1
|
Chen A, Wang B, Feng Q, Wang R. Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117019. [PMID: 39317077 DOI: 10.1016/j.ecoenv.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Carbonaceous nanomaterials (CNMs) are widely used in electronics, biomedicine, agriculture, environmental remediation, and catalysis due to their excellent biocompatibility, high reactivity, and high specific surface area. However, the extensive applications of CNMs cause their inevitable release into water, which may result in toxic effects on the aquatic ecological environment and organisms. CNMs can cause lipid peroxidation damage and neurotoxicity in aquatic organisms, affecting embryo hatching and larval morphology. The effects of CNMs on aquatic organisms vary depending on their structures and physicochemical properties, as well as the species, age, and tolerance of the tested organisms. The above uncertainties have increased the difficulty of exploring the impact of carbonaceous nanomaterials on the toxicity of aquatic organisms to a certain extent. Solving these issues is of great significance and reference value for promoting the research and safe utilization of carbon nanomaterials. Therefore, a systematic review of the effects of potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies is needed. This paper firstly summarizes the toxic effects of commonly used CNMs (i.e., carbon nanotubes, graphene, and fullerene) on different aquatic organisms, which include developmental toxicity, behavioral and metabolic toxicity, reproductive toxicity, and organ toxicity. Then the main mechanisms of CNMs to aquatic organisms are further explored, and the methods to reduce the toxicity of CNMs are also summarized. Finally, the current challenges and future perspectives for studying CNM toxicity to aquatic organisms are proposed.
Collapse
Affiliation(s)
- Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
2
|
Jung YJ, Muneeswaran T, Choi JS, Kim S, Han JH, Cho WS, Park JW. Modified toxic potential of multi-walled carbon nanotubes to zebrafish (Danio rerio) following a two-year incubation in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132763. [PMID: 37839374 DOI: 10.1016/j.jhazmat.2023.132763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs), widely used in several industrial fields, are not readily degradable thus, persist in environmental matrices, serving as a source of environmental toxicity to organisms. However, the effects of environmental weathering on nanomaterial toxicity remain unclear. Herein, we prepared aged-MWCNTs (a-CNTs) by incubating commercial pristine-MWCNTs (p-CNTs) for two years and compared their changes in physicochemical properties and toxic effects on zebrafish. The characterization of a-CNTs by transmission electron microscopy, X-ray photoelectron spectra, Raman spectroscopy, and Fourier-transform infrared spectroscopy showed an increased surface area, pore size, structural defects, and surface oxidation than those of p-CNTs. Zebrafish were exposed to 100 mg/L p-CNT and a-CNT for four days. Subsequently, the mRNA expression of antioxidant enzymes, including cat, gst, and sod, in a-CNT group increased by 1.5- to 1.7-fold, consistent with increased expression of genes associated with inflammation (interleukin-8) and apoptosis (p53) compared to control. The higher toxicity of a-CNTs to zebrafish than p-CNT might be due to the increased oxidative potential by altered physicochemical properties. These findings provide new insights into the risk assessment and environmental management of MWCNTs in the aquatic environment. However, further testing at environmentally relevant doses, different exposure durations, and diverse weathering parameters is warranted.
Collapse
Affiliation(s)
- Youn-Joo Jung
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea; Joint Research Center for Alternative and Predictive Toxicology (JRC-APT), Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Thillaichidambaram Muneeswaran
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jin Soo Choi
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea; Joint Research Center for Alternative and Predictive Toxicology (JRC-APT), Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Sumin Kim
- School of Applied Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong Hun Han
- School of Applied Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea; Joint Research Center for Alternative and Predictive Toxicology (JRC-APT), Korea Institute of Toxicology, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Martin-Folgar R, Sabroso C, Cañas-Portilla AI, Torres-Ruíz M, González-Caballero MC, Dorado H, Velasco I, Morales M. DNA damage and molecular level effects induced by polystyrene (PS) nanoplastics (NPs) after Chironomus riparius (Diptera) larvae. CHEMOSPHERE 2024; 346:140552. [PMID: 37914044 DOI: 10.1016/j.chemosphere.2023.140552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
In this work, we analyzed the early molecular effects of polystyrene (PS) nanoplastics (NPs) on an aquatic primary consumer (larvae of Chironomus riparius, Diptera) to evaluate their potential DNA damage and the transcriptional response of different genes related to cellular and oxidative stress, endocrine response, developmental, oxygen transport, and immune response. After 24-h exposures of larvae to doses of PS NPs close to those currently found in the environment, the results revealed a large genotoxic effect. This end was evidenced after significant increases in DNA strand breaks of C. riparius larvae quantified by the comet assay, together with results obtained when analyzing the expression of four genes involved in DNA repair (xrrc1, ATM, DECAY and NLK) and which were reduced in the presence of these nanomaterials. Consequently, this reduction trend is likely to prevent the repair of DNA damage caused by PS NPs. In addition, the same tendency to reduce the expression of genes involved in cellular stress, oxidative stress, ecdysone pathway, development, and oxygen transport was observed. Taken together, these results suggest that PS NPs reduce the expression of hormonal target genes and a developmental gene. We show, for the first time, effects of PS NPs on the endocrine system of C. riparius and suggest a possible mechanism of blocking ecdysteroid hormones in insects. Moreover, the NPs were able to inhibit the expression of hemoglobin (Hb C), a protein involved in oxygen transport, and activate a gene of the humoral immune system. These data reveal for the first time the genomic effects of PS NPs in the aquatic invertebrate C. riparius, at the base of the food chain.
Collapse
Affiliation(s)
- Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Avda. Esparta s/n Las Rozas, (Madrid), Spain.
| | - Celia Sabroso
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Avda. Esparta s/n Las Rozas, (Madrid), Spain
| | - Ana I Cañas-Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, (Madrid), Spain
| | - Mónica Torres-Ruíz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, (Madrid), Spain
| | - Mª Carmen González-Caballero
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, (Madrid), Spain
| | - Helena Dorado
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Avda. Esparta s/n Las Rozas, (Madrid), Spain
| | - Ignacio Velasco
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Avda. Esparta s/n Las Rozas, (Madrid), Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Avda. Esparta s/n Las Rozas, (Madrid), Spain.
| |
Collapse
|
4
|
Martin-Folgar R, Esteban-Arranz A, Negri V, Morales M. Graphene Oxides (GOs) with Different Lateral Dimensions and Thicknesses Affect the Molecular Response in Chironomus riparius. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:967. [PMID: 36985861 PMCID: PMC10057717 DOI: 10.3390/nano13060967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Graphene oxide (GO) materials possess physicochemical properties that facilitate their application in the industrial and medical sectors. The use of graphene may pose a threat to biota, especially aquatic life. In addition, the properties of nanomaterials can differentially affect cell and molecular responses. Therefore, it is essential to study and define the possible genotoxicity of GO materials to aquatic organisms and their ecosystems. In this study, we investigated the changes in the expression of 11 genes in the aquatic organism Chironomus riparius after 96 h of exposure to small GOs (sGO), large GOs (lGO) and monolayer GOs (mlGO) at 50, 500 and 3000 μg/L. Results showed that the different genes encoding heat shock proteins (hsp90, hsp70 and hsp27) were overexpressed after exposure to these nanomaterials. In addition, ATM and NLK-the genes involved in DNA repair mechanisms-were altered at the transcriptional level. DECAY, an apoptotic caspase, was only activated by larger size GO materials, mlGO and lGO. Finally, the gene encoding manganese superoxide dismutase (MnSOD) showed higher expression in the mlG O-treated larvae. The lGO and mlGO treatments indicated high mRNA levels of a developmental gene (FKBP39) and an endocrine pathway-related gene (DRONC). These two genes were only activated by the larger GO materials. The results indicate that larger and thicker GO nanomaterials alter the transcription of genes involved in cellular stress, oxidative stress, DNA damage, apoptosis, endocrine and development in C. riparius. This shows that various cellular processes are modified and affected, providing some of the first evidence for the action mechanisms of GOs in invertebrates. In short, the alterations produced by graphene materials should be further studied to evaluate their effect on the biota to show a more realistic scenario of what is happening at the molecular level.
Collapse
Affiliation(s)
- Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Crta. de Las Rozas al Escorial Km 5, 28232 Madrid, Spain
| | - Adrián Esteban-Arranz
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Viviana Negri
- Departamento de Ciencias de la Salud de la Universidad Europea de Madrid (UEM), C/Tajo, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Crta. de Las Rozas al Escorial Km 5, 28232 Madrid, Spain
| |
Collapse
|
5
|
Martin-Folgar R, Torres-Ruiz M, de Alba M, Cañas-Portilla AI, González MC, Morales M. Molecular effects of polystyrene nanoplastics toxicity in zebrafish embryos (Daniorerio). CHEMOSPHERE 2023; 312:137077. [PMID: 36334746 DOI: 10.1016/j.chemosphere.2022.137077] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Plastics pose a health hazard to living beings and the environment. Plastic degradation produces nano-sized plastic particles (NPs) that end up in terrestrial and aquatic ecosystems, including oceans, rivers, and lakes. Their presence in air, drinking water, sediments, food, and personal care products leads to a variety of exposure routes for living beings, including humans. The toxicity mechanisms of these nanomaterials (NMs) in living organisms and ecosystems are currently unknown, making it a priority to understand their effects at the molecular and cellular levels. The zebrafish (Zf) (Danio rerio) is a model organism which has a high homology with humans and has been widely used to assess the hazard of different xenobiotics. In this study, the expression changes of different genes in 120 hpf Zf embryos (Zfe) after exposure to polystyrene (PS) NPs (30 nm) at concentrations of 0.1, 0.5 and 3 ppm were investigated. The results showed that the gene encoding heat shock protein (hsp70) was down-regulated in a dose-dependent manner. The genes encoding superoxide dismutase (SOD 1 and SOD 2), apoptotic genes (cas 1 and cas 8) and interleukin 1-β (il1β) were activated at the concentration of 3 ppm PS NP, while the anti-apoptotic gene Bcl2α was inhibited at 0.5 and 3 ppm. In addition, the neurotransmitter-related gene Acetyl-Cholinesterase (ache) was significantly inhibited and the DNA repair genes (gadd45α and rad51) were also down-regulated. In contrast, the mitochondrial metabolism-related gene cox1 did not alter its expression in any of the treatments. Most of the changes in gene expression occurred at the highest concentration of NPs. Overall, the results indicated that NPs generated cellular stress that caused certain alterations in normal gene expression (oxidative stress, apoptotic and inflammatory processes, neurotoxicity and anti-apoptotic proteins), but did not cause any mortality after 120 hpf exposure at the three concentrations assayed. These results highlight the need for further studies investigating the effects, at the molecular level, of these materials in humans and other living organisms.
Collapse
Affiliation(s)
- Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Avda. Esparta S/nCrta. de Las Rozas Al Escorial Km 5, 28232, Las Rozas (Madrid), Spain.
| | - Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Mercedes de Alba
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Ana Isabel Cañas-Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - M Carmen González
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Avda. Esparta S/nCrta. de Las Rozas Al Escorial Km 5, 28232, Las Rozas (Madrid), Spain; Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Avda. Esparta S/nCrta. de Las Rozas Al Escorial Km 5, 28232, Las Rozas (Madrid), Spain
| |
Collapse
|
6
|
Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles. NANOMATERIALS 2022; 12:nano12101716. [PMID: 35630937 PMCID: PMC9144754 DOI: 10.3390/nano12101716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
Abstract
The presented review aims to summarize the knowledge regarding the reproductive and developmental toxicity of different types of carbon nanoparticles, such as graphene, graphene oxide, multi- and single-walled nanotubes, fullerenes, and nanodiamonds. Carbon nanoparticles have unique chemical and physical properties that make them an excellent material that can be applied in many fields of human activity, including industry, food processing, the pharmaceutical industry, or medicine. Although it has a high degree of biocompatibility, possible toxic effects on different tissue types must also be taken into account. Carbon nanoparticles are known to be toxic to the respiratory, cardiovascular, nervous, digestive system, etc., and, according to current studies, they also have a negative effect on reproduction and offspring development.
Collapse
|
7
|
Martin-Folgar R, Esteban-Arranz A, Negri V, Morales M. Toxicological effects of three different types of highly pure graphene oxide in the midge Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152465. [PMID: 34953842 DOI: 10.1016/j.scitotenv.2021.152465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) is a carbon nanomaterial used in electronics, biomedicine, environmental remediation and biotechnology. The production of graphene will increase in the upcoming years. The carbon nanoparticles (NPs) are released into the environment and accumulated in aquatic ecosystems. Information on the effects of GO in aquatic environments and its impact on organisms is still lacking. The aim of this study was to synthesise and characterise label-free GO with controlled lateral dimensions and thickness - small GO (sGO), large GO (lGO) and monolayer GO (mlGO) - and determine their impact on Chironomus riparius, a sentinel species in the freshwater ecosystem. Superoxide dismutase (SOD) and lipid peroxidation (LPO) was evaluated after exposures for 24 h and 96 h to 50, 500, and 3000 μg/L. GOs accumulated in the gut of C. riparius and disturbed its antioxidant metabolism. We suggest that all types of GO exposure can upregulate of SOD. Moreover, both lGO and mlGO treatments caused LPO damage in C. riparius in comparison to sGO, proving its favourable lateral size impact in this organism. Our results indicate that GOs could accumulate and induce significant oxidative stress on C. riparius. This work shows new information about the potential oxidative stress of these NMs in aquatic organisms.
Collapse
Affiliation(s)
- Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Crta. de Las Rozas al Escorial Km 5, 28232 Las Rozas (Madrid), Spain.
| | - Adrián Esteban-Arranz
- Departamento de Ingeniería Química de la Universidad de Castilla la Mancha (UCLM), Avda. Camilo José Cela, 12, 13071 Ciudad Real, Spain
| | - Viviana Negri
- Departamento de Ciencias de la Salud de la Universidad Europea de Madrid (UEM), C/ Tajo, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Crta. de Las Rozas al Escorial Km 5, 28232 Las Rozas (Madrid), Spain
| |
Collapse
|
8
|
Zacouteguy AMB, Limberger GM, de Oliveira PSC, da Fonseca DB, Bruch GE, Barros DM. The adverse effects of injected functionalized multi-walled carbon nanotube (f-MWCNT) on in vivo neurosecretory brain cells of Jamaican field cricket, Gryllus assimilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66968-66977. [PMID: 34244942 DOI: 10.1007/s11356-021-15308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanotubes (CNTs) have been increasingly more prevalent due to their use in product technology owing to their exceptional electrical and thermal conductivity and tensile strength because of their nanostructure and strength of the bonds among carbon atoms. The potential increase of CNTs in the environment is a concern, and studies to assess the toxic effects of these nanomaterials (NMs) are needed. However, so far, most of the studies are focused on aquatic species and much less is understood about the effects of NM in terrestrial organisms. This investigation used a functionalized multi-walled carbon nanotube (f-MWCNT) and the Jamaican cricket Gryllus assimilis to assess the effects of this NM. Cricket nymphs were injected with f-MWCNT suspension-at three different concentrations. The insecticide Fipronil was used as a positive control. Survival was monitored, and histological analysis was made in the brains. Pyknotic cells were quantified in two brain regions, a neurosecretory called Pars intercerebralis (PI), and an associative region called mushroom body (MB). No mortality was observed in any f-MWCNT concentration tested. A significant increase in pyknotic cells was observed as sub-lethal effect for the intermediate concentration of f-MWCNT, at PI, while any significant change was observed at the Kenyon cells of the MB. These results are discussed in the context of agglomeration and dispersion of the f-MWCNT at different concentrations, and availability of the f-MWCNT on the circulatory system, as well as the natural decay of pyknotic cells with time and different patterns of adult cricket neurogenesis. Our results showed that f-MWCNT had negative effects in the neurosecretory region of the brain.
Collapse
Affiliation(s)
- Aline Maciel Bueno Zacouteguy
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | - Guilherme Martins Limberger
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | | | | | - Gisele Eva Bruch
- Departamento de Física/ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela Martí Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil.
| |
Collapse
|
9
|
Zhang C, Chen X, Ho SH. Wastewater treatment nexus: Carbon nanomaterials towards potential aquatic ecotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125959. [PMID: 33990041 DOI: 10.1016/j.jhazmat.2021.125959] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Carbon nanomaterials (CNMs) provide an effective solution and a novel advancement for wastewater treatment. In this review, a total of 3823 bibliographic records derived from recent 10 years are visualized based on scientometric analysis. The results indicate metal-free CNMs-mediated advanced oxidation processes (AOPs) might be a motive force to develop CNMs application for wastewater treatment; however, corresponding evaluations of aquatic toxicity still lack sufficient attention. Therefore, recent breakthroughs and topical innovations related to prevalent wastewater treatment technologies (i.e., adsorption, catalysis and membrane separation) using three typical dimensional CNMs (nanodiamonds, carbon nanotubes, and graphene-based nanomaterials) are comprehensively summarized in-depth, along with a compendious introduction to some novel techniques (e.g., computational simulation) for identifying reaction mechanisms. Then, current research focusing on CNMs-associated aquatic toxicity is discussed thoroughly, mainly demonstrating: (1) the adverse effects on aquatic organisms should not be overlooked prior to large-scale CNMs application; (2) divergent consequences can be further reduced if the ecological niche of aquatic organisms is emphasized; and (3) further investigations on joint toxicity can provide greater beneficial insight into realistic exposure scenarios. Finally, ongoing challenges and developmental directions of CNMs-based wastewater treatment and evaluation of its aquatic toxicity are pinpointed and shaped in terms of future research.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
10
|
Moodley KG, Singh S, Naidoo DR, Kanny K. An eclectic approach to monitor and manage the disposal of carbon nanotubes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:478. [PMID: 34235624 DOI: 10.1007/s10661-021-09268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology, in general, and nanomaterials in particular, have conferred and are continuing to confer many benefits to mankind, just as the advent of "plastics" did in previous generations. In the case of carbon nanotubes, which can be produced in vast quantities, documented methods to manage this carbon nanotube waste by recycling and or safe disposal are so minimal that it is a matter of great concern that the paucity of studies on managing carbon nanotube waste may lead to complacency. The latter could be a trigger for human illnesses, through poor handling of carbon nanotube waste. The present study investigated ways to manage recycling and disposal of waste carbon nanotubes and a limited study of some aspects of the toxicity of waste carbon nanotubes in the environment. An eclectic approach was adopted for this study, involving an application and analysis of questionnaires, to ascertain the current practices used by practitioners in carbon nanotube research, as well as experimental work to determine the potential toxicity of carbon nanotubes. This investigation was undertaken to determine if a change from current practice is warranted in the light of the potential toxicity of carbon nanotubes (CNTs). Analysis of the questionnaires revealed the use of differing practices for the recycling and disposal of engineered nanomaterials (ENMs), implying that there is a dire need for a uniform code of practice. The toxicity study showed that carbon nanotubes did not kill earthworms in soil. However, worms were observed to be highly sensitive to increased concentrations of carbon nanotubes. The leaching in a soil column test showed that the movement of carbon nanotubes was inhibited, being confined mainly to the topmost layers of the soil. This is taken to imply that the water table is safe from possible contamination by CNTs.
Collapse
Affiliation(s)
- Kandasamy G Moodley
- Department of Operations and Quality Management, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Shalini Singh
- Department of Operations and Quality Management, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa
| | - Denise R Naidoo
- Department of Operations and Quality Management, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa
| | - Krishnan Kanny
- Department of Mechanical Engineering, Durban University of Technology, P O Box 1334, Durban, South Africa
| |
Collapse
|
11
|
Muñiz-González AB, Novo M, Martínez-Guitarte JL. Persistent pesticides: effects of endosulfan at the molecular level on the aquatic invertebrate Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31431-31446. [PMID: 33608783 DOI: 10.1007/s11356-021-12669-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Although banned in multiple areas, due to its persistence in the environment, endosulfan constitutes a significant environmental concern. In this work, fourth instar Chironomus riparius larvae were exposed at environmentally relevant endosulfan concentrations of 0.1, 1, and 10 μg/L for 24 h to analyze the possible effects of this acaricide on gene expression and enzymatic activity. Transcriptional changes were studied through the implementation of a real-time polymerase chain reaction array with 42 genes related to several metabolic pathways (endocrine system, detoxification response, stress response, DNA reparation, and immune system). Moreover, glutathione-S-transferase (GST), phenoloxidase (PO), and acetylcholinesterase (AChE) activities were assessed. The five pathways were differentially altered by endosulfan exposure with significant changes in the E93, Dis, MAPR, Met, InR, GSTd3, GSTt3, MRP1, hsp70, hsp40, hsp24, ATM, PARP, Proph, and Def genes. Besides, all of the measured enzymatic activities were modified, with increased activity of GST, followed by PO and AChE. In summary, the results reflected the effects provoked in C. riparius at molecular level despite the absence of lethality. These data raise concerns about the strong alteration on different metabolic routes despite the low concentrations used. Therefore, new risk assessment strategies should consider include the effects at the sub-organismal level as endpoints in addition to the classical ecologically relevant parameters (such as survival). This endeavor will facilitate a comprehensive evaluation of toxicants in the environment.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain.
| | - Marta Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain
| |
Collapse
|
12
|
Ren B, Jia B, Zhang X, Wang J, Li Y, Liang H, Liang H. Influence of multi-walled carbon nanotubes on enantioselective bioaccumulation and oxidative stress toxicity of indoxacarb in zebrafish(Danio rerio). CHEMOSPHERE 2021; 267:128872. [PMID: 33176913 DOI: 10.1016/j.chemosphere.2020.128872] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Carbon nanotubes (CNTs) have been widely used in various fields with the rapid development of nanotechnology. Pesticides have an irreplaceable role in agricultural production, which leads to their massive utilization and their inevitably penetrate into the aquatic environment. However, limited information is available regarding the impact of CNTs on the toxicity and enrichment of chiral compounds to organisms. Using zebrafish as a model to study whether the enantioselective bioaccumulation and oxidative stress of chiral pollutants may be altered in the presence of MWCNTs. Significant enantioselective bioaccumulation was observed in zebrafish with the preferential accumulation of R-(-)-indoxacarb during the 28-day bioaccumulation. The combined exposure of MWCNTs does not affect the enantioselectivity of zebrafish bioaccumulation, but increase the bioaccumulation amount of R-(-)-indoxacarb by 65%. Moreover, the average degradation half-life of indoxacarb enantiomers was 1.30 days. The indoxacarb causes oxidative stress toxicity in zebrafish liver and exhibited enantioselectivity, while the addition of MWCNTs did not significantly change the enantioselectivity of oxidative stress toxicity of indoxacarb, but enhanced the toxicity 20% with increased MWCNTs concentrations. This study suggests that the risk of the co-presence of nanomaterials and chiral pesticides in aquatic environments should be taken into consideration.
Collapse
Affiliation(s)
- Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Bo Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaodong Zhang
- Inner Mongolia Institute for Drug Control, Hohhot, Inner Mongolia, 010020, China
| | - Ju Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
13
|
Gomes AR, Chagas TQ, Silva AM, Sueli de Lima Rodrigues A, Marinho da Luz T, Emmanuela de Andrade Vieira J, Malafaia G. Trophic transfer of carbon nanofibers among eisenia fetida, danio rerio and oreochromis niloticus and their toxicity at upper trophic level. CHEMOSPHERE 2021; 263:127657. [PMID: 32814134 DOI: 10.1016/j.chemosphere.2020.127657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity of carbon-based nanomaterials has already been demonstrated in several studies, their transfer in the food chain and impact on the upper trophic level remain unexplored. Thus, based on the experimental food chain "Eisenia fetida → Danio rerio → Oreochromis niloticus", the current study tested the hypothesis that carbon nanofibers (CNFs) accumulated in animals are transferred to the upper trophic level and cause mutagenic and cytotoxic changes. E. fetida individuals were exposed to CNFs and offered to D. rerio, which were later used to feed O. niloticus. The quantification of total organic carbon provided evidence of CNFs accumulation at all evaluated trophic levels. Such accumulation was associated with higher frequency of erythrocyte nuclear abnormalities such as constricted erythrocyte nuclei, vacuole, blebbed, kidney-shaped and micronucleated erythrocytes in Nile tilapia exposed to CNFs via food chain. The cytotoxic effect was inferred based on the smaller size of the erythrocyte nuclei and on the lower "nuclear/cytoplasmic" area ratio in tilapia exposed to CNFs via food chain. Our study provided pioneering evidence about CNFs accumulation at trophic levels of the experimental chain, as well as about the mutagenic and cytotoxic effect of these materials on O. niloticus.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Julya Emmanuela de Andrade Vieira
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil.
| |
Collapse
|
14
|
Park K, Kwak IS. Multi-Level Gene Expression in Response to Environmental Stress in Aquatic Invertebrate Chironomids: Potential Applications in Water Quality Monitoring. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:77-122. [PMID: 34661753 DOI: 10.1007/398_2021_79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In freshwater ecosystems, aquatic invertebrates are influenced continuously by both physical stress and xenobiotics. Chironomids (Diptera; Chironomidae), or non-biting midges, are the most diverse and abundant invertebrates in freshwater habitats. They are a fundamental link in food chains of aquatic ecosystems. Chironomid larvae tolerate stress factors in their environments via various physiological processes. At the molecular level, environmental pollutants induce multi-level gene responses in Chironomus that regulate cellular protection through the activation of defense processes. This paper reviews literature on the transcriptional responses of biomarker genes to environmental stress in chironomids at the molecular level, in studies conducted from 1991 to 2020 (120 selected literatures of 374 results with the keywords "Chironomus and gene expression" by PubMed search tool). According to these studies, transcriptional responses in chironomids vary depending on the type of stress factor and defensive responses associated with antioxidant activity, the endocrine system, detoxification, homeostasis and stress response, energy metabolism, ribosomal machinery, apoptosis, DNA repair, and epigenetics. These data could provide a comprehensive overview of how Chironomus species respond to pollutants in aquatic environments. Furthermore, the transcriptomic data could facilitate the development of genetic tools for water quality and environmental monitoring based on resident chironomid species.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science and Fisheries Science Institute, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
15
|
Wang J, Jia B, Li Y, Ren B, Liang H, Yan D, Xie H, Zhang X, Liang H. Effects of multi-walled carbon nanotubes on the enantioselective toxicity of the chiral insecticide indoxacarb toward zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122724. [PMID: 32387829 DOI: 10.1016/j.jhazmat.2020.122724] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/14/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
The mass production and usage of carbon nanotubes (CNTs) have led to the inevitable release into the environment, and the effects of CNTs on the toxicity of co-existing pollutants have been well documented. However, knowledge of the effects of CNTs on the enantioselective toxicity of chiral compounds is limited. Using zebrafish as an experimental model, the enantioselective expression of the apoptosis, CYP3C and EAAT-related genes were analyzed following exposure to multi-walled carbon nanotubes (MWCNTs) (0.05 and 0.5 mg/L), rac-/R-/S-indoxacarb (0.01 mg/L), or the combination of rac-/R-/S-indoxacarb mixed with MWCNTs for 28d. Sex-specific differences were observed in both the liver and brain of zebrafish. The expression of apoptosis and CYP3C-related genes was 16.55-44.29 times higher in the livers of males treated with R-indoxacarb than in S-indoxacarb treated groups. The EAAT-related genes were expressed at 1.38-2.56 times higher levels in the brain of females treated with R-indoxacarb than in S-indoxacarb-treated groups. In the presence of MWCNTs, the expression of caspase-3, cyp3c3, cyp3c4, eaat1a, eaat1b and eaat2 in the livers of males and brains of females treated with S-indoxacarb were 1.65-15.33 times higher than in fish treated with R-indoxacarb. Based on these results, MWCNTs affected the enantioselective toxicity of indoxacarb toward zebrafish.
Collapse
Affiliation(s)
- Ju Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Bo Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Dongyan Yan
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Haiyan Xie
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaodong Zhang
- Inner Mongolia Institute for Drug Control, Hohhot, Inner Mongolia, 010020, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
16
|
Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment. NANOMATERIALS 2020; 10:nano10091764. [PMID: 32906594 PMCID: PMC7558965 DOI: 10.3390/nano10091764] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Nanotechnology is an uppermost priority area of research in several nations presently because of its enormous capability and financial impact. One of the most promising environmental utilizations of nanotechnology has been in water treatment and remediation where various nanomaterials can purify water by means of several mechanisms inclusive of the adsorption of dyes, heavy metals, and other pollutants, inactivation and removal of pathogens, and conversion of harmful materials into less harmful compounds. To achieve this, nanomaterials have been generated in several shapes, integrated to form different composites and functionalized with active components. Additionally, the nanomaterials have been added to membranes that can assist to improve the water treatment efficiency. In this paper, we have discussed the advantages of nanomaterials in applications such as adsorbents (removal of dyes, heavy metals, pharmaceuticals, and organic contaminants from water), membrane materials, catalytic utilization, and microbial decontamination. We discuss the different carbon-based nanomaterials (carbon nanotubes, graphene, graphene oxide, fullerenes, etc.), and metal and metal-oxide based nanomaterials (zinc-oxide, titanium dioxide, nano zerovalent iron, etc.) for the water treatment application. It can be noted that the nanomaterials have the ability for improving the environmental remediation system. The examination of different studies confirmed that out of the various nanomaterials, graphene and its derivatives (e.g., reduced graphene oxide, graphene oxide, graphene-based metals, and graphene-based metal oxides) with huge surface area and increased purity, outstanding environmental compatibility and selectivity, display high absorption capability as they trap electrons, avoiding their recombination. Additionally, we discussed the negative impacts of nanomaterials such as membrane damage and cell damage to the living beings in the aqueous environment. Acknowledgment of the possible benefits and inadvertent hazards of nanomaterials to the environment is important for pursuing their future advancement.
Collapse
|
17
|
Wang W, Zhao X, Ren X, Duan X. Antagonistic effects of multi-walled carbon nanotubes and BDE-47 in zebrafish (Danio rerio): Oxidative stress, apoptosis and DNA damage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105546. [PMID: 32574930 DOI: 10.1016/j.aquatox.2020.105546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In natural environments, organisms are often exposed to several environmental pollutants at any one time, and the potential effects of such co-exposures on human and environmental health are of considerable concern. It is thought that multi-walled carbon nanotubes (MWCNTs) may interact with other pollutants in aquatic systems and induce considerably different effects compared with exposure to a single contaminant. The objective of this study was to evaluate the potential acute combined effects of mixtures of MWCNTs and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on embryonic development stages, oxidative stress, apoptosis and DNA damage in developing zebrafish (Danio rerio). The embryos were treated with BDE-47 (5, 10, and 50 μg/L) and MWCNTs (50 mg/L), either combined or individually, for 96 h. Following exposure, BDE-47 induced significant acute toxicity, while the MWCNTs exhibited slight toxicity. When compared with BDE-47-only exposure, the inhibited growth induced by BDE-47 was weakened in the presence of MWCNTs. Similarly, the levels of oxidative stress biomarkers (reactive oxygen species, superoxide dismutase, catalase activities and malondialdehyde), apoptosis (apoptosis rate, caspase-3 and caspase-9 activities) and DNA damage (comet assay and comet olive tails) decreased in the presence of MWCNTs compared to those exposed to BDE-47 alone. These results demonstrate that MWCNTs can weaken the developmental inhibition, oxidative stress, apoptosis and DNA damage induced by BDE-47 in the early stages of zebrafish development.
Collapse
Affiliation(s)
- Weitong Wang
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China.
| | - Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street 1301, Tiexi Dist, Siping, 136000, China.
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| |
Collapse
|
18
|
Chaika V, Pikula K, Vshivkova T, Zakharenko A, Reva G, Drozdov K, Vardavas AI, Stivaktakis PD, Nikolouzakis TK, Stratidakis AK, Kokkinakis MN, Kalogeraki A, Burykina T, Sarigiannis DA, Kholodov A, Golokhvast K. The toxic influence and biodegradation of carbon nanofibers in freshwater invertebrates of the families Gammaridae, Ephemerellidae, and Chironomidae. Toxicol Rep 2020; 7:947-954. [PMID: 32793424 PMCID: PMC7415770 DOI: 10.1016/j.toxrep.2020.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Carbon nanofibers had no pronounced pathomorphic effect on freshwater insects. Carbon nanofibers were absorbed in the intestine of freshwater insects. Biodegradation of carbon nanofibers was detected in the digestive tract of insects.
Carbon nanofibers (CNFs) are widely used in consumer products today. In this study, we assessed the effects of CNFs on the digestive system of three freshwater invertebrate species (Gammaridae, Ephemerellidae, and Chironomidae). The aquatic insects Diamesa sp., Drunella cryptomeria, and Gammarus suifunensis were incubated with the CNFs at the concentration of 100 mg/L during the 7-days period. Histological examination of the whole specimens and the longitudinal sections revealed no toxic effects of CNFs. However, a noticeable change in the structure of the CNFs accumulated in the intestines of the aquatic insects was found by Raman spectroscopy. The registered decrease in the relative proportion of amorphous carbon included in the CNF sample was found in the intestines of Diamesa sp. and D. cryptomeria. The registered effect can indicate a biodegradation of amorphous carbon in the digestive tract of these two insect species. In contrast, the decrease of highly structured carbons and the decrease of G-bonds intensity were registered in the digestive tract of G. suifunensis. This observation demonstrates the partial biodegradation of CNFs in the digestive tract of G. suifunensis.
Collapse
Affiliation(s)
- Vladimir Chaika
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia
| | - Konstantin Pikula
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
| | - Tatyana Vshivkova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, 6900022, Russia
| | - Alexander Zakharenko
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
| | - Galina Reva
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia
| | - Konstantin Drozdov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, 690022, Russia
| | - Alexander I Vardavas
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece
| | | | - Taxiarchis K Nikolouzakis
- Laboratory of Anatomy-Histology Embryology, School of Medicine, University of Crete, Heraklion, Crete, 71110, Greece
| | - Antonios K Stratidakis
- Environmental Health Engineering, University School of Advanced Studies IUSS, Pavia, 27100, Italy
| | - Manolis N Kokkinakis
- Hellenic Mediterranean University, Department of Nutrition and Dietetics, Heraklion, 71004, Greece
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Tatyana Burykina
- Department of Analytical and Forensic Medical Toxicology, M.I. Sechenov University, Moscow, 119048, Russia
| | - Dimosthenis A Sarigiannis
- Environmental Health Engineering, University School of Advanced Studies IUSS, Pavia, 27100, Italy.,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Aleksei Kholodov
- Far East Geological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Kirill Golokhvast
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia.,Pacific Geographical Institute FEB RAS, Vladivostok, 690014, Russia
| |
Collapse
|
19
|
Abstract
Abstract
Research on carbon-based nanomaterials (CBNMs) and their development is one of the major scientific disciplines of the last century. This is mainly because of their unique properties which can lead to improvements in industrial technology or new medical applications. Therefore, it is necessary to examine their properties such as shape, size, chemical composition, density, toxicity, etc. This article focuses on the general characteristics of nanomaterials (NMs) and their behavior when entering the environment (water and soil). In addition, it presents individual members of the graphene family including porous ecological carbon (biochar). The article mainly deals with the new potential technologies of CBNMs considering their possible toxic and genotoxic effects. This review also highlights the latest developments in the application of self-propelled micromotors for green chemistry applications. Finally, it points to the potential biomedical applications of CBNMs.
Collapse
|
20
|
Nie W, Li Y, Chen L, Zhao Z, Zuo X, Wang D, Zhao L, Feng X. Interaction between multi-walled carbon nanotubes and propranolol. Sci Rep 2020; 10:10259. [PMID: 32581369 PMCID: PMC7314780 DOI: 10.1038/s41598-020-66933-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Carbon nanotubes could accumulate in organism and have a negative impact on the structure and function of the ecosystem when they were discharged into environment. Furthermore, it will affect the migration and fate of pollutants in the water body. The study is mainly to explore the adsorption behavior and mechanism of beta-blocker on multi-walled carbon nanotubes (MWCNTs). Propranolol (PRO) was selected as the representative of beta-blocker. The effects of different environmental factors such as pH, ionic strength and humic acid (HA) on the adsorption process were investigated. The adsorption results were characterized by Zeta potential. At the same time, the effects of different types of drugs on the adsorption process were explored and the possible adsorption mechanisms were analyzed. The experimental results showed that the adsorption behavior was significantly different under different pH conditions. π-π EDA interaction, hydrophobic interaction and hydrogen bonding were speculated to be the main adsorption mechanisms for PRO adsorption on MWCNTs.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China. .,Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China.
| | - Yani Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.,Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China
| | - Leyuan Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Zhicheng Zhao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xin Zuo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Dongdong Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Lei Zhao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xinyue Feng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
21
|
Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon Nanotubes in Biomedicine. Top Curr Chem (Cham) 2020; 378:15. [PMID: 31938922 DOI: 10.1007/s41061-019-0278-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/31/2019] [Indexed: 01/18/2023]
Abstract
Nowadays, biomaterials have become a crucial element in numerous biomedical, preclinical, and clinical applications. The use of nanoparticles entails a great potential in these fields mainly because of the high ratio of surface atoms that modify the physicochemical properties and increases the chemical reactivity. Among them, carbon nanotubes (CNTs) have emerged as a powerful tool to improve biomedical approaches in the management of numerous diseases. CNTs have an excellent ability to penetrate cell membranes, and the sp2 hybridization of all carbons enables their functionalization with almost every biomolecule or compound, allowing them to target cells and deliver drugs under the appropriate environmental stimuli. Besides, in the new promising field of artificial biomaterial generation, nanotubes are studied as the load in nanocomposite materials, improving their mechanical and electrical properties, or even for direct use as scaffolds in body tissue manufacturing. Nevertheless, despite their beneficial contributions, some major concerns need to be solved to boost the clinical development of CNTs, including poor solubility in water, low biodegradability and dispersivity, and toxicity problems associated with CNTs' interaction with biomolecules in tissues and organs, including the possible effects in the proteome and genome. This review performs a wide literature analysis to present the main and latest advances in the optimal design and characterization of carbon nanotubes with biomedical applications, and their capacities in different areas of preclinical research.
Collapse
Affiliation(s)
- Viviana Negri
- Departamento de Biotecnología y Farmacia, Facultad de Ciencias Biomédicas, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Jesús Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Calle
- Laboratorio de Imagen Médica, Hospital Universitario Gregorio Marañón, c/Dr. Esquerdo 56, 28007, Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, c/Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
22
|
Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Liu Y, Shao B, Liang Q, Tang W, Yuan X. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. ENVIRONMENT INTERNATIONAL 2020; 134:105298. [PMID: 31765863 DOI: 10.1016/j.envint.2019.105298] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Carbon nanomaterials (CNMs) are novel nanomaterials with excellent physicochemical properties, which are widely used in biomedicine, energy and sensing. Besides, CNMs also play an important role in environmental pollution control, which can absorb heavy metals, antibiotics and harmful gases. However, CNMs are inevitably entering the environment while they are rapidly developing. They are harmful to living organisms in the environment and are difficult to degrade under natural conditions. Here, we systematically describe the toxicity of carbon nanotubes (CNTs), graphene (GRA) and C60 to cells, animals, humans, and microorganisms. According to the current research results, the toxicity mechanism is summarized, including oxidative stress response, mechanical damage and effects on biological enzymes. In addition, according to the latest research progress, we focus on the two major degradation methods of chemical degradation and biodegradation of CNTs, GRA and C60. Meanwhile, the reaction conditions and degradation mechanisms of degradation are respectively stated. Moreover, we have prospects for the limitations of CNM degradation under non-experimental conditions and their potential application.
Collapse
Affiliation(s)
- Zan Peng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaojuan Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|