1
|
Sun Z, Qu Z, He Y, Han Y, Xing Y, Liu S, Hu Y, Jiang Y, Yu Y, Liu Y, Sun W, Yang L. Extracellular vesicle GABA responds to cadmium stress, and GAD overexpression alleviates cadmium damage in duckweed. FRONTIERS IN PLANT SCIENCE 2025; 16:1536786. [PMID: 40171484 PMCID: PMC11959025 DOI: 10.3389/fpls.2025.1536786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025]
Abstract
Introduction Cadmium (Cd) pollution lead to ecological problems and cause severe damages to plants. Investigating the signal response to Cd is crucial for improving Cd resistance during phytoremediation. While γ-aminobutyric acid (GABA) is known to accumulate rapidly under environmental stress, the real-time dynamics of GABA signaling and its mechanistic link to stress adaptation remain poorly understood. Methods In this study, a sensitive GABA biosensor, iGABASnFR, was introduced into plants for the first time to monitor GABA signaling. Additionally, glutamate decarboxylase (GAD), a key enzyme catalyzing the conversion of glutamate (Glu) to GABA, was overexpressed in duckweed. The responses of GABA in extracellular vesicles (EVs) under Cd stress were analyzed using iGABASnFR transgenic duckweed. Cd accumulation, photosynthesis, and antioxidant activity were evaluated in GAD-overexpressing duckweed. Results (1) GABA in extracellular vesicles of duckweed exhibited a dynamic response to Cd stress, as visualized by iGABASnFR transgenic duckweed. GABA content in EVs was significantly enhanced under Cd treatment. (2) GAD-overexpressing duckweed demonstrated improved photosynthetic efficiency and enhanced antioxidant capacity during Cd stress. (3) Cd accumulation was significantly increased in GAD transgenic duckweed, as evidenced by Cd2+ flux measurements, total Cd content, and Cd staining in protoplasts using FlowSight imaging. Discussion This study provides novel insights into the role of GABA in extracellular vesicles during Cd stress and establishes a direct link between GABA signal and Cd stress adaptation. The findings demonstrate that GAD overexpression enhances Cd resistance and accumulation in duckweed, offering a potential strategy for improving phytoremediation efficiency. This work advances our understanding of GABA signaling dynamics and its application in Cd stress.
Collapse
Affiliation(s)
- Zhanpeng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
- Faculty of Education, Tianjin Normal University, Tianjin, China
| | - Ziyang Qu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yuman He
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yujie Han
- Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
| | - Yun Xing
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Sizheng Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yi Hu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yumeng Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yiqi Yu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yuanyuan Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Weibo Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
2
|
Li Y, Hu Y, Liu W, Xia H, Liu Y, Sun Z, Zhou Y. Heterologous expression of Sesuvium portulacastrum SpCIPK2 confers salt tolerance in transgenic Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2024; 176:e14654. [PMID: 39639843 DOI: 10.1111/ppl.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/19/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Calcineurin B-like interacting protein kinases (CIPKs) play critical roles in plant adaptation to salt stress. However, the biological functions of CIPKs in Sesuvium portulacastrum, a halophyte flourishing in coastal mudflats, remain poorly understood. Here, a highly expressed CIPK gene, SpCIPK2, was identified from transcriptomic analyses of S. portulacastrum root systems under salt stress. Subcellular localization assays confirmed the cytoplasmic presence of SpCIPK2. Arabidopsis thaliana plants overexpressing SpCIPK2 exhibited markedly improved salt tolerance, characterized by increased fresh weight under salt stress. Transgenic plants demonstrated significantly lower levels of O2·- and H2O2 compared to wild-type plants. Furthermore, transgenic plants revealed a reduced relative conductivity and enhanced peroxidase (POD) activity in the leaves. Salt treatment accelerated Na+ efflux while slowing K+ efflux in transgenic plants, resulting in diminished Na+ accumulation and an elevated K+/Na+ ratio during salt stress. This evidence suggests that SpCIPK2 enhances salt tolerance by regulating ion homeostasis, activating antioxidant enzymes activity, and scavenging reactive oxygen species (ROS) in salt-stressed plants.
Collapse
Affiliation(s)
- Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| | - Yanping Hu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Wen Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| | - Haiyan Xia
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing, China
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Sciences, Lianyungang, Jiangsu, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| |
Collapse
|
3
|
Li X, Zhang Y, Zhu C, Zheng P, Chen C, Zhang N, Ji H, Dong C, Yu J, Ren J, Zhu Y, Wang Y. Enzymatic Characterization of SpPAL Genes in S. polyrhiza and Overexpression of the SpPAL3. PLANTS (BASEL, SWITZERLAND) 2024; 13:2607. [PMID: 39339582 PMCID: PMC11435183 DOI: 10.3390/plants13182607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) catalyzes the deamination of phenylalanine, which is the initial step in the biosynthesis of phenylpropanoids. It serves as a crucial enzyme that facilitates the transfer of carbon from primary to secondary metabolism in plants. Duckweed is regarded as a promising chassis plant in synthetic biology research and application, due to its being rich in secondary metabolites and other advantages. The genes encoding PAL in Spirodela polyrhiza (L.) Schleid, the giant duckweed, were investigated in this study. Three SpPAL genes (SpPAL1-SpPAL3) were identified and cloned. All of them were successfully expressed in E. coli, and their recombinant proteins all showed PAL activity. In addition, SpPAL1 and SpPAL2 proteins could also utilize tyrosine as substrate, although the activity was low. A qRT-PCR analysis demonstrated that the expression of SpPAL3 was most pronounced in young fronds. It was found that the expression of SpPAL1 and SpPAL3 was significantly induced by MeJA treatment. Overexpression of SpPAL3 in Lemna turionifera inhibited the growth of fronds and adventitious roots in the transgenic plants, indicating the importance of SpPAL3 in duckweed besides its involvement in the secondary metabolism.
Collapse
Affiliation(s)
- Xiaoxue Li
- Institute of Agricultural Products Preservation and Processing Technology, National Engineering Technology Research Center for Preservation of Agriculture Product, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Yinxing Zhang
- School of Life Science, Tianjin University, Tianjin 300072, China
| | - Chunfeng Zhu
- School of Life Science, Tianjin University, Tianjin 300072, China
| | - Pufan Zheng
- Institute of Agricultural Products Preservation and Processing Technology, National Engineering Technology Research Center for Preservation of Agriculture Product, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology, National Engineering Technology Research Center for Preservation of Agriculture Product, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Na Zhang
- Institute of Agricultural Products Preservation and Processing Technology, National Engineering Technology Research Center for Preservation of Agriculture Product, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Haipeng Ji
- Institute of Agricultural Products Preservation and Processing Technology, National Engineering Technology Research Center for Preservation of Agriculture Product, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Chenghu Dong
- Institute of Agricultural Products Preservation and Processing Technology, National Engineering Technology Research Center for Preservation of Agriculture Product, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Jinze Yu
- Institute of Agricultural Products Preservation and Processing Technology, National Engineering Technology Research Center for Preservation of Agriculture Product, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Jie Ren
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300392, China
| | - Yerong Zhu
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Yong Wang
- College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Liu P, Liu H, Zhao J, Yang T, Guo S, Chang L, Xiao T, Xu A, Liu X, Zhu C, Gan L, Chen M. Genome-wide identification and functional analysis of mRNA m 6A writers in soybean under abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1446591. [PMID: 39055358 PMCID: PMC11269220 DOI: 10.3389/fpls.2024.1446591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
N6-methyladenosine (m6A), a well-characterized RNA modification, is involved in regulating multiple biological processes; however, genome-wide identification and functional characterization of the m6A modification in legume plants, including soybean (Glycine max (L.) Merr.), remains lacking. In this study, we utilized bioinformatics tools to perform comprehensive analyses of molecular writer candidates associated with the RNA m6A modification in soybean, characterizing their conserved domains, motifs, gene structures, promoters, and spatial expression patterns. Thirteen m6A writer complex genes in soybean were identified, which were assigned to four families: MT-A70, WTAP, VIR, and HAKAI. It also can be identified that multiple cis elements in the promoters of these genes, which were classified into five distinct groups, including elements responsive to light, phytohormone regulation, environmental stress, development, and others, suggesting that these genes may modulate various cellular and physiological processes in plants. Importantly, the enzymatic activities of two identified m6A writers, GmMTA1 and GmMTA2, were confirmed in vitro. Furthermore, we analyzed the expression patterns of the GmMTAs and GmMTBs under different abiotic stresses, revealing their potential involvement in stress tolerance, especially in the response to alkalinity or darkness. Overexpressing GmMTA2 and GmMTB1 in soybean altered the tolerance of the plants to alkalinity and long-term darkness, further confirming their effect on the stress response. Collectively, our findings identified the RNA m6A writer candidates in leguminous plants and highlighted the potential roles of GmMTAs and GmMTBs in the response to abiotic stress in soybean.
Collapse
Affiliation(s)
- Peng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huijie Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengfeng Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sichao Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Luo Chang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tianyun Xiao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Anjie Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoye Liu
- Department of Criminal Science and Technology, Nanjing Police University, Nanjing, China
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Yang J, Zhao X, Wang X, Xia M, Ba S, Lim BL, Hou H. Biomonitoring of heavy metals and their phytoremediation by duckweeds: Advances and prospects. ENVIRONMENTAL RESEARCH 2024; 245:118015. [PMID: 38141920 DOI: 10.1016/j.envres.2023.118015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Heavy metals (HMs) contamination of water bodies severely threatens human and ecosystem health. There is growing interest in the use of duckweeds for HMs biomonitoring and phytoremediation due to their fast growth, low cultivation costs, and excellent HM uptake efficiency. In this review, we summarize the current state of knowledge on duckweeds and their suitability for HM biomonitoring and phytoremediation. Duckweeds have been used for phytotoxicity assays since the 1930s. Some toxicity tests based on duckweeds have been listed in international guidelines. Duckweeds have also been recognized for their ability to facilitate HM phytoremediation in aquatic environments. Large-scale screening of duckweed germplasm optimized for HM biomonitoring and phytoremediation is still essential. We further discuss the morphological, physiological, and molecular effects of HMs on duckweeds. However, the existing data are clearly insufficient, especially in regard to dissection of the transcriptome, metabolome, proteome responses and molecular mechanisms of duckweeds under HM stresses. We also evaluate the influence of environmental factors, exogenous substances, duckweed community composition, and HM interactions on their HM sensitivity and HM accumulation, which need to be considered in practical application scenarios. Finally, we identify challenges and propose approaches for improving the effectiveness of duckweeds for bioremediation from the aspects of selection of duckweed strain, cultivation optimization, engineered duckweeds. We foresee great promise for duckweeds as phytoremediation agents, providing environmentally safe and economically efficient means for HM removal. However, the primary limiting issue is that so few researchers have recognized the outstanding advantages of duckweeds. We hope that this review can pique the interest and attention of more researchers.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiaoyu Wang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Sang Ba
- Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa, 850000, China; Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, 850000, China.
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China; HKU Shenzhen Institute of Research and Innovation, Shenzhen, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
6
|
Wei X, Hu Y, Sun C, Wu S. Characterization of a Novel Antimicrobial Peptide Bacipeptin against Foodborne Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5283-5292. [PMID: 38429098 DOI: 10.1021/acs.jafc.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The increasing emergence of multidrug-resistant pathogens and development of biopreservatives in food industries has increased the demand of novel and safe antimicrobial agents. In this study, a marine bacterial strain Bacillus licheniformis M1 was isolated and exhibited obvious antimicrobial activities against foodborne pathogens, especially against methicillin-resistant Staphylococcus aureus. The antimicrobial agent was purified and identified as a novel antimicrobial peptide, which was designated as bacipeptin, and the corresponding mechanism was further investigated by electron microscopy observation and transcriptomic analysis with biochemical validation. The results showed that bacipeptin could reduce the virulence of methicillin-resistant Staphylococcus aureus and exerted its antimicrobial activity by interfering with histidine metabolism, inducing the accumulation of reactive oxygen species and down-regulating genes related to Na+/H+ antiporter and the cell wall, thus causing damage to the cell wall and membrane. Overall, our study provides a novel natural product against foodborne pathogens and discloses the corresponding action mechanism.
Collapse
Affiliation(s)
- Xiaotong Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Hu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Ma X, Jiang Y, Qu Z, Yang Y, Wang W, He Y, Yu Y, Luo X, Liu Y, Han W, Di Q, Yang L, Wang Y. Overexpression of Phosphoserine Aminotransferase ( PSAT)-Enhanced Cadmium Resistance and Accumulation in Duckweed ( Lemna turionifera 5511). PLANTS (BASEL, SWITZERLAND) 2024; 13:627. [PMID: 38475473 DOI: 10.3390/plants13050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Cadmium (Cd) hampers plant growth and harms photosynthesis. Glutamate (Glu) responds to Cd stress and activates the Ca2+ signaling pathway in duckweed, emphasizing Glu's significant role in Cd stress. In this study, we overexpressed phosphoserine aminotransferase (PSAT), a crucial enzyme in Glu metabolism, in duckweed. We investigated the response of PSAT-transgenic duckweed to Cd stress, including growth, Glu metabolism, photosynthesis, antioxidant enzyme activity, Cd2+ flux, and gene expression. Remarkably, under Cd stress, PSAT-transgenic duckweed prevented root abscission, upregulated the expression of photosynthesis ability, and increased Chl a, Chl b, and Chl a + b levels by 13.9%, 7%, and 12.6%, respectively. Antioxidant enzyme activity (CAT and SOD) also improved under Cd stress, reducing cell membrane damage in PSAT-transgenic duckweeds. Transcriptomic analysis revealed an upregulation of Glu metabolism-related enzymes in PSAT-transgenic duckweed under Cd stress. Moreover, metabolomic analysis showed a 68.4% increase in Glu content in PSAT duckweed exposed to Cd. This study sheds novel insights into the role of PSAT in enhancing plant resistance to Cd stress, establishing a theoretical basis for the impact of Glu metabolism on heavy metal tolerance in plants.
Collapse
Affiliation(s)
- Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yumeng Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ziyang Qu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yunwen Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yuman He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yiqi Yu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ximeng Luo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yuanyuan Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenqian Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Qiqi Di
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yong Wang
- College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Yue CP, Han L, Sun SS, Chen JF, Feng YN, Huang JY, Zhou T, Hua YP. Genome-wide identification of the cation/proton antiporter (CPA) gene family and functional characterization of the key member BnaA05.NHX2 in allotetraploid rapeseed. Gene 2024; 894:148025. [PMID: 38007163 DOI: 10.1016/j.gene.2023.148025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Rapeseed (Brassica napus L.) is susceptible to nutrient stresses during growth and development; however, the CPA (cation proton antiporter) family genes have not been identified in B. napus and their biological functions remain unclear. This study was aimed to identify the molecular characteristics of rapeseed CPAs and their transcriptional responses to multiple nutrient stresses. Through bioinformatics analysis, 117 BnaCPAs, consisting of three subfamilies: Na+/H+ antiporter (NHX), K+ efflux antiporter (KEA), and cation/H+ antiporter (CHX), were identified in the rapeseed genome. Transcriptomic profiling showed that BnaCPAs, particularly BnaNHXs, were transcriptionally responsive to diverse nutrient stresses, including Cd toxicity, K starvation, salt stress, NH4+ toxicity, and low Pi. We found that the salt tolerance of the transgenic rapeseed lines overexpressing BnaA05.NHX2 was significantly higher than that of wild type. Subcellular localization showed that BnaA05.NHX2 was localized on the tonoplast, and TEM combined with X-ray energy spectrum analysis revealed that the vacuolar Na+ concentrations of the BnaA05.NHX2-overexpressing rapeseed plants were significantly higher than those of wild type. The findings of this study will provide insights into the complexity of the BnaCPA family and a valuable resource to explore the in-depth functions of CPAs in B. napus.
Collapse
Affiliation(s)
- Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Liao Han
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Si-Si Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jin-Yong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Zhang W, Zhi W, Qiao H, Huang J, Li S, Lu Q, Wang N, Li Q, Zhou Q, Sun J, Bai Y, Zheng X, Bai M, Van Breusegem F, Xiang F. H2O2-dependent oxidation of the transcription factor GmNTL1 promotes salt tolerance in soybean. THE PLANT CELL 2023; 36:112-135. [PMID: 37770034 PMCID: PMC10734621 DOI: 10.1093/plcell/koad250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Reactive oxygen species (ROS) play an essential role in plant growth and responses to environmental stresses. Plant cells sense and transduce ROS signaling directly via hydrogen peroxide (H2O2)-mediated posttranslational modifications (PTMs) on protein cysteine residues. Here, we show that the H2O2-mediated cysteine oxidation of NAC WITH TRANS-MEMBRANE MOTIF1-LIKE 1 (GmNTL1) in soybean (Glycine max) during salt stress promotes its release from the endoplasmic reticulum (ER) membrane and translocation to the nucleus. We further show that an oxidative posttranslational modification on GmNTL1 residue Cys-247 steers downstream amplification of ROS production by binding to and activating the promoters of RESPIRATORY BURST OXIDASE HOMOLOG B (GmRbohB) genes, thereby creating a feed-forward loop to fine-tune GmNTL1 activity. In addition, oxidation of GmNTL1 Cys-247 directly promotes the expression of CATION H+ EXCHANGER 1 (GmCHX1)/SALT TOLERANCE-ASSOCIATED GENE ON CHROMOSOME 3 (GmSALT3) and Na+/H+ Antiporter 1 (GmNHX1). Accordingly, transgenic overexpression of GmNTL1 in soybean increases the H2O2 levels and K+/Na+ ratio in the cell, promotes salt tolerance, and increases yield under salt stress, while an RNA interference-mediated knockdown of GmNTL1 elicits the opposite effects. Our results reveal that the salt-induced oxidation of GmNTL1 promotes its relocation and transcriptional activity through an H2O2-mediated posttranslational modification on cysteine that improves resilience of soybean against salt stress.
Collapse
Affiliation(s)
- Wenxiao Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Wenjiao Zhi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Hong Qiao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Shuo Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Qing Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Nan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Qiang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Qian Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Yuting Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Xiaojian Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Mingyi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, People's Republic China
| |
Collapse
|
10
|
Yang L, Ma X, Guo Y, He Y, Yang Y, Wang W, Xu Z, Zuo Z, Xue Y, Yang R, Han B, Sun J. Acetylcholine (ACh) enhances Cd tolerance through transporting ACh in vesicles and modifying Cd absorption in duckweed (Lemna turionifera 5511). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122305. [PMID: 37580008 DOI: 10.1016/j.envpol.2023.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/20/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Acetylcholine (ACh), an important neurotransmitter, plays a role in resistance to abiotic stress. However, the role of ACh during cadmium (Cd) resistance in duckweed (Lemna turionifera 5511) remains uncharacterized. In this study, the changes of endogenous ACh in duckweed under Cd stress has been investigated. Also, how exogenous ACh affects duckweed's ability to withstand Cd stress was studied. The ACh sensor transgenic duckweed (ACh 3.0) showed the ACh signal response under Cd stress. And ACh was wrapped and released in vesicles. Cd stress promoted ACh content in duckweed. The gene expression analysis showed an improved fatty acid metabolism and choline transport. Moreover, exogenous ACh addition enhanced Cd tolerance and decreased Cd accumulation in duckweed. ACh supplement reduced the root abscission rate, alleviated leaf etiolation, and improved chlorophyll fluorescence parameters under Cd stress. A modified calcium (Ca2+) flux and improved Cd2+ absorption were present in conjunction with it. Thus, we speculate that ACh could improve Cd resistance by promoting the uptake and accumulation of Cd, as well as the response of the Ca2+ signaling pathway. Also, plant-derived extracellular vesicles (PDEVs) were extracted during Cd stress. Therefore, these results provide new insights into the response of ACh during Cd stress.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yuhan Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuman He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yunwen Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Ziyi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Zhaojiang Zuo
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Ying Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Rui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Bing Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| |
Collapse
|
11
|
Wang W, Yang Y, Ma X, He Y, Ren Q, Huang Y, Wang J, Xue Y, Yang R, Guo Y, Sun J, Yang L, Sun Z. New Insight into the Function of Dopamine (DA) during Cd Stress in Duckweed ( Lemna turionifera 5511). PLANTS (BASEL, SWITZERLAND) 2023; 12:1996. [PMID: 37653913 PMCID: PMC10221877 DOI: 10.3390/plants12101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/09/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Dopamine (DA), a kind of neurotransmitter in animals, has been proven to cause a positive influence on plants during abiotic stress. In the present study, the function of DA on plants under cadmium (Cd) stress was revealed. The yellowing of duckweed leaves under Cd stress could be alleviated by an exogenous DA (10/20/50/100/200 μM) supplement, and 50 μM was the optimal concentration to resist Cd stress by reducing root breakage, restoring photosynthesis and chlorophyll content. In addition, 24 h DA treatment increased Cd content by 1.3 times in duckweed under Cd stress through promoting the influx of Cd2+. Furthermore, the gene expression changes study showed that photosynthesis-related genes were up-regulated by DA addition under Cd stress. Additionally, the mechanisms of DA-induced Cd detoxification and accumulation were also investigated; some critical genes, such as vacuolar iron transporter 1 (VIT1), multidrug resistance-associated protein (MRP) and Rubisco, were significantly up-regulated with DA addition under Cd stress. An increase in intracellular Ca2+ content and a decrease in Ca2+ efflux induced by DA under Cd stress were observed, as well as synchrony with changes in the expression of cyclic nucleotide-gated ion channel 2 (CNGC2), predicting that, in plants, CNGC2 may be an upstream target for DA action and trigger the change of intracellular Ca2+ signal. Our results demonstrate that DA supplementation can improve Cd resistance by enhancing duckweed photosynthesis, changing intracellular Ca2+ signaling, and enhancing Cd detoxification and accumulation. Interestingly, we found that exposure to Cd reduced endogenous DA content, which is the result of a blocked shikimate acid pathway and decreased expression of the tyrosine aminotransferase (TAT) gene. The function of DA in Cd stress offers a new insight into the application and study of DA to Cd phytoremediation in aquatic systems.
Collapse
Affiliation(s)
- Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Yunwen Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Yuman He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Qiuting Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Yandi Huang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Ying Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Rui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Yuhan Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 2002141, China;
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Zhanpeng Sun
- Faculty of Education, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
12
|
Wang L, Kuang Y, Zheng S, Tong Y, Zhu Y, Wang Y. Overexpression of the Phosphoserine Phosphatase-Encoding Gene ( AtPSP1) Promotes Starch Accumulation in Lemna turionifera 5511 under Sulfur Deficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:1012. [PMID: 36903873 PMCID: PMC10005638 DOI: 10.3390/plants12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Duckweeds are well known for their high accumulation of starch under stress conditions, along with inhibited growth. The phosphorylation pathway of serine biosynthesis (PPSB) was reported as playing a vital role in linking the carbon, nitrogen, and sulfur metabolism in this plant. The overexpression of AtPSP1, the last key enzyme of the PPSB pathway in duckweed, was found to stimulate the accumulation of starch under sulfur-deficient conditions. The growth- and photosynthesis-related parameters were higher in the AtPSP1 transgenic plants than in the WT. The transcriptional analysis showed that the expression of several genes in starch synthesis, TCA, and sulfur absorption, transportation, and assimilation was significantly up- or downregulated. The study suggests that PSP engineering could improve starch accumulation in Lemna turionifera 5511 by coordinating the carbon metabolism and sulfur assimilation under sulfur-deficient conditions.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Yingying Kuang
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Siyu Zheng
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Yana Tong
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yerong Zhu
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Yong Wang
- College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Ren Q, Li N, Liu R, Ma X, Sun J, Zeng J, Li Q, Wang M, Chen X, Wu X, Yang L. Nitric oxide (NO) involved in Cd tolerance in NHX1 transgenic duckweed during Cd stress. PLANT SIGNALING & BEHAVIOR 2022; 17:2065114. [PMID: 35470786 PMCID: PMC9045825 DOI: 10.1080/15592324.2022.2065114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 05/30/2023]
Abstract
Anthropogenic activities cause heavy metal pollution, such as cadmium (Cd). Na+/H+ antiporter (NHX1) transgenic duckweed showed Cd tolerance in our previous study, and the signal mechanism needs to be explored. As an important signal molecule, nitric oxide (NO) is involved in a number of functions under abiotic stress response. This study analyzed the levels of endogenous NO in wild-type (WT) duckweed and NHX1 duckweed under Cd treatment. The results showed that after 24 h Cd treatment, the endogenous NO level of WT duckweed decreased, which was significantly lower than that in NHX1 duckweed. Studies have proved that NHX1 influences pH. The level of NO in this study has been investigated at different pH. The NO level was the highest in the duckweed cultured with pH 5.3. Nitrate reductase gene expression was down-regulated and NO synthesis was decreased under Cd stress in WT duckweed. This study showed that NO level has been modified in NHX1 duckweed, which could be influcened by pH.
Collapse
Affiliation(s)
- Qiuting Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, Xiqing, China
| | - Na Li
- School of Basic Medical Sciences, Fudan University, Shanghai, Yangpu, China
| | - Ruxin Liu
- Center for Infection and Immunity Studies, School of Medicine Sun Yat-san University, Shanghai, China
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, Xiqing, China
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, Xiqing, China
| | - Jianyao Zeng
- School of Medicine, Shanghai University, Shanghai, Baoshan, China
| | - Qingqing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, Xiqing, China
| | - Mingwei Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, Xiqing, China
| | - Xinglin Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, Xiqing, China
| | - Xiaoyu Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, Xiqing, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, Xiqing, China
| |
Collapse
|
14
|
Ren Q, Xu Z, Xue Y, Yang R, Ma X, Sun J, Wang J, Lin S, Wang W, Yang L, Sun Z. Mechanism of calcium signal response to cadmium stress in duckweed. PLANT SIGNALING & BEHAVIOR 2022; 17:2119340. [PMID: 36102362 PMCID: PMC9481097 DOI: 10.1080/15592324.2022.2119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) causes serious damage to plants. Although calcium (Ca) signal has been found to respond to certain stress, the localization of Ca and molecular mechanisms underlying Ca signal in plants during Cd stress are largely unknown. In this study, Ca2+-sensing fluorescent reporter (GCaMP3) transgenic duckweed showed the Ca2+ signal response in Lemna turionifera 5511 (duckweed) during Cd stress. Subsequently, the subcellular localization of Ca2+ has been studied during Cd stress by transmission electron microscopy, showing the accumulation of Ca2+ in vacuoles. Also, Ca2+ flow during Cd stress has been measured. At the same time, the effects of exogenous glutamic acid (Glu) and γ-aminobutyric (GABA) on duckweed can better clarify the signal operation mechanism of plants to Cd stress. The molecular mechanism of Ca2+ signal responsed during Cd stress showed that Cd treatment promotes the positive response of Ca signaling channels in plant cells, and thus affects the intracellular Ca content. These novel signal studies provided an important Ca2+ signal molecular mechanism during Cd stress.
Collapse
Affiliation(s)
- Qiuting Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Ziyi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Ying Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Rui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Shuang Lin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Zhanpeng Sun
- Faculty of Education, Tianjin Normal University, Tianjin, China
| |
Collapse
|
15
|
Rapid and Highly Efficient Genetic Transformation and Application of Interleukin-17B Expressed in Duckweed as Mucosal Vaccine Adjuvant. Biomolecules 2022; 12:biom12121881. [PMID: 36551310 PMCID: PMC9775668 DOI: 10.3390/biom12121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Molecular farming utilizes plants as a platform for producing recombinant biopharmaceuticals. Duckweed, the smallest and fastest growing aquatic plant, is a promising candidate for molecular farming. However, the efficiency of current transformation methods is generally not high in duckweed. Here, we developed a fast and efficient transformation procedure in Lemna minor ZH0403, requiring 7-8 weeks from screening calluses to transgenic plants with a stable transformation efficiency of 88% at the DNA level and 86% at the protein level. We then used this transformation system to produce chicken interleukin-17B (chIL-17B). The plant-produced chIL-17B activated the NF-κB pathway, JAK-STAT pathway, and their downstream cytokines in DF-1 cells. Furthermore, we administrated chIL-17B transgenic duckweed orally as an immunoadjuvant with mucosal vaccine against infectious bronchitis virus (IBV) in chickens. Both IBV-specific antibody titer and the concentration of secretory immunoglobulin A (sIgA) were significantly higher in the group fed with chIL-17B transgenic plant. This indicates that the duckweed-produced chIL-17B enhanced the humoral and mucosal immune responses. Moreover, chickens fed with chIL-17B transgenic plant demonstrated the lowest viral loads in different tissues among all groups. Our work suggests that cytokines are a promising adjuvant for mucosal vaccination through the oral route. Our work also demonstrates the potential of duckweed in molecular farming.
Collapse
|
16
|
Over-Expression of Phosphoserine Aminotransferase-Encoding Gene ( AtPSAT1) Prompts Starch Accumulation in L. turionifera under Nitrogen Starvation. Int J Mol Sci 2022; 23:ijms231911563. [PMID: 36232863 PMCID: PMC9570139 DOI: 10.3390/ijms231911563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
It has been demonstrated that the phosphorylation pathway of L-serine (Ser) biosynthesis (PPSB) is very important in plant growth and development, but whether and how PPSB affects nitrogen metabolism and starch accumulation has not been fully elucidated. In this study, we took the energy plant duckweed (strain Lemna turionifera 5511) as the research object and used a stable genetic transformation system to heterologously over-expressing Arabidopsis AtPSAT1 (the gene encoding phosphoserine aminotransferase, the second enzyme of PPSB). Our results showed that, under nitrogen starvation, the transgenic plants grew faster, with higher values of Fv/Fm, rETR, and Y(II), as well as fresh and dry weight, than the wild-type. More promisingly, the accumulation of starch was also found to be significantly improved when over-expressing AtPSAT1 in the transgenic plants. qRT-PCR analysis results showed that the expression of genes related to nitrogen assimilation, carbon metabolism, and starch biosynthesis was up-regulated, while the expression of starch degradation-related genes was down-regulated by AtPSAT1 over-expression. We propose that the increased starch accumulation caused by AtPSAT1 over-expression may result from both elevated photosynthetic capacity and nitrogen utilization efficiency. This research sheds new light on the mechanism underlying the ability of PPSB to coordinate nitrogen and carbon metabolism, and provides a feasible way to improve starch production, that is, through engineering PPSB in crops.
Collapse
|
17
|
Yang L, Ren Q, Ma X, Wang M, Sun J, Wang S, Wu X, Chen X, Wang C, Li Q, Sun J. New insight into the effect of riluzole on cadmium tolerance and accumulation in duckweed (Lemna turionifera). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113783. [PMID: 36068738 DOI: 10.1016/j.ecoenv.2022.113783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) damages plant photosynthesis, affects roots and leaves growth, and triggers molecular responses. Riluzole (RIL), which protected neuronal damage via inhibiting excess Glu release in animals, has been found to improve Cd tolerance in duckweed in this study. Firstly, RIL treatment alleviated leaf chlorosis by protecting chlorophyll and decreased root abscission under Cd stress. Secondly, RIL declines Cd accumulation by alleviating excess Glu release during Cd shock. RIL mitigate Glu outburst in duckweed during Cd stress by a decline in Glu in roots. The Cd2+ influx was repressed by RIL addition with Cd shock. Finally, differentially expressed genes (DEGs) of duckweed under Cd stress with RIL have been investigated. 2141 genes were substantially up-regulated and 3282 genes were substantially down-regulated with RIL addition. RIL down-regulates the genes related to the Glu synthesis, and genes related to DNA repair have been up-regulated with RIL treatment under Cd stress. These results provide new insights into the possibility of RIL to reduce Cd accumulation and increase Cd tolerance in duckweed, and lay the foundation for decreasing Cd accumulation in crops.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Qiuting Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Mingwei Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Shen Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xinglin Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Chenxin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Qingqing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China.
| |
Collapse
|
18
|
Yu Q, Liu YL, Sun GZ, Liu YX, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Lan JH. Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses. Int J Mol Sci 2021; 22:13501. [PMID: 34948302 PMCID: PMC8708795 DOI: 10.3390/ijms222413501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their functions. Among GmCBP60A-1, which primarily locates in the cytomembrane, was significantly induced by drought and salt stresses. The overexpression of GmCBP60A-1 enhanced drought and salt tolerance in Arabidopsis, which showed better state in the germination of seeds and the root growth of seedlings. In the soybean hairy roots experiment, the overexpression of GmCBP60A-1 increased proline content, lowered water loss rate and malondialdehyde (MDA) content, all of which likely enhanced the drought and salt tolerance of soybean seedlings. Under stress conditions, drought and salt response-related genes showed significant differences in expression in hairy root soybean plants of GmCBP60A-1-overexpressing and hairy root soybean plants of RNAi. The present study identified GmCBP60A-1 as an important gene in response to salt and drought stresses based on the functional analysis of this gene and its potential underlying mechanisms in soybean stress-tolerance.
Collapse
Affiliation(s)
- Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Q.Y.); (Y.-L.L.); (Y.-X.L.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (G.-Z.S.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Ya-Li Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Q.Y.); (Y.-L.L.); (Y.-X.L.)
| | - Guo-Zhong Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (G.-Z.S.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yuan-Xia Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Q.Y.); (Y.-L.L.); (Y.-X.L.)
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (G.-Z.S.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yong-Bin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (G.-Z.S.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (G.-Z.S.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (G.-Z.S.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (G.-Z.S.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Q.Y.); (Y.-L.L.); (Y.-X.L.)
| |
Collapse
|
19
|
Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. THE PLANT CELL 2021; 33:3207-3234. [PMID: 34273173 PMCID: PMC8505876 DOI: 10.1093/plcell/koab189] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/18/2021] [Indexed: 05/05/2023]
Abstract
The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J Appenroth
- Plant Physiology, Matthias Schleiden Institute, University of Jena, Jena 07737, Germany
| | - Ljudmilla Borisjuk
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Marvin Edelman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork T23 TK30, Ireland
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ingo Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Shawn Sorrels
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
20
|
Luo X, Yang S, Luo Y, Qiu H, Li T, Li J, Chen X, Zheng X, Chen Y, Zhang J, Zhang Z, Qin C. Molecular Characterization and Expression Analysis of the Na +/H + Exchanger Gene Family in Capsicum annuum L. Front Genet 2021; 12:680457. [PMID: 34539731 PMCID: PMC8444994 DOI: 10.3389/fgene.2021.680457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
The Na+/H+ exchangers (NHXs) are a class of transporters involved in ion balance during plant growth and abiotic stress. We performed systematic bioinformatic identification and expression-characteristic analysis of CaNHX genes in pepper to provide a theoretical basis for pepper breeding and practical production. At the whole-genome level, the members of the CaNHX gene family of cultivated and wild pepper were systematically identified using bioinformatics methods. Sequence alignment and phylogenetic tree construction were performed using MEGA X software, and the gene functional domain, conserved motif, and gene structure were analyzed and visualized. At the same time, the co-expression network of CaNHX genes was analyzed, and salt-stress analysis and fluorescence quantitative verification of the Zunla-1 cultivar under stress conditions were performed. A total of 9 CaNHX genes were identified, which have typical functional domains of the Na+/H+ exchanger gene. The physical and chemical properties of the protein showed that the protein was hydrophilic, with a size of 503-1146 amino acids. Analysis of the gene structure showed that Chr08 was the most localized chromosome, with 8-24 exons. Cis-acting element analysis showed that it mainly contains cis-acting elements such as light response, salicylic acid response, defense, and stress response. Transcriptom and co-expression network analysis showed that under stress, the co-expressed genes of CaNHX genes in roots and leaves were more obvious than those in the control group, including ABA, IAA, and salt. The transcriptome and co-expression were verified by qRT-PCR. In this study, the CaNHX genes were identified at the genome level of pepper, which provides a theoretical foundation for improving the stress resistance, production, development, and utilization of pepper in genetic breeding.
Collapse
Affiliation(s)
- Xirong Luo
- Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| | - Shimei Yang
- Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Yong Luo
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| | - Huarong Qiu
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| | - Tangyan Li
- Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Ministry of Agriculture, Kunming, China
| | - Jing Li
- Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Xiaocui Chen
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| | - Xue Zheng
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Ministry of Agriculture, Kunming, China
| | - Yongdui Chen
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Ministry of Agriculture, Kunming, China
| | - Jie Zhang
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Ministry of Agriculture, Kunming, China
| | - Zhongkai Zhang
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Ministry of Agriculture, Kunming, China
| | - Cheng Qin
- Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Ministry of Agriculture, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
21
|
Wang KT, Hong MC, Wu YS, Wu TM. Agrobacterium-Mediated Genetic Transformation of Taiwanese Isolates of Lemna aequinoctialis. PLANTS 2021; 10:plants10081576. [PMID: 34451621 PMCID: PMC8401387 DOI: 10.3390/plants10081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
Duckweed (Lemna aequinoctialis) is one of the smallest flowering plants in the world. Due to its high reproduction rate and biomass, duckweeds are used as biofactors and feedstuff additives for livestock. It is also an ideal system for basic biological research and various practical applications. In this study, we attempt to establish a micropropagation technique and Agrobacterium-mediated transformation in L. aequinoctialis. The plant-growth regulator type and concentration and Agrobacterium-mediated transformation were evaluated for their effects on duckweed callus induction, proliferation, regeneration, and gene transformation efficiency. Calli were successfully induced from 100% of explants on Murashige and Skoog (MS) medium containing 25.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 μM thidiazuron (TDZ). MS medium containing 4.5 μM 2,4-D and 2.0 μM TDZ supported the long-lasting growth of calli. Fronds regenerated from 100% of calli on Schenk and Hildebrandt (SH) medium containing 1.0 μM 6-benzyladenine (6-BA). We also determined that 200 μM acetosyringone in the cocultivation medium for 1 day in the dark was crucial for transformation efficiency (up to 3 ± 1%). Additionally, we propose that both techniques will facilitate efficient high-throughput genetic manipulation in Lemnaceae.
Collapse
Affiliation(s)
- Kuang-Teng Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (K.-T.W.); (Y.-S.W.)
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (K.-T.W.); (Y.-S.W.)
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (K.-T.W.); (Y.-S.W.)
- Correspondence:
| |
Collapse
|
22
|
Qiu T, Du K, Jing Y, Zeng Q, Liu Z, Li Y, Ren Y, Yang J, Kang X. Integrated transcriptome and miRNA sequencing approaches provide insights into salt tolerance in allotriploid Populus cathayana. PLANTA 2021; 254:25. [PMID: 34226949 DOI: 10.1007/s00425-021-03600-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 06/13/2023]
Abstract
Some salt-stress responsive DEGs, mainly involved in ion transmembrane transport, hormone regulation, antioxidant system, osmotic regulation, and some miRNA jointly regulated the salt response process in allotriploid Populus cathayana. The molecular mechanism of plant polyploid stress resistance has been a hot topic in biological research. In this study, Populus diploids and first division restitution (FDR) and second division restitution (SDR) triploids were selected as research materials. All materials were treated with 70 mM NaCl solutions for 30 days in the same pot environment. We observed the growth state of triploids and diploids and determined the ratio of potassium and sodium ions, peroxidase (POD) activity, proline content, and ABA and jasmonic acid (JA) hormone content in leaves in the same culture environment with the same concentration of NaCl solution treatment. In addition, RNA-seq technology was used to study the differential expression of mRNA and miRNA. The results showed that triploid Populus grew well and the K+ content and the K+/Na+ ratio in the salt treatment were significantly lower than those in the control. The contents of ABA, JA, POD, and proline were increased compared with contents in diploid under salt stress. The salt-stress responsive DEGs were mainly involved in ion transport, cell homeostasis, the MAPK signaling pathway, peroxisome, citric acid cycle, and other salt response and growth pathways. The transcription factors mainly included NAC, MYB, MYB_related and AP2/ERF. Moreover, the differentially expressed miRNAs involved 32 families, including 743 miRNAs related to predicted target genes, among which 22 miRNAs were significantly correlated with salt-stress response genes and related to the regulation of hormones, ion transport, reactive oxygen species (ROS) and other biological processes. Our results provided insights into the physiological and molecular aspects for further research into the response mechanisms of allotriploid Populus cathayana to salt stress. This study provided valuable information for the salt tolerance mechanism of allopolyploids.
Collapse
Affiliation(s)
- Tong Qiu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanchun Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Zeng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yun Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yongyu Ren
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jun Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
23
|
Basu S, Kumar A, Benazir I, Kumar G. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. PHYSIOLOGIA PLANTARUM 2021; 171:502-519. [PMID: 32320060 DOI: 10.1111/ppl.13112] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 05/23/2023]
Abstract
Soil salinity is a constraint for major agricultural crops leading to severe yield loss, which may increase with the changing climatic conditions. Disruption in the cellular ionic homeostasis is one of the primary responses induced by elevated sodium ions (Na+ ). Therefore, unraveling the mechanism of Na+ uptake and transport in plants along with the characterization of the candidate genes facilitating ion homeostasis is obligatory for enhancing salinity tolerance in crops. This review summarizes the current advances in understanding the ion homeostasis mechanism in crop plants, emphasizing the role of transporters involved in the regulation of cytosolic Na+ level along with the conservation of K+ /Na+ ratio. Furthermore, expression profiles of the candidate genes for ion homeostasis were also explored under various developmental stages and tissues of Oryza sativa based on the publicly available microarray data. The review also gives an up-to-date summary on the efforts to increase salinity tolerance in crops by manipulating selected stress-associated genes. Overall, this review gives a combined view on both the ionomic and molecular background of salt stress tolerance in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Biotechnology, Assam University, Silchar, 788011, India
| | - Alok Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, India
| | - Ibtesham Benazir
- Department of Life Science, Central University of South Bihar, Gaya, 824236, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, India
| |
Collapse
|
24
|
Yang GL, Feng D, Liu YT, Lv SM, Zheng MM, Tan AJ. Research Progress of a Potential Bioreactor: Duckweed. Biomolecules 2021; 11:biom11010093. [PMID: 33450858 PMCID: PMC7828363 DOI: 10.3390/biom11010093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/01/2023] Open
Abstract
Recently, plant bioreactors have flourished into an exciting area of synthetic biology because of their product safety, inexpensive production cost, and easy scale-up. Duckweed is the smallest and fastest-growing aquatic plant, and has advantages including simple processing and the ability to grow high biomass in smaller areas. Therefore, duckweed could be used as a new potential bioreactor for biological products such as vaccines, antibodies, pharmaceutical proteins, and industrial enzymes. Duckweed has made a breakthrough in biosynthesis as a chassis plant and is being utilized for the production of plenty of biological products or bio-derivatives with multiple uses and high values. This review summarizes the latest progress on genetic background, genetic transformation system, and bioreactor development of duckweed, and provides insights for further exploration and application of duckweed.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Dan Feng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Yu-Ting Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Meng-Meng Zheng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
- Correspondence: ; Tel.: +86-1376-513-6919
| |
Collapse
|
25
|
Joshi S, Kaur K, Khare T, Srivastava AK, Suprasanna P, Kumar V. Genome-wide identification, characterization and transcriptional profiling of NHX-type (Na +/H +) antiporters under salinity stress in soybean. 3 Biotech 2021; 11:16. [PMID: 33442515 DOI: 10.1007/s13205-020-02555-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022] Open
Abstract
This study was aimed at the genome-wide identification, a comprehensive in silico characterization of NHX genes from soybean (Glycine max L.) and their tissue-specific expression under varied levels (0-200 mM NaCl) of salinity stress. A total of nine putative NHX genes were identified from soybean. The phylogenetic analysis confirmed a total of five sub-groups and GmNHXs were distributed in three of them. Bioinformatics analyses confirmed all GmNHXs as ion transporters in nature, and all were localized on the vacuolar membrane. Several cis-acting regulatory elements involved in hormonal signal-responsiveness and abiotic stress including salinity responses were identified in the promoter regions of GmNHXs. Amiloride, which is a known Na+/H+ exchanger activity inhibitor, binding motifs were observed in all the GmNHXs. Furthermore, the identified GmNHXs were predicted-targets of 75 different miRNA candidates. To gain an insight into the functional divergence of GmNHX transporters, qRT-PCR based gene expression analysis was done in control and salt-treated root, stem and leaf tissues of two contrasting Indian soybean varieties MAUS-47 (tolerant) and Gujosoya-2 (sensitive). The gene up-regulation was tissue-specific and varied amongst the soybean varieties, with higher induction in tolerant variety. Maximum induction was observed in GmNHX2 in root tissues of MAUS-47 at 200 mM NaCl stress. Overall, identified GmNHXs may be explored further as potential gene candidates for soybean improvement.
Collapse
Affiliation(s)
- Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| | - Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007 India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007 India
| |
Collapse
|
26
|
Yang L, Chen Y, Shi L, Yu J, Yao J, Sun J, Zhao L, Sun J. Enhanced Cd accumulation by Graphene oxide (GO) under Cd stress in duckweed. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105579. [PMID: 33075615 DOI: 10.1016/j.aquatox.2020.105579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Effective phytoremediation by aquatic plant such as duckweed could be applied to solve Cd pollution. In the present study, the impact of Graphene oxide (GO) on the accumulation of Cd in duckweed has been studied. The response of duckweed was also investigated, concluding growth, Cd2+ flux, and gene expression response. Results showed that GO promoted the accumulation of Cd in duckweed. After 6 h of Cd enrichment in duckweed, Cd content was about 1.4 times that of the control group at fronds and 1.25 times that of the control group at roots, meanwhile, Cd content in the water system was 0.67 times that of the control group. The Cd2+ influx increased significantly. 4471 genes were up-regulated and 3230 genes were down-regulated significantly as duckweed treated with GO under Cd treatment. Moreover, phagosome pathway was downregulated, some key proteins: Stx7, Rab7 and Tubastatin B (TUBB) were significantly downregulated with GO addition under Cd stress. Scanning electron microscope (SEM) observation showed that GO and Cd were attached on the cell surface of duckweed as white crystal. GO could be applied in phytoremediation by duckweed of Cd in aquatic system.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| | - Yikai Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Leqian Shi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jie Yu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jie Yao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Ling Zhao
- College of Life Sciences, Department of Plant Biology and Ecology, Nankai University, 300071, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| |
Collapse
|
27
|
Wang Y, Ying J, Zhang Y, Xu L, Zhang W, Ni M, Zhu Y, Liu L. Genome-Wide Identification and Functional Characterization of the Cation Proton Antiporter (CPA) Family Related to Salt Stress Response in Radish ( Raphanus sativus L.). Int J Mol Sci 2020; 21:E8262. [PMID: 33158201 PMCID: PMC7662821 DOI: 10.3390/ijms21218262] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
The CPA (cation proton antiporter) family plays an essential role during plant stress tolerance by regulating ionic and pH homeostasis of the cell. Radish fleshy roots are susceptible to abiotic stress during growth and development, especially salt stress. To date, CPA family genes have not yet been identified in radish and the biological functions remain unclear. In this study, 60 CPA candidate genes in radish were identified on the whole genome level, which were divided into three subfamilies including the Na+/H+ exchanger (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) families. In total, 58 of the 60 RsCPA genes were localized to the nine chromosomes. RNA-seq. data showed that 60 RsCPA genes had various expression levels in the leaves, roots, cortex, cambium, and xylem at different development stages, as well as under different abiotic stresses. RT-qPCR analysis indicated that all nine RsNHXs genes showed up regulated trends after 250 mM NaCl exposure at 3, 6, 12, and 24h. The RsCPA31 (RsNHX1) gene, which might be the most important members of the RsNHX subfamily, exhibited obvious increased expression levels during 24h salt stress treatment. Heterologous over-and inhibited-expression of RsNHX1 in Arabidopsis showed that RsNHX1 had a positive function in salt tolerance. Furthermore, a turnip yellow mosaic virus (TYMV)-induced gene silence (VIGS) system was firstly used to functionally characterize the candidate gene in radish, which showed that plant with the silence of endogenous RsNHX1 was more susceptible to the salt stress. According to our results we provide insights into the complexity of the RsCPA gene family and a valuable resource to explore the potential functions of RsCPA genes in radish.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.Y.); (Y.Z.); (L.X.); (W.Z.); (M.N.)
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.Y.); (Y.Z.); (L.X.); (W.Z.); (M.N.)
| |
Collapse
|
28
|
Yang L, Yao J, Sun J, Shi L, Chen Y, Sun J. The Ca 2+ signaling, Glu, and GABA responds to Cd stress in duckweed. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105352. [PMID: 31790938 DOI: 10.1016/j.aquatox.2019.105352] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) affects plants and animal health seriously. Ca2+ signals in plant cells are important for adaptive responses to environmental stresses. Here we showed that 50 μM Cd shock stimulated the Ca2+ signal via modifying the instantaneous Ca2+ flux from influx of 17 pmol·cm-2·s-1 to the efflux of 240 pmol·cm-2·s-1 at 100 μm from rhizoid tip. And the Ca2+ signal transferred to the vein and mesophyll cell. The Ca addition decreased the accumulation of Cd. The gene expression of glutamate receptor-like (GLR) proteins, which is activated by Glu and triggers Ca2+ flux, was increased significantly by 24 h Cd stress. Glu content was increased under Cd stress and exogenous Glu triggered the Ca2+ signal in duckweed, while Ca2+ addition caused no influence to Glu content. GABA, which is synthesized from Glu and acts as an inhibitory neurotransmitter, has been decreased with 24 h Cd treatment. GABA addition increased the abscission rate and Glu addition decreased the abscission rate during Cd stress, suggesting that the Glu/GABA ratio is important for responding to Cd. This research shows the sight of the Glu, Ca2+, GABA signaling networks during Cd stress.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jie Yao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Leqian Shi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yikai Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| |
Collapse
|
29
|
Liu Y, Wang Y, Xu S, Tang X, Zhao J, Yu C, He G, Xu H, Wang S, Tang Y, Fu C, Ma Y, Zhou G. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2143-2152. [PMID: 30972865 PMCID: PMC6790374 DOI: 10.1111/pbi.13128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 05/13/2023]
Abstract
The fast growth, ease of metabolic labelling and potential for feedstock and biofuels production make duckweeds not only an attractive model system for understanding plant biology, but also a potential future crop. However, current duckweed research is constrained by the lack of efficient genetic manipulation tools. Here, we report a case study on genome editing in a duckweed species, Lemna aequinoctialis, using a fast and efficient transformation and CRISPR/Cas9 tool. By optimizing currently available transformation protocols, we reduced the duration time of Agrobacterium-mediated transformation to 5-6 weeks with a success rate of over 94%. Based on the optimized transformation protocol, we generated 15 (14.3% success rate) biallelic LaPDS mutants that showed albino phenotype using a CRISPR/Cas9 system. Investigations on CRISPR/Cas9-mediated mutation spectrum among mutated L. aequinoctialis showed that most of mutations were short insertions and deletions. This study presents the first example of CRISPR/Cas9-mediated genome editing in duckweeds, which will open new research avenues in using duckweeds for both basic and applied research.
Collapse
Affiliation(s)
- Yu Liu
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yu Wang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Shuqing Xu
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| | - Xianfeng Tang
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Jinshan Zhao
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
| | - Changjiang Yu
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Guo He
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Hua Xu
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Shumin Wang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yali Tang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Chunxiang Fu
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yubin Ma
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Gongke Zhou
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| |
Collapse
|
30
|
Yang L, Wei Y, Li N, Zeng J, Han Y, Zuo Z, Wang S, Zhu Y, Zhang Y, Sun J, Wang Y. Declined cadmium accumulation in Na +/H + antiporter (NHX1) transgenic duckweed under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109397. [PMID: 31299476 DOI: 10.1016/j.ecoenv.2019.109397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/16/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a serious threat to plants health. Though some genes have been reported to get involved in the regulation of tolerance to Cd, the mechanisms underlying this process are not fully understood. Na+/H+ antiporter (NHX1) plays an important role in Na+/H+ trafficking. The salt and cadmium stress tolerance were found to be enhanced by NHX1 in duckweed according to our previous study, however, its function in Cd2+ flux under Cd stress has not been studied. Here we explored the Cd2+ flux in wild type (WT) and NHX1 transgenic duckweed (NHX1) under Cd stress. We found that the Cd2+ influx in NHX1 duckweed was significantly declined, followed by an increased Cd2+ efflux after 20 min treatment of Cd, which resulted a less accumulation of Cd in NHX1. Reversely, inhibition of NHX1 by amiloride treatment, enhanced Cd2+ influx in NHX1 duckweed, subsequently delayed Cd2+ efflux in both genotypes of duckweed under Cd2+ shock. H+ efflux in NHX1 duckweed was lower compare with that in WT with 20 min Cd2+ shock. NHX1 also increased the pH value with Cd2+ stress in the transgenic rhizoid. These finding suggested a new function of NHX1 in regulation of Cd2+ and H+ flow during short-term Cd2+ shock.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Ying Wei
- College of Life Sciences, Department of Plant Biology and Ecology, Nankai University, 300071, Tianjin, China
| | - Na Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jianyao Zeng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yujie Han
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Sutong Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yerong Zhu
- College of Life Sciences, Department of Plant Biology and Ecology, Nankai University, 300071, Tianjin, China
| | - Ying Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| | - Yong Wang
- College of Life Sciences, Department of Plant Biology and Ecology, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
31
|
Sun L, Song G, Guo W, Wang W, Zhao H, Gao T, Lv Q, Yang X, Xu F, Dong Y, Pu L. Dynamic Changes in Genome-Wide Histone3 Lysine27 Trimethylation and Gene Expression of Soybean Roots in Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1031. [PMID: 31552061 PMCID: PMC6746917 DOI: 10.3389/fpls.2019.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/23/2019] [Indexed: 05/14/2023]
Abstract
Soybean is an important economic crop for human diet, animal feeds and biodiesel due to high protein and oil content. Its productivity is significantly hampered by salt stress, which impairs plant growth and development by affecting gene expression, in part, through epigenetic modification of chromatin status. However, little is known about epigenetic regulation of stress response in soybean roots. Here, we used RNA-seq and ChIP-seq technologies to study the dynamics of genome-wide transcription and histone methylation patterns in soybean roots under salt stress. Eight thousand seven hundred ninety eight soybean genes changed their expression under salt stress treatment. Whole-genome ChIP-seq study of an epigenetic repressive mark, histone H3 lysine 27 trimethylation (H3K27me3), revealed the changes in H3K27me3 deposition during the response to salt stress. Unexpectedly, we found that most of the inactivation of genes under salt stress is strongly correlated with the de novo establishment of H3K27me3 in various parts of the promoter or coding regions where there is no H3K27me3 in control plants. In addition, the soybean histone modifiers were identified which may contribute to de novo histone methylation and gene silencing under salt stress. Thus, dynamic chromatin regulation, switch between active and inactive modes, occur at target loci in order to respond to salt stress in soybean. Our analysis demonstrates histone methylation modifications are correlated with the activation or inactivation of salt-inducible genes in soybean roots.
Collapse
Affiliation(s)
- Lei Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongkun Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tingting Gao
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Qingxue Lv
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xue Yang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingshan Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Yingshan Dong, ; Li Pu,
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yingshan Dong, ; Li Pu,
| |
Collapse
|