1
|
Wen L, Man X, Luan J, Zhang S, Zhao C, Bao Y, Liu C, Feng X. Early-life exposure to five biodegradable plastics impairs eye development and visually-mediated behavior through disturbing hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109981. [PMID: 39033795 DOI: 10.1016/j.cbpc.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Biodegradable plastics have been commonly developed and applied as an alternative to traditional plastics, which cause environmental plastic pollution. However, biodegradable plastics still present limitations such as stringent degradation conditions and slow degradation rate, and may cause harm to the environment and organisms. Consequently, in this study, zebrafish was used to evaluate the effects of five biodegradable microplastics (MPs), polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxyalkanoate (PHA) and polybutylene adipate terephthalate (PBAT) exposure on the early development, retina morphology, visually-mediated behavior, and thyroid signaling at concentrations of 1 mg/L and 100 mg/L. The results indicated that all MPs induced decreased survival rate, reduced body length, smaller eyes, and smaller heads, affecting the early development of zebrafish larvae. Moreover, the thickness of retinal layers, including inner plexiform layer (IPL), outer nuclear layer (ONL), and retinal ganglion layer (RGL) was decreased, and the expression of key genes related to eye and retinal development was abnormally altered after all MPs exposure. Exposure to PBS and PBAT led to abnormal visually-mediated behavior, indicating likely affected the visual function. All MPs could also cause thyroid system disorders, among which alterations in the thyroid hormone receptors (TRs) genes could affect the retinal development of zebrafish larvae. In summary, biodegradable MPs exhibited eye developmental toxicity and likely impaired the visual function in zebrafish larvae. This provided new evidence for revealing the effects of biodegradable plastics on aquatic organism development and environmental risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Liang Wen
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China
| | - Xiaoting Man
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yehua Bao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Congzhi Liu
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Johnston CU, Azevedo VC, Kennedy CJ. Ivermectin toxicokinetics in rainbow trout (Oncorhynchus mykiss) following P-glycoprotein inhibition. Vet Res Commun 2024; 48:3139-3155. [PMID: 39106005 DOI: 10.1007/s11259-024-10480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Changes to ivermectin (IVM [22,23-dihydro avermectin B1a + 22,23-dihydro avermectin B1b]) toxicokinetics (TK) with and without P-glycoprotein (P-gp) inhibition by cyclosporin A (CsA) were examined in rainbow trout (Oncorhynchus mykiss). Rainbow trout were injected with 175 μg/kg 3H-IVM (8.6 μCi/mg IVM) with or without co-administration of 480 μg/kg CsA into the caudal vasculature. Fish were sacrificed at various time points (0.25, 0.5, 1, 3, 24, 48, 96, and 168 h) for organ and tissue sampling (blood, liver, kidney, gill, intestines, brain [5 regions], eye, gonad, and fat) which were analyzed for IVM-derived radioactivity. The IVM concentration decreased over time in blood, liver, kidney, and gill, while concentrations in other tissues remained constant. The highest maximum IVM concentration (Cmax) was found in kidney, followed by liver; the lowest Cmax was found in eye, followed by brain and adipose tissue. The highest % of the administered dose was found in the blood 15 min post-IVM administration, followed by the intestine at 60 min post-IVM administration. P-gp inhibition by CsA did not significantly affect calculated TK parameters (AUC [7.33 ± 0.73 - 11.5 ± 2.5 mg•h/kg], mean residence time [84.7 ± 21 - 125 ± 55 h], T1/2 [58.7 ± 15 - 86.8 ± 38 h], clearance rate [0.0152 ± 0.0033 - 0.0239 ± 0.0024 L/kg•h], or volume of distribution [1.91 ± 0.47 - 2.02 ± 0.33 L/kg]), but resulted in small but significant changes in the % administered dose found in blood and medulla. These results suggest that P-gp plays a limited role in overall IVM TK, and that its role in xenobiotic protection may be much less robust in fish than it is in mammals.
Collapse
Affiliation(s)
- Christina U Johnston
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | - Vinicius Cavicchioli Azevedo
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada.
| |
Collapse
|
3
|
Wang Q, Ruan Y, Shao Y, Jin L, Xie N, Yan M, Chen L, Schlenk D, Leung KMY, Lam PKS. Stereoselective Bioconcentration and Neurotoxicity of Perfluoroethylcyclohexane Sulfonate in Marine Medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12933-12942. [PMID: 39003765 DOI: 10.1021/acs.est.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Perfluoroethylcyclohexane sulfonate (PFECHS) is an emerging per- and polyfluoroalkyl substance used to replace perfluorooctane sulfonate (PFOS), mainly in aircraft hydraulic fluids. However, previous research indicates the potential neurotoxicity of this replacement chemical. In this study, marine medaka (Oryzias melastigma) was exposed to environmentally relevant concentrations of PFECHS (concentrations: 0, 0.08, 0.26, and 0.91 μg/L) from the embryonic stage for 90 days. After exposure, the brain and eyes of the medaka were collected to investigate the bioconcentration potential of PFECHS stereoisomers and their effects on the nervous systems. The determined bioconcentration factors (BCFs) of PFECHS ranged from 324 ± 97 to 435 ± 89 L/kg and from 454 ± 60 to 576 ± 86 L/kg in the brain and eyes of medaka, respectively. The BCFs of trans-PFECHS were higher than those of cis-PFECHS. PFECHS exposure significantly altered γ-aminobutyric acid (GABA) levels in the medaka brain and disrupted the GABAergic system, as revealed by proteomics, implying that PFECHS can disturb neural signal transduction like PFOS. PFECHS exposure resulted in significant alterations in multiple proteins associated with eye function in medaka. Abnormal locomotion was observed in PFECHS-exposed medaka larvae, which was rescued by adding exogenous GABA, suggesting the involvement of disrupted GABA signaling pathways in PFECHS neurotoxicity.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yetong Shao
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Naiyu Xie
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Zhong Y, Yang Y, Zhang L, Ma D, Wen K, Cai J, Cai Z, Wang C, Chai X, Zhong J, Liang B, Huang Y, Xian H, Li Z, Yang X, Chen D, Zhang G, Huang Z. Revealing new insights: Two-center evidence of microplastics in human vitreous humor and their implications for ocular health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171109. [PMID: 38387563 DOI: 10.1016/j.scitotenv.2024.171109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Microplastics (MPs), an emerging environmental contaminant, have raised growing health apprehension due to their detection in various human biospecimens. Despite extensive research into their prevalence in the environment and the human body, the ramifications of their existence within the enclosed confines of the human eye remain largely unexplored. Herein, we assembled a cohort of 49 patients with four ocular diseases (macular hole, macular epiretinal membrane, retinopathy and rhegmatogenous retinal detachment) from two medical centers. After processing the samples with an optimized method, we utilized Laser Direct Infrared (LD-IR) spectroscopy and Pyrolysis Gas Chromatography/Mass Spectrometry (Py-GC/MS) to analyze 49 vitreous samples, evaluating the characteristics of MPs within the internal environment of the human eye. Our results showed that LD-IR scanned a total of 8543 particles in the composite sample from 49 individual vitreous humor samples, identifying 1745 as plastic particles, predominantly below 50 μm. Concurrently, Py-GC/MS analysis of the 49 individual samples corroborated these findings, with nylon 66 exhibiting the highest content, followed by polyvinyl chloride, and detection of polystyrene. Notably, correlations were observed between MP levels and key ocular health parameters, particularly intraocular pressure and the presence of aqueous humor opacities. Intriguingly, individuals afflicted with retinopathy demonstrated heightened ocular health risks associated with MPs. In summary, this research provides significant insights into infiltration of MP pollutants within the human eye, shedding light on their potential implications for ocular health and advocating for further exploration of this emerging health risk.
Collapse
Affiliation(s)
- Yizhou Zhong
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuhang Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Linan Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Dahui Ma
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Kailiang Wen
- Meizhou city Meijiang district Shenmei Eye Hospital, Meizhou 514031, China
| | - Jiachun Cai
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Zhanmou Cai
- Meizhou city Meijiang district Shenmei Eye Hospital, Meizhou 514031, China
| | - Cui Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Xiaoyan Chai
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Jingwen Zhong
- Meizhou city Meijiang district Shenmei Eye Hospital, Meizhou 514031, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China.
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Zhou Y, Lei L, Zhu B, Li R, Zuo Y, Guo Y, Han J, Yang L, Zhou B. Aggravated visual toxicity in zebrafish larvae upon co-exposure to titanium dioxide nanoparticles and bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171133. [PMID: 38395162 DOI: 10.1016/j.scitotenv.2024.171133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The bioavailability and toxicity of organic pollutants in aquatic organisms can be largely affected by the co-existed nanoparticles. However, the impacts of such combined exposure on the visual system remain largely unknown. Here, we systematically investigated the visual toxicity in zebrafish larvae after single or joint exposure to titanium dioxide nanoparticles (n-TiO2) and bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) at environmentally relevant levels. Molecular dynamics simulations revealed the enhanced transmembrane capability of the complex than the individual, which accounted for the increased bioavailability of both TBPH and n-TiO2 when combined exposure to zebrafish. Transcriptome analysis showed that co-exposure to n-TiO2 and TBPH interfered with molecular pathways related to eye lens structure and sensory perception of zebrafish. Particularly, n-TiO2 or TBPH significantly suppressed the expression of βB1-crystallin and rhodopsin in zebrafish retina and lens, which was further enhanced after co-exposure. Moreover, we detected disorganized retinal histology, stunted lens development and significant visual behavioral changes of zebrafish under co-exposure condition. The overall results suggest that combined exposure to water borne n-TiO2 and TBPH increased their bioavailability, resulted in severer damage to optic nerve development and ultimately abnormal visual behavior patterns, highlighting the higher potential health risks of co-exposure to aquatic vertebrates.
Collapse
Affiliation(s)
- Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ruiwen Li
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan 430014, PR China
| | - Yanxia Zuo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
6
|
Yang L, Zeng J, Gao N, Zhu L, Feng J. Predicting the Metal Mixture Toxicity with a Toxicokinetic-Toxicodynamic Model Considering the Time-Dependent Adverse Outcome Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3714-3725. [PMID: 38350648 DOI: 10.1021/acs.est.3c09857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Chemicals mainly exist in ecosystems as mixtures, and understanding and predicting their effects are major challenges in ecotoxicology. While the adverse outcome pathway (AOP) and toxicokinetic-toxicodynamic (TK-TD) models show promise as mechanistic approaches in chemical risk assessment, there is still a lack of methodology to incorporate the AOP into a TK-TD model. Here, we describe a novel approach that integrates the AOP and TK-TD models to predict mixture toxicity using metal mixtures (specifically Cd-Cu) as a case study. We preliminarily constructed an AOP of the metal mixture through temporal transcriptome analysis together with confirmatory bioassays. The AOP revealed that prolonged exposure time activated more key events and adverse outcomes, indicating different modes of action over time. We selected a potential key event as a proxy for damage and used it as a measurable parameter to replace the theoretical parameter (scaled damage) in the TK-TD model. This refined model, which connects molecular responses to organism outcomes, effectively predicts Cd-Cu mixture toxicity over time and can be extended to other metal mixtures and even multicomponent mixtures. Overall, our results contribute to a better understanding of metal mixture toxicity and provide insights for integrating the AOP and TK-TD models to improve risk assessment for chemical mixtures.
Collapse
Affiliation(s)
- Lanpeng Yang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| | - Jing Zeng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
7
|
Fu R, Liu H, Zhang Y, Mao L, Zhu L, Jiang H, Zhang L, Liu X. Imidacloprid affects the visual behavior of adult zebrafish (Danio rerio) by mediating the expression of opsin and phototransduction genes and altering the metabolism of neurotransmitters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168572. [PMID: 37992846 DOI: 10.1016/j.scitotenv.2023.168572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Imidacloprid poses a significant threat to aquatic ecosystems. In this study, we investigated the visual toxicity of imidacloprid and the underlying molecular mechanisms in adult zebrafish. After exposure to imidacloprid at environmental relevant concentrations (10 and 100μg/L) for 21 days, the detectable contents of imidacloprid were 23.0 ± 0.80 and 121 ± 1.56 ng/mg in eyes of adult zebrafish, respectively. The visual behavior of adult zebrafish was impaired including a reduced ability to track smoothly visual stimuli and visually guided self-motion. The immunofluorescence experiment showed that the content of Rhodopsin (Rho) in the retina of zebrafish was changed significantly. The expression rhythm of genes played key roles in capturing photons in dim (rho) and bright (opn1mw3, opn1lw2 and opn1sw2) light, and in phototransduction (gnb3b, arr3a and rpe65a), was disrupted significantly throughout a 24-h period in adult zebrafish. Targeted metabolomics analysis showed that the content of 16 metabolites associated with neurotransmitter function changed significantly, and were enriched in top three metabolism pathways including Arginine biosynthesis, Alanine, aspartate and glutamate metabolism, and Tryptophan metabolism. These results indicated that imidacloprid exposure at environmentally relevant concentrations could cause optical toxicity through disturbing the expression of opsins and affecting the phototransduction in the retina of zebrafish adults.
Collapse
Affiliation(s)
- Ruiqiang Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongli Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Zhang Y, Chen C, Chen K. Combined exposure to microplastics and amitriptyline induced abnormal behavioral responses and oxidative stress in the eyes of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109717. [PMID: 37586580 DOI: 10.1016/j.cbpc.2023.109717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Many studies have demonstrated that microplastics (MPs) can combine with various coexisting chemical pollutants, increasing their bioavailability and changing the combined toxicity to organisms. However, information on the combined effects of MPs and amitriptyline (AMI, a widely used tricyclic antidepressant) on aquatic species is still limited. In this study, we exposed zebrafish to MPs (2-μm polystyrene beads, 0.44 mg/L), AMI (2.5 μg/L), and their mixture for 7 days and investigated the alternation in their behaviors and ocular oxidative stress. As a result, combined exposure to MPs and AMI could significantly elevate locomotor activity, increase the frequency and duration of shoaling behavior in zebrafish, and alter their post-stimulation behaviors. Although combined exposure to MPs and AMI exhibited stronger behavioral toxicity than individual exposure, no significant interactive effects on the behavioral traits were detected, suggesting that the combined behavioral toxicity appeared to be an additive effect. However, their combined exposure to MPs or AMI significantly decreased the ocular levels of SOD, CAT, and GSH in zebrafish, with significant interaction effects on the CAT activity and GSH content. Significant correlations between some post-stimulation behavioral traits and ocular levels of SOD, CAT, and GSH in zebrafish were detected, suggesting that ocular oxidative stress induced by combined exposure to MPs and AMI may play an important role in their behavioral toxicity.
Collapse
Affiliation(s)
- Yi Zhang
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
9
|
Cao M, Xu T, Song Y, Wang H, Wei S, Yin D. 2,2',4,4'-tetrabromodiphenyl ether causes depigmentation in zebrafish larvae via a light-mediated pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165382. [PMID: 37422226 DOI: 10.1016/j.scitotenv.2023.165382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are organic pollutants widely detected in various environmental media due to their high persistence and bioaccumulation. PBDE-induced visual impairment and neurotoxicity were previously demonstrated using zebrafish (Danio rerio) models, and recent research reported the phenotypic depigmentation effect of PBDEs at high concentrations on zebrafish, but whether those effects are still present at environment-relevant levels is still unclear. Herein, we performed both phenotypic examination and mechanism investigation in zebrafish embryos (48 hpf) and larvae (5 dpf) about their pigmentation status when exposing to PBDE congener BDE-47 (2,2',4,4'-tetrabrominated diphenyl ether) at levels from 0.25 to 25 μg/L. Results showed that low-level BDE-47 can restrain the relative melanin abundance of zebrafish larvae to 70.47% (p < 0.05) and 61.54% (p < 0.01) respectively under 2.5 and 25 μg/L BDE-47 compared with control, and the thickness of retinal pigment epithelium (RPE) remarkably reduced from 571.4 nm to 350.3 nm (p < 0.001) under 25 μg/L BDE-47 exposure. We also observed disrupted expressions of melanin synthesis genes and disorganized mitfa differentiation patterns based on Tg(mifta:EGFP), as well as visual impairment resulting from thinner RPE. Considering both processes of visual development and melanin synthesis are highly sensitive to ambient light conditions, we prolonged the light regime of maintaining zebrafish larvae from 14 hours light versus 10 hours dark (14L:10D) to 18 hours light versus 6 hours dark (18L:6D). Lengthening photoperiod successfully rescued the fluorescent level of mitfa in zebrafish epidermis and most gene expressions associated with melanin synthesis under 25 μg/L BDE-47 exposure to the normal level. In conclusion, our work reported the effects of low-level PBDEs on melanin production using zebrafish embryos and larvae, and identified the potential role of a light-mediated pathway in the neurotoxic mechanism of PBDEs.
Collapse
Affiliation(s)
- Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yiqun Song
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Chen C, Zuo Y, Hu H, Shao Y, Dong S, Zeng J, Huang L, Liu Z, Shen Q, Liu F, Liao X, Cao Z, Zhong Z, Lu H, Bi Y, Chen J. Cysteamine hydrochloride affects ocular development and triggers associated inflammation in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132175. [PMID: 37517235 DOI: 10.1016/j.jhazmat.2023.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
The increasing use of cosmetics has raised widespread concerns regarding their ingredients. Cysteamine hydrochloride (CSH) is a newly identified allergenic component in cosmetics, and therefore its potential toxicity needs further elucidation. Here, we investigated the in vivo toxicity of CSH during ocular development utilizing a zebrafish model. CSH exposure was linked to smaller eyes, increased vasculature of the fundus and decreased vessel diameter in zebrafish larvae. Moreover, CSH exposure accelerated the process of vascular sprouting and enhanced the proliferation of ocular vascular endothelial cells. Diminished behavior in response to visual stimuli and ocular structural damage in zebrafish larvae after CSH treatment were confirmed by analysis of the photo-visual motor response and pathological examination, respectively. Through transcriptional assays, transgenic fluorescence photography and molecular docking analysis, we determined that CSH inhibited Notch receptor transcription, leading to an aberrant proliferation of ocular vascular endothelial cells mediated by Vegf signaling activation. This process disrupted ocular homeostasis, and induced an inflammatory response with neutrophil accumulation, in addition to the generation of high levels of reactive oxygen species, which in turn promoted the occurrence of apoptotic cells in the eye and ultimately impaired ocular structure and visual function during zebrafish development.
Collapse
Affiliation(s)
- Chao Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China; Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuhua Zuo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325003, China
| | - Hongmei Hu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Yuting Shao
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Si Dong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China; Department of Internal Medicine and Hematology, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Junquan Zeng
- Department of Internal Medicine and Hematology, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Ling Huang
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Ziyi Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Qinyuan Shen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Zilin Zhong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Wang X, Li F, Meng X, Xia C, Ji C, Wu H. Abnormality of mussel in the early developmental stages induced by graphene and triphenyl phosphate: In silico toxicogenomic data-mining, in vivo, and toxicity pathway-oriented approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106674. [PMID: 37666107 DOI: 10.1016/j.aquatox.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
12
|
Yin-Liao I, Mahabir PN, Fisk AT, Bernier NJ, Laberge F. Lingering Effects of Legacy Industrial Pollution on Yellow Perch of the Detroit River. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2158-2170. [PMID: 37341539 DOI: 10.1002/etc.5701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
We used yellow perch (Perca flavescens) captured at four sites differing in legacy industrial pollution in the Lake St. Clair-Detroit River system to evaluate the lingering sublethal effects of industrial pollution. We emphasized bioindicators of direct (toxicity) and indirect (chronic stress, impoverished food web) effects on somatic and organ-specific growth (brain, gut, liver, heart ventricle, gonad). Our results show that higher sediment levels of industrial contaminants at the most downstream Detroit River site (Trenton Channel) are associated with increased perch liver detoxification activity and liver size, reduced brain size, and reduced scale cortisol content. Trenton Channel also displayed food web disruption, where adult perch occupied lower trophic positions than forage fish. Somatic growth and relative gut size were lower in perch sampled at the reference site in Lake St. Clair (Mitchell's Bay), possibly because of increased competition for resources. Models used to determine the factors contributing to site differences in organ growth suggest that the lingering effects of industrial pollution are best explained by trophic disruption. Thus, bioindicators of fish trophic ecology may prove advantageous to assess the health of aquatic ecosystems. Environ Toxicol Chem 2023;42:2158-2170. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Irene Yin-Liao
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Pria N Mahabir
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Aaron T Fisk
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Qiu L, Wei S, Wang Y, Zhang R, Ru S, Zhang X. Mechanism of thyroid hormone and its structurally similar contaminant bisphenol S exposure on retinoid metabolism in zebrafish larval eyes. ENVIRONMENT INTERNATIONAL 2023; 180:108217. [PMID: 37748373 DOI: 10.1016/j.envint.2023.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The photoreceptor necessitates the retinoids metabolism processes in visual cycle pathway to regenerate visual pigments and sustain vision. Bisphenol S (BPS), with similar structure of thyroid hormone (TH), was reported to impair the light-sensing function of zebrafish larvae via disturbing TH-thyroid hormone receptor β (TRβ) signaling pathway. However, it remains unknown whether TRβ could modulate the toxicity of BPS on retinoid metabolism in visual cycle. This study showed that BPS diminished the optokinetic response of zebrafish larvae and had a stimulative effect on all-trans-retinoic acid (atRA) metabolism, like exogenous T3 exposure. By modulating CYP26A1 and TRβ expression, it was found that CYP26A1 played a crucial role in catalyzing oxidative metabolism of atRA and retinoids regeneration in visual cycle, and TRβ mediated cyp26a1 expression in zebrafish eyes. Similar with 10 nM T3 treatment, cyp26a1 expression could be induced by BPS in the presence of TRβ. Further, in CYP26A1 and TRβ- deficient eyes, 100 μg/L BPS could no longer promote atRA metabolism, or decrease the all-trans-retinol and 11-cis retinal contents in visual cycle, demonstrating that BPS exposure disturbed CYP26A1-mediated visual retinoids metabolism via TRβ. Overall, this study highlights the role of TRβ in mediating the retinoids homeostasis disruption caused by BPS, and provides new clues for exploring molecular targets of visual toxicity under pollutants stress.
Collapse
Affiliation(s)
- Liguo Qiu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Yi J, Ma Y, Ma J, Yu H, Zhang K, Jin L, Yang Q, Sun D, Wu D. Rapid Assessment of Ocular Toxicity from Environmental Contaminants Based on Visually Mediated Zebrafish Behavior Studies. TOXICS 2023; 11:706. [PMID: 37624211 PMCID: PMC10459940 DOI: 10.3390/toxics11080706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The presence of contaminants in the environment has increased in recent years, and studies have demonstrated that these contaminants have the ability to penetrate the blood-retinal barrier and directly affect the visual systems of organisms. Zebrafish are recognized as an ideal model for human eye diseases due to their anatomical and functional similarities to the human eye, making them an efficient and versatile organism for studying ocular toxicity caused by environmental contaminants in the field of environmental toxicology. Meanwhile, zebrafish exhibit a diverse repertoire of visually mediated behaviors, and their visual system undergoes complex changes in behavioral responses when exposed to environmental contaminants, enabling rapid assessment of the ocular toxicity induced by such pollutants. Therefore, this review aimed to highlight the effectiveness of zebrafish as a model for examining the effects of environmental contaminants on ocular development. Special attention is given to the visually mediated behavior of zebrafish, which allows for a rapid assessment of ocular toxicity resulting from exposure to environmental contaminants. Additionally, the potential mechanisms by which environmental contaminants may induce ocular toxicity are briefly outlined.
Collapse
Affiliation(s)
- Jia Yi
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Dejun Wu
- Emergency Department, Quzhou People’s Hospital, Quzhou 324000, China
| |
Collapse
|
15
|
Zhang T, Zhu L, Sun Y, Yang L, Yi S, Zhong W. Novel Insights on 6:6 Perfluoroalkyl Phosphonic Acid-Induced Melanin Synthesis Disorders Leading to Pigmentation in Tadpoles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11032-11042. [PMID: 37467139 DOI: 10.1021/acs.est.3c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
As alternatives to traditional per- and polyfluoroalkyl substances, perfluoroalkyl phosphonic acids (PFPiAs) are widely present in aquatic environments and can potentially harm aquatic organisms. Pigmentation affects the probability of aquatic organisms being preyed on and serves as an important toxic endpoint of development, but little is known about the impacts of PFPiAs on the development of aquatic organisms. In this study, Xenopus laevis embryos were exposed to 6:6 PFPiA (1, 10, and 100 nM) for 14 days. The developed tadpoles exhibited evident pigmentation with increased melanin particle size and density on the skin. Pathological and behavioral experiments revealed that the retinal layers became thinner, reducing the photosensitivity and disturbing the circadian rhythm of the tadpoles. Compared to the control group, the exposed tadpoles showed higher levels but less changes of melanin throughout the light/dark cycle, as well as distinct oxidative damage. Consequently, the expression level of microphthalmia-associated transcription factor (MITF), a key factor inducing melanin synthesis, increased significantly. Molecular docking analysis suggested that 6:6 PFPiA forms strong interactions in the binding pocket of MITF, implying that it could activate MITF directly. The activation of MITF ultimately promotes melanin synthesis, resulting in pigmentation on tadpoles.
Collapse
Affiliation(s)
- Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
16
|
Cao M, Xu T, Zhang H, Wei S, Wang H, Song Y, Guo X, Chen D, Yin D. BDE-47 Causes Depression-like Effects in Zebrafish Larvae via a Non-Image-Forming Visual Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37354122 DOI: 10.1021/acs.est.3c01716] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Depression is a high-incidence mood disorder that is frequently accompanied by sleep disturbances, which can be triggered by the non-image-forming (NIF) visual system. Therefore, we hypothesize that polybrominated diphenyl ethers are known to induce visual impairment that could promote depression by disrupting the NIF visual pathway. In this study, zebrafish larvae were exposed to BDE-47 at environmentally relevant concentrations (2.5 and 25 μg/L). BDE-47 caused melanopsin genes that dominate the NIF visual system that fell at night (p < 0.05) but rose in the morning (p < 0.05). Such bidirectional difference transmitted to clock genes and neuropeptides in the suprachiasmatic nucleus and impacted the adjacent serotonin system. However, indicative factors of depression, including serta, htr1aa, and aanat2, were unidirectionally increased 1.3- to 1.6-fold (p < 0.05). They were consistent with the increase in nighttime thigmotaxis (p < 0.05) and circadian hypoactivity (p < 0.05). The results of melanopsin antagonism also indicated that these consequences were possibly due to the combination of direct photoentrainment by melanopsin and circadian disruption originating from melanopsin. Collectively, our findings revealed that BDE-47 exposure disrupted the NIF visual pathway and resulted in depression-like effects, which may further exert profound health effects like mood disorders.
Collapse
Affiliation(s)
- Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hongchang Zhang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yiqun Song
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
17
|
Huang W, Wu T, Wu R, Peng J, Zhang Q, Shi X, Wu K. Fish to learn: insights into the effects of environmental chemicals on eye development and visual function in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27629-3. [PMID: 37195602 DOI: 10.1007/s11356-023-27629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023]
Abstract
Vision is the most essential sense system for the human being. Congenital visual impairment affects millions of people globally. It is increasingly realized that visual system development is an impressionable target of environmental chemicals. However, due to inaccessibility and ethical issues, the use of humans and other placental mammals is constrained, which limits our better understanding of environmental factors on ocular development and visual function in the embryonic stage. Therefore, as complementing laboratory rodents, zebrafish has been the most frequently employed to understand the effects of environmental chemicals on eye development and visual function. One of the major reasons for the increasing use of zebrafish is their polychromatic vision. Zebrafish retinas are morphologically and functionally analogous to those of mammalian, as well as evolutionary conservation among vertebrate eye. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements (ions), metal-derived nanoparticles, microplastics, nanoplastics, persistent organic pollutants, pesticides, and pharmaceutical pollutants on the eye development and visual function in zebrafish embryos. The collected data provide a comprehensive understanding of environmental factors on ocular development and visual function. This report highlights that zebrafish is promising as a model to identify hazardous toxicants toward eye development and is hopeful for developing preventative or postnatal therapies for human congenital visual impairment.
Collapse
Affiliation(s)
- Wenlong Huang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiajun Peng
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Qiong Zhang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Xiaoling Shi
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Kusheng Wu
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China.
| |
Collapse
|
18
|
Wang Y, Yin N, Yang R, Faiola F. Pollution effects on retinal health: A review on current methodologies and findings. Toxicol Ind Health 2023; 39:336-344. [PMID: 37160417 DOI: 10.1177/07482337231174072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In our daily life, we are exposed to numerous industrial chemicals that may be harmful to the retina, which is a delicate and sensitive part of our eyes. This could lead to irreversible changes and cause retinal diseases or blindness. Current retinal environmental health studies primarily utilize animal models, isolated mammalian retinas, animal- or human-derived retinal cells, and retinal organoids, to address both pre- and postnatal exposure. However, as there is limited toxicological information available for specific populations, human induced pluripotent stem cell (hiPSC)-induced models could be effective tools to supplement such data. In order to obtain more comprehensive and reliable toxicological information, we need more appropriate models, novel evaluation methods, and computational technologies to develop portable equipment. This review mainly focused on current toxicology models with particular emphasis on retinal organoids, and it looks forward to future models, analytical methods, and equipment that can efficiently and accurately evaluate retinal toxicity.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Jin L, Wang Q, Yan M, Gu J, Zhang K, Lam PKS, Ruan Y. Enantiospecific Uptake and Depuration Kinetics of Chiral Metoprolol and Venlafaxine in Marine Medaka ( Oryzias melastigma): Tissue Distribution and Metabolite Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4471-4480. [PMID: 36877486 DOI: 10.1021/acs.est.2c08379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The increasing use of chiral pharmaceuticals has led to their widespread presence in the environment. However, their toxicokinetics have rarely been reported. Therefore, the tissue-specific uptake and depuration kinetics of two pairs of pharmaceutical enantiomers, S-(-)-metoprolol versus R-(+)-metoprolol and S-(+)-venlafaxine versus R-(-)-venlafaxine, were studied in marine medaka (Oryzias melastigma) during a 28-day exposure and 14-day clearance period. The toxicokinetics of the studied pharmaceuticals, including uptake and depuration rate constants, depuration half-life (t1/2), and bioconcentration factor (BCF), were reported for the first time. The whole-fish results demonstrated a higher S- than R-venlafaxine bioaccumulation potential, whereas no significant difference was observed between S- and R-metoprolol. O-desmethyl-metoprolol (ODM) and α-hydroxy-metoprolol (AHM) were the main metoprolol metabolites identified by suspect screening, and the ratios of ODM to AHM were 3.08 and 1.35 for S- and R-metoprolol, respectively. N,O-Didesmethyl-venlafaxine (NODDV) and N-desmethyl-venlafaxine (NDV) were the main venlafaxine metabolites, and the ratios of NODDV to NDV were 1.55 and 0.73 for S- and R-venlafaxine, respectively. The highest tissue-specific BCFs of the four enantiomers were all found in the eyes, meriting in-depth investigation.
Collapse
Affiliation(s)
- Linjie Jin
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Jiarui Gu
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
| | - Paul K S Lam
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
20
|
Shen C, Cai Y, Li J, He C, Zuo Z. Mepanipyrim induces visual developmental toxicity and vision-guided behavioral alteration in zebrafish larvae. J Environ Sci (China) 2023; 124:76-88. [PMID: 36182181 DOI: 10.1016/j.jes.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/16/2023]
Abstract
Mepanipyrim, an anilinopyrimidine fungicide, has been extensively used to prevent fungal diseases in fruit culture. Currently, research on mepanipyrim-induced toxicity in organisms is still very scarce, especially visual developmental toxicity. Here, zebrafish larvae were employed to investigate mepanipyrim-induced visual developmental toxicity. Intense light and monochromatic light stimuli-evoked escape experiments were used to investigate vision-guided behaviors. Meanwhile, transcriptomic sequencing and real-time quantitative PCR assays were applied to assess the potential mechanisms of mepanipyrim-induced visual developmental toxicity and vision-guided behavioral alteration. Our results showed that mepanipyrim exposure could induce retinal impairment and vision-guided behavioral alteration in larval zebrafish. In addition, the grk1b gene of the phototransduction signaling pathway was found to be a potential aryl hydrocarbon receptor (AhR)-regulated gene. Mepanipyrim-induced visual developmental toxicity was potentially related to the AhR signaling pathway. Furthermore, mepanipyrim-induced behavioral alteration was guided by the visual function, and the effects of mepanipyrim on long and middle wavelength light-sensitive opsins may be the main cause of vision-guided behavioral alteration. Our results provide insights into understanding the relationship between visual development and vision-guided behaviors induced by mepanipyrim exposure.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yimei Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Jialing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
21
|
Meade EB, Iwanowicz LR, Neureuther N, LeFevre GH, Kolpin DW, Zhi H, Meppelink SM, Lane RF, Schmoldt A, Mohaimani A, Mueller O, Klaper RD. Transcriptome signatures of wastewater effluent exposure in larval zebrafish vary with seasonal mixture composition in an effluent-dominated stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159069. [PMID: 36174698 DOI: 10.1016/j.scitotenv.2022.159069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plant (WWTP) effluent-dominated streams provide critical habitat for aquatic and terrestrial organisms but also continually expose them to complex mixtures of pharmaceuticals that can potentially impair growth, behavior, and reproduction. Currently, few biomarkers are available that relate to pharmaceutical-specific mechanisms of action. In the experiment reported in this paper, zebrafish (Danio rerio) embryos at two developmental stages were exposed to water samples from three sampling sites (0.1 km upstream of the outfall, at the effluent outfall, and 0.1 km below the outfall) during base-flow conditions from two months (January and May) of a temperate-region effluent-dominated stream containing a complex mixture of pharmaceuticals and other contaminants of emerging concern. RNA-sequencing identified potential biological impacts and biomarkers of WWTP effluent exposure that extend past traditional markers of endocrine disruption. Transcriptomics revealed changes to a wide range of biological functions and pathways including cardiac, neurological, visual, metabolic, and signaling pathways. These transcriptomic changes varied by developmental stage and displayed sensitivity to variable chemical composition and concentration of effluent, thus indicating a need for stage-specific biomarkers. Some transcripts are known to be associated with genes related to pharmaceuticals that were present in the collected samples. Although traditional biomarkers of endocrine disruption were not enriched in either month, a high estrogenicity signal was detected upstream in May and implicates the presence of unidentified chemical inputs not captured by the targeted chemical analysis. This work reveals associations between bioeffects of exposure, stage of development, and the composition of chemical mixtures in effluent-dominated surface water. The work underscores the importance of measuring effects beyond the endocrine system when assessing the impact of bioactive chemicals in WWTP effluent and identifies a need for non-targeted chemical analysis when bioeffects are not explained by the targeted analysis.
Collapse
Affiliation(s)
- Emma B Meade
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Luke R Iwanowicz
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, United States
| | - Nicklaus Neureuther
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Hui Zhi
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Shannon M Meppelink
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Rachael F Lane
- U.S. Geological Survey, Kansas Water Science Center, 1217 Biltmore Dr, Lawrence, KS 66049, United States
| | - Angela Schmoldt
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Aurash Mohaimani
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Olaf Mueller
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States; Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States.
| |
Collapse
|
22
|
Liu Q, Liu C, Zhao Z, Liang SX. Prioritization of micropollutants in municipal wastewater and the joint inhibitory effects of priority organic pollutants on Vibrio qinghaiensis sp.-Q67. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106288. [PMID: 36156356 DOI: 10.1016/j.aquatox.2022.106288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Treatment of wastewater in municipal wastewater treatment plants has become a major barrier to organic pollutants entering the aquatic environment. In this study, qualitative screening of organic micropollutants was conducted in a typical municipal wastewater treatment plant (MWWTP) using gas chromatography-mass spectrometry (GC-MS). The identified compounds were prioritized according to their comprehensive scores ranked by detection frequency, semi-quantitative concentration, bioaccumulation, ecotoxicity, and biodegradability. The results showed dibutyl phthalate, antioxidant 2246, methyl stearate, 2,4,6-tri‑tert-butylphenol, and dioctyl phthalate had the top five scores and were ranked as priority organic pollutants in the municipal wastewater. The individual and joint toxicity determinations of the five compounds were carried out by a bioluminescence inhibition assay using Vibrio qinghaiensis sp.-Q67 (V. qinghaiensis). The individual toxicity assay results of these pollutants on V. qinghaiensis demonstrated that the order of the acute toxicity of the five priority organic pollutants was as follows: dioctyl phthalate> dibutyl phthalate> methyl stearate> antioxidant 2246> 2,4,6-tri‑tert-butylphenol. The joint toxicity showed partial addition or antagonism among these pollutants. The prediction results of the mixed toxicity were compared between the concentration addition model and the independent action model, indicating that a single traditional prediction model could not accurately predict the mixed toxicity of different types of organic pollutants, and that a comprehensive application of model prediction could improve the accuracy of mixed toxicity prediction. This method could provide a theoretical basis for systematic screening and toxicity prediction of pollutants in wastewater.
Collapse
Affiliation(s)
- Qiong Liu
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Chang Liu
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Zhe Zhao
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China
| | - Shu-Xuan Liang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
23
|
Li M, Gong J, Ge L, Gao H, Yang J, Yang C, Kang J, Fang Y, Xu H. Development of human retinal organoid models for bisphenol toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114094. [PMID: 36126549 DOI: 10.1016/j.ecoenv.2022.114094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols, including Bisphenol A (BPA), Tetrabromobisphenol A (TBBPA), and Tetrabromobisphenol S (TBBPS), have been widely applied in the production of polycarbonate plastics and epoxy resins and have been detected in the environment worldwide. The frequent detection of bisphenols in maternal and fetal samples has raised concerns about their toxic effects on human embryonic development, especially on the development of the central nervous system. However, the effect of bisphenols on human retinal development is still unknown. In this study, to evaluate the toxicity of bisphenols on early retinal development, human embryonic stem cells were induced to differentiate into retinal organoids that responded to BPA, TBBPA, and TBBPS, at human exposure relevant concentrations. The global gene expression of retinal organoids was analyzed by RNA sequencing (RNA-seq). A set of retinal development-related biological processes, including neuron differentiation, phototransduction, axon guidance, and retina layer formation, were identified in retinal organoids corresponding to different developmental stages. The RNA-seq data also showed that BPA, TBBPA, and TBBPS influenced retinal development by interfering with the Cytokine-cytokine receptor interaction pathway. HSPA6, HIF1A-AS3, CDC20B, IL19, OAS1, HSPA7, and RN7SK were dysregulated by these chemicals. Additionally, BPA, TBBPA, and TBBPS exhibited different toxic effects on neural retina development, with TBBPA appearing to exert more toxicity than BPA and TBBPS. Furthermore, three bisphenols exhibited different effects at different stages of neural retina development. The sensitivity of retinal development to bisphenols depends on their developmental stage. This study provides new insights into the deep dissection of retinotoxicity after prenatal bisphenol exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junling Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
24
|
Hu C, Li J, Liu M, Lam PKS, Chen L. Young fecal transplantation modulates the visual toxicity of perfluorobutanesulfonate in aged zebrafish recipients. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106295. [PMID: 36103760 DOI: 10.1016/j.aquatox.2022.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant of potent toxicity to impair visual system. Previous studies highlighted the applicability of gut microbiota manipulation to mitigate the toxicities of PFBS. However, it remains unknown whether transplantation of whole fecal microbiota to PFBS-disturbed gut can restore the health of the recipient animals, especially for aged fish that are of high susceptibility. In the present study, aged zebrafish of 3 years old were first transplanted with feces from young counterparts and then exposed to environmentally relevant concentrations of PFBS. After exposure, toxic effects of PFBS on visual system of aged zebrafish were elucidated based on transcriptional, proteomic, biochemical, histological, and behavioral evidences. In addition, interaction between young fecal transplant and innate visual toxicity of PFBS was further explored in the aged. The results showed that PFBS singular exposure induced lipid peroxidation (by 1.9-fold) in aged male eyes, which were alleviated by young fecal transplantation. PFBS also disturbed the retinal structure of the aged, which was characterized by increases in plexiform layers, but decreases in ganglion neuron number (by 26.8% and 26.0% in males and females, respectively) and optic nerve width (by 14.1% and 12.7% in males and females, respectively). It was unexpected that young fecal transplant was very potent in re-organizing the histological assembly of aged eyes regardless of PFBS coexposure, underlining the intimate interplay between gut and retina. Proteomic profiling provided more clues about the visual toxicology mechanism of PFBS, which was found to typically interfere with synaptic neurotransmission occurring in plexiform layers. However, proteome perturbation of aged eyes by PFBS exposure was effectively shifted by the transplantation of young feces towards the control phenotype, suggesting the high ameliorative potential of young fecal transplantation along the gut-retina axis. Overall, the present study pinpoints the potent visual toxicity of PFBS in aged animals and highlights the efficacy of young fecal transplant to regulate the inherent toxicity of PFBS. Future studies are necessitated to sequence the gut microbiota and unveil the underlying interactive routes between gut microbes and visual system.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul K S Lam
- Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Kowloon, China Hong Kong Special Administrative Region
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
25
|
Yang L, Zeng J, Gao N, Zhu L, Feng J. Elucidating the Differences in Metal Toxicity by Quantitative Adverse Outcome Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13233-13244. [PMID: 36083827 DOI: 10.1021/acs.est.2c03828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Numerous studies have reported that the toxicity differences among metals are widespread; however, little is known about the mechanism of differences in metal toxicity to aquatic organisms due to the lack of quantitative understanding of their adverse outcome pathway. Here, we investigated the effects of Cd and Cu on bioaccumulation, gene expression, physiological responses, and apical effects in zebrafish larvae. RNA sequencing was conducted to provide supplementary mechanistic information for the effects of Cd and Cu exposure. On this basis, we proposed a quantitative adverse outcome pathway (qAOP) suitable for metal risk assessment of aquatic organisms. Our work provides a mechanistic explanation for the differences in metal toxicity where the strong bioaccumulation of Cu enables the newly accumulated Cu to reach the threshold that causes different adverse effects faster than Cd in zebrafish larvae, resulting in a higher toxicity of Cu than that of Cd. Furthermore, we proposed a parameter CIT/BCF (the ratio of internal threshold concentration and bioaccumulation factor) that helps to understand the toxicity differences by combining the information of bioaccumulation and internal threshold of adverse effects. This work demonstrated that qAOP is an effective quantitative tool for understanding the toxicity mechanism and highlight the importance of toxicokinetics and toxicodynamics at different biological levels in determining the metal toxicity.
Collapse
Affiliation(s)
- Lanpeng Yang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jing Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410004, P. R. China
| | - Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
26
|
Chen ZF, Lin ZC, Lu SQ, Chen XF, Liao XL, Qi Z, Cai Z. Azole-Induced Color Vision Deficiency Associated with Thyroid Hormone Signaling: An Integrated In Vivo, In Vitro, and In Silico Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13264-13273. [PMID: 36082512 DOI: 10.1021/acs.est.2c05328] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Azoles that are used in pesticides, pharmaceuticals, and personal care products can have toxic effects on fish. However, there is no information regarding azole-induced visual disorder associated with thyroid disruption. We evaluated changes in retinal morphology, optokinetic response, transcript abundance of the genes involved in color perception and hypothalamic-pituitary-thyroid (HPT) axis, and thyroid hormone (TH) levels in zebrafish larvae exposed to common azoles, such as climbazole (CBZ, 0.1 and 10 μg/L) and triadimefon (TDF, 50 and 500 μg/L), at environmentally relevant and predicted worst-case environmental concentrations. Subsequently, the effect of azoles on TH-dependent GH3 cell proliferation and thyroid receptor (TR)-regulated transcriptional activity, as well as the in silico binding affinity between azoles and TR isoforms, was investigated. Azole exposure decreased cell densities of the ganglion cell layer, inner nuclear layer, and photoreceptor layer. Zebrafish larvae exposed to environmentally relevant concentrations of CBZ and TDF showed a decrease in optokinetic response to green-white and red-white stripes but not blue-white stripes, consistent with disturbance in the corresponding opsin gene expression. Azole exposure also reduced triiodothyronine levels and concomitantly increased HPT-related gene expression. Molecular docking analysis combined with in vitro TR-mediated transactivation and dual-luciferase reporter assays demonstrated that CBZ and TDF exhibited TR antagonism. These results are comparable to those obtained from a known TR antagonist, namely, TR antagonist 1, as a positive control. Therefore, damage to specific color perception by azoles appears to result from lowered TH signaling, indicating the potential threat of environmental TH disruptors to the visual function of fish.
Collapse
Affiliation(s)
- Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Cheng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Si-Qi Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Fan Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
27
|
Wei S, Chen F, Xu T, Cao M, Yang X, Zhang B, Guo X, Yin D. BDE-99 Disrupts the Photoreceptor Patterning of Zebrafish Larvae via Transcription Factor six7. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5673-5683. [PMID: 35413178 DOI: 10.1021/acs.est.1c08914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proper visual function is essential for collecting environmental information and supporting the decision-making in the central nervous system and is therefore tightly associated with wildlife survival and human health. Polybrominated diphenyl ethers (PBDEs) were reported to impair zebrafish vision development, and thyroid hormone (TH) signaling was suspected as the main contributor. In this study, a pentabrominated PBDE, BDE-99, was chosen to further explore the action mechanism of PBDEs on the disruption of zebrafish color vision. The results showed that BDE-99 could impair multiple photoreceptors in the retina and disturb the behavior guided by the color vision of zebrafish larvae at 120 h post-fertilization. Although the resulting alteration in photoreceptor patterning highly resembled the effects of 3,3',5-triiodo-l-thyroine, introducing the antagonist for TH receptors was unable to fully recover the alteration, which suggested the involvement of other potential regulatory factors. By modulating the expression of six7, a key inducer of middle-wavelength opsins, we demonstrated that six7, not THs, dominated the photoreceptor patterning in the disruption of BDE-99. Our work promoted the understanding of the regulatory role of six7 in the process of photoreceptor patterning and proposed a novel mechanism for the visual toxicity of PBDEs.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fu Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinyue Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
28
|
Li M, Zeng Y, Ge L, Gong J, Weng C, Yang C, Yang J, Fang Y, Li Q, Zou T, Xu H. Evaluation of the influences of low dose polybrominated diphenyl ethers exposure on human early retinal development. ENVIRONMENT INTERNATIONAL 2022; 163:107187. [PMID: 35313214 DOI: 10.1016/j.envint.2022.107187] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Increasing evidence in animal models has suggested that polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants, can cause retinotoxicity. However, data on the influence of PBDE treatment on human retinal development are scarce due to the lack of appropriate models. In the present study, we report the utilization of human embryonic stem cell-derived retinal organoids (hESC-ROs) for toxicity assessment of the most common PBDE congener (BDE-47) during the early stages of retinal development. Exposure to BDE-47 decreased the thickness and area of the neural retina (NR) of hESC-ROs in a dose- and time-dependent manner. Abnormal retinal cell distributions, disordered NR structures, and neural rosette-like structures were found on hESC-ROs after low-level BDE-47 exposure. Moreover, BDE-47 exposure decreased cell proliferation, promoted cell apoptosis, and caused abnormal differentiation. Transcriptomic analysis demonstrated that differentially expressed genes, caused by BDE-47, were enriched in extracellular matrix organization. Metabolomic studies of hESC-ROs revealed significant changes in the metabolism of purine and glutathione after BDE-47 exposure for five weeks. This study clarifies the retinotoxicity of low-level BDE-47 treatment and highlights the powerfulness of the hESC-RO model, deepening our understanding of BDE-47-driven human early retina developmental toxicity.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chuanhuang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junling Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
29
|
Ferroptosis and Apoptosis Are Involved in the Formation of L-Selenomethionine-Induced Ocular Defects in Zebrafish Embryos. Int J Mol Sci 2022; 23:ijms23094783. [PMID: 35563172 PMCID: PMC9100823 DOI: 10.3390/ijms23094783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Selenium is an essential trace element for humans and other vertebrates, playing an important role in antioxidant defense, neurobiology and reproduction. However, the toxicity of excessive selenium has not been thoroughly evaluated, especially for the visual system of vertebrates. In this study, fertilized zebrafish embryos were treated with 0.5 µM L-selenomethionine to investigate how excessive selenium alters zebrafish eye development. Selenium-stressed zebrafish embryos showed microphthalmia and altered expression of genes required for retinal neurogenesis. Moreover, ectopic proliferation, disrupted mitochondrial morphology, elevated ROS-induced oxidative stress, apoptosis and ferroptosis were observed in selenium-stressed embryos. Two antioxidants—reduced glutathione (GSH) and N-acetylcysteine (NAC)—and the ferroptosis inhibitor ferrostatin (Fer-1) were unable to rescue selenium-induced eye defects, but the ferroptosis and apoptosis activator cisplatin (CDDP) was able to improve microphthalmia and the expression of retina-specific genes in selenium-stressed embryos. In summary, our results reveal that ferroptosis and apoptosis might play a key role in selenium-induced defects of embryonic eye development. The findings not only provide new insights into selenium-induced cellular damage and death, but also important implications for studying the association between excessive selenium and ocular diseases in the future.
Collapse
|
30
|
Jablonski CA, Pereira TCB, Teodoro LDS, Altenhofen S, Rübensam G, Bonan CD, Bogo MR. Acute toxicity of methomyl commercial formulation induces morphological and behavioral changes in larval zebrafish (Danio rerio). Neurotoxicol Teratol 2021; 89:107058. [PMID: 34942342 DOI: 10.1016/j.ntt.2021.107058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
The use of pesticides has continue grown over recent years, leading to several environmental and health concerns, such as the contamination of surface and groundwater resources and associated biota, potentially affecting populations that are not primary targets of these complex chemical mixtures. In this work, we investigate lethal and sublethal effects of acute exposure of methomyl commercial formulation in zebrafish embryo and larvae. Methomyl is a broad-spectrum carbamate insecticide and acaricide that acts primarily in acetylcholinesterase inhibition (AChE). Methomyl formulation 96 h-LC50 was determined through the Fish Embryo Acute Toxicity Test (FET) and resulted in 1.2 g/L ± 0.04. Sublethal 6-day exposure was performed in six methomyl formulation concentrations (0.5; 1.0; 2.2; 4.8; 10.6; 23.3 mg/L) to evaluate developmental, physiological, morphological, behavioral, biochemical, and molecular endpoints of zebrafish early-development. Methomyl affected embryo hatching and larva morphology and behavior, especially in higher concentrations; resulting in smaller body and eyes size, failure in swimming bladder inflation, hypolocomotor activity, and concentration-dependent reduction of AChE activity; demonstrating methomyl strong acute toxicity and neurotoxic effect.
Collapse
Affiliation(s)
- Camilo Alexandre Jablonski
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Talita Carneiro Brandão Pereira
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Lilian De Souza Teodoro
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Stefani Altenhofen
- Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690, CEP: 90.610-000, Porto Alegre, RS, Brazil; Neurochemistry and Psychopharmacology Laboratory, School of Health and Life Sciences, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Gabriel Rübensam
- Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Toxicology and Pharmacology Research Center, School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90619-900, Porto Alegre, RS, Brazil.
| | - Carla Denise Bonan
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690, CEP: 90.610-000, Porto Alegre, RS, Brazil; Neurochemistry and Psychopharmacology Laboratory, School of Health and Life Sciences, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Maurício Reis Bogo
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690, CEP: 90.610-000, Porto Alegre, RS, Brazil; Toxicology and Pharmacology Research Center, School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Chen XF, Chen ZF, Lin ZC, Liao XL, Zou T, Qi Z, Cai Z. Toxic effects of triclocarban on larval zebrafish: A focus on visual dysfunction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106013. [PMID: 34731642 DOI: 10.1016/j.aquatox.2021.106013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Triclocarban (TCC) is considered an endocrine disruptor and shows antagonist activity on thyroid receptors. In view of the report that thyroid hormone signaling mediates retinal cone photoreceptor specification, we hypothesize that TCC could impair visual function, which is vital to wildlife. In order to verify our hypothesis, we assessed alteration in the retinal structure (retinal layer thickness and cell density), visually-mediated behavior, cone and rod opsin gene expression, and photoreceptor immunostaining in zebrafish larvae exposed to TCC at environmentally realistic concentrations (0.16 ± 0.005 µg/L, L-group) and one-fifth of the median lethal concentrations (25.4 ± 1.02 µg/L, H-group). Significant decrease in eye size, ganglion cell density, optokinetic response, and phototactic response can be observed in the L-group, while the thickness of outer nuclear layer, where the cell bodies of cone and rod cells are located, was significantly reduced with the down-regulation of critical opsin gene (opn1sw2, opn1mw1, opn1mw3, opn1lw1, opn1lw2, and rho) expression and rhodopsin immunofluorescence in the H-group. It should be noted that TCC could affect the sensitivity of zebrafish larvae to red and green light according to the results of behavioral and opsin gene expression analysis. These findings provide the first evidence to support our hypothesis that the visual system, a novel toxicological target, is affected by TCC. Consequently, we urgently call for a more in-depth exploration of TCC-induced ocular toxicity to aquatic organisms and even to humans.
Collapse
Affiliation(s)
- Xiao-Fan Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| | - Zhi-Cheng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ting Zou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
32
|
Hu C, Liu M, Wan T, Tang L, Sun B, Zhou B, Lam JCW, Lam PKS, Chen L. Disturbances in Microbial and Metabolic Communication across the Gut-Liver Axis Induced by a Dioxin-like Pollutant: An Integrated Metagenomics and Metabolomics Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:529-537. [PMID: 33356191 DOI: 10.1021/acs.est.0c06884] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To determine how the aryl hydrocarbon receptor (AhR) signaling acts along the gut-liver axis, we employed an integrated metagenomic and metabolomic approach to comprehensively profile the microbial and metabolic networks. Adult zebrafish were exposed to a model agonist of the AhR: polychlorinated biphenyl (PCB) 126. The metagenomic analysis showed that PCB126 suppressed microbial activities related to primary bile acid metabolism in male intestines. Accordingly, a suite of primary bile acids consistently showed higher concentrations, suggesting that bacterial conversion of primary bile acids was blocked. PCB126 also disturbed bacterial metabolism of bile acids in female intestines, as revealed by higher concentrations of primary bile acids (e.g., chenodeoxycholic acid) and activation of the nuclear farnesoid X receptor signaling. In addition, PCB126 exposure impaired the metabolism of various essential vitamins (e.g., retinol, vitamin B6, and folate). Degradation of vitamin B6 by bacterial enzymes was inhibited in male intestines, resulting in its intestinal accumulation. However, PCB126 suppressed the bacterial metabolism of vitamins in female intestines, causing systematic deficiency of essential vitamins. Overall, we found that PCB126 exposure dysregulated gut microbial activities, consequently interrupting bile acid and vitamin metabolism along the gut-liver axis. The findings provided an insight of the AhR action in microbe-host metabolic communication related to PCBs.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Wan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
33
|
Cassar S, Dunn C, Ramos MF. Zebrafish as an Animal Model for Ocular Toxicity Testing: A Review of Ocular Anatomy and Functional Assays. Toxicol Pathol 2020; 49:438-454. [PMID: 33063651 DOI: 10.1177/0192623320964748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Xenobiotics make their way into organisms from diverse sources including diet, medication, and pollution. Our understanding of ocular toxicities from xenobiotics in humans, livestock, and wildlife is growing thanks to laboratory animal models. Anatomy and physiology are conserved among vertebrate eyes, and studies with common mammalian preclinical species (rodent, dog) can predict human ocular toxicity. However, since the eye is susceptible to toxicities that may not involve a histological correlate, and these species rely heavily on smell and hearing to navigate their world, discovering visual deficits can be challenging with traditional animal models. Alternative models capable of identifying functional impacts on vision and requiring minimal amounts of chemical are valuable assets to toxicology. Human and zebrafish eyes are anatomically and functionally similar, and it has been reported that several common human ocular toxicants cause comparable toxicity in zebrafish. Vision develops rapidly in zebrafish; the tiny larvae rely on visual cues as early as 4 days, and behavioral responses to those cues can be monitored in high-throughput fashion. This article describes the comparative anatomy of the zebrafish eye, the notable differences from the mammalian eye, and presents practical applications of this underutilized model for assessment of ocular toxicity.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | - Christina Dunn
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | | |
Collapse
|