1
|
Wang L, Chen W, Jin H, Tan Y, Guo C, Fu W, Wu Z, Cui K, Wang Y, Qiu Z, Zhang G, Liu W, Zhou Z. CXCL1/IGHG1 signaling enhances crosstalk between tumor cells and tumor-associated macrophages to promote MC-LR-induced colorectal cancer progression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124081. [PMID: 38697251 DOI: 10.1016/j.envpol.2024.124081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Microcystin-leucine arginine (MC-LR) is a common cyantotoxin produced by hazardous cyanobacterial blooms, and eutrophication is increasing the contamination level of MC-LR in drinking water supplies and aquatic foods. MC-LR has been linked to colorectal cancer (CRC) progression associated with tumor microenvironment, however, the underlying mechanism is not clearly understood. In present study, by using GEO, KEGG, GESA and ImmPort database, MC-LR related differentially expressed genes (DEGs) and pathway- and gene set-enrichment analysis were performed. Of the three identified DEGs (CXCL1, GUCA2A and GDF15), CXCL1 was shown a positive association with tumor infiltration, and was validated to have a dominantly higher upregulation in MC-LR-treated tumor-associated macrophages (TAMs) rather than in MC-LR-treated CRC cells. Both CRC cell/macrophage co-culture and xenograft mouse models indicated that MC-LR stimulated TAMs to secrete CXCL1 resulting in promoted proliferation, migration, and invasion capability of CRC cells. Furtherly, IP-MS assay found that interaction between TAMs-derived CXCL1 and CRC cell-derived IGHG1 may enhance CRC cell proliferation and migration after MC-LR treatment, and this effect can be attenuated by silencing IGHG1 in CRC cell. In addition, molecular docking analysis, co-immunoprecipitation and immunofluorescence further proved the interactions between CXCL1 and IGHG1. In conclusion, CXCL1 secreted by TAMs can trigger IGHG1 expression in CRC cells, which provides a new clue in elucidating the mechanism of MC-LR-mediated CRC progression.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chengwei Guo
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiling Wu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiqi Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiqun Qiu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenbin Liu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Xue Q, Yan Y, Zhang K, Zhang H, Zhao Y. Exposure to microcystin-LR promotes astrocyte proliferation both in vitro and in vivo via Hippo signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116480. [PMID: 38772146 DOI: 10.1016/j.ecoenv.2024.116480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Microcystins (MCs) are toxic to the central nervous system of mammals. However, the direct toxicity of MCs on mammalian brain cells and the involved molecular mechanisms are not fully elucidated. Here, we incubated primary astrocytes, the major glial cell-type in the brain, with 0-12.5 μM concentrations of MC-LR for 48 h, and the impairment was evaluated. We found that MC-LR caused significant increases in the cell viability at the range of 0.05-1 μM concentrations with the highest density at 0.1 μM concentration. Treatment with 0.1 μM MC-LR induced YAP nuclear translocation and decreased the ratio of p-YAP to YAP. It also decreased mRNA levels of the upstream regulator (AMOT), and enhanced expressions of YAP interacted genes (Egfr, Tead1, and Ctgf) in primary astrocytes. Overexpression of AMOT significantly attenuated the increase of MC-LR-induced astrocyte proliferation and the expression of YAP downstream genes. These results indicate that Hippo signaling contributed to MC-LR-caused astrocyte proliferation. Further, reactive astrogliosis was observed in the mice brain after MC-LR exposure to environmentally relevant concentrations (20 or 100 μg/L) through drinking water for 16 weeks. Pathological observations revealed that 100 μg/L MC-LR exposure caused neuronal damages with characteristics of shrunken or vacuolation in the region of the cerebral cortex, striatum and cerebellum. These results were accompanied with increased oxidative stress and inflammatory response. Our data reveal the potential astrocytic mechanisms in MC-induced neurotoxicity and raise an alarm for neurodegenerative disease risk following daily exposure to MC-LR.
Collapse
Affiliation(s)
- Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kaiye Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Hui Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| |
Collapse
|
3
|
Wang J, Yang Y, Xu Y, Xu Z, Zhao X, Jia R, Dai Y. Long noncoding RNA XIST inhibition promotes Leydig cell apoptosis by acting as a competing endogenous RNA for microRNA-145a-5p that targets SIRT1 in late-onset hypogonadism. Cell Tissue Res 2024; 395:285-297. [PMID: 38353742 DOI: 10.1007/s00441-024-03860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/04/2024] [Indexed: 03/01/2024]
Abstract
Leydig cell (LCs) apoptosis is responsible for decreased serum testosterone levels during late-onset hypogonadism (LOH). Our study was designed to illustrate the regulatory effect of lncRNA XIST on LCs and to clarify its molecular mechanism of action in LOH. The Leydig cells (TM3) was treated by 300 μM H2O2 for 8 h to establish Leydig cell oxidative stress model in vitro. The expression levels of lncRNA XIST in the testicular tissues of patients with LOH were measured using fluorescence in situ hybridization (FISH). The interaction between lncRNA XIST/SIRT1 and miR-145a-5p was assessed using starBase and dual-luciferase reporter gene assays. Apoptotic cells and Caspase3 activity were determined by flow cytometry (FCM) assay. Testosterone concentration was determined by ELISA. Moreover, histological assessment of testicles in mice was performed by using HE staining and the TUNEL assay was used to determine apoptosis. We found that the lncRNA XIST was downregulated in the testicular tissues of LOH patients and mice and in H2O2-induced TM3 cells. XIST siRNA significantly promoted apoptosis, enhanced Caspase3 activity and reduced testosterone levels in H2O2-stimulated TM3 cells. Further studies showed that the miR-145a-5p inhibitor reversed the effect of XIST-siRNA on H2O2-induced Leydig cell apoptosis. MiR-145a-5p negatively regulated SIRT1 expression, and SIRT1-siRNA reversed the effects of the miR-145a-5p inhibitor on H2O2 stimulated TM3 cells. The in vivo experiments indicated that silencing of the lncRNA XIST aggravated LOH symptoms in mice. Inhibition of lncRNA XIST induces Leydig cell apoptosis through the miR-145a-5p/SIRT1 axis in the progression of LOH.
Collapse
Affiliation(s)
- Jing Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210006, China
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008, China
| | - Yiqiong Yang
- Department of Emergency, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yang Xu
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008, China
| | - Zhipeng Xu
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210006, China.
| | - Yutian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008, China.
| |
Collapse
|
4
|
Xing D, Jin Y, Sun D, Liu Y, Cai B, Gao C, Cui Y, Jin B. Protective effect of TNFAIP3 on testosterone production in Leydig cells under an aging inflammatory microenvironment. Arch Gerontol Geriatr 2024; 117:105274. [PMID: 37995648 DOI: 10.1016/j.archger.2023.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The aging inflammatory microenvironment surrounding Leydig cells is linked to reduced testosterone levels in males. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) acts as a critical anti-inflammatory factor in various aging-related diseases. This study aims to investigate the protective effect of TNFAIP3 on testosterone production in Leydig cells under an aging inflammatory microenvironment. METHODS Bioinformatics analysis examined TNFAIP3 expression differences in aging rat testes and validated the findings in aging mouse testes. In vitro models of inflammation were established using two Leydig cell lines, with tumor necrosis factor alpha (TNF-α) as the inflammatory factor. Lentiviral transduction was utilized to manipulate TNFAIP3 expression in these cell lines. Transcriptomic sequencing identified differentially expressed genes in TNFAIP3-overexpressing cells. RESULTS Bioinformatics analysis and validation experiments revealed increased inflammatory signaling and elevated TNFAIP3 expression in aging rat and mouse testes. TNFAIP3 knockdown worsened testosterone synthesis inhibition and apoptosis in cells, while TNFAIP3 overexpression reversed these effects. Transcriptome analysis identified alterations in the P38MAPK pathway following TNFAIP3 overexpression. TNFAIP3 knockdown enhanced TNF-induced P38MAPK signaling, whereas its overexpression attenuated this effect. TNFAIP3 was found to regulate testosterone synthesis by upregulating CEBPB expression. CONCLUSIONS TNFAIP3 exhibits inhibitory effects on apoptosis and promotes testosterone production in Leydig cells. The protective influence of TNFAIP3 on Leydig cells within an inflammatory microenvironment is likely mediated through by inhibiting the P38MAPK pathway and upregulating CEBPB expression.
Collapse
Affiliation(s)
- Dong Xing
- Medical College of Southeast University, 210009, Nanjing, Jiangsu, China
| | - Yihan Jin
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China
| | - Dalin Sun
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China
| | - Yuanyuan Liu
- Medical College of Southeast University, 210009, Nanjing, Jiangsu, China
| | - Bin Cai
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China
| | - Chao Gao
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Yugui Cui
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Zhang H, Wu J, Fang N, Zhang S, Su X, Jiang H, Hong P, Wu H, Shu Y. Waterborne exposure to microcystin-leucine arginine induces endocrine disruption and gonadal dysplasia of Pelophylax nigromaculatus tadpoles via the hypothalamic-pituitary-gonadal-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167644. [PMID: 37806583 DOI: 10.1016/j.scitotenv.2023.167644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The impact of microcystins on the gonad development and reproduction endocrine in the tadpole stage on amphibians remains unclear. In this study, the tadpoles (Pelophylax nigromaculatus) were exposed to 0, 1, and 10 μg/L of microcystin-leucine arginine (MC-LR) for 60 days to explore the impacts of environmental realistic concentration MC-LR on gonad development and reproduction endocrine, respectively. After MC-LR exposure, the germ cell structure has changed, especially in oocytes. The 10 μg/L MC-LR exposure group showed a significantly diminished gonad somatic index (GSI) in females. However, the sex ratio of tadpoles did not differ significantly. Moreover, gene transcription (figla and nobox) related to ovarian development and genes (sox9 and dmrt1) associated with testicular development were down-regulated after MC-LR exposure. After MC-LR exposure, the gene transcripts encoding gonadotropin-releasing hormone (gnrh1 and gnrh2) were down-regulated in the hypothalamus, while gonadotropins (FSH and LH) levels increased in serum. The transcripts of testosterone synthesis-related genes (star, cyp11a1, 3β-hsd, cyp17a1, and 17β-hsd) were up-regulated in the gonads, and the testosterone (T) concentration increased in serum. However, key gene transcript (cyp19a1) involved in estradiol synthesis was down-regulated and the estradiol (E2) concentration decreased in serum, resulting in the absence of a compensatory mechanism for positive feedback regulation of the hypothalamic-pituitary-gonadal (HPG) axis to maintain E2 levels. The vitellogenin gene (vtg1) transcription level was significantly down-regulated. The E2/T content ratio decreased in MC-LR concentration-dependent manner. Consequently, MC-LR exposure interfered with the hypothalamic-pituitary-gonadal-liver (HPGL) axis in tadpoles, which in turn affects gonadal development, especially the ovaries. Overall, this study provides the initial evidence that MC-LR exerts significant effects on reproductive endocrinology and gonadal development in amphibian tadpoles, highlighting the susceptibility of the tadpole reproductive system to the environmental risks of MC-LR.
Collapse
Affiliation(s)
- Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Juntao Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Nanxi Fang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Shengbin Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaomei Su
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
6
|
Zhang Z, Du X, Zhang S, Liu H, Fu Y, Wang F, Zhang H. Adverse effects of microcystins on sperm: A systematic review. Toxicology 2023; 490:153507. [PMID: 37030550 DOI: 10.1016/j.tox.2023.153507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Eutrophication of water bodies can lead to cyanobacterial blooms, with the resultant release of microcystins (MCs), posing a threat to the ecosystem and human health. MCs are environmental toxins with male reproductive toxicity. However, there is a dearth of reviews focusing on sperm or spermatogenesis. In this paper, studies on sperm toxicity caused by MCs in recent 20 years were collected and summarized, aiming at revealing the toxic effects and potential mechanisms of MCs on sperm. Based on the previous findings, MCs can decline sperm quality and count, and cause malformation in vertebrates and invertebrates. The reason might be that MCs cause indirect damage to sperm through impairing the structure and function of the testis. The mechanisms of MCs-induced sperm toxicity mainly result from alterations in genetic material, abnormalities in the structure and function of sperm. The epigenetic modifications such as miRNA and piRNA were also involved in MC-LR-induced sperm damage. In conclusion, MCs exposure is harmful to sperm, but its direct effects and mechanisms on sperm are still not known, which remains a significant research direction. Our review will provide a basis for the protection of male reproductive health damage caused by microcystins.
Collapse
Affiliation(s)
- Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Fu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fufang Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Luo D, Qi X, Xu X, Yang L, Yu C, Guan Q. Involvement of p38 MAPK in Leydig cell aging and age-related decline in testosterone. Front Endocrinol (Lausanne) 2023; 14:1088249. [PMID: 36950685 PMCID: PMC10025507 DOI: 10.3389/fendo.2023.1088249] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Age-related decline in testosterone is associated with Leydig cell aging with impaired testosterone synthesis in aging. Obesity accelerates the age-related decline in testosterone. However, the mechanisms underlying the Leydig cell aging and the effects of obesity on Leydig cell aging remain unclear. Method Natural aging mice and diet-induced obese mice were used to assess the process of testicular Leydig cell senescence with age or obesity. Bioinformatic analysis of the young and aged human testes was used to explore key genes related Leydig cell aging. Leydig cell-specific p38 MAPK knockout (p38LCKO) mice were used to further analyze the roles of p38 MAPK in Leydig cell aging. The levels of testosterone and steroidogenic enzymes, activity of p38 MAPK, aging status of Leydig cells, and oxidative stress and inflammation of testes or Leydig cells were detected by ELISA, immunoblotting, immunofluorescence, and senescence-associated β-galactosidase (SA-β-Gal) staining analysis, respectively. Result The serum testosterone level was significantly reduced in aged mice compared with young mice. In the testis of aged mice, the reduced mRNA and protein levels of LHCGR, SRB1, StAR, CYP11A1, and CYP17A1 and the elevated oxidative stress and inflammation were observed. KEGG analysis showed that MAPK pathway was changed in aged Leydig cells, and immunoblotting displayed that p38 MAPK was activated in aged Leydig cells. The intensity of SA-β-Gal staining on Leydig cells and the number of p21-postive Leydig cells in aged mice were more than those of young mice. Similar to aged mice, the testosterone-related indexes decreased, and the age-related indexes increased in the testicular Leydig cells of high fat diet (HFD) mice. Aged p38LCKO mice had higher levels of testosterone and steroidogenic enzymes than those of age-matched wild-type (WT) littermates, with reduced the intensity of SA-β-Gal staining and the expression of p21 protein. Conclusion Our study suggested that obesity was an important risk factor for Leydig cell aging. p38 MAPK was involved in Leydig cell aging induced by age and obesity. The inhibition of p38 MAPK could delay Leydig cell aging and alleviate decline in testosterone.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Xiangyu Qi
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Xiaoqin Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Leilei Yang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| |
Collapse
|
8
|
Shi T, Xu LL, Chen L, He J, Wang YK, Chen F, Chen Y, Giesy JP, Wang YT, Wu QH, Xu WL, Chen J, Xie P. Acute exposure to microcystins affects hypothalamic-pituitary axes of male rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120843. [PMID: 36509348 DOI: 10.1016/j.envpol.2022.120843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Microcystins (MCs) produced by some cyanobacteria can cause toxicity in animals and humans. In recent years, growing evidence suggests that MCs can act as endocrine disruptors. This research systematically investigated effects of microcystin-LR (MC-LR) on endocrine organs, biosynthesis of hormones and positive/negative feedback of the endocrine system in rats. Male, Sprague-Dawley rats were acutely administrated MC-LR by a single intraperitoneal injection at doses of 45, 67.5 or 90 μg MC-LR/kg body mass (bm), and then euthanized 24 h after exposure. In exposed rats, histological damage of hypothalamus, pituitary, adrenal, testis and thyroid were observed. Serum concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT), expressions of genes and proteins for biosynthesis of hormones were lesser, which indicated an overall suppression of the hypothalamus-pituitary-adrenal (HPA) axis. Along the hypothalamus-pituitary-gonadal (HPG) axis, lesser concentrations of gonadotropin-releasing hormone (GnRH) and testosterone (T), but greater concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and estradiol (E2) were observed. Except for greater transcription of cyp19a1 in testes, transcriptions of genes and proteins for T and E2 biosynthesis along the HPG axis were lesser. As for the hypothalamus-pituitary-thyroid (HPT) axis, after MCs treatment, greater concentrations of thyroid-stimulating hormone (TSH), but lesser concentrations of free tri-iodothyronine (fT3) were observed in serum. Concentrations of free tetra-iodothyronine (fT4) were greater in rats dosed with 45 μg MCs/kg, bm, but lesser in rats dosed with 67.5 or 90 μg MCs/kg, bm. Transcripts of genes for biosynthesis of hormones and receptors along the HPT axis and expressions of proteins for biosynthesis of tetra-iodothyronine (T4) and tri-iodothyronine (T3) in thyroid were significantly altered. Cross-talk among the HPA, HPG and HPT axes probably occurred. It was concluded that MCs caused an imbalance of positive and negative feedback of hormonal regulatory axes, blocked biosynthesis of key hormones and exhibited endocrine-disrupting effects.
Collapse
Affiliation(s)
- Ting Shi
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Lin-Lin Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ye-Ke Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Feng Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, MI, USA; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, USA
| | - Yu-Ting Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Qian-Hui Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| |
Collapse
|
9
|
Shi J, Gao S, Chen Z, Chen Z, Yun D, Wu X, Sun F. Absence of MerTK disrupts spermatogenesis in an age-dependent manner. Mol Cell Endocrinol 2023; 560:111815. [PMID: 36379275 DOI: 10.1016/j.mce.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
Spermatogenesis is a highly specialized cell differentiation process regulated by the testicular microenvironment. During the process of spermatogenesis, phagocytosis performs an essential role in male germ cell development, and its dysfunction in the testis can cause reproduction defects. MerTK, as a critical protein of phagocytosis, facilitates the removal of apoptotic substrates from the retina and ovaries through cooperation with several phagocytosis receptors. However, its role in mammalian spermatogenesis remains undefined. Here, we found that 30-week-old MerTK-/- male mice developed oligoasthenospermia due to abnormal spermatogenesis. These mice showed damaged seminiferous tubule structure, as well as altered spermatogonia proliferation and differentiation. We also found that Sertoli cells from MerTK-/- mice had decreased phagocytic activity on apoptotic germ cells in vitro. Moreover, a transcriptomic analysis demonstrated that the pivotal genes involved in spermatid differentiation and development changed expression. These results indicate that MerTK is crucial for spermatogenesis, as it regulates the crosstalk between germ cells and Sertoli cells. This provides us insight into the molecular mechanism of MerTK on spermatogenesis and its implications for the diagnosis and treatment of human male infertility.
Collapse
Affiliation(s)
- Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Zhengru Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Casas-Rodriguez A, Cameán AM, Jos A. Potential Endocrine Disruption of Cyanobacterial Toxins, Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2022; 14:toxins14120882. [PMID: 36548779 PMCID: PMC9785827 DOI: 10.3390/toxins14120882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Microcystins (MCs) and cylindrospermopsin (CYN), although classified as hepatotoxins and cytotoxins, respectively, have been shown to also induce toxic effects in many other systems and organs. Among them, their potential endocrine disruption (ED) activity has been scarcely investigated. Considering the increasing relevance of ED on humans, mammals, and aquatic organisms, this work aimed to review the state-of-the-art regarding the toxic effects of MCs and CYN at this level. It has been evidenced that MCs have been more extensively investigated than CYN. Reported results are contradictory, with the presence or absence of effects, but experimental conditions also vary to a great extent. In general, both toxins have shown ED activity mediated by very different mechanisms, such as estrogenic responses via a binding estrogen receptor (ER), pathological changes in several organs and cells (testis, ovarian cells), and a decreased gonad-somatic index. Moreover, toxic effects mediated by reactive oxygen species (ROS), changes in transcriptional responses on several endocrine axes and steroidogenesis-related genes, and changes in hormone levels have also been reported. Further research is required in a risk assessment frame because official protocols for assessment of endocrine disrupters have not been used. Moreover, the use of advanced techniques would aid in deciphering cyanotoxins dose-response relationships in relation to their ED potential.
Collapse
|
11
|
Zhang S, Liu H, Du X, Chen X, Petlulu P, Tian Z, Shi L, Zhang B, Yuan S, Guo X, Wang Y, Guo H, Zhang H. A new identity of microcystins: Environmental endocrine disruptors? An evidence-based review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158262. [PMID: 36029820 DOI: 10.1016/j.scitotenv.2022.158262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Microcystins (MCs) are widely distributed cyanobacterial toxins in eutrophic waters. At present, the endocrine-disrupting effects of MCs have been extensively studied, but whether MCs can be classified as environmental endocrine disruptors (EDCs) is still unclear. This review is aimed to evaluate the rationality for MCs as to be classified as EDCs based on the available evidence. It has been identified that MCs meet eight of ten key characteristics of chemicals that can be classified as EDCs. MCs interfere with the six processes, including synthesis, release, circulation, metabolism, binding and action of natural hormones in the body. Also, they are fit two other characteristics of EDC: altering the fate of producing/responding cells and epigenetic modification. Further evidence indicates that the endocrine-disrupting effect of MCs may be an important cause of adverse health outcomes such as metabolic disorders, reproductive disorders and effects on the growth and development of offspring. Generally, MCs have endocrine-disrupting properties, suggesting that it is reasonable for them to be considered EDCs. This is of great importance in understanding and evaluating the harm done by MCs on humans.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Quality Control Department, Ninth Hospital of Xi'an, Shanxi, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | | | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Zhang S, Wu W, Peng Y, Liu L, Zhang Y, Wang R, Chen Z, Chu L, Zhang X, Bu Q, Jiang D, Wang J, Wang Y, Wang L. Chronic exposure to microcystin-leucine-arginine induces epithelial hyperplasia and inflammation in the mouse bladder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114033. [PMID: 36075121 DOI: 10.1016/j.ecoenv.2022.114033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) is a cyclic heptapeptide compound produced by cyanobacteria with strong cytotoxicity. Previous studies have confirmed that MC-LR could exert toxic effects on the genitourinary system, but there are few reports about its toxicity to the bladder. In this study, we investigated the effects of MC-LR on mouse bladder and human bladder epithelial cells (SV-HUC-1 cells). We observed that the bladder weight and the number of bladder epithelial cells were markedly increased in mice following chronic low-dose exposure to MC-LR. Further investigation showed that MC-LR activates AKT/NF-kB signaling pathway to induce the production of proinflammatory cytokines TNF-α and IL-6. In addition, the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in bladder tissue was increased and the relative migration and invasion capacities of SV-HUC-1 cells were enhanced upon exposure to MC-LR. In conclusion, these results suggest that chronic exposure to MC-LR induced epithelial hyperplasia and inflammation, upregulated the expression of matrix metalloproteinases (MMPs) and promoted the migration and invasion of bladder epithelial cells, which provides a basis for further exploring the potential mechanism by which environmental factors increasing the risk of bladder cancer.
Collapse
Affiliation(s)
- Shaoru Zhang
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China; State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Weidong Wu
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Yi Peng
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Lingyi Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yaling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Rong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Zhenshi Chen
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Lei Chu
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Xiajun Zhang
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Qiang Bu
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Dongfang Jiang
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China.
| | - Jian Wang
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China.
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| | - Lihui Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
13
|
Role of p38 MAPK Signalling in Testis Development and Male Fertility. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6891897. [PMID: 36092154 PMCID: PMC9453003 DOI: 10.1155/2022/6891897] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022]
Abstract
The testis is an important male reproductive organ, which ensures reproductive function via the secretion of testosterone and the generation of spermatozoa. Testis development begins in the embryonic period, continues after birth, and generally reaches functional maturation at puberty. The stress-activated kinase, p38 mitogen-activated protein kinase (MAPK), regulates multiple cell processes including proliferation, differentiation, apoptosis, and cellular stress responses. p38 MAPK signalling plays a crucial role in testis development by regulating spermatogenesis, the fate determination of pre-Sertoli, and primordial germ cells during embryogenesis, the proliferation of testicular cells in the postnatal period, and the functions of mature Sertoli and Leydig cells. In addition, p38 MAPK signalling is involved in decreased male fertility when exposed to various harmful stimuli. This review will describe in detail the biological functions of p38 MAPK signalling in testis development and male reproduction, together with its pathological role in male infertility.
Collapse
|
14
|
Xu G, Luo Y, Xu D, Ma Y, Chen Y, Han X. Male reproductive toxicity induced by Microcystin-leucine-arginine (MC-LR). Toxicon 2022; 210:78-88. [DOI: 10.1016/j.toxicon.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
|
15
|
Hasan H, Bhushan S, Fijak M, Meinhardt A. Mechanism of Inflammatory Associated Impairment of Sperm Function, Spermatogenesis and Steroidogenesis. Front Endocrinol (Lausanne) 2022; 13:897029. [PMID: 35574022 PMCID: PMC9096214 DOI: 10.3389/fendo.2022.897029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Infection and inflammation are relevant entities of male reproductive disorders that can lead to sub-/infertility. Associated damage of the testis of affected men and in rodent models include leukocytic infiltration, edema formation, fibrosis, germ cell loss and reduced androgen levels. Negative effects on spermatogenesis are thought to be elicited by oxidative stress sustained mostly by increased levels of ROS and pro-inflammatory cytokines. Under normal conditions these cytokines have physiological functions. However, increased levels as seen in inflammation and infection, but also in obesity and cancer are harmful for germ cells and impair steroidogenesis. As a summary, there is mounting evidence that the activation of inflammatory pathways is a rather common feature in various forms of male testicular disorders that extends beyond established infectious/inflammatory cues. This mini review will focus on relevant entities and the mechanisms of how a dysbalance of local testicular factors contributes to disturbances of spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
| | | | - Monika Fijak
- *Correspondence: Andreas Meinhardt, ; Monika Fijak,
| | | |
Collapse
|
16
|
Xiong H, Chen Z, Zhao J, Li W, Zhang S. TNF-α/ENO1 signaling facilitates testicular phagocytosis by directly activating Elmo1 gene expression in mouse Sertoli cells. FEBS J 2021; 289:2809-2827. [PMID: 34919331 DOI: 10.1111/febs.16326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Abstract
Phagocytic clearance of apoptotic germ cells (GCs), as well as residual bodies (RBs) released from developing spermatids, is critical for Sertoli cells (SCs) to maintain inner environment homeostasis within testis. However, the molecular mechanisms controlling the phagocytosis are ill defined. Here, we identify a new role for alpha-enolase (ENO1), a key enzyme during glycolysis, as a molecule that facilitates testicular phagocytosis via transactivation of the engulfment and cell motility 1 (Elmo1) gene. Using immunohistochesmitry and double-labeling immunofluorescence, ENO1 was observed to be expressed exclusively in the nuclei of SCs and its expression correlated with the completion of Sertoli cell differentiation. By incubating TM4 cells with different pharmacological inhibitors and establishing TM4Tnfr1-/- cells, we demonstrated that Sertoli cell-specific expression of ENO1 was under a delicate paracrine control from apoptotic GCs. In turn, persistent blockade of ENO1 expression by a validated siRNA protocol resulted in the disturbance of spermatogenesis and impairment of male fertility. Furthermore, using chromatin immunoprecipitation, electrophoretic mobility shift assay and luciferase reporter assay, we showed that in the presence of apoptotic GCs, ENO1 binds to the distal region of the Elmo1 promoter and facilitates transactivation of the Elmo1 gene. In agreement, overexpression of ELMO1 ameliorated ENO1 deficiency-induced impairment of phagocytosis in TM4 cells. These data reveal a novel role for Sertoli cell-specific expression of ENO1 in regulating phagocytosis in testis, identify TNF-α and ELMO1 as critical upstream and downstream factors in mediating ENO1 action, and have important implications for understanding paracrine control of Sertoli cell function by adjacent GCs.
Collapse
Affiliation(s)
- Hu Xiong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P.R.China
| | - Zhenzhen Chen
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, P.R.China
| | - Jie Zhao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, P.R.China
| | - Wei Li
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, P.R.China
| | - Shun Zhang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P.R.China
| |
Collapse
|
17
|
Gao L, Cui AQ, Wang J, Chen J, Zhang XY, Lin ZJ, Chen YH, Zhang C, Wang H, Xu DX. Paternal exposure to microcystin-LR induces fetal growth restriction partially through inhibiting cell proliferation and vascular development in placental labyrinth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60032-60040. [PMID: 34155591 DOI: 10.1007/s11356-021-14725-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-leucine arginine (MC-LR) has reproductive and developmental toxicities. Previous studies indicated that gestational exposure to MC-LR induced fetal growth restriction in mice. The aim of this study was to further evaluate the effect of paternal MC-LR exposure before mating on fetal development. Male mice were intraperitoneally injected with either normal saline or MC-LR (10 μg/kg) daily for 35 days. Male mouse was then mated with female mice with 1:1 ratio. There was no significant difference on the rates of mating and pregnancy between MC-LR-exposed male mice and controls. Body weight and crown-rump length were reduced in fetuses whose fathers were exposed to MC-LR. Despite no difference on relative thickness of labyrinthine layer, cell proliferation, as measured by Ki67 immunostaining, was reduced in labyrinth layer of MC-LR-exposed mice. Moreover, blood sinusoid area in labyrinth layer was decreased in the fetus whose father was exposed to MC-LR before mating. Correspondingly, cross-sectional area of CD34-positive blood vessel in labyrinth layer was lower in fetuses whose fathers were exposed to MC-LR than in controls. These results provide evidence that paternal MC-LR exposure before mating induces fetal growth restriction partially through inhibiting cell proliferation and vascular development in labyrinth layer.
Collapse
Affiliation(s)
- Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - An-Qi Cui
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Jing Lin
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
18
|
Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2021; 13:toxins13100711. [PMID: 34679003 PMCID: PMC8540411 DOI: 10.3390/toxins13100711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, they have been shown to induce deleterious effects in a wide range of organs. However, their effects on the immune system are as yet scarcely investigated. Thus, to know the impact of cyanotoxins on the immune system, due to its importance in organisms’ homeostasis, is considered of interest. A review of the scientific literature dealing with the immunotoxicity of MCs and CYN has been performed, and both in vitro and in vivo studies have been considered. Results have confirmed the scarcity of reports on the topic, particularly for CYN. Decreased cell viability, apoptosis or altered functions of immune cells, and changed levels and mRNA expression of cytokines are among the most common effects reported. Underlying mechanisms, however, are still not yet fully elucidated. Further research is needed in order to have a full picture of cyanotoxin immunotoxicity.
Collapse
|
19
|
Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Alexiou A, Batiha GES. Testosterone in COVID-19: An Adversary Bane or Comrade Boon. Front Cell Infect Microbiol 2021; 11:666987. [PMID: 34568081 PMCID: PMC8455954 DOI: 10.3389/fcimb.2021.666987] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 is a pandemic disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), which leads to pulmonary manifestations like acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In addition, COVID-19 may cause extra-pulmonary manifestation such as testicular injury. Both high and low levels of testosterone could affect the severity of COVID-19. Herein, there is substantial controversy regarding the potential role of testosterone in SARS-CoV-2 infection and COVID-19 severity. Therefore, the present study aimed to review and elucidate the assorted view of preponderance regarding the beneficial and harmful effects of testosterone in COVID-19. A related literature search in PubMed, Scopus, Web of Science, Google Scholar, and Science Direct was done. All published articles related to the role of testosterone and COVID-19 were included in this mini-review. The beneficial effects of testosterone in COVID-19 are through inhibition of pro-inflammatory cytokines, augmentation of anti-inflammatory cytokines, modulation of the immune response, attenuation of oxidative stress, and endothelial dysfunction. However, its harmful effects in COVID-19 are due to augmentation of transmembrane protease serine 2 (TMPRSS2), which is essential for cleaving and activating SARS-CoV-2 spike protein during acute SARS-CoV-2 infection. Most published studies illustrated that low testosterone levels are linked to COVID-19 severity. A low testosterone level in COVID-19 is mainly due to testicular injury, the primary source of testosterone.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Hani Faidah
- Faculty of Medicine, Umm Al Qura University, Mecca, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia.,AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
20
|
Gao L, Chen J, Li J, Cui AQ, Zhang WW, Li XL, Wang J, Zhang XY, Zhao Y, Chen YH, Zhang C, Wang H, Xu DX. Microcystin-LR inhibits testosterone synthesis via reactive oxygen species-mediated GCN2/eIF2α pathway in mouse testes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146730. [PMID: 33798882 DOI: 10.1016/j.scitotenv.2021.146730] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Previous studies demonstrated that microcystin-leucine-arginine (MC-LR) disrupted testosterone (T) synthesis, but the underlying mechanisms are not entirely elucidated. This study aims to explore the role of reactive oxygen species (ROS)-mediated GCN2/eIF2α activation on MC-LR-induced disruption of testicular T synthesis. Male mice were intraperitoneally injected with MC-LR (0 or 20 μg/kg) daily for 5 weeks. Serum T was decreased in MC-LR-exposed mice (0.626 ± 0.122 vs 24.565 ± 8.486 ng/ml, P < 0.01), so did testicular T (0.667 ± 0.15 vs 8.317 ± 1.387 ng/mg protein, P < 0.01). Steroidogenic proteins including StAR, CYP11A1 and CYP17A1 were downregulated in MC-LR-exposed mouse testes and TM3 cells. Mechanistically, p-GCN2 and p-eIF2α were elevated in MC-LR-exposed TM3 cells. GCN2iB attenuated MC-LR-induced GCN2 and eIF2α phosphorylation in TM3 cells. Moreover, GCN2iB attenuated MC-LR-induced downregulation of steroidogenic proteins in TM3 cells. Further analysis found that cellular ROS were elevated and HO-1 was upregulated in MC-LR-exposed TM3 cells. PBN rescued MC-LR-induced activation of GCN2/eIF2α signaling in TM3 cells. Additionally, pretreatment with PBN attenuated MC-LR induced downregulation of steroidogenic proteins and synthases in TM3 cells. These results suggest that ROS-mediated GCN2/eIF2α activation contributes partially to MC-LR-caused downregulation of steroidogenic proteins and synthases. The present study provides a new clue for understanding the mechanism of MC-LR-induced endocrine disruption.
Collapse
Affiliation(s)
- Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Jing Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Jian Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - An-Qi Cui
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Wei-Wei Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiu-Liang Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Jing Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Ye Zhao
- Department of Nuclear Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
21
|
Hansen JD, Loftin KA, Laughrey Z, Adamovsky O. Neither microcystin, nor nodularin, nor cylindrospermopsin directly interact with human toll-like receptors. CHEMOSPHERE 2021; 274:129623. [PMID: 33515847 DOI: 10.1016/j.chemosphere.2021.129623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Various stressors including temperature, environmental chemicals, and toxins can have profound impacts on immunity to pathogens. Increased eutrophication near rivers and lakes coupled with climate change are predicted to lead to increased algal blooms. Currently, the effects of cyanobacterial toxins on disease resistance in mammals is a largely unexplored area of research. Recent studies have suggested that freshwater cyanotoxins can elicit immunomodulation through interaction with specific components of innate immunity, thus potentially altering disease susceptibility parameters for fish, wildlife, and human health owing to the conserved nature of the vertebrate immune system. In this study, we investigated the effects of three microcystin congeners (LR, LA, and RR), nodularin-R, and cylindrospermopsin for their ability to directly interact with nine different human Toll-like receptors (TLRs)-key pathogen recognition receptors for innate immunity. Toxin concentrations were verified by LC/MS/MS prior to use. Using an established HEK293-hTLR NF-κB reporter assay, we concluded that none of the tested toxins (29-90 nM final concentration) directly interacted with human TLRs in either an agonistic or antagonistic manner. These results suggest that earlier reports of cyanotoxin-induced NF-κB responses likely occur through different surface receptors to mediate inflammation.
Collapse
Affiliation(s)
- John D Hansen
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th St, Seattle, WA, 98115, USA.
| | - Keith A Loftin
- U.S. Geological Survey, Kansas Water Science Center, 1217 Biltmore Dr, Lawrence, KS, 66049, USA.
| | - Zachary Laughrey
- U.S. Geological Survey, Kansas Water Science Center, 1217 Biltmore Dr, Lawrence, KS, 66049, USA.
| | - Ondrej Adamovsky
- Research Center for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice, 753/5, Czech Republic.
| |
Collapse
|
22
|
Zickri MB, Moustafa MH, Fasseh AEE, Kamar SS. Antioxidant and antiapoptotic paracrine effects of mesenchymal stem cells on spermatogenic arrest in oligospermia rat model. Ann Anat 2021; 237:151750. [PMID: 33940119 DOI: 10.1016/j.aanat.2021.151750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Oligospermia is one of the common causative factors of male infertility. Some medical and hormonal therapy for male infertility is typically with unsatisfactory outcome. Stem cell therapy has become a new therapeutic strategy for restoring function in addition to inducing proliferation and differentiation of malfunctioning germ cells. This work aims at investigating the potential ability of BM-MSCs to repair the spermatogenic arrest in oligospermic rat model. METHODS In this work, a rat model of oligospermia was induced using two intraperitoneal injections of busulfan (15 mg/kg) with two weeks interval. Rats were divided into (i) donor group [source of the bone marrow mesenchymal stem cells (BM-MSCs) that were labelled and transfected with green fluorescent protein (GFP)] and (ii) experimental groups that were subdivided into: GpI (control), GpII (spermatogenic arrest model), GpIII (untreated rats), and GpIV (BM-MSCs treated rats). Estimation of the testicular weight, sperm count and motility % were performed. Histological and immunohistochemical staining for inducible nitric oxide synthase (iNOS) and caspase-3 (Cas-3) were conducted. Besides, the level of the testicular malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and testicular testosterone were estimated by ELISA. RESULTS Oligospermic rats illustrated hypospermatogenesis of the seminiferous tubule with spermatocyte and spermatid arrest, focal thickening of the basement membrane and significant increase in germ cells apoptosis and testicular oxidative stress. Compared with the control, MDA and TNF-α were markedly elevated with marked suppression of the testicular testosterone. Intra-testicular injection of BM-MSCs substantially ameliorated these changes and effectively improved the sperm count and motility %. CONCLUSIONS BM-MSCs improved the induced-spermatogenic arrest in the rat model mainly through anti-apoptotic and antioxidant paracrine effects.
Collapse
Affiliation(s)
- Maha Baligh Zickri
- Department of Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Hafez Moustafa
- Department of Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Essam-Eldin Fasseh
- Department of Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samaa Samir Kamar
- Department of Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Histology, Armed Forces College of Medicine, Cairo, Egypt.
| |
Collapse
|
23
|
Chen Y, Wang J, Xu D, Xiang Z, Ding J, Yang X, Li D, Han X. m 6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells. Autophagy 2021; 17:457-475. [PMID: 31983283 PMCID: PMC8007139 DOI: 10.1080/15548627.2020.1720431] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Macroautophagy/autophagy is indispensable for testosterone synthesis in Leydig cells (LCs), and here we report a negative association between m6A modification and autophagy in LCs during testosterone synthesis. A gradual decrease of METTL14 (methyltransferase like 14) and an increase of ALKBH5 (alkB homolog 5, RNA demethylase) were observed in LCs during their differentiation from stem LCs to adult LCs. These events led to reduced mRNA methylation levels of N6-methyladenosine (m6A) and enhanced autophagy in LCs. Similar regulation of METTL14, ALKBH5, and m6A was also observed in LCs upon treatment with human chorionic gonadotropin (HsCG). Mechanistically, m6A modification promoted translation of PPM1A (protein phosphatase 1A, magnesium dependent, alpha isoform), a negative AMP-activated protein kinase (AMPK) regulator, but decreased expression of CAMKK2 (calcium/calmodulin-dependent protein kinase kinase 2, beta), a positive AMPK regulator, by reducing its RNA stability. Thus, m6A modification resulted in reduced AMPK activity and subsequent autophagy inhibition. We further demonstrated that ALKBH5 upregulation by HsCG was dependent on enhanced binding of the transcriptional factor CEBPB (CCAAT/enhancer binding protein [C/EBP], beta) and the TFEB (transcription factor EB) to its gene promoter. Moreover, HsCG treatment decreased METTL14 by reducing its stability. Collectively, this study highlights a vital role of m6A RNA methylation in the modulation of testosterone synthesis in LCs, providing insight into novel therapeutic strategies by exploiting m6A RNA methylation as targets for treating azoospermatism and oligospermatism patients with reduction in serum testosterone.Abbreviations: 3-MA: 3-methyladenine; ACTB: Actin, beta; ALKBH5: alkB homolog 5, RNA demethylase; AMPK: AMP-activated protein kinase; BafA1: bafilomycin A1; CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2, beta; CEBPB: CCAAT/enhancer-binding protein (C/EBP), beta; ChIP: chromatin immunoprecipitation; FTO: fat mass and obesity associated; HsCG: human chorionic gonadotropin; HSD3B: 3β-hydroxysteroid dehydrogenase; LCs: Leydig cells; m6A: N6-methyladenosine; METTL14: methyltransferase like 14; METTL3: methyltransferase like 3; MTOR: mechanistic target of rapamycin kinase; PPM1A: protein phosphatase 1A, magnesium dependent, alpha isoform; PRKAA: 5'-AMP-activated protein kinase catalytic subunit alpha; SQSTM1: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TFEB: transcription factor EB; ULK1: unc-51-like kinase 1; WTAP: Wilms tumor 1-associating protein; YTHDF: YTH N6-methyladenosine RNA binding protein.
Collapse
Affiliation(s)
- Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Hospital of Nanjing Medical University, Nanjing, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Yan M, Gu S, Pan C, Chen Y, Han X. MC-LR-induced interaction between M2 macrophage and biliary epithelial cell promotes biliary epithelial cell proliferation and migration through regulating STAT3. Cell Biol Toxicol 2021; 37:935-949. [PMID: 33474710 DOI: 10.1007/s10565-020-09575-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/01/2020] [Indexed: 01/14/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) was produced by toxic cyanobacteria, which has been shown to have potent hepatotoxicity. Our previous study has proved that MC-LR were able to promote intrahepatic biliary epithelial cell excessive proliferation. However, the underlying mechanism is not yet entirely clarified. Herein, mice were fed with different concentrations (1, 7.5, 15, or 30 μg/L) of MC-LR by drinking water for 6 months. As the concentration of MC-LR increased, a growing number of macrophages were evaluated in the portal area of the mouse liver. Next, we built a co-culture system to explore the interaction between macrophages (THP-1 cells) and human intrahepatic biliary epithelial cells (HiBECs) in the presence of MC-LR. Under the exposure of MC-LR, HiBECs secreted a large amount of inflammatory factors (IL-6, IL-8, IL-1β, COX-2, XCL-1) and chemokine (MCP-1), which produced a huge chemotactic effect on THP-1 cells and induced elevation of the surface M2-subtype biomarkers (IL-10, CD163, CCL22, and Arg-1). In turn, high content of IL-6 in the medium activated JAK2/STAT3, MEK/ERK, and PI3K/AKT pathways in HiBECs, inducing HiBEC abnormal proliferation and migration. Together, these results suggested that MC-LR-mediated interaction between HiBECs and macrophages induced the M2-type polarization of macrophages, and activated IL-6/JAK2/STAT3, MEK/ERK, and PI3K/AKT pathways in HiBECs, further enhanced cell proliferation, improved cell migration, and hindered cell apoptosis by activating p-STAT3. MC-LR stimulates HiBECs to produce various inflammatory factors, recruiting a large number of macrophages and promoting the differentiation of macrophages into M2-type. In turn, the M2 macrophages could also produce amounts of IL-6 and activate STAT3 through JAK2/STAT3, MEK/ERK, and PI3K/AKT pathways in HiBECs, resulting in the promotion of cell proliferation, inhibition of apoptosis, and enhancement of migration.
Collapse
Affiliation(s)
- Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Shen Gu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.,Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, Jiangsu, China
| | - Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
25
|
Zhang S, Du X, Liu H, Losiewic MD, Chen X, Ma Y, Wang R, Tian Z, Shi L, Guo H, Zhang H. The latest advances in the reproductive toxicity of microcystin-LR. ENVIRONMENTAL RESEARCH 2021; 192:110254. [PMID: 32991922 DOI: 10.1016/j.envres.2020.110254] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is an emerging environmental pollutant produced by cyanobacteria that poses a threat to wild life and human health. In recent years, the reproductive toxicity of MC-LR has gained widespread attention, a large number of toxicological studies have filled the gaps in past research and more molecular mechanisms have been elucidated. Hence, this paper reviews the latest research advances on MC-LR-induced reproductive toxicity. MC-LR can damage the structure and function of the testis, ovary, prostate, placenta and other organs of animals and then reduce their fertility. Meanwhile, MC-LR can also be transmitted through the placenta to the offspring causing trans-generational and developmental toxicity including death, malformation, growth retardation, and organ dysfunction in embryos and juveniles. The mechanisms of MC-LR-induced reproductive toxicity mainly include the inhibition of protein phosphatase 1/2 A (PP1/2 A) activity and the induction of oxidative stress. On the one hand, MC-LR triggers the hyperphosphorylation of certain proteins by inhibiting intracellular PP1/2 A activity, thereby activating multiple signaling pathways that cause inflammation and blood-testis barrier destruction, etc. On the other hand, MC-LR-induced oxidative stress can result in cell programmed death via the mitochondrial and endoplasmic reticulum pathways. It is worth noting that epigenetic modifications are also involved in reproductive cell apoptosis, which may be an important direction for future research. Furthermore, this paper proposes for the first time that MC-LR can produce estrogenic effects in animals as an environmental estrogen. New findings and suggestions in this review could be areas of interest for future research.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Michael D Losiewic
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
26
|
Xue J, Ajuwon KM, Fang R. Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation. ACTA ACUST UNITED AC 2020; 6:421-428. [PMID: 33364458 PMCID: PMC7750791 DOI: 10.1016/j.aninu.2020.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
The intestinal tract is a host to 100 trillion of microbes that have co-evolved with mammals over the millennia. These commensal organisms are critical to the host survival. The roles that symbiotic microorganisms play in the digestion, absorption, and metabolism of nutrients have been clearly demonstrated. Additionally, commensals are indispensable in regulating host immunity. This is evidenced by the poorly developed gut immune system of germ-free mice, which can be corrected by transplantation of specific commensal bacteria. Recent advances in our understanding of the mechanism of host–microbial interaction have provided the basis for this interaction. This paper reviews some of these key studies, with a specific focus on the effect of the microbiome on the immune organ development, nonspecific immunity, specific immunity, and inflammation.
Collapse
Affiliation(s)
- Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907-2054, United States
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| |
Collapse
|
27
|
Du K, Gao XX, Feng Y, Li J, Wang H, Lv SL, Wang PY, Zhang B, Qin XM. Integrated adrenal and testicular metabolomics revealed the protective effects of Guilingji on the Kidney-Yang deficiency syndrome rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112734. [PMID: 32151756 DOI: 10.1016/j.jep.2020.112734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/08/2020] [Accepted: 03/01/2020] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guilingji (GLJ) is a well-known traditional Chinese medicine (TCM) prescription for the treatment of Kidney-Yang deficiency syndrome (KYDS). AIM OF THE STUDY This study aimed to address the protective effects of GLJ against KYDS in rats with pharmacodynamic indicators and target tissues (adrenal gland and testis) metabolomics. MATERIALS AND METHODS The rats were injected intraperitoneally (i.p) hydrocortisone to simulate KYDS and administered orally of GLJ for 30 days. Traditional pharmacodynamic indicators (body weight, behavioral indicators, biochemical parameters and histological examination) were performed to evaluate the efficacy of GLJ. Furthermore, adrenal gland and testis metabolic profiles obtained by UHPLC-Q Exactive Orbitrap-MS coupled with multivariate analysis were conducted to explore the metabolic regulation mechanism of GLJ. RESULTS After administration of GLJ, the weight, levels of behavioral indicators and biochemical parameters of rats were increased compared with those of the model group, and the abnormalities of morphology in adrenal and testicular tissues were improved. Furthermore, GLJ had recovering effects via the adjustment of vitamins metabolism, which was accompanied by lipids metabolism, amino acid metabolism and nucleotides metabolism. CONCLUSIONS The study firstly integrated the target tissues metabolic profiles, which were complementary, and GLJ had protective effects on KYDS rats via the regulation of steroid hormone biosynthesis, oxidant-antioxidant balance and energy acquisition.
Collapse
Affiliation(s)
- Ke Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, PR China
| | - Xiao-Xia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, PR China.
| | - Yan Feng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, PR China
| | - Jing Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, PR China
| | - Hui Wang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, PR China
| | - Si-Lin Lv
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, PR China
| | - Pei-Yi Wang
- Shanxi Guangyuyuan Chinese Medicine Co., Ltd, Jinzhong, 030800, PR China
| | - Bin Zhang
- Shanxi Guangyuyuan Chinese Medicine Co., Ltd, Jinzhong, 030800, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
28
|
Yan M, Shen G, Zhou Y, Meng X, Han X. The role of ERK-RSK signaling in the proliferation of intrahepatic biliary epithelial cells exposed to microcystin-leucine arginine. Biochem Biophys Res Commun 2019; 521:492-498. [PMID: 31677783 DOI: 10.1016/j.bbrc.2019.10.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022]
Abstract
Microcystin-leucine arginine (MC-LR) is a potent specific hepatotoxin produced by cyanobacteria in diverse water systems, and it has been documented to induce liver injury and hepatocarcinogenesis. However, its toxic effects on intrahepatic biliary epithelial cells have not been invested in detail. In this study, we aimed to investigate the effects of MC-LR exposure on the intrahepatic biliary epithelial cells in the liver. MC-LR was orally administered to mice at 1 μg/L, 7.5 μg/L, 15 μg/L, or 30 μg/L for 180 consecutive days for histopathological and immunoblot analysis. We observed that MC-LR can enter intrahepatic bile duct tissue and induce hyperplasia of mice. Human primary intrahepatic biliary epithelial cells (HiBECs) were cultured with various concentrations of MC-LR for 24 h, meanwhile the cell viability and proteins level were detected. Western blotting analysis revealed that MC-LR increased RSK phosphorylation via ERK signaling. RSK participated in cell proliferation and cell cycle progression. Taken together, after chronic exposure, MC-LR-treated mice exhibited abnormal bile duct hyperplasia and thickened bile duct morphology through activating the ERK-RSK signaling. These data support the potential toxic effects of MC-LR on bile duct tissue of the liver.
Collapse
Affiliation(s)
- Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Gu Shen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China; Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
29
|
Meng X, Peng H, Ding Y, Zhang L, Yang J, Han X. A transcriptomic regulatory network among miRNAs, piRNAs, circRNAs, lncRNAs and mRNAs regulates microcystin-leucine arginine (MC-LR)-induced male reproductive toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:563-577. [PMID: 30833255 DOI: 10.1016/j.scitotenv.2019.02.393] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Microcystin-leucine arginine (MC-LR) which is produced by cyanobacteria is a potent toxin for the reproductive system. Our previous work has demonstrated that both acute and chronic reproductive toxicity engendered by MC-LR can result in the decline of sperm quality and damage of testicular structures in male mice. The present study was designed to investigate the impact of chronic low-dose exposure to MC-LR on the regulation of RNA networks including mRNA, microRNA (miRNA), piwi-associated RNA (piRNA), covalently closed circular RNA (circRNA) and long non-coding RNA (lncRNA) in testicular tissues. By high-throughput sequencing analysis, 1091 mRNAs, 21 miRNAs, 644 piRNAs, 278 circRNAs and 324 lncRNAs were identified to be significantly altered in testicular tissues treated with MC-LR. We performed gene ontology (GO) analysis to ascertain the biological functions of differentially expressed genes. Among the altered 21 miRNAs and 644 piRNAs, the miRNA chr13_8977, which is a newly discovered species, and the piRNA mmu_piR_027558 were dramatically down-regulated after exposure to MC-LR. Consistently, both mRNA levels and protein expression levels of their predicted targets were increased significantly when chr13_8977 and mmu_piR_027558 were each down-regulated. Testicular structures, germ cell apoptosis and sperm quality were also affected by the altered expression of chr13_8977 and mmu_piR_027558 severally. We further investigated the differential expression of circRNAs and lncRNAs and their biological functions in testicular tissues following treatment with chronic low-dose exposure to MC-LR. We also constructed a competing endogenous RNA (ceRNA) network to predict the functions of the altered expressed RNAs using MiRanda. Our study suggested a crucial role for the potential network regulation of miRNAs, piRNAs, circRNAs, lncRNAs and mRNAs impacting the cytotoxicity of MC-LR in testicular tissues, which provides new perspectives in the development of diagnosis and treatment strategies for MC-LR-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Haoran Peng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuanzhen Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jingping Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
30
|
Zhang Y, Zhuang H, Yang H, Xue W, Wang L, Wei W. Microcystin-LR disturbs testicular development of giant freshwater prawn Macrobrachium rosenbergii. CHEMOSPHERE 2019; 222:584-592. [PMID: 30731378 DOI: 10.1016/j.chemosphere.2019.01.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Microcystins (MCs) are produced by cyanobacterial blooms and known for their hepatotoxicity. They could cause serious damage to the reproduction of higher vertebrate mice and fish. However, few studies have focused on the reproductive toxicity of MCs to invertebrates. Giant freshwater prawn Macrobrachium rosenbergii are highly cultivated in China. During their breeding process, M. rosenbergii are often infested by cyanobacteria blooms. In the present study, to investigate the toxic effect of MCs on the testicular development of M. rosenbergii. Male M. rosenbergii were exposed to environmental relevant concentration of MC-LR for 1, 2 and 3 weeks. Results showed that MC-LR entered M. rosenbergii testis, down-regulated hemolymph testosterone (T) levels, and damaged testicular germ cells, mitochondria and cell junctions, and inhibited testicular development. Moreover, MC-LR could significantly induce the expression of gonadal development related genes in testis and eyestalk). The present results indicate that MC-LR can disrupt the testicular development of M. rosenbergii by affecting T levels and gonadal development related genes in the testis and eyestalk.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Hang Zhuang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wen Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Liufu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
31
|
Liu FJ, Dong WY, Zhao H, Shi XH, Zhang YL. Effect of molybdenum on reproductive function of male mice treated with busulfan. Theriogenology 2019; 126:49-54. [PMID: 30530157 DOI: 10.1016/j.theriogenology.2018.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 01/23/2023]
|