogenin (Vg) gene expression, Vg protein expression, hatching success, and share of nutrition in the developing egg. There was no simple relationship between the Vg gene's expression and the Vg protein content. Despite fewer eggs laid in the vitamin C groups, hatching success was high, and egg composition did not differ significantly. The exceptions were GO20 and GO20 + Vit. C groups, with a shift in the lipid content in the egg. Most likely, ascorbic acid impacts the level of Vg gene expression but does not affect the production of Vg protein or the quality of eggs laid. Low GO concentration in food did not cause adverse effects, but the relationship between GO toxicity and its concentration should be investigated more thoroughly.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Zaborze, Poland; (Ł.N.-R.); (J.S.)
| | - Joanna Szczygieł
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Zaborze, Poland; (Ł.N.-R.); (J.S.)
| | - Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Natalia Nowak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| |
Collapse
|
2
|
Esposito MC, Russo GL, Riva L, Punta C, Corsi I, Tosti E, Gallo A. Nanostructured cellulose sponge engineered for marine environmental remediation: Eco-safety assessment of its leachate on sea urchin reproduction (Part A). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122169. [PMID: 37437755 DOI: 10.1016/j.envpol.2023.122169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Nanostructured cellulose sponges (CNS) have been developed as eco-friendly and sustainable engineered materials for marine environmental remediation. Despite their functionality, sensitivity, efficiency and specificity have been proved, CNS application is still limited since their environmental safety (eco-safety) has not been completely assessed. In this study, CNS were allowed to leach in natural seawater simulating the remediation process condition and the eco-safety of CNS leachate on sea urchin reproduction has been assessed by carrying out a multi-response integrated approach, combining standardized ecotoxicity tests, innovative bioassays and gamete quality assessment. Overall, the ecotoxicity data indicate that CNS leachate affects gamete quality, gamete fertilisation competence, and embryo development probably associated with the release of chemical additives used during the synthesis process. However, in the framework of the eco-design approach, consecutive leaching treatments and conditioning of CNS in seawater open the route for a new safety protocol successfully solving the ecotoxicity while maintaining CNS sorbent properties. A safe environmental application of the resulting conditioned CNS for seawater pollution remediation is envisaged.
Collapse
Affiliation(s)
- Maria Consiglia Esposito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, via Roma 64, 83100, Avellino, Italy
| | - Laura Riva
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano and INSTM Local Unit, via Mancinelli 7, 20131, Milano, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano and INSTM Local Unit, via Mancinelli 7, 20131, Milano, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| |
Collapse
|
3
|
González-Soto N, Blasco N, Irazola M, Bilbao E, Guilhermino L, Cajaraville MP. Fate and effects of graphene oxide alone and with sorbed benzo(a)pyrene in mussels Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131280. [PMID: 37030218 DOI: 10.1016/j.jhazmat.2023.131280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Graphene oxide (GO) has gained a great scientific and economic interest due to its unique properties. As incorporation of GO in consumer products is rising, it is expected that GO will end up in oceans. Due to its high surface to volume ratio, GO can adsorb persistent organic pollutants (POPs), such as benzo(a)pyrene (BaP), and act as carrier of POPs, increasing their bioavailability to marine organisms. Thus, uptake and effects of GO in marine biota represent a major concern. This work aimed to assess the potential hazards of GO, alone or with sorbed BaP (GO+BaP), and BaP alone in marine mussels after 7 days of exposure. GO was detected through Raman spectroscopy in the lumen of the digestive tract and in feces of mussels exposed to GO and GO+BaP while BaP was bioaccumulated in mussels exposed to GO+BaP, but especially in those exposed to BaP. Overall, GO acted as a carrier of BaP to mussels but GO appeared to protect mussels towards BaP accumulation. Some effects observed in mussels exposed to GO+BaP were due to BaP carried onto GO nanoplatelets. Enhanced toxicity of GO+BaP with respect to GO and/or BaP or to controls were identified for other biological responses, demonstrating the complexity of interactions between GO and BaP.
Collapse
Affiliation(s)
- Nagore González-Soto
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Nagore Blasco
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Mireia Irazola
- Dept. Analytical Chemistry and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Lúcia Guilhermino
- Ecotoxicology Research Group, ICBAS, Institute of Biomedical Sciences of Abel Salazar and Research Group of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain.
| |
Collapse
|
4
|
Palmeira-Pinto L, Emerenciano AK, Bergami E, Joviano WR, Rosa AR, Neves CL, Corsi I, Marques-Santos LF, Silva JRMC. Alterations induced by titanium dioxide nanoparticles (nano-TiO 2) in fertilization and embryonic and larval development of the tropical sea urchin Lytechinus variegatus. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106016. [PMID: 37167835 DOI: 10.1016/j.marenvres.2023.106016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
The release of nanomaterials into the environment is the cause of an emerging concern. Titanium dioxide nanoparticles (nano-TiO2) among the most produced nanomaterials, has been documented in marine coastal areas posing a threat on marine biota. Sea urchin embryos are recognized as suitable bioindicators in ecological risk assessment and recently for nanomaterials. This study investigated the impact of nano-TiO2 on fertilization, embryonic and larval development of the tropical sea urchin Lytechinus variegatus in a range of concentrations (0.005-5 μg/mL) which includes environmentally relevant ones. The behavior of nano-TiO2 in tropical natural seawater was determined by dynamic light scattering (DLS) and toxicity was evaluated through fertilization and embryotoxicity tests, and morphological/morphometric analyses of sea urchin's larvae. Limited toxicity was recorded for nano-TiO2 in tropical sea urchin embryos and larvae, except for effects at the gastrula stage at 0.005 μg/mL. Large agglomerates of nano-TiO2 (5 μg/mL) were observed adhering onto sea urchin larvae thus probably preventing nanoparticles uptake at the highest concentrations (>0.005 μg/mL). Environmental levels of nano-TiO2 are able to cause toxicity on tropical sea urchin L. variegatus embryos with potential consequences on populations and their ecological role in tropical coastal areas.
Collapse
Affiliation(s)
- L Palmeira-Pinto
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP, 05509-900, São Paulo, SP, Brazil.
| | - A K Emerenciano
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP, 05509-900, São Paulo, SP, Brazil
| | - E Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| | - W R Joviano
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP, 05509-900, São Paulo, SP, Brazil
| | - A R Rosa
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP, 05509-900, São Paulo, SP, Brazil
| | - C L Neves
- Pathophysiology Laboratory, Butantan Institute, CEP, 05503-900, São Paulo, SP, Brazil
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - L F Marques-Santos
- Department of Molecular Biology, Center for Exact and Nature Sciences, Federal University of Paraiba, Cidade Universitária s/n, Castelo Branco, CEP, 58051-900, João Pessoa, PB, Brazil
| | - J R M C Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP, 05509-900, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Burić P, Čarapar I, Pavičić-Hamer D, Kovačić I, Jurković L, Dutour Sikirić M, Domazet Jurašin D, Mikac N, Bačić N, Lyons DM. Particle Size Modulates Silver Nanoparticle Toxicity during Embryogenesis of Urchins Arbacia lixula and Paracentrotus lividus. Int J Mol Sci 2023; 24:745. [PMID: 36614188 PMCID: PMC9821580 DOI: 10.3390/ijms24010745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Silver nanoparticles represent a threat to biota and have been shown to cause harm through a number of mechanisms, using a wide range of bioassay endpoints. While nanoparticle concentration has been primarily considered, comparison of studies that have used differently sized nanoparticles indicate that nanoparticle diameter may be an important factor that impacts negative outcomes. In considering this, the aim of the present study was to determine if different sizes of silver nanoparticles (AgNPs; 10, 20, 40, 60 and 100 nm) give rise to similar effects during embryogenesis of Mediterranean sea urchins Arbacia lixula and Paracentrotus lividus, or if nanoparticle size is a parameter that can modulate embryotoxicity and spermiotoxicity in these species. Fertilised embryos were exposed to a range of AgNP concentrations (1−1000 µg L−1) and after 48 h larvae were scored. Embryos exposed to 1 and 10 µg L−1 AgNPs (for all tested sizes) showed no negative effect in both sea urchins. The smaller AgNPs (size 10 and 20 nm) caused a decrease in the percentage of normally developed A. lixula larvae at concentrations ≥50 µg L−1 (EC50: 49 and 75 μg L−1, respectively) and at ≥100 µg L−1 (EC50: 67 and 91 μg L−1, respectively) for P. lividus. AgNPs of 40 nm diameter was less harmful in both species ((EC50: 322 and 486 μg L−1, for P. lividus and A. lixula, respectively)). The largest AgNPs (60 and 100 nm) showed a dose-dependent response, with little effect at lower concentrations, while more than 50% of larvae were developmentally delayed at the highest tested concentrations of 500 and 1000 µg L−1 (EC50(100 nm); 662 and 529 μg L−1, for P. lividus and A. lixula, respectively. While AgNPs showed no effect on the fertilisation success of treated sperm, an increase in offspring developmental defects and arrested development was observed in A. lixula larvae for 10 nm AgNPs at concentrations ≥50 μg L−1, and for 20 and 40 nm AgNPs at concentrations >100 μg L−1. Overall, toxicity was mostly ascribed to more rapid oxidative dissolution of smaller nanoparticles, although, in cases, Ag+ ion concentrations alone could not explain high toxicity, indicating a nanoparticle-size effect.
Collapse
Affiliation(s)
- Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Ivana Čarapar
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Dijana Pavičić-Hamer
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Ines Kovačić
- Faculty of Educational Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Lara Jurković
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Maja Dutour Sikirić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nevenka Mikac
- Division of Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Niko Bačić
- Division of Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| |
Collapse
|
6
|
Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles. NANOMATERIALS 2022; 12:nano12101716. [PMID: 35630937 PMCID: PMC9144754 DOI: 10.3390/nano12101716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
Abstract
The presented review aims to summarize the knowledge regarding the reproductive and developmental toxicity of different types of carbon nanoparticles, such as graphene, graphene oxide, multi- and single-walled nanotubes, fullerenes, and nanodiamonds. Carbon nanoparticles have unique chemical and physical properties that make them an excellent material that can be applied in many fields of human activity, including industry, food processing, the pharmaceutical industry, or medicine. Although it has a high degree of biocompatibility, possible toxic effects on different tissue types must also be taken into account. Carbon nanoparticles are known to be toxic to the respiratory, cardiovascular, nervous, digestive system, etc., and, according to current studies, they also have a negative effect on reproduction and offspring development.
Collapse
|
7
|
Pires A, Figueira E, Silva MSS, Sá C, Marques PAAP. Effects of graphene oxide nanosheets in the polychaete Hediste diversicolor: Behavioural, physiological and biochemical responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118869. [PMID: 35063544 DOI: 10.1016/j.envpol.2022.118869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Numerous applications exist for graphene-based materials, such as graphene oxide (GO) nanosheets. Increased concentrations of GO nanosheets in the environment have the potential to have a large negative effect on the aquatic environment, with consequences for benthic organisms, such as polychaetes. The polychaete Hediste diversicolor mobilises the sediments, hence altering the availability of contaminants and the nutrients biogeochemical cycle. As such, this study proposes to assess the effects of different GO nanosheet concentrations on the behaviour, feeding activity, mucus production, regenerative capacity, antioxidant status, biochemical damage and metabolism of H. diversicolor. This study evidenced that H. diversicolor exposed to GO nanosheets had a significantly lower ability to regenerate their bodies, took longer to feed and burrow into the sediment and produced more mucus. Membrane oxidative damage (lipid peroxidation) increased in exposed specimens. The increased metabolic rate (ETS) evidenced a higher energy expenditure in exposed organisms (high use of ready energy sources - soluble sugars) to fight the toxicity induced by GO nanosheets, such as SOD activity. The increase in SOD activity was enough to reduce reactive oxygen species (ROS) induced by GO on cytosol at the lowest concentrations, avoiding the damage on proteins (lower PC levels), but not on membranes (LPO increase). This study revealed that the presence of GO nanosheets, even at the lower levels tested, impaired behavioural, physiological, and biochemical traits in polychaetes, suggesting that the increase of this engineered nanomaterial in the environment can disturb these benthic organisms, affecting the H. diversicolor population. Moreover, given the important role of this group of organisms in coastal and estuarine food webs, the biogeochemical cycle of nutrients, and sediment oxygenation, there is a real possibility for repercussions into the estuarine community.
Collapse
Affiliation(s)
- Adília Pires
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M S S Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carina Sá
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation (TEMA) & Department of Mechanics, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
8
|
Yamamoto K, Momonoki YS. Identification and molecular characterization of propionylcholinesterase, a novel pseudocholinesterase in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1961062. [PMID: 34334124 PMCID: PMC8525928 DOI: 10.1080/15592324.2021.1961062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Cholinesterase is consisting of acetylcholinesterase (AChE) and pseudocholinesterase in vertebrates and invertebrates. AChE gene has been identified in several plant species, while pseudocholinesterase gene has not yet been found in any plant species. In this study, we report that the AChE gene paralog encodes propionylcholinesterase (PChE), a pseudocholinesterase in rice. PChE was found to be located adjacent to AChE (Os07g0586200) on rice chromosome 7 and designated as Os07g0586100. Phylogenetic tree analysis showed a close relationship between rice AChE and PChE. PChE-overexpressing rice had higher hydrolytic activity toward propionylthiocholine than acetylthiocholine and showed extremely low activity against butyrylthiocholine. Therefore, the PChE gene product was characterized as a propionylcholinesterase, a pseudocholinesterase. The rice PChE displayed lower sensitivity to the cholinesterase inhibitor, neostigmine bromide, than electric eel, maize, and rice AChEs. The recombinant PChE functions as a 171 kDa homotetramer. PChE was expressed during the later developmental stage, and it was found be localized in the extracellular spaces of the rice leaf tissue. These results suggest that the rice plant possesses PChE, which functions in the extracellular spaces at a later developmental stage. To the best of our knowledge, this study provides the first direct evidence and molecular characterization of PChE in plants.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | | |
Collapse
|
9
|
Gambardella C, Marcellini F, Falugi C, Varrella S, Corinaldesi C. Early-stage anomalies in the sea urchin (Paracentrotus lividus) as bioindicators of multiple stressors in the marine environment: Overview and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117608. [PMID: 34182396 DOI: 10.1016/j.envpol.2021.117608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The morphological anomalies of the early development stages of the sea urchin Paracentrotus lividus, caused by exposure to environmental stressors, are used as biomarker in ecotoxicological and ecological investigations. Here, we reviewed the available literature and classified the embryo and larval anomalies identified so far, to highlight potential commonalities or differences related to the biological action of the different stressors and their ecological impact. Morphological anomalies are influenced by a) the developmental stage of exposure to stressors; b) the intensity of the stress; c) the intra- and inter-cellular mechanisms affected by the exposure to environmental agents. The classification and analysis of embryo and larvae anomalies, either observed by the authors of this review and reported in literature, indicate that sea urchin abnormalities, caused by exposure to different stressors, can be very similar among them and classified into 18 main types, which can occur individually or mixed. All anomalies can be used to calculate an Index of Contaminant Impact to assess the impact of multiple stressors and to identify relationships between morphological anomalies and compromised biological mechanisms. This approach could be useful for a first screening of the presence of potential stressors impairing the growth and development of the early life stages of marine organisms, thus providing a relevant advancement for in future monitoring activities devoted to assess the health status in coastal marine ecosystems.
Collapse
Affiliation(s)
- Chiara Gambardella
- Consiglio Nazionale Delle Ricerche - Istituto per Lo Studio Degli Impatti Antropici e Sostenibilità in Ambiente Marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | | | - Carla Falugi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Stefano Varrella
- Dipartimento di Scienze e Ingegneria Della Materia, Dell'Ambiente e Urbanistica, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Cinzia Corinaldesi
- Dipartimento di Scienze e Ingegneria Della Materia, Dell'Ambiente e Urbanistica, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
10
|
Carata E, Tenuzzo BA, Mariano S, Setini A, Fidaleo M, Dini L. RETRACTED ARTICLE: Genotoxicity and alteration of the Gene Regulatory Network expression during Paracentrotus lividus development in the presence of carbon nanoparticles. Toxicol Res 2021; 38:257. [PMID: 35415079 PMCID: PMC8960529 DOI: 10.1007/s43188-020-00081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 10/25/2022] Open
|
11
|
Ramal-Sanchez M, Fontana A, Valbonetti L, Ordinelli A, Bernabò N, Barboni B. Graphene and Reproduction: A Love-Hate Relationship. NANOMATERIALS 2021; 11:nano11020547. [PMID: 33671591 PMCID: PMC7926437 DOI: 10.3390/nano11020547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- Correspondence:
| | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- National Research Council (IBCN), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, 00015 Rome, Italy
| | | | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- National Research Council (IBCN), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, 00015 Rome, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
| |
Collapse
|
12
|
Pikula K, Zakharenko A, Chaika V, Em I, Nikitina A, Avtomonov E, Tregubenko A, Agoshkov A, Mishakov I, Kuznetsov V, Gusev A, Park S, Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to Sea Urchin Strongylocentrotus Intermedius. NANOMATERIALS 2020; 10:nano10091825. [PMID: 32933127 PMCID: PMC7557930 DOI: 10.3390/nano10091825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
With the increasing annual production of nanoparticles (NPs), the risks of their harmful influence on the environment and human health are rising. However, our knowledge about the mechanisms of interaction between NPs and living organisms is limited. Prior studies have shown that echinoderms, and especially sea urchins, represent one of the most suitable models for risk assessment in environmental nanotoxicology. To the best of the authors’ knowledge, the sea urchin Strongylocentrotus intermedius has not been used for testing the toxicity of NPs. The present study was designed to determine the effect of 10 types of common NPs on spermatozoa activity, egg fertilization, and early stage of embryo development of the sea urchin S. intermedius. In this research, we used two types of multiwalled carbon nanotubes (CNT-1 and CNT-2), two types of carbon nanofibers (CNF-1 and CNF-2), two types of silicon nanotubes (SNT-1 and SNT-2), nanocrystals of cadmium and zinc sulfides (CdS and ZnS), gold NPs (Au), and titanium dioxide NPs (TiO2). The results of the embryotoxicity test showed the following trend in the toxicity level of used NPs: Au > SNT-2 > SNT-1 > CdS > ZnS > CNF-2 > CNF-1 > TiO2 > CNT-1 > CNT-2. This research confirmed that the sea urchin S. intermedius can be considered as a sensitive and stable test model in marine nanotoxicology.
Collapse
Affiliation(s)
- Konstantin Pikula
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Correspondence:
| | - Alexander Zakharenko
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
| | - Vladimir Chaika
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Iurii Em
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Anna Nikitina
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Evgenii Avtomonov
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Anna Tregubenko
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Alexander Agoshkov
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Ilya Mishakov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (I.M.); (V.K.)
| | - Vladimir Kuznetsov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (I.M.); (V.K.)
| | - Alexander Gusev
- Tambov State University Named after G.R. Derzhavin, Internatsionalnaya 33, 392000 Tambov, Russia;
- National University of Science and Technology «MISIS», Leninskiy prospekt 4, 119049 Moscow, Russia
| | - Soojin Park
- Inha University, 100 Inharo, Nam-gu, Incheon 22212, Korea;
| | - Kirill Golokhvast
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|
13
|
Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, Li P. Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. NANOSCALE RESEARCH LETTERS 2020; 15:115. [PMID: 32436107 PMCID: PMC7239959 DOI: 10.1186/s11671-020-03344-7] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/10/2020] [Indexed: 05/19/2023]
Abstract
The unique physicochemical characteristics of nanoparticles have recently gained increasing attention in a diverse set of applications, particularly in the biomedical field. However, concerns about the potential toxicological effects of nanoparticles remain, as they have a higher tendency to generate excessive amounts of reactive oxygen species (ROS). Due to the strong oxidation potential, the excess ROS induced by nanoparticles can result in the damage of biomolecules and organelle structures and lead to protein oxidative carbonylation, lipid peroxidation, DNA/RNA breakage, and membrane structure destruction, which further cause necrosis, apoptosis, or even mutagenesis. This review aims to give a summary of the mechanisms and responsible for ROS generation by nanoparticles at the cellular level and provide insights into the mechanics of ROS-mediated biotoxicity. We summarize the literature on nanoparticle toxicity and suggest strategies to optimize nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Zhongjie Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Jing Wang
- Oral Research Center, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Qihui Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
- Center for Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
14
|
Bernabò N, Machado-Simoes J, Valbonetti L, Ramal-Sanchez M, Capacchietti G, Fontana A, Zappacosta R, Palestini P, Botto L, Marchisio M, Lanuti P, Ciulla M, Di Stefano A, Fioroni E, Spina M, Barboni B. Graphene Oxide increases mammalian spermatozoa fertilizing ability by extracting cholesterol from their membranes and promoting capacitation. Sci Rep 2019; 9:8155. [PMID: 31148593 PMCID: PMC6544623 DOI: 10.1038/s41598-019-44702-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/14/2019] [Indexed: 11/09/2022] Open
Abstract
Graphene Oxide (GO) is a widely used biomaterial with an amazing variety of applications in biology and medicine. Recently, we reported the ability of GO to improve the in vitro fertilization (IVF) outcomes in swine, a validated animal model with a high predictive value for human fertility. For that reason, here we characterized the mechanisms involved in this positive interaction by adopting an experimental approach combining biological methods (confocal microscopy analysis on single cell, flow cytometry on cell populations and co-incubation with epithelial oviductal cells), physical-chemical techniques (Differential Scanning Calorimetry and Thermogravimetric Analysis), and chemical methods (mass spectrometry and lipid measurement). As a result, we propose a model in which GO is able to extract cholesterol from the spermatozoa membrane without causing any detrimental effect. In this way, the cholesterol extraction promotes a change in membrane chemical-physical properties that could positively affect male gamete function, modulating sperm signalling function and increasing in this way the fertilizing potential, without losing the ability to physiologically interact with the female environment. In conclusion, these data seem to suggest new intriguing possibilities in engineering sperm membrane for improving assisted reproduction technologies outcomes, even in human medicine.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
| | - Juliana Machado-Simoes
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Antonella Fontana
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Romina Zappacosta
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano Bicocca, 20900, Monza, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano Bicocca, 20900, Monza, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.,Center on Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.,Center on Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Michele Ciulla
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Elena Fioroni
- Laboratorio Analisi Dr. Fioroni, Viale A. de Gasperi, 19, 63074, San Benedetto del Tronto, Italy
| | - Michele Spina
- Laboratorio Analisi Dr. Fioroni, Viale A. de Gasperi, 19, 63074, San Benedetto del Tronto, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
15
|
Oliviero M, Schiavo S, Dumontet S, Manzo S. DNA damages and offspring quality in sea urchin Paracentrotus lividus sperms exposed to ZnO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:756-765. [PMID: 30248658 DOI: 10.1016/j.scitotenv.2018.09.243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
The recent advances in nanotechnology lead to a potential increase of the release of nanoparticles (NPs) into marine environment through different routes, with possible toxic effects upon the living part of this ecosystem. One of the ways of NPs marine contamination gaining today increasing concern stems from the widespread use cosmetics containing ZnO NPs as UV-filter. Although the possible adverse effects on marine organisms have been already ascertained, the information about the possible genotoxicity of ZnO NPs is still scant. In this work the spermiotoxicity of ZnO particles of different sizes (ZnO Bulk > 200 nm, ZnO NPs 100 nm and ZnO NPs 14 nm) was assessed, using Paracentrotus lividus spermatozoa, by evaluating the DNA damage of the exposed sperm, fertilization capability and DNA damage transmission to progeny. Our results showed that ZnO NPs induced DNA damages in spermatozoa after 30 min of exposure. While the sperm fertilization capability was not affected, morphological alterations (skeletal alterations) in offspring were observed and a positive correlation between sperm DNA damage and offspring quality was reported. This study underlines that a possible spermiotoxic action of ZnO NPs at concentration close to those reported in marine coastal water could occur.
Collapse
Affiliation(s)
- Maria Oliviero
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale - Isola C4, 80143 Naples, Italy; Enea CR Portici. P.le E. Fermi, 1, 80055 Portici, Naples, Italy
| | - Simona Schiavo
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale - Isola C4, 80143 Naples, Italy; Enea CR Portici. P.le E. Fermi, 1, 80055 Portici, Naples, Italy
| | - Stefano Dumontet
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale - Isola C4, 80143 Naples, Italy
| | - Sonia Manzo
- Enea CR Portici. P.le E. Fermi, 1, 80055 Portici, Naples, Italy.
| |
Collapse
|
16
|
Shen Y, Wu L, Qin D, Xia Y, Zhou Z, Zhang X, Wu X. Carbon black suppresses the osteogenesis of mesenchymal stem cells: the role of mitochondria. Part Fibre Toxicol 2018; 15:16. [PMID: 29650039 PMCID: PMC5897950 DOI: 10.1186/s12989-018-0253-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/04/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The rapid increase in carbon black poses threats to human health. We evaluated the effect of CB (Printex 90) on the osteogenesis of bone-marrow-derived mesenchymal stem cells (MSCs). Mitochondria play an important role in the osteogenesis of MSCs and are potential targets of nanomaterials, so we studied the role of mitochondria in the CB Printex 90-induced effects on osteogenesis. RESULTS Low doses of Printex 90 (3 ng/mL and 30 ng/mL) that did not cause deleterious effects on MSCs' viability significantly inhibited osteogenesis of MSCs. Printex 90 caused down-regulation of osteoblastic markers, reduced activity of alkaline phosphatase (ALP), and poor mineralization of osteogenically induced MSCs. Cellular ATP production was decreased, mitochondrial respiration was impaired with reduced expression of ATPase, and the mitochondrial membrane was depolarized. The quantity and quality of mitochondria are tightly controlled by mitochondrial biogenesis, mitochondrial dynamics and mitophagy. The transcriptional co-activator and transcription factors for mitochondrial biogenesis, PGC-1α, Nrf1 and TFAM, were suppressed by Printex 90 treatment, suggesting that decreased biogenesis was caused by Printex 90 treatment during osteogenesis. Mitochondrial fusion and fission were significantly inhibited by Printex 90 treatment. PINK1 accumulated in Printex 90-treated cells, and more Parkin was recruited to mitochondria, indicating that mitophagy increased to remove the damaged mitochondria. CONCLUSIONS This is the first report of the inhibitory effects of CB on the osteogenesis of MSCs and the involvement of mitochondria in CB Printex 90-induced suppression of MSC osteogenesis.
Collapse
Affiliation(s)
- Yulai Shen
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Lu Wu
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Zhu Zhou
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, 95211, USA
| | - Xuemei Zhang
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine (SKLRM) & Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| |
Collapse
|
17
|
Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 2017; 107:1278-1293. [PMID: 29017884 DOI: 10.1016/j.ijbiomac.2017.09.110] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Nanoparticles have emerged as a boon for the public health applications such as drug delivery, diagnostic, and imaging. Biodegradable and non-bio degradable nanoparticles have been used at a large scale level to increase the efficiency of the biomedical process at the cellular, animal and human level. Exponential use of nanoparticles reinforces the adverse immunological changes at the human health level. Physical and chemical properties of nanoparticles often lead to a variety of immunotoxic effects such as activation of stress-related genes, membrane disruption, and release of pro-inflammatory cytokines. Delivered nanoparticles in animal or human interact with various components of the immune system such as lymphocytes, macrophages, neutrophils etc. Nanoparticles delivered above the threshold level damages the cellular physiology by the generation of reactive oxygen and nitrogen species. This review article represents the potential of nanoparticles in the field of nanomedicine and provides the critical evidence which leads to develop immunotoxicity in living cells and organisms by altering immunological responses.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
18
|
Corinaldesi C, Damiani E, Marcellini F, Falugi C, Tiano L, Brugè F, Danovaro R. Sunscreen products impair the early developmental stages of the sea urchin Paracentrotus lividus. Sci Rep 2017; 7:7815. [PMID: 28798318 PMCID: PMC5552690 DOI: 10.1038/s41598-017-08013-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/06/2017] [Indexed: 12/03/2022] Open
Abstract
Marine ecosystems are increasingly threatened by the release of personal care products. Among them, sunscreens are causing concern either for the effects on skin protection from UV radiation and for the potential impacts on marine life. Here, we assessed the UVA protective efficacy of three sunscreens on human dermal fibroblasts, including two common products in Europe and USA, and an eco-friendly product. The sunscreens' effects were also tested on Paracentrotus lividus, a marine species possibly threatened by these contaminants. We found that all tested sunscreens had similar efficacy in protecting human fibroblasts from UVA radiation. Conversely, the sunscreens' effects on embryo-larval development of P. lividus were dependent on the product tested. In particular, the USA sunscreen, containing benzophenone-3, homosalate and preservatives, caused the strongest impact on the sea urchin development, whereas the eco-friendly sunscreen determined the weakest effects. These results suggest that although the tested products protected human skin cells from UVA-induced damage, they might severely affect the success of recruitment and survival of the sea urchin. Our findings underline the importance of developing eco-friendly sunscreens for minimising or avoiding the impact on marine life while protecting human skin from UV damage.
Collapse
Affiliation(s)
- Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy.
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Francesca Marcellini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
- Ecoreach Ltd., Corso Stamira 61, 60121, Ancona, Italy
| | - Carla Falugi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Francesca Brugè
- Department of Clinical, Specialistic and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
19
|
Katsumiti A, Tomovska R, Cajaraville MP. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:138-147. [PMID: 28521151 DOI: 10.1016/j.aquatox.2017.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/18/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Recently, graphene materials have attracted tremendous research interest due to their unique physicochemical properties that hold great promise in electronics, energy, materials and biomedical areas. Graphene oxide (GO) is one of the most extensively studied graphene derivatives. In order to improve GO electrical properties, nanoplatelets are chemically reduced, thus increasing nanoplatelet conductivity. This reduced GO (rGO) shows different properties and behavior compared to GO. Graphene-based wastes are expected to end up in the marine environment. Here we aimed to assess the potential toxic effects of GO and rGO to marine organisms by using in vitro assays with mussel (Mytilus galloprovincialis) hemocytes. Cells were exposed to a wide range of concentrations (up to 100mg/L) of GO (with and without polyvinylpyrrolidone-PVP as stabilizing agent: GO and GO-PVP) and rGO with PVP (rGO-PVP) to assess cytotoxicity and cell membrane integrity. Then, cells were exposed to sublethal concentrations of GO and rGO-PVP to assess their subcellular distribution through transmission electron microscopy (TEM) and to evaluate their effects on ROS production. GO, GO-PVP and rGO-PVP showed low and concentration-dependent cytotoxicity. rGO-PVP (LC50=29.902 and 33.94mg/L depending on the origin) was more toxic than GO (LC50=49.84 and 54.51mg/L depending on the origin) and GO-PVP (LC50=43.72mg/L). PVP was not toxic to hemocytes but increased bioavailability and toxicity of nanoplatelets. At TEM, GO and rGO-PVP nanoplatelets caused invaginations and perforations of the plasma membrane, which agrees with the observed decrease in cell membrane integrity. Nanoplatelets were internalized, at a higher extent for rGO-PVP than for GO, and found in the cytosol and in endolysosomal vesicles of hemocytes. Both GO and rGO-PVP increased ROS production at the highest sublethal concentration tested. In conclusion, GO, GO-PVP and rGO-PVP are not highly toxic to mussel cells but they cause membrane damage and their toxicity is ROS-mediated. Finally, in vitro assays with mussel hemocytes are sensitive tools to detect toxic effects of graphene-based nanomaterials.
Collapse
Affiliation(s)
- Alberto Katsumiti
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Radmila Tomovska
- POLYMAT and Dept. Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Basque Country, Spain; IKERBASQUE, Basque Foundation for Science, Basque Country, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain.
| |
Collapse
|
20
|
Clemente Z, Castro VLSS, Franqui LS, Silva CA, Martinez DST. Nanotoxicity of graphene oxide: Assessing the influence of oxidation debris in the presence of humic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:118-128. [PMID: 28363143 DOI: 10.1016/j.envpol.2017.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/01/2017] [Accepted: 03/15/2017] [Indexed: 05/27/2023]
Abstract
This study sought to evaluate the toxicological effects of graphene oxide (GO) through tests with Danio rerio (zebrafish) embryos, considering the influence of the base washing treatment and the interaction with natural organic matter (i.e., humic acid, HA). A commercial sample of GO was refluxed with NaOH to remove oxidation debris (OD) byproducts, which resulted in a base washed GO sample (bw-GO). This process decreased the total oxygenated groups in bw-GO and its stability in water compared to GO. When tested in the presence of HA, both GO and bw-GO stabilities were enhanced in water. Although the embryo exposure showed no acute toxicity or malformation, the larvae exposed to GO showed a reduction in their overall length and acetylcholinesterase activity. In the presence of HA, GO also inhibited acid phosphatase activity. Our findings indicate a mitigation of material toxicity after OD removal. The difference in the biological effects may be related to the materials' bioavailability and biophysicochemical interactions. This study reports for the first time the critical influence of OD on the GO material biological reactivity and HA interaction, providing new data for nanomaterial environmental risk assessment and sustainable nanotechnology.
Collapse
Affiliation(s)
- Zaira Clemente
- Laboratory of Ecotoxicology and Biosafety, Brazilian Agricultural Research Corporation (Embrapa Environment), Jaguariúna, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| | - Vera Lúcia S S Castro
- Laboratory of Ecotoxicology and Biosafety, Brazilian Agricultural Research Corporation (Embrapa Environment), Jaguariúna, SP, Brazil
| | - Lidiane S Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Cristiane A Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
21
|
Amaroli A, Gambardella C, Ferrando S, Hanna R, Benedicenti A, Gallus L, Faimali M, Benedicenti S. The Effect of Photobiomodulation on the Sea Urchin Paracentrotus lividus (Echinodermata) Using Higher-Fluence on Fertilization, Embryogenesis, and Larval Development: An In Vitro Study. Photomed Laser Surg 2016; 35:127-135. [PMID: 28056208 DOI: 10.1089/pho.2016.4136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the photobiomodulation (PBM) effect of the 808 nm diode laser irradiation on spermatozoa, eggs, fertilized eggs, embryos, and larvae of Paracentrotus lividus, using two different power settings. BACKGROUND DATA Studies have shown the possible use of PBM in artificial insemination. These have shown the potential effect of low-power laser irradiation on spermatozoa, while there are few studies on the effect of laser photonic energy on oocytes and almost no reports on the influence of lasers in embryogenesis. METHODS P. lividus gametes, zygotes, embryos, and larvae were irradiated using the 808 nm diode laser (fluence 64 J/cm2 using 1 W or 192 J/cm2 with 3 W) with a flat-top hand-piece delivery, compared to a control without laser irradiation (0 J/cm2-0 W). The fertilization rate and the early developmental stages were investigated. RESULTS The fertilization ability was not affected by the sperm/egg irradiation. At the gastrula stage, no significant differences were observed compared with the control samples. In the late pluteus stage, there were no differences in the developmental percentage observed between the control and the treated samples (1 W), with the exception of larvae from gastrulae and larvae, which were irradiated at 3 W. CONCLUSIONS This study has demonstrated that both the 64 J/cm2-1 W and the 192 J/cm2-3 W do not induce morphological damage on the irradiated P. lividus gametes whose zygotes generate normal embryos and larvae. Our data therefore support the assumption to use higher fluence in preliminary studies on in vitro fertilization.
Collapse
Affiliation(s)
- Andrea Amaroli
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy .,2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| | - Chiara Gambardella
- 3 Institute of Marine Sciences , National Research Council (ISMAR-CNR), Genoa, Italy
| | - Sara Ferrando
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy
| | - Reem Hanna
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy .,4 Department of Oral Surgery, Dental Institute , King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberico Benedicenti
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| | - Lorenzo Gallus
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy
| | - Marco Faimali
- 3 Institute of Marine Sciences , National Research Council (ISMAR-CNR), Genoa, Italy
| | - Stefano Benedicenti
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| |
Collapse
|
22
|
Gambardella C, Ferrando S, Gatti AM, Cataldi E, Ramoino P, Aluigi MG, Faimali M, Diaspro A, Falugi C. Review: Morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles. ENVIRONMENTAL TOXICOLOGY 2016; 31:1552-1562. [PMID: 26031494 DOI: 10.1002/tox.22159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
We describe the use of different life stages of the Mediterranean sea urchin Paracentrotus lividus for the assessment of the possible risk posed by nanoparticles (NPs) in the coastal water. A first screening for the presence of NPs in sea water may be obtained by checking their presence inside tissues of organisms taken from the wild. The ability of NPs to pass from gut to the coelomic fluid is demonstrated by accumulation in sea urchin coelomocytes; the toxicity on sperms can be measured by embryotoxicity markers after sperm exposure, whereas the transfer through the food chain can be observed by developmental anomalies in larvae fed with microalgae exposed to NPs. The most used spermiotoxicity and embryotoxicity tests are described, as well as the biochemical and histochemical analyses of cholinesterase (ChE) activities, which are used to verify toxicity parameters such as inflammation, neurotoxicity, and interference in cell-to-cell communication. Morphological markers of toxicity, in particular skeletal anomalies, are described and classified. In addition, NPs may impair viability of the immune cells of adult specimens. Molecular similarity between echinoderm and human immune cells is shown and discussed. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1552-1562, 2016.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute of Marine Science, National Research Council (CNR), Genova, Italy.
| | | | | | | | | | | | - Marco Faimali
- Institute of Marine Science, National Research Council (CNR), Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Italian Institute of Technology (IIT), Genova, Italy
| | - Carla Falugi
- Department of Earth, Environment and Life Sciences (DISVA), Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
23
|
Morgana S, Gambardella C, Falugi C, Pronzato R, Garaventa F, Faimali M. Swimming speed alteration in the early developmental stages of Paracentrotus lividus sea urchin as ecotoxicological endpoint. MARINE ENVIRONMENTAL RESEARCH 2016; 115:11-19. [PMID: 26826671 DOI: 10.1016/j.marenvres.2016.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/11/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
Behavioral endpoints have been used for decades to assess chemical impacts at concentrations unlikely to cause mortality. With recently developed techniques, it is possible to investigate the swimming behavior of several organisms under laboratory conditions. The aims of this study were: i) assessing for the first time the feasibility of swimming speed analysis of the early developmental stage sea urchin Paracentrotus lividus by an automatic recording system ii) investigating any Swimming Speed Alteration (SSA) on P. lividus early stages exposed to a chemical reference; iii) identifying the most suitable stage for SSA test. Results show that the swimming speed of all the developmental stages was easily recorded. The swimming speed was inhibited as a function of toxicant concentration. Pluteus were the most appropriate stage for evaluating SSA in P. lividus as ecotoxicological endpoint. Finally, swimming of sea urchin early stages represents a sensitive endpoint to be considered in ecotoxicological investigations.
Collapse
Affiliation(s)
- Silvia Morgana
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy.
| | - Chiara Gambardella
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Carla Falugi
- Department of Earth, Environment and Life Sciences (DISVA), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberto Pronzato
- Department of Earth, Environment and Life Sciences (DISTAV), Università di Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Francesca Garaventa
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Arsenale Tesa 104, Castello 2737/F, 30122 Venezia, Italy
| | - Marco Faimali
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|
24
|
Gambardella C, Morgana S, Bari GD, Ramoino P, Bramini M, Diaspro A, Falugi C, Faimali M. Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development. CHEMOSPHERE 2015; 139:486-495. [PMID: 26291678 DOI: 10.1016/j.chemosphere.2015.07.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/13/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to investigate the potential toxicity of Silica nanoparticles (SiO2 NPs) in seawater by using the sea urchin Paracentrotus lividus as biological model. SiO2 NPs exposure effects were identified on the sperm of the sea urchin through a multidisciplinary approach, combining developmental biology, ecotoxicology, biochemistry, and microscopy analyses. The following responses were measured: (i) percentage of eggs fertilized by exposed sperm; (ii) percentage of anomalies and undeveloped embryos and larvae; (iii) enzyme activity alterations (acetylcholinesterase, AChE) in the early developmental stages, namely gastrula and pluteus. Sperms were exposed to seawater containing SiO2 NPs suspensions ranging from 0.0001mg/L to 50mg/L. Fertilization ability was not affected at any concentration, whereas a significant percentage of anomalies in the offspring were observed and quantified by means of EC50 at gastrula stage, including undeveloped and anomalous embryos (EC50=0.06mg/L), and at pluteus stage, including skeletal anomalies and delayed larvae (EC50=0.27mg/L). Moreover, morphological anomalies were observed in larvae at pluteus stage, by immunolocalizing molecules involved in larval development and neurotoxicity effects - such as acetylated tubulin and choline acetyltransferase (ChAT) - and measuring AChE activity. Exposure of sea urchins to SiO2 NPs caused neurotoxic damage and a decrease of AChE expression in a non-dose-dependent manner. In conclusion, through the multidisciplinary approach used in this study SiO2 NPs toxicity in sea urchin offspring could be assessed. Therefore, the measured responses are suitable for detecting embryo- and larval- toxicity induced by these NPs.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy.
| | - Silvia Morgana
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Gaetano Di Bari
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Paola Ramoino
- Department of Earth, Environment and Life Sciences (DISTAV), Università di Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Mattia Bramini
- IIT, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Alberto Diaspro
- IIT, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Carla Falugi
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Marco Faimali
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|