1
|
Zhang L, Cui Y, Xu J, Qian J, Yang X, Chen X, Zhang C, Gao P. Ecotoxicity and trophic transfer of metallic nanomaterials in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171660. [PMID: 38490428 DOI: 10.1016/j.scitotenv.2024.171660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Metallic nanomaterials (MNMs) possess unique properties that have led to their widespread application in fields such as electronics and medicine. However, concerns about their interactions with environmental factors and potential toxicity to aquatic life have emerged. There is growing evidence suggesting MNMs can have detrimental effects on aquatic ecosystems, and are potential for bioaccumulation and biomagnification in the food chain, posing risks to higher trophic levels and potentially humans. While many studies have focused on the general ecotoxicity of MNMs, fewer have delved into their trophic transfer within aquatic food chains. This review highlights the ecotoxicological effects of MNMs on aquatic systems via waterborne exposure or dietary exposure, emphasizing their accumulation and transformation across the food web. Biomagnification factor (BMF), the ratio of the contaminant concentration in predator to that in prey, was used to evaluate the biomagnification due to the complex nature of aquatic food chains. However, most current studies have BMF values of less than 1 indicating no biomagnification. Factors influencing MNM toxicity in aquatic environments include nanomaterial properties, ion variations, light, dissolved oxygen, and pH. The multifaceted interactions of these variables with MNM toxicity remain to be fully elucidated. We conclude with recommendations for future research directions to mitigate the adverse effects of MNMs in aquatic ecosystems and advocate for a cautious approach to the production and application of MNMs.
Collapse
Affiliation(s)
- Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yifei Cui
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jingran Qian
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
2
|
Cui X, Hou D, Tang Y, Liu M, Qie H, Qian T, Xu R, Lin A, Xu X. Effects of the application of nanoscale zero-valent iron on plants: Meta analysis, mechanism, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165873. [PMID: 37517727 DOI: 10.1016/j.scitotenv.2023.165873] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
In order to determine the ideal conditions for the application of nanoscale zero-valent iron (nZVI) in agricultural production, this review studies the effects of nZVI application on plant physiological parameters, presents its mechanism and prospective outcomes. In this research, it was observed that the application of nZVI had both favorable and unfavorable effects on plant growth, photosynthesis, oxidative stress, and nutrient absorption levels. Specifically, the application of nZVI significantly increased the biomass and length of plants, and greatly reduced the germination rate of seeds. In terms of photosynthesis, there was no significant effect for the application of nZVI on the synthesis of photosynthetic pigments (chlorophyll and carotenoids). In terms of oxidative stress, plants respond by increasing the activity of antioxidant enzyme under mild nZVI stress and trigger oxidative burst under severe stress. In addition, the application of nZVI significantly increased the absorption of nutrients (B, K, P, S, Mg, Zn, and Fe). In summary, the application of nZVI can affect the plant physiological parameters, and the degree of influence varies depending on the concentration, preparation method, application method, particle size, and action time of nZVI. These findings are important for evaluating nZVI-related risks and enhancing nZVI safety in agricultural production.
Collapse
Affiliation(s)
- Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tuzheng Qian
- Wellington college, Duke's Ride, Berkshire, Crowthorne RG45 7PU, England, United Kingdom
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
3
|
D'ors A, Sánchez-Fortún A, Cortés-Téllez AA, Fajardo C, Mengs G, Nande M, Martín C, Costa G, Martín M, Bartolomé MC, Sánchez-Fortún S. Adverse effects of iron-based nanoparticles on freshwater phytoplankton Scenedesmus armatus and Microcystis aeruginosa strains. CHEMOSPHERE 2023; 339:139710. [PMID: 37532199 DOI: 10.1016/j.chemosphere.2023.139710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Zero-valent nano-iron particles (nZVI) are increasingly present in freshwater aquatic environments due to their numerous applications in environmental remediation. However, despite the broad benefits associated with the use and development of nZVI nanoparticles, the potential risks of introducing them into the aquatic environment need to be considered. Special attention should be focused on primary producer organisms, the basal trophic level, whose impact affects the rest of the food web. Although there are numerous acute studies on the acute effects of these nanoparticles on photosynthetic primary producers, few studies focus on long-term exposures. The present study aimed at assessing the effects of nZVI on growth rate, photosynthesis activity, and reactive oxygen activity (ROS) on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa. Moreover, microcystin production was also evaluated. These parameters were assessed on both organisms singly exposed to 72 h-effective nZVI concentration for 10% maximal response for 28 days. The results showed that the cell growth rate of S. armatus was initially significantly altered and progressively reached control-like values at 28 days post-exposure, while M. aeruginosa did not show any significant difference concerning control values at any time. In both strains dark respiration (R) increased, unlike net photosynthesis (Pn), while gross photosynthesis (Pg) only slightly increased at 7 days of exposure and then became equal to control values at 28 days of exposure. The nZVI nanoparticles generated ROS progressively during the 28 days of exposure in both strains, although their formation was significantly higher on green algae than on cyanobacteria. These data can provide additional information to further investigate the potential risks of nZVI and ultimately help decision-makers make better informed decisions regarding the use of nZVI for environmental remediation.
Collapse
Affiliation(s)
- A D'ors
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - A Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - A A Cortés-Téllez
- Environmental Toxicology Laboratory, Faculty of Chemistry-Pharmacobiology, Universidad Michoacana de San Nicolás de Hidalgo, 403 Santiago Tapia St, 58000, Morelia, (Michoacán), Mexico
| | - C Fajardo
- Dpt. of Biomedicine and Biotechnology, Universidad de Alcalá (UAH), w/n San Diego Sq, 28801, Alcalá de Henares, Spain
| | - G Mengs
- Technical and R&D Department, Ecotoxilab SL, 10 Juan XXIII, 28550, Tielmes, Spain
| | - M Nande
- Dpt. of Biochemistry and Molecular Biology, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - C Martín
- Dpt. of Biotechnology-Plant Biology, Universidad Politécnica de Madrid (UPM), 3 Complutense Ave, 28040, Madrid, Spain
| | - G Costa
- Department of Animal Physiology, Faculty of Veterinary Sciences, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - M Martín
- Dpt. of Biochemistry and Molecular Biology, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - M C Bartolomé
- Environmental Toxicology Laboratory, Faculty of Chemistry-Pharmacobiology, Universidad Michoacana de San Nicolás de Hidalgo, 403 Santiago Tapia St, 58000, Morelia, (Michoacán), Mexico.
| | - S Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Mackevica A, Hendriks L, Meili-Borovinskaya O, Baun A, Skjolding LM. Effect of Exposure Concentration and Growth Conditions on the Association of Cerium Oxide Nanoparticles with Green Algae. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2468. [PMID: 37686976 PMCID: PMC10490049 DOI: 10.3390/nano13172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
The increasing release of engineered nanoparticles (NPs) into aquatic ecosystems makes it crucial to understand the interactions of NPs with aquatic organisms, such as algae. In this study, the association of CeO2 NPs with unicellular algae (Raphidocelis subcapitata) and changes to the cellular elemental profile were investigated using three exposure concentrations (1, 50, and 1000 µg CeO2/L) at two different algal growth conditions-exponential and inhibited growth (1% glutaraldehyde). After a 24 h-exposure, algal suspensions were settled by gravity and CeO2-NP/algae association was analyzed by single-cell inductively coupled plasma quadrupole mass spectrometry (sc-ICP-QMS) and ICP time-of-flight MS (sc-ICP-TOFMS). Concurrent detection of the cellular fingerprint with cerium indicated NP association with algae (adsorption/uptake) and changes in the cellular elemental profiles. Less than 5% of cells were associated with NPs when exposed to 1 µg/L. For 50 µg/L exposures in growing and inhibited cell treatments, 4% and 16% of cells were associated with CeO2 NPs, respectively. ICP-TOFMS analysis made it possible to exclude cellular exudates associated with CeO2 NPs due to the cellular fingerprint. Growing and inhibited cells had different elemental profile changes following exposure to CeO2 NPs-e.g., growing cells had higher Mg and lower P contents independent of CeO2 concentration compared to inhibited cells.
Collapse
Affiliation(s)
- Aiga Mackevica
- Department of Environmental and Resource Technology, Technical University of Denmark, Building 115, DK-2800 Kgs. Lyngby, Denmark; (A.M.); (A.B.)
| | - Lyndsey Hendriks
- TOFWERK, Schorenstrasse 39, 3645 Thun, Switzerland; (L.H.); (O.M.-B.)
| | | | - Anders Baun
- Department of Environmental and Resource Technology, Technical University of Denmark, Building 115, DK-2800 Kgs. Lyngby, Denmark; (A.M.); (A.B.)
| | - Lars Michael Skjolding
- Department of Environmental and Resource Technology, Technical University of Denmark, Building 115, DK-2800 Kgs. Lyngby, Denmark; (A.M.); (A.B.)
| |
Collapse
|
5
|
Zeng G, He Y, Wang F, Luo H, Liang D, Wang J, Huang J, Yu C, Jin L, Sun D. Toxicity of Nanoscale Zero-Valent Iron to Soil Microorganisms and Related Defense Mechanisms: A Review. TOXICS 2023; 11:514. [PMID: 37368614 DOI: 10.3390/toxics11060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Soil pollution is a global environmental problem. Nanoscale zero-valent iron (nZVI) as a kind of emerging remedial material is used for contaminated soil, which can quickly and effectively degrade and remove pollutants such as organic halides, nitrates and heavy metals in soil, respectively. However, nZVI and its composites can enter the soil environment in the application process, affect the physical and chemical properties of the soil, be absorbed by microorganisms and affect the growth and metabolism of microorganisms, thus affecting the ecological environment of the entire soil. Because of the potential risks of nZVI to the environment and ecosystems, this paper summarizes the current application of nZVI in the remediation of contaminated soil environments, summarizes the various factors affecting the toxic effects of nZVI particles and comprehensively analyzes the toxic effects of nZVI on microorganisms, toxic mechanisms and cell defense behaviors to provide a theoretical reference for subsequent biosafety research on nZVI.
Collapse
Grants
- 52103156,51901160 National Natural Science Foundation of China
- cstc2021jcyjmsxmX0663 Chongqing Science and Technology Commission Project
- CSTB2022NSCQ-MSX1145, cstc2021jcyjmsxmX0901, cstc2021jcyj-msxmX0559, CSTB2022BSXM-JCX0149, cstc2018jscx-zdyfxmX0001 Natural Science Foundation of Chongqing, China
- KJQN202001530, KJQN202103905, KJQN202101526, KJQN202103902 the Scientific and Technological Research Program of Chongqing Municipal Education Commis-sion
- YS2021089 Chongqing Bayu Scholars Young Scholars Project
- 2021198, 202211551007 College Students Innovation Training Program
- shljzyh2021-09 Provincial and Ministerial Co-constructive of Collaborative Innovation Center for MSW Compre-hensive Utilization
- YKJCX2220602 Postgraduate Innovation Program of Chongqing University of Science and Technology
Collapse
Affiliation(s)
- Guoming Zeng
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- Intelligent Construction Technology Application Service Center, Chongqing City Vocational College, Chongqing 402160, China
| | - Yu He
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Fei Wang
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Heng Luo
- Geological Research Institute of No. 9 Oil Production Plant of CNPC Changqing Oilfield, Yinchuan 750006, China
| | - Dong Liang
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jian Wang
- Chongqing Yubei District Ecological Environment Monitoring Station, Chongqing 401124, China
| | - Jiansheng Huang
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunyi Yu
- Department of Construction Management and Real Estate, Chongqing Jianzhu College, Chongqing 400072, China
| | - Libo Jin
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
6
|
Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107721. [PMID: 37156069 DOI: 10.1016/j.plaphy.2023.107721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In the agricultural sector, the use of engineered nanoparticles (ENPs) has been acclaimed as the next big thing for sustaining and increasing crop productivity. A vast amount of literature is available regarding the growth-promoting attributes of different ENPs. In this context, it has been emphasized that the ENPs can bolster vegetative growth, leaf development, and seed setting and also help in mitigating the effects of abiotic and biotic stresses. At the same time, there have been a lot of speculations and concerns regarding the phytotoxicity of ENPs off-late. In this connection, many research articles have presented the negative effects of ENPs on plant systems. These studies have highlighted that almost all the ENPs impart a certain degree of phytotoxicity in terms of reduction in growth, biomass, impairment of photosynthesis, oxidative status of plant cells, etc. Mostly, the ENPs based on metal or metal oxides (Cd, Cr, Pb, Ag, Ce, etc.) and nonmetals (C) that are introduced into the environment are known to incite inhibitory effects. However, the phytotoxicity of ENPs are known to be determined mostly by the chemical nature of the element, size, surface charge, coating molecules, and abiotic factors like pH and light. This review article, therefore, elucidates the phytotoxic properties of different ENPs and the plant responses induced at the molecular level subjected to nanoparticle exposure. Moreover, the article highlights the probable strategies that may be adopted for the suppression of the phytotoxicity of ENPs to ensure the safe and sustainable application of ENPs in crop fields.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, P.O. Matigara, Dist. Darjeeling, West Bengal, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
7
|
Oyaneder-Terrazas J, Figueroa D, Araneda OF, García C. Saxitoxin Group Toxins Accumulation Induces Antioxidant Responses in Tissues of Mytilus chilensis, Ameghinomya antiqua, and Concholepas concholepas during a Bloom of Alexandrium pacificum. Antioxidants (Basel) 2022; 11:392. [PMID: 35204273 PMCID: PMC8869173 DOI: 10.3390/antiox11020392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Saxitoxin (STX) group toxins consist of a set of analogues which are produced by harmful algal blooms (HABs). During a HAB, filter-feeding marine organisms accumulate the dinoflagellates and concentrate the toxins in the tissues. In this study, we analyze the changes in antioxidant enzymes and oxidative damage in the bivalves Mytilus chilensis and Ameghinomya antiqua, and the gastropod Concholepas concholepas during a bloom of Alexandrium pacificum. The results show that during the exponential phase of the bloom bivalves show an increase in toxicity and activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathinoe reductase, p < 0.05), while in the gastropods, increased activity of antioxidant enzymes was associated with the bioaccumulation of toxins through the diet. At the end of the bloom, decreased activity of antioxidant enzymes in the visceral and non-visceral tissues was detected in the bivalves, with an increase in oxidative damage (p < 0.05), in which the latter is correlated with the detection of the most toxic analogues of the STX-group (r = 0.988). In conclusion, in areas with high incidence of blooms, shellfish show a high activity of antioxidants, however, during the stages involving the distribution and bioconversion of toxins, there is decreased activity of antioxidant enzymes resulting in oxidative damage.
Collapse
Affiliation(s)
- Javiera Oyaneder-Terrazas
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (J.O.-T.); (D.F.)
| | - Diego Figueroa
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (J.O.-T.); (D.F.)
| | - Oscar F. Araneda
- Integrative Laboratory of Biomechanics and Physiology of Effort, Kinesiology School, Faculty of Medicine, Universidad de Los Andes, Santiago 8320000, Chile;
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (J.O.-T.); (D.F.)
| |
Collapse
|
8
|
In Vitro Evaluation of Iron-Induced Salivary Lipid Oxidation Associated with Exposure to Iron Nanoparticles: Application Possibilities and Limitations for Food and Exposure Sciences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103622. [PMID: 32455755 PMCID: PMC7277702 DOI: 10.3390/ijerph17103622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 01/01/2023]
Abstract
Zerovalent iron nanotechnologies are widely used for groundwater remediation and increasingly considered for advance oxidation treatment in drinking water applications. Iron nanoparticles have been detected in drinking water systems and considered for food fortification; therefore, the potential for human exposure through ingestion can be a concern. This study aimed to assess whether ingestion of iron nanoparticles from drinking water could be detected through flavor perception using In Vitro salivary lipid oxidation as an indicator for metallic flavor perception. Ten female subjects, aged 29–59 years, donated saliva samples for use in the In Vitro experiments. Test samples consisted of 1:1 mixture of saliva and bottled drinking water (control) and three treatment solutions, spiked with ferrous sulfate, stabilized zerovalent iron nanoparticles (nZVI), and an aggregated/microsized suspension of mixed zerovalent iron and microsized suspension of iron and iron oxide metal powder, (mZVI). Upon mixing, samples were subjected to 15 min incubation at 37 °C to resemble oral conditions. Salivary lipid oxidation (SLO) was measured in all samples as micromoles of thiobarbituric acid reactive substances (TBARS)/mg Fe. Exposure to iron in all three forms induced significant amount of SLO in all treatment samples as compared to the control (p < 0.0001). The mean SLO levels were the highest in the ferrous treatment, followed by nZVI and mZVI treatments; the differences in the mean SLO levels were significant (p < 0.05). The findings indicate that oral exposure to stabilized ZVI nanoparticles may induce sensory properties different from that of ferrous salt, likely predictive of diminished detection of metallic flavor by humans.
Collapse
|
9
|
Yang YF, Chen CY, Lu TH, Liao CM. Impact of consumer-resource dynamics on C. elegans-E. coli system exposed to nano zero-valent iron (nZVI). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4206-4218. [PMID: 31823272 DOI: 10.1007/s11356-019-06903-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Nano zero-valent iron (nZVI) is one of the most paramount nanoparticles (NPs) applied in environmental remediation, leading to great concerns for the potential impacts on soil ecosystem health. The objective of this study was to link toxicokinetics and consumer-resource dynamics in the Caenorhabditis elegans-Escherichia coli (worm-bacteria) ecosystem. The biokinetic parameters of bacteria and worms were obtained from toxicokinetic experiments and related published literature. Biomass dynamics of bacteria and worms were estimated by employing the modified Lotka-Volterra model. Dynamics of bacteria and worm biomass, internal concentrations of nZVI, bioconcentration factors (BCFs), and biomagnification factors (BMFs) were simulated based on the consumer-resource dynamics. Results showed that the biomass of worms steadily increased from 22.25 to 291.49 g L-1, whereas the biomass of bacteria decreased from 17.17 to 4.70 × 10-8 g L-1 after 96-h exposures of nZVI. We also observed ratios of nZVI concentrations in worms and bacteria increased from 0.06 to 26.60 after 96 h. Moreover, decrements of the bioconcentration factor of E. coli (BCFE) values from 0.82 to 0.03 after 96 h were observed, whereas values of BMFs increased from 0.06 to 57.62 after 96 h. Internal concentrations of nZVI in worms were found to be mainly influenced by the ingestion rate of bacteria by worms, and the biomass conversion of bacteria had the lowest effect. Implementation of the integrated bioaccumulation-consumer-resource model supports the hypothesis that the C. elegans-E. coli dynamics of internal nZVI concentrations could be effectively associated with the predator-prey behavior and was dominated by the same physiological parameter in the two biological systems.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|
10
|
Lekamge S, Ball AS, Shukla R, Nugegoda D. The Toxicity of Nanoparticles to Organisms in Freshwater. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:1-80. [PMID: 30413977 DOI: 10.1007/398_2018_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotechnology is a rapidly growing industry yielding many benefits to society. However, aquatic environments are at risk as increasing amounts of nanoparticles (NPs) are contaminating waterbodies causing adverse effects on aquatic organisms. In this review, the impacts of environmental exposure to NPs, the influence of the physicochemical characteristics of NPs and the surrounding environment on toxicity and mechanisms of toxicity together with NP bioaccumulation and trophic transfer are assessed with a focus on their impacts on bacteria, algae and daphnids. We identify several gaps which need urgent attention in order to make sound decisions to protect the environment. These include uncertainty in both estimated and measured environmental concentrations of NPs for reliable risk assessment and for regulating the NP industry. In addition toxicity tests and risk assessment methodologies specific to NPs are still at the research and development stage. Also conflicting and inconsistent results on physicochemical characteristics and the fate and transport of NPs in the environment suggest the need for further research. Finally, improved understanding of the mechanisms of NP toxicity is crucial in risk assessment of NPs, since conventional toxicity tests may not reflect the risks associated with NPs. Behavioural effects may be more sensitive and would be efficient in certain situations compared with conventional toxicity tests due to low NP concentrations in field conditions. However, the development of such tests is still lacking, and further research is recommended.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, VIC, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
11
|
Gebara RC, Souza JP, Mansano ADS, Sarmento H, Melão MDGG. Effects of iron oxide nanoparticles (Fe 3O 4) on life history and metabolism of the Neotropical cladoceran Ceriodaphnia silvestrii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109743. [PMID: 31593827 DOI: 10.1016/j.ecoenv.2019.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/27/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) production is increasing worldwide. These products are likely to end up in aquatic environments. However, few studies evaluated the chronic toxicity of iron-based NPs (Fe-NPs) to cladocerans and their potential ecotoxicological hazards. In this study we aimed to investigate the effects of iron oxide nanoparticles (Fe3O4-NPs) to Ceriodaphnia silvestrii Daday, 1902, assessing acute (48 h) and chronic toxicity (up to 14 d). Besides traditional endpoints (immobility and lethality), we also evaluated physiological responses (respiration rates) in a 48 h-exposure. No immobility was observed (EC50 > 100 mg L-1) after 48 h, whereas respiration rates at the highest concentration were 400% of that in control, indicating that this endpoint was more sensitive during acute toxicity. In chronic assays, Fe3O4-NPs affected body length (8.24% growth inhibition in 7 d-exposure) and number of eggs (7-d IC10: 3.53, IC20: 6.69 mg Fe L-1) and neonates (7-d IC10: 1.25, IC20: 3.75 mg Fe L-1). Based on species sensitivity distribution (SSD), C. silvestrii was a sensitive organism, suggesting Fe-NPs as a possible threat for this species. Our results also indicate that the NPs caused a physical barrier, impairing food absorption, since we observed NPs agglomerations into cladocerans' gut. We demonstrate that Fe3O4-NPs affects C. silvestrii metabolism and reproduction and our results support the use of sublethal endpoints to assess environmental safety. The release of these NPs into freshwater environments should be carefully evaluated, since disturbances on cladoceran population dynamics could cause strong impacts on the entire food web structure and ultimately on ecosystem functioning.
Collapse
Affiliation(s)
- Renan Castelhano Gebara
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Jaqueline Pérola Souza
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), Universidade de São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, 13560-970, São Carlos, SP, Brazil
| | - Adrislaine da Silva Mansano
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), Universidade de São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, 13560-970, São Carlos, SP, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
12
|
Vanzetto GV, Thomé A. Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:74-83. [PMID: 31146240 DOI: 10.1016/j.envpol.2019.05.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/02/2019] [Accepted: 05/17/2019] [Indexed: 05/28/2023]
Abstract
The application of nanoscale zero-valent iron is one of the most widely used remediation technologies; however, the potential environmental risks of this technology are largely unknown. In order to broaden the knowledge on this subject, the present work consists of a bibliometric study of all of publications related to the toxicity of zero-valent iron nanoparticles used in soil remediation available from the Scopus (Elsevier) and Web of Science (Thompson Reuters) databases. This study presents a temporal distribution of the publications, the most cited articles, the authors who have made the greatest contribution to the theme, and the institutions, countries, and scientific journals that have published the most on this subject. The use of bibliometrics has allowed for the visualization of a panorama of the publications, providing an appropriate analysis to guide new research towards an effective contribution to science by filling the existing gaps. In particular, the lack of studies in several countries reveals a promising area for the development of further research on this topic.
Collapse
|
13
|
Ghosh I, Mukherjee A, Mukherjee A. Nanoscale zerovalent iron particles induce differential cytotoxicity, genotoxicity, oxidative stress and hemolytic responses in human lymphocytes and erythrocytes in vitro. J Appl Toxicol 2019; 39:1623-1639. [PMID: 31355497 DOI: 10.1002/jat.3843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
The growing usage of nanoscale zerovalent iron particles (nZVI) in the remediation of soil, ground/surface water has elicited large-scale environmental release triggering human exposure. The size of nanomaterials is a key regulator of toxicity. However, the effect of a variable size of nZVI on genotoxicity is unexplored in human cells. To the best of our knowledge, in this study, the cytotoxic, genotoxic and hemolytic potential of nZVI-1 (15 nm) and nZVI-2 (50 nm) at concentrations of 5, 10 and 20 μg/mL was evaluated for the first time in human lymphocytes and erythrocytes treated for 3 hours. In erythrocytes, spherocytosis and echinocytosis occurred upon exposure to nZVI-1 and nZVI-2, respectively, leading to hemolysis. Lymphocytes treated with 20 μg/mL nZVI-2 and 10 μg/mL nZVI-1, incurred maximum DNA damage, although nZVI-2 induced higher cyto-genotoxicity than nZVI-1. This can be attributed to higher Fe ion dissolution and time/concentration-dependent colloidal destabilization (lower zeta potential) of nZVI-2. Although nZVI-1 showed higher uptake, its lower genotoxicity can be due to lesser Fe content, Fe ion dissolution and superior colloidal stability (higher zeta potential) compared with nZVI-2. Substantial accumulation of Ca2+ , superoxide anions, hydroxyl radicals and H2 O2 leading to mitochondrial impairment and altered antioxidant enzyme activity was noted at the same concentrations. Pre-treatment with N-acetyl-cysteine modulated these parameters indicating the indirect action of reactive oxygen species in nZVI-induced DNA damage. The morphology of diffused nuclei implied the possible onset of apoptotic cell death. These results validate the synergistic role of size, ion dissolution, colloidal stability and reactive oxygen species on cyto-genotoxicity of nZVI and unlock further prospects in its environmental nano-safety evaluation.
Collapse
Affiliation(s)
- Ilika Ghosh
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
14
|
Ghosh M, Ghosh I, Godderis L, Hoet P, Mukherjee A. Genotoxicity of engineered nanoparticles in higher plants. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:132-145. [DOI: 10.1016/j.mrgentox.2019.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
|
15
|
Zanella D, Bossi E, Gornati R, Faria N, Powell J, Bernardini G. The direct permeation of nanoparticles through the plasma membrane transiently modifies its properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182997. [PMID: 31150635 DOI: 10.1016/j.bbamem.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022]
Abstract
The exposure to metal nanoparticles (NPs) has increased with their widespread use in industry, research and medicine. It is well known that NPs may enter cells and that this mechanism is crucial to exert both the therapeutic and toxicity effects. The main cellular entrance route is endocytosis-based, however, recent experimental studies, have reported that NPs can also enter the cell crossing directly the plasma membrane, it is thus important to investigate this alternative internalization mechanism. Size, surface chemistry, solubility and shape play a role in NP ability of entering the cell, but it is still to be elucidated how these properties act on cell membrane. We have demonstrated that a direct permeation of metal oxide NPs through the lipid bilayer of the cell membrane can occur, giving direct access to the cytoplasm. In this paper, using the powerful tool of Xenopus laevis oocytes and two electrode Voltage Clamp, we have investigated several parameters that can influence the direct crossing. The most significant of them is the NP hydrodynamic size as clearly shown by the comparison of the behaviour between Co3O4 and NiO NPs. By collecting biophysical membrane parameters in different conditions, we have shown that NPs that are able to cross the membrane share the ability to maintain a hydrodynamic size lower than 200 nm. The presence of this route of entrance must be considered for a better comprehension of the effect at intracellular level considering possible mechanism in order to a safer design of engineered NPs.
Collapse
Affiliation(s)
- Daniele Zanella
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy
| | - Nuno Faria
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Jonathan Powell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy.
| |
Collapse
|
16
|
Chen X, Zhu Y, Yang K, Zhu L, Lin D. Nanoparticle TiO 2 size and rutile content impact bioconcentration and biomagnification from algae to daphnia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:421-430. [PMID: 30690238 DOI: 10.1016/j.envpol.2019.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 05/25/2023]
Abstract
Little information is available about effect of particle size and crystal structure of nTiO2 on their trophic transfer. In this study, 5 nm anatase, 10 nm anatase, 100 nm anatase, 20 nm P25 (80% anatase and 20% rutile), and 25 nm rutile nTiO2 were selected to investigate the effects of size and crystal structure on the toxicity, bioconcentration, and trophic transfer of nTiO2 to algae and daphnia. In the exposed daphnids, metabolic pathways affected by nTiO2 and nTiO2-exposed algae (nTiO2-algae) were also explored. The 96 h IC50 values of algae and the 48 h LC50 values of daphnia were 10.3, 18.9, 43.9, 33.6, 65.4 mg/L and 10.5, 13.2, 37.0, 28.4, 60.7 mg/L, respectively, after exposed to nTiO2-5A, nTiO2-10A, nTiO2-100A, nTiO2-P25, and nTiO2-25R, respectively. The bioconcentration factors (BCFs) for 0.1, 1, and 10 mg/L nTiO2 in daphnia ranged from 21,220 L/kg to 145,350 L/kg. The nTiO2 biomagnification factors (BMFs) of daphnia fed with 1 and 10 mg/L nTiO2-exposed algae were consistently greater than 1.0 (5.7-122). The results show that the acute toxicity, BCF, and BMF all decreased with increasing size or rutile content of nTiO2. All types of nTiO2 were largely accumulated in the daphnia gut and were not completely depurated within 24 h. At the molecular level, 22 Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways of daphnia were impacted by the nTiO2 and nTiO2-algae treatments, including glutathione metabolism, aminoacyl-tRNA biosynthesis, among others. Six and four KEGG metabolic pathways were significantly disturbed in daphnids exposed to nTiO2 and nTiO2-algae, respectively, indicating the presence of algae partially alleviated the negative impact of nTiO2 on metabolism. These findings increase understanding of the impacts of physicochemical properties of nTiO2 on the food chain from molecular scale to that of the whole organism, and provide new insight into the ecological effect of nanomaterials.
Collapse
Affiliation(s)
- Xiangjie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Lekamge S, Miranda AF, Ball AS, Shukla R, Nugegoda D. The toxicity of coated silver nanoparticles to Daphnia carinata and trophic transfer from alga Raphidocelis subcapitata. PLoS One 2019; 14:e0214398. [PMID: 30943225 PMCID: PMC6447189 DOI: 10.1371/journal.pone.0214398] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) are causing threats to the environment. Silver NPs (AgNPs) are increasingly used in commercial products and may end up in freshwater ecosystems. The freshwater organisms are vulnerable due to water-borne and dietary exposure to AgNPs. Surface properties play an important role in the fate and behavior of AgNPs in the aquatic environment and their effects on organisms. However, effects of surface properties of AgNPs on organisms are poorly understood. In this study, we explored the effects of AgNPs coated with three different ligands; Tyrosine (T-AgNP), Epigallocatechin gallate (E-AgNP) and Curcumin (C-AgNP) in relation to the toxicity to a key aquatic organism; Daphnia carinata. The study focused on how coatings determine fate of NPs in the medium, mortality, feeding behaviour, bioaccumulation and trophic transfer from the freshwater alga, Raphidocelis subcapitata to daphnids. NP stability tests indicated that T-AgNPs were least stable in the ASTM daphnia medium while C-AgNPs were most stable. 48 h EC50 values of AgNPs to D. carinata were in the order of E-AgNP (19.37 μg L-1) > C-AgNP (21.37 μg L-1) > T-AgNP (49.74 μg L-1) while the 48 h EC50 value of Ag+ ions was 1.21 μg L-1. AgNP contaminated algae significantly decreased the feeding rates of daphnids. However, no significant differences were observed in feeding rates between algae contaminated with differently coated AgNPs. Trophic transfer studies showed that AgNPs were transferred from algae to daphnids. The bioacumulation of AgNPs in algae and the diet-borne bioaccumulation of AgNPs in daphnids varied for differently coated AgNPs. Bioaccumulation of C-AgNPs in algae was 1.5 time higher than T-AgNPs. However, the accumulation of T-AgNPs in daphnids via trophic transfer was 2.6 times higher than T-AgNPs. The knowledge generated from this study enhances the understanding of surface property dependent toxicity, bioaccumulation and trophic transfer of AgNPs in aquatic environments.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Victoria, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
- * E-mail:
| | - Ana F. Miranda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Andrew S. Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Victoria, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
18
|
Liu PR, Yang ZY, Hong Y, Hou YL. An in situ method for synthesis of magnetic nanomaterials and efficient harvesting for oleaginous microalgae in algal culture. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Dong S, Xia T, Yang Y, Lin S, Mao L. Bioaccumulation of 14C-Labeled Graphene in an Aquatic Food Chain through Direct Uptake or Trophic Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:541-549. [PMID: 29265813 DOI: 10.1021/acs.est.7b04339] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The growing applications of graphene materials warrant a careful evaluation of their environmental fate in aquatic food webs. Escherichia coli (Bacteria), Tetrahymena thermophila (protozoa), Daphnia magna (zooplankton), and Danio rerio (vertebrate) were used to build aquatic food chains to investigate the waterborne uptake and trophic transfer of 14C-labeled graphene. Body burden factor (BBF) and trophic transfer factor (TTF) were analyzed for each organism and food chain to assess the bioaccumulation and biomagnification of graphene. The test organisms have high potential of accumulating graphene via direct uptake from culture medium with log-transformed BBF (log BBF) values of 3.66, 5.1, 3.9, and 1.62 for each organism, respectively. In the food chain from E. coli to T. thermophila, the calculated TTFs of 0.2 to 8.6 indicate the high trophic transfer potential in this aquatic food chain. However, the TTFs calculated for the food chain from T. thermophila to D. magna and from D. magna to D. rerio are much lower than 1, indicating that biomagnification was unlikely to occur in these food chains. Body burden measured for dietary uptake by T. thermophila, D. magna, and D. rerio are higher than that via waterborne exposure in a similar nominal concentration, respectively, indicating that trophic transfer is a nonnegligible route for the bioaccumulation of graphene in organisms.
Collapse
Affiliation(s)
- Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Tian Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Division of NanoMedicine, Department of Medicine, University of California , Los Angeles 90095, United States
| | - Yu Yang
- Department of Civil & Environmental Engineering, University of Nevada , Reno 89557, United States
| | - Sijie Lin
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai 200092, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| |
Collapse
|
20
|
Lei C, Sun Y, Tsang DCW, Lin D. Environmental transformations and ecological effects of iron-based nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:10-30. [PMID: 28966028 DOI: 10.1016/j.envpol.2017.09.052] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/06/2017] [Accepted: 09/17/2017] [Indexed: 05/16/2023]
Abstract
The increasing application of iron-based nanoparticles (NPs), especially high concentrations of zero-valent iron nanoparticles (nZVI), has raised concerns regarding their environmental behavior and potential ecological effects. In the environment, iron-based NPs undergo physical, chemical, and/or biological transformations as influenced by environmental factors such as pH, ions, dissolved oxygen, natural organic matter (NOM), and biotas. This review presents recent research advances on environmental transformations of iron-based NPs, and articulates their relationships with the observed toxicities. The type and extent of physical, chemical, and biological transformations, including aggregation, oxidation, and bio-reduction, depend on the properties of NPs and the receiving environment. Toxicities of iron-based NPs to bacteria, algae, fish, and plants are increasingly observed, which are evaluated with a particular focus on the underlying mechanisms. The toxicity of iron-based NPs is a function of their properties, tolerance of test organisms, and environmental conditions. Oxidative stress induced by reactive oxygen species is considered as the primary toxic mechanism of iron-based NPs. Factors influencing the toxicity of iron-based NPs are addressed and environmental transformations play a significant role, for example, surface oxidation or coating by NOM generally lowers the toxicity of nZVI. Research gaps and future directions are suggested with an aim to boost concerted research efforts on environmental transformations and toxicity of iron-based NPs, e.g., toxicity studies of transformed NPs in field, expansion of toxicity endpoints, and roles of laden contaminants and surface coating. This review will enhance our understanding of potential risks of iron-based NPs and proper uses of environmentally benign NPs.
Collapse
Affiliation(s)
- Cheng Lei
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|