1
|
Kenney JC, White-Kiely D, van de Merwe JP, Limpus CJ, Finlayson KA. Investigating chemical risk in green and loggerhead turtles foraging in Moreton Bay using species-specific cell-based bioassays. MARINE POLLUTION BULLETIN 2025; 212:117589. [PMID: 39855065 DOI: 10.1016/j.marpolbul.2025.117589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Differences in trophic level may result in differences in chemical exposure between species of sea turtles, as pollutants may bioaccumulate differentially in diet items. It is, therefore, crucial to understand species-specific differences in exposure and effect to accurately assess chemical risk to individual species. This study used blood collected from green and loggerhead turtles foraging in Moreton Bay, Queensland, Australia, to assess differences in chemical exposure and effect of two species foraging in the same area at different trophic levels. Organic contaminants were extracted from green and loggerhead turtle blood samples and assessed for cytotoxicity in species-specific cell cultures. The results indicated that chemical exposure to organic contaminants was similar between the two species, despite differences in trophic level. Overall, chemical risk was relatively low in both species, but temporal changes in toxicity observed in other similar studies illustrate the importance of ongoing toxicological assessments of sea turtle populations.
Collapse
Affiliation(s)
- Janelle C Kenney
- School of Environment and Science, Griffith University, Gold Coast, Australia; Australian Rivers Institute, Griffith University, Australia
| | - Dylan White-Kiely
- School of Biological Sciences, University of Western Australia, Australia
| | - Jason P van de Merwe
- School of Environment and Science, Griffith University, Gold Coast, Australia; Australian Rivers Institute, Griffith University, Australia
| | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | | |
Collapse
|
2
|
Johnson M, Finlayson K, van de Merwe JP, Leusch FDL. Adaption and application of cell-based bioassays to whole-water samples. CHEMOSPHERE 2024; 361:142572. [PMID: 38852631 DOI: 10.1016/j.chemosphere.2024.142572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The increasing presence of contaminants of emerging concern in wastewater and their potential environmental risks require improved monitoring and analysis methods. Direct toxicity assessment (DTA) using bioassays can complement chemical analysis of wastewater discharge, but traditional in vivo tests have ethical considerations and are expensive, low-throughput, and limited to apical endpoints (mortality, reproduction, development, and growth). In vitro bioassays offer an alternative approach that is cheaper, faster, and more ethical, and can provide higher sensitivity for some environmentally relevant endpoints. This study explores the potential benefits of using whole water samples of wastewater and environmental surface water instead of traditional solid phase extraction (SPE) methods for in vitro bioassays testing. Whole water samples produced a stronger response in most bioassays, likely due to the loss or alteration of contaminants during SPE sample extraction. In addition, there was no notable difference in results for most bioassays after freezing whole water samples, which allows for increased flexibility in testing timelines and cost savings. These findings highlight the potential advantages of using whole water samples in DTA and provide a framework for future research in this area.
Collapse
Affiliation(s)
- Matthew Johnson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia; Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA, 5064, Australia.
| | - Kimberly Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| |
Collapse
|
3
|
Odetti LM, Paravani EV, Simoniello MF, Poletta GL. Micronucleus test in reptiles: Current and future perspectives. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503772. [PMID: 39054003 DOI: 10.1016/j.mrgentox.2024.503772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Micronucleus (MN) cell counting emerged in 1973-1975 as a valid alternative for characterizing chromosomal damage caused by different agents. It was first described in mammals, but its application was rapidly extended to other vertebrates, mainly fish. However, it was not until 28 years later that this test was implemented in studies on reptiles. Nowadays, reptiles are found to be excellent non-target species from environmental contamination exposure and MN test has become a fundamental tool for analyzing genotoxic effects induced by various xenobiotics. In this article we provide an updated review of the application of the MN test in reptile species, from an ecotoxicological perspective. Therefore, we present (I) a bibliometric analysis of the available research on genotoxic-induced MN formation in reptile species; (II) the use of reptiles as sentinel organisms in ecotoxicological studies; and (III) the strength and weakness of the application of the MN test in this group. With this review, we aim to provide a comprehensive view on the use of the MN test in ecotoxicology and to encourage further studies involving reptile species.
Collapse
Affiliation(s)
- L M Odetti
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 12 1917, CABA C1033AAJ, Argentina.
| | - E V Paravani
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - Ma F Simoniello
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina
| | - G L Poletta
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 12 1917, CABA C1033AAJ, Argentina
| |
Collapse
|
4
|
Morão IFC, Simões T, Casado RB, Vieira S, Ferreira-Airaud B, Caliani I, Di Noi A, Casini S, Fossi MC, Lemos MFL, Novais SC. Metal accumulation in female green sea turtles (Chelonia mydas) from Eastern Atlantic affects their egg quality with potential implications for embryonic development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172710. [PMID: 38670375 DOI: 10.1016/j.scitotenv.2024.172710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Sea turtles, with their global distribution and complex life cycle, often accumulate pollutants such as metals and metalloids due to their extended lifespan and feeding habits. However, there are limited studies exploring the impact of metal pollution on the reproductive health of female sea turtles, specifically focusing on the quality of their eggs, which has significant implications for the future generations of these charismatic animals. São Tomé Island, a crucial nesting and feeding habitat for green sea turtles, underscores the urgent need for comprehensive research in this ecologically significant area. This study aimed to investigate whether metals and metalloids in the blood of nesting female green sea turtles induce genotoxic effects in their erythrocytes and affect their egg morphometric characteristics and the composition of related compartments. Additionally, this study aimed to evaluate whether the quality of energetic reserves for embryo development (fatty acids in yolk's polar and neutral lipids) is influenced by the contamination status of their predecessors. Results revealed correlations between Cu and Hg levels and increased "lobed" erythrocytes, while As and Cu negatively influenced shell thickness. In terms of energy reserves, both polar and neutral lipid fractions contained primarily saturated and monounsaturated fatty acids, with prevalent 18:1n-9, 18:0, 16:0, 14:0, and 12:0 fatty acids in yolk samples. The yolk polar fraction was more susceptible to contaminant levels in female sea turtles, showing consistent negative correlations between pollution load index and essential n3 fatty acids, including linolenic, eicosatrienoic, eicosapentaenoic, and docosapentaenoic acids, crucial for embryonic development. These metals accumulation, coupled with the reduced availability of these key fatty acids, may disrupt the eicosanoid and other important pathways, affecting reproductive development. This study reveals a negative correlation between metal contamination in female sea turtles' blood and egg lipid reserves, raising concerns about embryonic development and the species' future generations.
Collapse
Affiliation(s)
- Inês F C Morão
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal; Faculdade de Ciências & CESAM, Universidade de Lisboa, Lisboa, Portugal.
| | - Tiago Simões
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Roger B Casado
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Sara Vieira
- Associação Programa Tatô, São Tomé, São Tomé and Príncipe; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Betânia Ferreira-Airaud
- Associação Programa Tatô, São Tomé, São Tomé and Príncipe; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Agata Di Noi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Maria C Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal.
| |
Collapse
|
5
|
Wilkinson A, Ariel E, van de Merwe J, Brodie J. Green Turtle (Chelonia mydas) Blood and Scute Trace Element Concentrations in the Northern Great Barrier Reef. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2375-2388. [PMID: 37477460 DOI: 10.1002/etc.5718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Marine turtles face numerous anthropogenic threats, including that of chemical contaminant exposure. The ecotoxicological impact of toxic metals is a global issue facing Chelonia mydas in coastal sites. Local investigation of C. mydas short-term blood metal profiles is an emerging field, while little research has been conducted on scute metal loads as potential indicators of long-term exposure. The aim of the present study was to investigate and describe C. mydas blood and scute metal profiles in coastal and offshore populations of the Great Barrier Reef. This was achieved by analyzing blood and scute material sampled from local C. mydas populations in five field sites, for a suite of ecologically relevant metals. By applying principal component analysis and comparing coastal sample data with those of reference intervals derived from the control site, insight was gleaned on local metal profiles of each population. Blood metal concentrations in turtles from coastal sites were typically elevated when compared with levels recorded in the offshore control population (Howick Island Group). Scute metal profiles were similar in Cockle Bay, Upstart Bay, and Edgecumbe Bay, all of which were distinct from that of Toolakea. Some elements were reported at similar concentrations in blood and scutes, but most were higher in scute samples, indicative of temporal accumulation. Coastal C. mydas populations may be at risk of toxic effects from metals such as Co, which was consistently found to be at concentrations magnitudes above region-specific reference intervals. Environ Toxicol Chem 2023;42:2375-2388. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Adam Wilkinson
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Jason van de Merwe
- Australian Rivers Institute and School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Jon Brodie
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
6
|
Barraza AD, Finlayson KA, Leusch FDL, Limpus CJ, van de Merwe JP. Understanding contaminant exposure risks in nesting Loggerhead sea turtle populations. MARINE POLLUTION BULLETIN 2023; 196:115605. [PMID: 37844482 DOI: 10.1016/j.marpolbul.2023.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Queensland loggerhead turtle nest numbers at Mon Repos (MR) indicate population recovery that doesn't occur at Wreck Island (WI). Previous research illustrated that MR and WI turtles forage in different locations, potentially indicating risks differences. Blood, scute, and egg were collected from turtles nesting at MR and WI, with known foraging sites (from concurrent studies). Trace element and organic contaminants were assessed via acid digestion and in vitro cytotoxicity bioassays, respectively. WI turtles had significantly higher scute uranium and blood molybdenum compared to MR turtles, and arsenic was higher in WI turtles foraging north and MR turtles foraging south. Egg and blood titanium, manganese, cadmium, barium, lead, and molybdenum, and scute and egg selenium and mercury significantly correlated. Blood (75 %) extracts produced significant toxicity in vitro in turtle fibroblast cells. In conclusion, reducing chemical exposure at higher risk foraging sites would likely benefit sea turtles and their offspring.
Collapse
Affiliation(s)
- Arthur D Barraza
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, QLD, Australia.
| | - Kimberly A Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, QLD, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, QLD, Australia
| | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, QLD, Australia
| |
Collapse
|
7
|
Chaousis S, Leusch FDL, Nouwens A, Melvin SD, van de Merwe JP. Influence of chemical dose and exposure duration on protein synthesis in green sea turtle primary cells. J Proteomics 2023; 285:104942. [PMID: 37285907 DOI: 10.1016/j.jprot.2023.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Understanding the impacts of chemical exposure in marine wildlife is challenging, due to practical and ethical constraints that preclude traditional toxicology research on these animals. This study addressed some of these limitations by presenting an ethical and high throughput cell-based approach to elucidate molecular-level effects of contaminants on sea turtles. The experimental design addressed basic questions of cell-based toxicology, including chemical dose and exposure time. Primary green turtle skin cells were exposed to polychlorinated biphenyl (PCB) 153 and perfluorononanoic acid (PFNA) for 24 and 48 h, at three sub-lethal, environmentally relevant concentrations (1, 10 and 100 μg/L). Sequential window acquisition of all theoretical mass spectra (SWATH-MS) identified over 1000 differentially abundant proteins within the 1% false discovery rate (FDR) threshold. The 24 h exposure resulted in a greater number of differentially abundant proteins, compared to 48 h exposure, for both contaminants. However, there were no statistically significant dose-response relationships for the number of differentially synthesised proteins, nor differences in the proportion of increased vs decreased proteins between or within exposure times. Known in vivo markers of contaminant exposure, superoxide dismutase and glutathione S-transferase, were differentially abundant following exposure to PCB153 and PFNA. SIGNIFICANCE: Cell-based (in vitro) proteomics provides an ethical and high throughput approach to understanding the impacts of chemical contamination on sea turtles. Through investigating effects of chemical dose and exposure duration on unique protein abundance in vitro, this study provides an optimised framework for conducting cell-based studies in wildlife proteomics, and highlights that proteins detected in vitro could act as biomarkers of chemical exposure and effect in vivo.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Frederic D L Leusch
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, The University of Queensland, Building 76, QLD 4067, Australia
| | - Steven D Melvin
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Jason P van de Merwe
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia.
| |
Collapse
|
8
|
Bailey D, Finlayson KA, Dogruer G, Bennett WW, van de Merwe JP. Dose metric evaluation of a cell-based bioassay for assessing the toxicity of metals to Dugong dugon: Effect of metal-media interactions on exposure concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106394. [PMID: 36603369 DOI: 10.1016/j.aquatox.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cell-based toxicity testing has emerged as a useful tool in (eco)toxicological research, allowing the ethical assessment of the effects of contaminants such as trace metals on marine megafauna. However, metal interactions with various dissolved ligands in the microplate environment may influence the effective exposure concentrations. Hence, the cells are not exposed to the nominal concentrations within the test system. This study aimed to establish and evaluate the effectiveness of cell-based bioassays for investigating the toxicity of selected metals in dugongs through the following objectives: (1) measure the cytotoxic potential of cadmium (Cd2+), and chromium (Cr6+) to dugong skin cell cultures, (2) investigate the interactions between media constituents and selected trace metals in cell-based bioassays, and (3) evaluate the risk to a free-ranging population of dugong based on effect values. Chromium was the most toxic of the metals tested (EC50 = 1.14 µM), followed by Cd (EC50 = 6.35 µM). Assessment of ultrafiltered (< 3 kDa) exposure media showed that 1% and 92.5% of Cr and Cd were associated with larger organic components of the media. Further, the binding of Cd to media constituents was calculated to underestimate Cd toxicity in cell-based assays by an order of magnitude. This understanding of metal partitioning in cell-based bioassays provides a more accurate method for assessing toxicity in cell-based bioassays. In addition, this study illustrated that dugong cells are more sensitive to Cr and Cd than other marine wildlife species. The chemical risk assessment found the dugong population in Moreton Bay to be at high risk from Cd exposure.
Collapse
Affiliation(s)
- David Bailey
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia; Australian Rivers Institute, Griffith University, Queensland, Australia
| | - Kimberly A Finlayson
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia; Australian Rivers Institute, Griffith University, Queensland, Australia.
| | - Gulsah Dogruer
- Australian Rivers Institute, Griffith University, Queensland, Australia; Wageningen Marine Research, Wageningen University and Research, Netherlands
| | - William W Bennett
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Jason P van de Merwe
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia; Australian Rivers Institute, Griffith University, Queensland, Australia
| |
Collapse
|
9
|
Perkins GE, Finlayson KA, van de Merwe JP. Pelagic and coastal green turtles (Chelonia mydas) experience differences in chemical exposure and effect. MARINE POLLUTION BULLETIN 2022; 183:114027. [PMID: 35985101 DOI: 10.1016/j.marpolbul.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Green turtles foraging in coastal areas are exposed to land-based chemical pollutants that accumulate in the habitats to which they show high site fidelity. However, prior to coastal recruitment, they may be exposed to a different range of chemical threats. The recent development of species-specific in vitro bioassays for marine turtles allows for an effect-based assessment of toxicological endpoints. Blood was collected from green turtles of two life-stages, 'recent recruits' and 'coastal residents', in Hervey Bay and Moreton Bay. Organic contaminants were extracted from blood using the QuEChERS method, and cytotoxicity of the extracts measured in green turtle skin cells. Although not statistically significant, extracts from 'coastal residents' exhibited greater mean toxicity compared to 'recent recruits', possibly indicative of increased chemical accumulation from coastal habitat exposure. The bioassay results also indicated that turtles foraging in Hervey Bay are at greater risk of chemical exposure than those foraging in Moreton Bay.
Collapse
Affiliation(s)
- Grace E Perkins
- School of Environment and Science, Griffith University, Gold Coast, Australia.
| | | | - Jason P van de Merwe
- School of Environment and Science, Griffith University, Gold Coast, Australia; Australian Rivers Institute, Griffith University, Australia
| |
Collapse
|
10
|
Johnson M, Finlayson K, Shelper T, van de Merwe JP, Leusch FDL. Optimisation of an automated high-throughput micronucleus (HiTMiN) assay to measure genotoxicity of environmental contaminants. CHEMOSPHERE 2022; 298:134349. [PMID: 35306058 DOI: 10.1016/j.chemosphere.2022.134349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic contaminants can have a variety of adverse effects on exposed organisms, including genotoxicity in the form of DNA damage. One of the most commonly used methods to evaluate genotoxicity in exposed organisms is the micronucleus (MN) assay. It provides an efficient assessment of chromosomal impairment due to either chromosomal rupture or mis-segregation during mitosis. However, evaluating chromosomal damage in the MN assay through manual microscopy is a highly time-consuming and somewhat subjective process. High-throughput evaluation with automated image analysis could reduce subjectivity and increase accuracy and throughput. In this study, we optimised and streamlined the HiTMiN assay, adapting the MN assay to a miniaturised, 96-well plate format with reduced steps, and applied it to both primary cells from green turtle fibroblasts (GT12s-p) and a freshwater fish hepatoma cell line (PLHC-1). Image analysis using both commercial (Columbus) and freely available (CellProfiler) software automated the scoring of MN, with improved precision and drastically reduced time compared to manual scoring and other available protocols. The assay was validated through exposure to two inorganic (chromium and cobalt) and one organic (the herbicide metolachlor) compounds, which are genotoxicants of concern in the marine environment. All compounds tested induced MN formation below cytotoxic concentrations. The HiTMiN assay presented here greatly increases the suitability of the MN assay as a quick, affordable, sensitive and accurate assay to measure genotoxicity of environmental samples in different cell lines.
Collapse
Affiliation(s)
- Matthew Johnson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Kimberly Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| | - Todd Shelper
- Menzies Institute of Health Queensland, Griffith University, Southport, Qld, 4222, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| |
Collapse
|
11
|
Hernández-Fernández J, Pinzón Velasco AM, López Barrera EA, Rodríguez Becerra MDP, Villanueva-Cañas JL, Alba MM, Mariño Ramírez L. De novo assembly and functional annotation of blood transcriptome of loggerhead turtle, and in silico characterization of peroxiredoxins and thioredoxins. PeerJ 2021; 9:e12395. [PMID: 34820176 PMCID: PMC8606161 DOI: 10.7717/peerj.12395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to generate and analyze the atlas of the loggerhead turtle blood transcriptome by RNA-seq, as well as identify and characterize thioredoxin (Tnxs) and peroxiredoxin (Prdxs) antioxidant enzymes of the greatest interest in the control of peroxide levels and other biological functions. The transcriptome of loggerhead turtle was sequenced using the Illumina Hiseq 2000 platform and de novo assembly was performed using the Trinity pipeline. The assembly comprised 515,597 contigs with an N50 of 2,631 bp. Contigs were analyzed with CD-Hit obtaining 374,545 unigenes, of which 165,676 had ORFs encoding putative proteins longer than 100 amino acids. A total of 52,147 (31.5%) of these transcripts had significant homology matches in at least one of the five databases used. From the enrichment of GO terms, 180 proteins with antioxidant activity were identified, among these 28 Prdxs and 50 putative Tnxs. The putative proteins of loggerhead turtles encoded by the genes Prdx1, Prdx3, Prdx5, Prdx6, Txn and Txnip were predicted and characterized in silico. When comparing Prdxs and Txns of loggerhead turtle with homologous human proteins, they showed 18 (9%), 52 (18%) 94 (43%), 36 (16%), 35 (33%) and 74 (19%) amino acid mutations respectively. However, they showed high conservation in active sites and structural motifs (98%), with few specific modifications. Of these, Prdx1, Prdx3, Prdx5, Prdx6, Txn and Txnip presented 0, 25, 18, three, six and two deleterious changes. This study provides a high quality blood transcriptome and functional annotation of loggerhead sea turtles.
Collapse
Affiliation(s)
- Javier Hernández-Fernández
- Department of Natural and Environmental Sciences, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group-GENBIMOL, Universidad Jorge Tadeo Lozano, Bogotá, D.C., Colombia.,Faculty of Sciences, Department of Biology, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | | | - Ellie Anne López Barrera
- Institute of Environmental Studies and Services. IDEASA Research Group-IDEASA, Sergio Arboleda University, Bogotá, D.C., Colombia
| | - María Del Pilar Rodríguez Becerra
- Department of Natural and Environmental Sciences, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group-GENBIMOL, Universidad Jorge Tadeo Lozano, Bogotá, D.C., Colombia
| | | | - M Mar Alba
- Evolutionary Genomics Group, Research Program on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | |
Collapse
|
12
|
Finlayson KA, van de Merwe JP. Differences in marine megafauna in vitro sensitivity highlights the need for species-specific chemical risk assessments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105939. [PMID: 34455206 DOI: 10.1016/j.aquatox.2021.105939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Sea turtles, dolphins and dugongs can be exposed to large mixtures of contaminants due to the proximity of foraging locations to anthropogenic inputs. Differences in accumulation and effect result in differences of chemical risk to these species. However, little is known about the effect of contaminants in marine wildlife. Cell-based, or in vitro, exposure experiments offer an ethical alternative to investigate the effect of contaminants in wildlife. Data from in vitro studies can then be placed in an environmental context, by using screening risk assessments, comparing effect data with accumulation data from the literature, to identify risk to populations of marine wildlife. Cytotoxicity of Cr6+, Cd2+, Hg2+, 4,4'-DDE, and PFNA were investigated in primary skin fibroblasts of green turtles, loggerhead turtles, hawksbill turtles, dugongs, Burrunan dolphins, and common bottlenose dolphins. The general order of toxicity for all species was Hg2+> Cr6+ > Cd2+> 4,4'-DDE > PFNA, and significant differences in cytotoxicity were found between species for Cr6+, Cd2+ and PFNA. For Cd2+, in particular, cells from turtle species were less sensitive than mammalian species, and dugong cells were by far the most sensitive. The results from the cytotoxicity assay were then used in combination with published data on tissue contaminant concentrations to calculate risk quotients for identifying populations of each species most at risk from these chemicals. Cr, Cd and Hg were identified as posing risk in all six species. Dugongs were particularly at risk from Cd accumulation and dolphin species were particularly at risk from Hg accumulation. These results demonstrate the importance of using species-specific effect and accumulation data for developing chemical risk assessments and can be used to inform managers of priority contaminants, species, or populations. Development of additional in vitro endpoints, and improving links between in vitro and in vivo effects, would further improve this approach to understanding chemical risk in marine megafauna.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
13
|
Barraza AD, Finlayson KA, Leusch FDL, van de Merwe JP. Systematic review of reptile reproductive toxicology to inform future research directions on endangered or threatened species, such as sea turtles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117470. [PMID: 34438481 DOI: 10.1016/j.envpol.2021.117470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Threatened or endangered reptiles, such as sea turtles, are generally understudied within the field of wildlife toxicology, with even fewer studies on how contaminants affect threatened species reproduction. This paper aimed to better inform threatened species conservation by systematically and quantitatively reviewing available research on the reproductive toxicology of all reptiles, threatened and non-threatened. This review found 178 studies that matched our search criteria. These papers were categorized into location conducted, taxa studied, species studied, effects found, and chemicals investigated. The most studied taxa were turtles (n = 87 studies, 49%), alligators/crocodiles (n = 54, 30%), and lizards (n = 37, 21%). Maternal transfer, sex steroid alterations, sex reversal, altered sexual development, developmental abnormalities, and egg contamination were the most common effects found across all reptile taxa, providing guidance for avenues of research into threatened species. Maternal transfer of contaminants was found across all taxa, and taking into account the foraging behavior of sea turtles, could help elucidate differences in maternal transfer seen at nesting beaches. Sex steroid alterations were a common effect found with contaminant exposure, indicating the potential to use sex steroids as biomarkers along with traditional biomarkers such as vitellogenin. Sex reversal through chemical exposure was commonly found among species that exhibit temperature dependent sex determination, indicating the potential for both environmental pollution and climate change to disrupt population dynamics of many reptile species, including sea turtles. Few studies used in vitro, DNA, or molecular methodologies, indicating the need for more research using high-throughput, non-invasive, and cost-effective tools for threatened species research. The prevalence of developmental abnormalities and altered sexual development and function indicates the need to further study how anthropogenic pollutants affect reproductive output in threatened reptiles.
Collapse
Affiliation(s)
- Arthur D Barraza
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia.
| | - Kimberly A Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia
| |
Collapse
|
14
|
Guimarães ATB, Malafaia G. Multiple toxicity endpoints induced by carbon nanofibers in Amazon turtle juveniles: Outspreading warns about toxicological risks to reptiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146514. [PMID: 34030253 DOI: 10.1016/j.scitotenv.2021.146514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of carbon-based nanomaterials (CNs) has been observed in different organisms; however, little is known about the impact of water polluted with carbon nanofibers (CNFs) on reptiles. Thus, the aim of the current study was to assess the chronic effects (7.5 months) of 1 and 10 mg/L of CNF on Podocnemis expansa (Amazon turtle) juveniles (4 months old) based on different biomarkers. Increased total organic carbon (TOC) concentrations observed in the liver and brain (which suggests CNF uptake) were closely correlated to changes in REDOX systems of turtles exposed to CNFs, mainly to higher nitrite, hydrogen peroxide and lipid peroxidation levels. Increased levels of antioxidants such as total glutathione, catalase and superoxide dismutase in the exposed animals were also observed. The uptake of CNFs and the observed biochemical changes were associated with higher frequency of erythrocyte nuclear abnormalities (assessed through micronucleus assays), as well as with both damage in erythrocyte DNA (assessed through comet assays) and higher apoptosis and necrosis rates in erythrocytes of exposed turtles. Cerebral and hepatic acetylcholinesterase (AChE) increased in turtles exposed to CNFs, and this finding suggested the neurotoxic effect of these nanomaterials. Data in the current study reinforced the toxic potential of CNFs and evidenced the biochemical, mutagenic, genotoxic, cytotoxic, and neurotoxic effects of CNFs on P. expansa.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil; Post-Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
15
|
Finlayson KA, Leusch FDL, Villa CA, Limpus CJ, van de Merwe JP. Combining analytical and in vitro techniques for comprehensive assessments of chemical exposure and effect in green sea turtles (Chelonia mydas). CHEMOSPHERE 2021; 274:129752. [PMID: 33529958 DOI: 10.1016/j.chemosphere.2021.129752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Sea turtle populations foraging in coastal areas adjacent to human activity can be exposed to numerous chemical contaminants for long periods of time. For trace elements, well-developed, sensitive and inexpensive analytical techniques remain the most effective method for assessing exposure in sea turtles. However, there are many thousands more organic contaminants present in sea turtles, often at low levels as complex mixtures. Recently developed species-specific in vitro bioassays provide an effective means to identify the presence, and effect of, organic chemicals in sea turtles. This study used a combination of chemical analysis and effects-based bioassays to provide complementary information on chemical exposure and effects for three green turtle foraging populations (Chelonia mydas) in southern Queensland, Australia. Blood was collected from foraging sub-adult green turtles captured in Moreton Bay, Hervey Bay, and Port Curtis. Twenty-six trace elements were measured in whole blood using ICP-MS. Organic contaminants in turtle blood were extracted via QuEChERS and applied to primary green turtle skin fibroblast cell in vitro assays for two toxicity endpoints; cytotoxicity and oxidative stress. The trace element analysis and bioassay results indicated site-specific differences between foraging populations. In particular, turtles from Moreton Bay, a heavily populated coastal embayment, had pronounced cytotoxicity and oxidative stress from organic blood extracts, and elevated concentrations of Cs, Ag, and Zn relative to the other sites. Incorporating traditional chemical analysis with novel effects-based methods can provide a comprehensive assessment of chemical risk in sea turtle populations, contributing to the conservation and management of these threatened species.
Collapse
Affiliation(s)
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Cesar A Villa
- Department of Environment and Science, Queensland, Australia
| | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
16
|
PLASMA BIOCHEMISTRY PROFILES OF WILD WESTERN TIGER SNAKES (NOTECHIS SCUTATUS OCCIDENTALIS) BEFORE AND AFTER SIX MONTHS OF CAPTIVITY. J Wildl Dis 2021; 57:253-263. [PMID: 33822160 DOI: 10.7589/jwd-d-20-00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/13/2020] [Indexed: 11/20/2022]
Abstract
Urban wildlife often suffer poorer health than their counterparts living in more pristine environments due to exposure to anthropogenic stressors such as habitat degradation and environmental contamination. As a result, the health of urban versus nonurban snakes might be assessed by differences in their plasma biochemistries. We compared the plasma profiles of western tiger snakes (Notechis scutatus occidentalis) from a heavily urbanized wetland and a natural, nonurbanized wetland. Despite the urbanized snakes having lower body mass index, we found no significant difference between the plasma profiles of the two populations. We collected snakes from each population and kept them in captivity for 6 mo, providing them with stable conditions, uncontaminated (exempt from heavy metals and pesticides) food and water, and lowered parasite intensity in an attempt to promote better health through depuration. After captivity, snakes experienced a significant improvement in body mass index and significant changes in their plasma profiles. Snakes from the natural wetland initially had more variation of DNA damage; mean concentration of DNA damage in all snakes slightly decreased, but not significantly, after captivity. We present the plasma biochemistry profiles from western tiger snakes both before and after captivity and suggest a period of removal from natural stressors via captivity may offer a more reliable result of how plasma profiles of healthy animals might appear.
Collapse
|
17
|
Biomarkers of geno- and cytotoxicity in the native broad-snouted caiman (Caiman latirostris): Chromosomal aberrations and mitotic index. Mutat Res 2021; 867:503353. [PMID: 34266623 DOI: 10.1016/j.mrgentox.2021.503353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022]
Abstract
We evaluated the sensitivity of the chromosomal aberration (CA) and mitotic index (MI) assays on peripheral blood lymphocytes (PBLs) of Caiman latirostris, following ex vivo exposure to the alkylating agent, MMS. Two concentrations of MMS were tested in cultured peripheral blood. Relative to controls, MMS exposure reduced the number of metaphases observed, but both the numbers of cells with MN and the percentages of aberrant metaphases increased. The types of CA identified were chromosome and chromatid breaks, chromosomal rearrangements, monosomies, and nullisomies, with significantly higher values in the MMS-exposed groups. The incorporation of the MI and CA tests in C. latirostris can provide information on damage caused by xenobiotic exposures.
Collapse
|
18
|
Chaousis S, Leusch FDL, Nouwens A, Melvin SD, van de Merwe JP. Changes in global protein expression in sea turtle cells exposed to common contaminants indicates new biomarkers of chemical exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141680. [PMID: 32890801 DOI: 10.1016/j.scitotenv.2020.141680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 05/14/2023]
Abstract
Non-targeted protein expression at the cellular level can provide insights into mechanistic effects of contaminants in wildlife, and hence new and potentially more accurate biomarkers of exposure and effect. However, this technique has been relatively unexplored in the realm of in vitro biomarker discovery in threatened wildlife, despite the vulnerability of this group of animals to adverse sublethal effects of contaminant exposure. Here we examined the usefulness of non-targeted protein expression for biomarker discovery in green sea turtles (Chelonia mydas) by investigating differences in the response of primary cells from five different tissue types that were exposed to three contaminants known to accumulate in this species. Cells derived from C. mydas skin, liver, kidney, ovary and small intestine were exposed to 100 μg/L of either polychlorinated biphenyl 153 (PCB153), perfluorononanoic acid (PFNA) or phenanthrene for 24 h. The global protein expression was then quantitatively evaluated using sequential window acquisition of all theoretical mass spectra (SWATH-MS). Comparison of the global protein profiles revealed that, while a majority of proteins were mutually expressed in controls of all tissue types (~90%), the response to exposure in terms of protein expression strength was significantly different between tissue types. Furthermore, a comparison to known markers of chemical exposure in sea turtles from the literature indicated that in vitro response can reflect known in vivo responses. In particular, markers such as heat shock protein (HSP) 60, glutathione S-transferases (GSTs) and superoxide dismutases (SODs), cytochrome P450 and catalase were dysregulated in response to exposure. Furthermore, potential new markers of exposure were discovered such as annexin, an important protein in cell signalling processes. While this methodology proved promising further studies are required to confirm the accuracy of in vitro protein expression as a tool for biomarker discovery in wildlife.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Science and Environment, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia; The Australian Rivers Institute, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| | - Frederic D L Leusch
- Griffith School of Science and Environment, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia; The Australian Rivers Institute, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, Building 76, The University of Queensland, QLD 4067, Australia
| | - Steven D Melvin
- Griffith School of Science and Environment, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia; The Australian Rivers Institute, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Jason P van de Merwe
- Griffith School of Science and Environment, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia; The Australian Rivers Institute, Building 51, Griffith University, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
19
|
Finlayson KA, Madden Hof CA, van de Merwe JP. Development and application of species-specific cell-based bioassays to assess toxicity in green sea turtles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:142095. [PMID: 33076209 DOI: 10.1016/j.scitotenv.2020.142095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Despite the detection of a wide range of contaminants in the blood of green turtle populations foraging in three locations of northern Queensland - Upstart Bay, Cleveland Bay and the Howick Group of Reefs, little is known about the effects of these contaminants on turtle health. Newly developed cell-based bioassays using green turtle primary cell cultures provide an ethical, reproducible, and high-throughput method for assessing the risk of chemical exposure sea turtles. In this project, the toxicity of six priority metals (Mn, Co, Mo, As, Sb, Cu) and blood extracts from foraging turtles were tested in two bioassays adapted to green turtle primary skin and liver cells. Cytotoxicity of metals and blood extracts was measured in primary skin fibroblast cells using a resazurin assay. Glutathione-S-transferase (GST) activity was measured in primary skin fibroblasts and primary liver epithelial cells following exposure to metals and blood extracts. Arsenic, molybdenum, cobalt and copper were found to be cytotoxic to green turtle skin cells. Only manganese, cobalt and copper were found to alter GST activity, predominantly in skin cells, indicating a higher sensitivity of green turtle skin cells compared to liver cells. Effect concentrations of metals in both bioassays were above concentrations found in turtle blood. Turtle blood extracts from the three foraging grounds showed differences in cytotoxicity and GST activity. In both assays, blood extracts of turtles from Upstart Bay were the most toxic, followed by those from Cleveland Bay, then the Howick Reefs, suggesting turtles from Upstart Bay and Cleveland Bay may be at risk from current concentrations of organic contaminants. This study demonstrates that species-specific cell-based bioassays can be used effectively to assess chemical risk in sea turtles and their foraging grounds, and could be applied to assess chemical risk in other marine wildlife.
Collapse
|
20
|
Oginah SA, Onyango PO. Trace metals as a possible mediator of roan antelope (
Hippotragus equinus langheldi
) population decline in Ruma National Park, Kenya. Afr J Ecol 2020. [DOI: 10.1111/aje.12744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Susan Anyango Oginah
- Center for Advanced Studies in Environmental Law and Policy University of Nairobi Nairobi Kenya
- Department of Zoology Maseno University Maseno Kenya
| | | |
Collapse
|
21
|
Oxidative Stress Biomarkers in Erythrocytes of Captive Pre-Juvenile Loggerhead Turtles Following Acute Exposure to Methylmercury. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study describes the use of erythrocytes (RBCs) of loggerhead turtles as in vitro models for evaluating their toxicity to methylmercury. Blood samples of loggerhead turtles that were born in the Colombian Caribbean were used. The LC50 of RBCs to methylmercury was determined at 96 h using methylmercury concentrations of 0.5–100 mg L−1. Next, the viability of the RBCs and the activity of the enzymes superoxide dismutase (SOD), glutathione S-transferase (GST), and lipid peroxidation by malondialdehyde (MDA) at 6 and 12 h of exposure to acute concentrations of 0, 1, and 5 mg L−1 were evaluated. The LC50 for loggerhead turtle RBCs was 8.32 mg L−1. The cell viability bioassay of RBCs exposed for 12 h only showed 100% cell viability. Increasing in vitro MeHg concentrations caused a corresponding increase in MDA concentration as well as decreases in the activities of SOD and GST. The RBCs represent an excellent model for ecotoxicological studies and SOD, GST, and MDA are biomarkers of environmental pollution and oxidative stress in loggerhead turtles. This was the first study conducted on loggerhead turtle where the response of RBCs to MeHg-induced oxidative stress is evaluated.
Collapse
|
22
|
Barraza AD, Komoroske LM, Allen CD, Eguchi T, Gossett R, Holland E, Lawson DD, LeRoux RA, Lorenzi V, Seminoff JA, Lowe CG. Persistent organic pollutants in green sea turtles (Chelonia mydas) inhabiting two urbanized Southern California habitats. MARINE POLLUTION BULLETIN 2020; 153:110979. [PMID: 32275536 PMCID: PMC7174570 DOI: 10.1016/j.marpolbul.2020.110979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Within Southern California, east Pacific green sea turtles (Chelonia mydas) forage year-round, taking advantage of diverse food resources, including seagrass, marine algae, and invertebrates. Assessing persistent organic pollutants (POP) in green turtle aggregations in the Seal Beach National Wildlife Refuge (SBNWR, n = 17) and San Diego Bay (SDB, n = 25) can help quantify contamination risks for these populations. Blood plasma was analyzed for polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). PCBs and body size explained much of the separation of turtles by foraging aggregation in a principal component analysis. Turtles from SDB had significantly (p < 0.001) higher total PCBs than SBNWR turtles. Most PCBs detected in turtles were non-dioxin-like PCB congeners (153, 138, 99) that are associated with neurotoxicity. Recaptured turtles' POP levels changed significantly over time indicating significant variation in POP levels through time and space, even among adjacent foraging locations.
Collapse
Affiliation(s)
- Arthur D Barraza
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| | - Lisa M Komoroske
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Camryn D Allen
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA; The Joint Institute for Marine and Atmospheric Research, Protected Species Division, Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Tomoharu Eguchi
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Rich Gossett
- Institute for Integrated Research on Materials, Environment, and Society, California State University Long Beach, Long Beach, CA, USA
| | - Erika Holland
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Daniel D Lawson
- Long Beach Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Long Beach, CA, USA
| | - Robin A LeRoux
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Varenka Lorenzi
- Institute for Integrated Research on Materials, Environment, and Society, California State University Long Beach, Long Beach, CA, USA
| | - Jeffrey A Seminoff
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| |
Collapse
|
23
|
Labrada-Martagón V, Teneriá FAM, Zenteno-Savín T. Standardized Micronucleus Assay for Peripheral Blood from Sea Turtles. CHELONIAN CONSERVATION AND BIOLOGY 2019. [DOI: 10.2744/ccb-1373.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vanessa Labrada-Martagón
- Laboratorio Ecología de la Salud, Facultad de Ciencias, UASLP, Av. Chapultepec #1570, Col. Privadas del Pedregal, CP 78295, San Luis Potosí, San Luis Potosí, México [; ORCID: https://orcid.org/0000-0001-8853-5541]
| | - Fernando Alberto Muñoz Teneriá
- Laboratorio de Inmunología, Facultad de Agronomía y Veterinaria, UASLP, Carretera Matehuala-SLP Km 14.5, Soledad de Graciano Sánchez, San Luis Potosí, México [; ORCID: https://orcid.org/0000-0002-2338-3804]
| | - Tania Zenteno-Savín
- Laboratorio de Estrés Oxidativo, Programa de Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional #195, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Méxic
| |
Collapse
|
24
|
Speer RM, Wise SS, Croom-Perez TJ, Aboueissa AM, Martin-Bras M, Barandiaran M, Bermúdez E, Wise JP. A comparison of particulate hexavalent chromium cytotoxicity and genotoxicity in human and leatherback sea turtle lung cells from a one environmental health perspective. Toxicol Appl Pharmacol 2019; 376:70-81. [PMID: 31108106 DOI: 10.1016/j.taap.2019.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Evaluating health risks of environmental contaminants can be better achieved by considering toxic impacts across species. Hexavalent chromium [Cr(VI)] is a marine pollutant and global environmental contaminant. While Cr(VI) has been identified as a human lung carcinogen, health effects in marine species are poorly understood. Little is known about how Cr(VI) might impact humans and marine species differently. This study used a One Environmental Health Approach to compare the cytotoxicity and genotoxicity of particulate Cr(VI) in human and leatherback sea turtle (Dermochelys coriacea) lung fibroblasts. Leatherbacks may experience prolonged exposures to environmental contaminants and provide insight to how environmental exposures affect health across species. Since humans and leatherbacks may experience prolonged exposure to Cr(VI), and prolonged Cr(VI) exposure leads to carcinogenesis in humans, in this study we considered both acute and prolonged exposures. We found particulate Cr(VI) induced cytotoxicity in leatherback cells comparable to human cell data supporting current research that shows Cr(VI) impacts health across species. To better understand mechanisms of Cr(VI) toxicity we assessed the genotoxic effects of particulate Cr(VI) in human and leatherback cells. Particulate Cr(VI) induced similar genotoxicity in both cell lines, however, human cells arrested at lower concentrations than leatherback cells. We also measured intracellular Cr ion concentrations and found after prolonged exposure human cells accumulated more Cr than leatherback cells. These data indicate Cr(VI) is a health concern for humans and leatherbacks. The data also suggest humans and leatherbacks respond to chemical exposure differently, possibly leading to the discovery of species-specific protective mechanisms.
Collapse
Affiliation(s)
- Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY 40202, United States of America
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY 40202, United States of America
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY 40202, United States of America
| | | | - Mark Martin-Bras
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY 40202, United States of America; Vieques Conservation and Historical Trust, 138 Calle Flamboyan, Vieques 00765, Puerto Rico
| | - Mike Barandiaran
- U.S. Fish and Wildlife Service, State Rd 997 km 3.2, Vieques 00765, Puerto Rico
| | - Erick Bermúdez
- U.S. Fish and Wildlife Service, State Rd 997 km 3.2, Vieques 00765, Puerto Rico
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY 40202, United States of America.
| |
Collapse
|