1
|
Tang KHD, Zhou J. Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies. ENVIRONMENTAL MANAGEMENT 2024:10.1007/s00267-024-02106-w. [PMID: 39730878 DOI: 10.1007/s00267-024-02106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants. Their phytotoxicity becomes more pronounced when blended with polybutylene adipate terephthalate (PBAT) MPs. Polyhydroxybutyrate (PHB) and polybutylene succinate (PBS) MPs show lower phytotoxicity than PLA MPs. At high doses, PLA and PHB MPs may cause dose-dependent developmental toxicity to aquatic organisms. Nano-PLA could induce oxidative stress and genetic damage in insects, indicating its toxicity could be size-dependent and affected by weathering. PBAT MPs have been observed to affect plant growth at lower concentrations (0.1%) than PLA MPs, while polycaprolactone (PCL) affected seed germination only at high temperatures. PCL MPs and extracts could also cause developmental and reproductive toxicity, alter metabolisms, and induce oxidative stress in aquatic organisms at high concentrations. Polypropylene carbonate (PPC) ( > 40 g/kg) MPs have caused earthworm behavioral changes. Non-biodegradable bioplastics are potentially toxic to embryos, larvae, immune systems, reproductive systems, and endocrine systems of animals. However, it is important to note that toxicity studies are still lacking for biodegradable and bio-based plastics, particularly PHB, PBS, PCL, PPC, starch-based, and non-biodegradable bioplastics. More research into the MPs of these plastics is essential to better understand their ecotoxicity and applicability.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| |
Collapse
|
2
|
Kapelewska J, Karpińska J, Klekotka U, Piotrowska-Niczyporuk A. Effect of polyethylene microplastic biodegradation by algae on their sorption properties and toxicity. CHEMOSPHERE 2024; 370:143993. [PMID: 39706491 DOI: 10.1016/j.chemosphere.2024.143993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Microplastics (MPs) in aquatic environments constitute an ideal surface for biofilm formation, facilitating or hindering the transport of contaminants. This study aims to provide knowledge on the sorption behavior of high-density polyethylene (μ-HDPE) after algal degradation toward UV filters. Up to now, the oxidation of μ-HDPE using the microalga Acutodesmus obliquus has not been studied. The results obtained by infrared spectroscopy (IR), scanning electron microscopy (SEM), and porosimetry analysis revealed a biofilm formation on the surface of μ-HDPE and the presence of carbonyl and double bond functional groups. Also, this is the first time that the simultaneous sorption of benzophenone (BPh), 4-methylbenzylidene camphor (4MBC), benzophenone 3 (BPh3), and benzophenone 2 (BPh2) onto biofilm-covered HDPE (biofilm-HDPE) in water have been studied. Filters' sorption on biofilm-HDPE particles follows pseudo-second-order kinetics, and film diffusion was the stage that limited the sorption rate. The Langmuir isothermal model describes the adsorption process for 4MBC, BPh, and BPh2 well, and the linear model is fit for the sorption of BPh3. Hydrophobic interactions, van der Waals forces, electrostatic, and π-π bon are the main mechanisms responsible for the sorption. Biological analysis indicated that HDPE at concentrations of 500 mg L-1 inhibits A. obliquus growth and reduces the levels of proteins, sugars, and chlorophylls. In contrast, the activity of antioxidant enzymes and the contents of small molecular weight antioxidants significantly increased in algal cells treated with microplastic. These findings confirm the toxicity of μ-HDPE and demonstrate the induction of defense mechanisms in A. obliquus as a response to environmental pollutants.
Collapse
Affiliation(s)
- Justyna Kapelewska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland.
| | - Joanna Karpińska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Urszula Klekotka
- Department of Materials Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Alicja Piotrowska-Niczyporuk
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245, Bialystok, Poland
| |
Collapse
|
3
|
An G, Nam G, Jung J, Na J. Increased adsorption of diflubenzuron onto polylactic acid microplastics after ultraviolet weathering can increase acute toxicity in the water flea (Daphnia magna). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177600. [PMID: 39615170 DOI: 10.1016/j.scitotenv.2024.177600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
The ultraviolet (UV) weathering of microplastics (MPs) can lead to higher adsorption of harmful contaminants, thus increasing the potential risks of their combined effects. Because biodegradable MPs are more susceptible to UV weathering than conventional MPs, concerns have arisen about their ecological toxicity and environmental impact. Therefore, this study investigated the mechanisms associated with the adsorption of the pesticide diflubenzuron (DFB) onto polylactic acid (PLA) MP particles after UV weathering and the acute effects (48 h) of their combination on the water flea Daphnia magna. These effects were also compared with those of the conventional MP polyethylene terephthalate (PET). UV weathering led to a greater number of cracks and pores in the PLA particles compared to PET, as well as a higher number of oxygen-based functional groups and a larger surface area. These surface changes in UV-weathered PLA particles promoted higher DFB adsorption, which in turn led to stronger acute toxicity for D. magna compared to UV-weathered PET particles. Combined exposure to 25 ng L-1 DFB and both UV-weathered and non-UV-weathered MPs significantly reduced the chitin content in D. magna, while combined exposure to 12.5 ng L-1 DFB and the MPs increased the chitin content. This effect was more pronounced for UV-weathered PLA exposure than UV-weathered PET exposure. The expression of the genes for chitinase and endocrine glycoprotein, both of which are closely associated with the toxic mechanisms of DFB, showed no significant changes with the combination of 25 ng L-1 DFB and non-UV-weathered MPs but were significantly downregulated after UV weathering. Overall, the UV weathering of PLA promoted the adsorption of DFB, thus increasing its toxic effects. Our findings demonstrate the importance of considering the effects of UV weathering and interactions with environmental pollutants when assessing the ecological risks associated with biodegradable MPs.
Collapse
Affiliation(s)
- Gersan An
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gwiwoong Nam
- OJeong Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- OJeong Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Su Y, Gao L, Xu EG, Peng L, Diao X, Zhang Y, Bao R. When microplastics meet microalgae: Unveiling the dynamic formation of aggregates and their impact on toxicity and environmental health. WATER RESEARCH 2024; 273:123008. [PMID: 39733528 DOI: 10.1016/j.watres.2024.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
Microplastics (MPs) commonly coexist with microalgae in aquatic environments, can heteroaggregate during their interaction, and potentially affect the migration and impacts of MPs in aquatic environments. The hetero-aggregation may also influence the fate of other pollutants through MPs' adsorption or alter their aquatic toxicity. Here, we explored the hetero-aggregation process and its key driving mechanism that occurred between green microalga Chlorella vulgaris (with a cell size of 2-10 μm) and two types of MPs (polystyrene and polylactide, 613 μm). Furthermore, we investigated the environmental impacts of the microplastics-microalgae aggregates (MPs-microalgae aggregates) by comparing their adsorption of Cu(II) with that of pristine MPs and evaluating the effects of hetero-aggregation on MPs aging and their toxicity to microalgae. Our results indicated that microalgal colonization occurred on the surface of MPs, possibly through electrostatic interactions, hole-filling, hydrophilic interactions, and algae-bacteria symbiosis. The hetero-aggregation led to a stronger Cu(II) adsorption by MPs-microalgae aggregates than pristine MPs due to electrostatic interactions, coordination, complexation, and ion exchange. Exposure to either MPs (pristine or aged) or Cu(II) inhibited the cell growth of C. vulgaris, while the integrated biomarker response (IBR) showed more pronounced inhibitory effects resulting from aged MPs compared to pristine MPs and an antagonistic effect on microalgae was caused by the co-exposure to MPs and Cu(II). These findings suggest that the hetero-aggregation of MPs and microalgae may alter their environmental fates and co-pollutant toxicity.
Collapse
Affiliation(s)
- Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Liu Gao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Yumeng Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruiqi Bao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Ali W, Jeong H, Kim DH, Lee JS, Zinck P, Souissi S, Lee JS. Adverse effects of environmentally relevant microplastics on in vivo endpoints, oxidative stress, and mitogen-activated protein kinase signaling pathway and multixenobiotic resistance system in the marine rotifer Brachionus plicatilis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178027. [PMID: 39700983 DOI: 10.1016/j.scitotenv.2024.178027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
This study compared the toxicological effects of environmentally relevant microplastics (MPs) on the marine rotifer Brachionus plicatilis, focusing on MPs derived from various sources, including fossil fuel-based low-density polyethylene, bio-based polylactic acid (PLA), biodegradable poly(butylene adipate-co-terephthalate), and a novel PLA modified with β-cyclodextrin. We assessed in vivo effects such as reproductive output and mortality, alongside in vitro oxidative stress responses, including oxidative stress, antioxidant enzyme activities, and activation of the mitogen-activated protein kinase (MAPK) signaling pathway and the multixenobiotic resistance (MXR) system. Reproductive output and lifespan reduced significantly across all MP types, ranging from 0.5 to 10 mg L-1, indicating compromised reproductive fitness and life maintenance. At an environmentally relevant concentration of 0.5 mg L-1, in vitro assessments revealed differential modulation of reactive oxygen species levels and antioxidant enzyme activities, contingent upon the specific MP type. Moreover, MAPK signaling pathway and MXR assays showed changes in phosphorylation and detoxification proteins depending on the type of MPs. This study highlights the ecological risks that various MPs, including bio-based, biodegradable, and petrochemical-based MPs, could pose in marine environments.
Collapse
Affiliation(s)
- Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Lao A, Zhang S, Huang X, Feng D, Xiong Y, Du Z, Zheng Z, Wu H. Evaluating physiological responses of microalgae towards environmentally coexisting microplastics: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135890. [PMID: 39307009 DOI: 10.1016/j.jhazmat.2024.135890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
Microplastics (MPs) are abundantly present in aquatic environments, where the phytoplankton-microalgae, are now inevitably bound to a long-term coexistence with them. While numerous studies have focused on the toxicological effects of high-concentration MPs exposure, there remains controversy over whether and how MPs affect microalgae at environmentally relevant concentrations. This study aims to draw conclusions that narrow the gap from 52 studies with varying results. Overall, MPs can inhibit growth and photosynthesis, induce oxidative damage, from which microalgae can recover after an appropriate period. Cyanobacteria exhibit greater vulnerability than chlorophyta. The relative size of MPs to algal cells potentially governs their coexistence behavior, thereby altering the mechanisms of impact. Pristine MPs may increase the production of extracellular polymeric substances (EPS) and microcystins (MCs), while aged MPs have the opposite effect. Additionally, relevant factors are systematically discussed, offering insights for future research.
Collapse
Affiliation(s)
- An Lao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Shiqi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xuhui Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dunfeng Feng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yujie Xiong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zunqing Du
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
7
|
Liu Y, Cai H, Wen Y, Song X, Wang X, Zhang Z. Research progress on degradation of biodegradable micro-nano plastics and its toxic effect mechanism on soil ecosystem. ENVIRONMENTAL RESEARCH 2024; 262:119979. [PMID: 39270956 DOI: 10.1016/j.envres.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biodegradable plastics (BPs) are known to decompose into micro-nano plastics (BMNPs) more readily than conventional plastics (CPs). Given the environmental risks posed by BMNPs in soil ecosystems, their impact has garnered increasing attention. However, research focusing on the toxic effects of BMNPs on soils remains relatively limited. The degradation process and duration of BMNPs in soil are influenced by numerous factors, which directly impact the toxic effects of BMNPs. This highlights the urgent need for further research. In this context, this review delineates the classification of BPs, investigates the degradation processes of BPs along with their influencing factors, summarizes the toxic effects on soil ecosystems, and explores the potential mechanisms that underlie these toxic effects. Finally, it provides an outlook on related research concerning BMNPs in soil. The results indicate that specific BMNPs release additives at a faster rate during decomposition, degradation, and aging, with certain compounds exhibiting increased bioavailability. Importantly, a substantial body of research has shown that BMNPs generally manifest more pronounced toxic effects in comparison to conventional micro-nano plastics (CMNPs). The toxic effects associated with BMNPs encompass a decline in soil quality and microbial biomass, disruption of nutrient cycling, inhibition of plant root growth, and negative impacts on invertebrate reproduction, survival, and fertilization rates. The rough and complex surfaces of BMNPs contribute to increased mechanical damage to tested organisms, enhance absorption by microorganisms, and disrupt normal physiological functions. Notably, the toxic effects of BMNPs on soil ecosystems are influenced by factors including concentration, type of BMNPs, exposure conditions, degradation products, and the nature of additives used. Therefore, it is crucial to standardize detection technologies and toxicity testing conditions for BMNPs. In conclusion, this review provides scientific evidence that supports effective prevention and management of BMNP pollution, assessment of its ecological risks, and governance of BMNPs-related products.
Collapse
Affiliation(s)
- Yuqing Liu
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Haoxuan Cai
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang, 110000, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, 110000, China.
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xiaochu Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan, 610000, China
| |
Collapse
|
8
|
Kushwaha M, Shankar S, Goel D, Singh S, Rahul J, Rachna K, Singh J. Microplastics pollution in the marine environment: A review of sources, impacts and mitigation. MARINE POLLUTION BULLETIN 2024; 209:117109. [PMID: 39413476 DOI: 10.1016/j.marpolbul.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Over the past few years, microplastics (MPs) pollution in the marine environment has emerged as a significant environmental concern. Poor management practices lead to millions of tons of plastic waste entering oceans annually, primarily from land-based sources like mismanaged waste, urban runoff, and industrial activities. MPs pollution in marine environments poses a significant threat to ecosystems and human health, as it adsorbs pollutants, heavy metals, and leaches additives such as plasticizers and flame retardants, thus contributing to chemical pollution. The review article provides a comprehensive overview of MPs pollution, its sources, and impacts on marine environments, including human health, detection techniques, and strategies for mitigating microplastic contamination in marine environments. The paper provides current information on microplastic pollution in marine environments, offering insights for researchers, policymakers, and the public, as well as promoting sustainable practices to protect the environment.
Collapse
Affiliation(s)
- Manzari Kushwaha
- Department of Applied Chemistry, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shiv Shankar
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India.
| | - Divya Goel
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shailja Singh
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow - 226025, India
| | - Jitin Rahul
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Km Rachna
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Jaspal Singh
- Department of Environmental Science, Bareilly College, Bareilly- 243001, Uttar Pradesh, India
| |
Collapse
|
9
|
Ganie ZA, Guchhait S, Talib M, Choudhary A, Darbha GK. Investigating the sorption of Zinc-Oxide nanoparticles on Tire-wear particles and their toxic effects on Chlorella vulgaris: Insights from toxicological models and physiological analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 483:136648. [PMID: 39612875 DOI: 10.1016/j.jhazmat.2024.136648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
This study investigated the interaction of Tire-wear particles (TWPs) with Zinc-Oxide nanoparticles (ZNPs) and studied their individual and combined toxic effects on Chlorella vulgaris in the co-presence of Humics. Physiological parameters, including growth, photosynthetic pigments, oxidative stress, and membrane damage, were analysed using Flow cytometry. Adsorption experiments exhibited that ZNPs were significantly absorbed by TWPs (qmax= 312.49 mg/g). A positive dose-response relation concerning inhibition in growth was observed in all treatment groups, and it was associated with reduced chlorophyll levels and damaged cell membranes. A negative impact of increased concentrations of TWPs and ZNPs was observed on anti-oxidant enzymes CAT and SOD; however, the impact was more severe when combined with exposure to both contaminants. Elevated concentrations of ZNPs and TWPs led to increased ROS production, lipid peroxidation and membrane damage, which could be contributing to the observed inhibition in growth. In the combined exposure groups, the Independent Action and the Abbott toxicity models revealed a synergistic effect on growth rates, which agreed with the Integrated Biomarker model results. The current study could enhance our understanding of the interaction between TWPs and metal nanoparticles in aquatic systems and offer novel understandings of the mechanisms underlying their combined toxic effects on microalgae.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Soumadip Guchhait
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Mohmmed Talib
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
10
|
Cao Z, Kim C, Li Z, Jung J. Comparing environmental fate and ecotoxicity of conventional and biodegradable plastics: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175735. [PMID: 39187074 DOI: 10.1016/j.scitotenv.2024.175735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Plastic pollution is a consequential problem worldwide, prompting the widespread use of biodegradable plastics (BPs). However, not all BPs are completely degradable under natural conditions, but instead produce biodegradable microplastics (BMPs), release chemical additives, and absorb micropollutants, thus causing toxicity to living organisms in similar manners to conventional plastics (CPs). The new problems caused by biodegradable plastics cannot be ignored and requires a thorough comparison of the differences between conventional and biodegradable plastics and microplastics. This review comprehensively compares their environmental fates, such as biodegradation and micropollutant sorption, and ecotoxicity in soil and water environments. The results showed that it is difficult to determine the natural conditions required for the complete biodegradation of BPs. Some chemical additives in BPs differ from those in CPs and may pose new threats to ecosystems. Because of functional group differences, most BMPs had higher micropollutant sorption capacities than conventional microplastics (CMPs). The ecotoxicity comparison showed that BMPs had similar or even greater adverse effects than CMPs. This review highlights several knowledge gaps in this new field and suggests directions for future studies.
Collapse
Affiliation(s)
- Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Zhihua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Nava V, Dar JY, De Santis V, Fehlinger L, Pasqualini J, Adekolurejo OA, Burri B, Cabrerizo MJ, Chonova T, Cour M, Dory F, Drost AM, Figler A, Gionchetta G, Halabowski D, Harvey DR, Manzanares-Vázquez V, Misteli B, Mori-Bazzano L, Moser V, Rotta F, Schmid-Paech B, Touchet CM, Gostyńska J. Zooming in the plastisphere: the ecological interface for phytoplankton-plastic interactions in aquatic ecosystems. Biol Rev Camb Philos Soc 2024. [PMID: 39542439 DOI: 10.1111/brv.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem processes (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, examining diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of plastics, along with their variable properties and role in forming the "plastisphere", underscores the complexity of their influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by phytoplankton-plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up and top-down processes. This review emphasises that our understanding of how these multiple interactions compare in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects in addressing the environmental challenges associated with widespread plastic pollution.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, 20126, Italy
| | - Jaffer Y Dar
- ICAR-Central Soil Salinity Research Institute, Karnal, 132001, India
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Vanessa De Santis
- Water Research Institute, National Research Council, Corso Tonolli 50, Verbania-Pallanza, Verbania, 28922, Italy
| | - Lena Fehlinger
- GEA Aquatic Ecology Group, University of Vic - Central University of Catalonia, Carrer de la Laura 13, Catalonia, 08500 Vic, Spain
| | - Julia Pasqualini
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brückstr. 3a, Magdeburg, 39114, Germany
| | - Oloyede A Adekolurejo
- Ecology and Evolution, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
- Department of Biology, Adeyemi Federal University of Education, Ondo City, Ondo, PMB 520, Nigeria
| | - Bryan Burri
- Department F-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 30 Quai Ernest-Ansermet Sciences II, Genève, CH-1205, Switzerland
| | - Marco J Cabrerizo
- Department of Ecology & Institute of Water Research, University of Granada, Campus Fuentenueva s/n, Granada, 18071, Spain
- Estación de Fotobiología Playa Unión, casilla de correos 15, Rawson, Chubut, 9103, Argentina
| | - Teofana Chonova
- Department Environmental Chemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, Dübendorf, CH-8600, Switzerland
| | | | - Flavia Dory
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, 20126, Italy
| | - Annemieke M Drost
- Department of Aquatic Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, Amsterdam, 1090 GE, The Netherlands
| | - Aida Figler
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, Budapest, 1094, Hungary
| | - Giulia Gionchetta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, 0803, Spain
| | - Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Daniel R Harvey
- Lake Ecosystems Group, UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Víctor Manzanares-Vázquez
- Department of Research and Development, Coccosphere Environmental Analysis, C/Cruz 39, 29120 Alhaurín el Grande, Málaga, Spain
| | - Benjamin Misteli
- WasserCluster Lunz - Biologische Station, Dr Carl Kupelwieser Promenade 5, Lunz am See, 3293, Austria
| | - Laureen Mori-Bazzano
- Department F-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 30 Quai Ernest-Ansermet Sciences II, Genève, CH-1205, Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, CH-8600, Switzerland
| | - Federica Rotta
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, Pavia, 27100, Italy
- Institute of Earth Science, University of Applied Science and Arts of Southern Switzerland, Via Flora Ruchat-Roncati 15, Mendrisio, CH-6850, Switzerland
| | - Bianca Schmid-Paech
- University Weihenstephan-Triesdorf of Applied Science, Am Hofgarten 4, Freising, 85354, Germany
| | - Camille M Touchet
- Université Claude Bernard - Lyon 1, "LEHNA UMR 5023, CNRS, ENTPE, 3-6, rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Julia Gostyńska
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| |
Collapse
|
12
|
Jiang Y, Niu S, Wu J. The role of algae in regulating the fate of microplastics: A review for processes, mechanisms, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175227. [PMID: 39098419 DOI: 10.1016/j.scitotenv.2024.175227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
As an important emerging pollutant, the fate of microplastics (MPs) in ecosystems is of growing global concern. In addition to hydrodynamics and animals, algae can also affect the transport of MPs in aquatic environments, which could potentially remove MPs from the water column. Although researchers have conducted many studies on the sink of MPs regulated by algae in both marine and freshwater environments, there is still a lack of comprehensive understanding coupled with the increasingly scattered study contents and findings. This review aims to provide a systematic discussion of the processes, mechanisms, and influencing factors, which are coupled with the sink of MPs changes by algae. The main processes identified include retention, flocculation, deposition, and degradation. The retention of MPs is achieved by adhesion of MPs to algae or embedment/encrustation of MPs within the epibiont matrix of algae, thereby preventing MPs from migrating with water currents. The extracellular polymeric substances (EPS) and enzymes produced by algal metabolic activities can lead not only to the formation of aggregates containing MPs but also to the biodegradation of MPs. The processes that algae alter the fate of MPs in aquatic environments are very complex and can be influenced by various factors such as algal attributes, microplastic characteristics and environmental conditions. This review provides insights into recent advances in the fate of aquatic MPs and highlights the need for further research on MPs-algae interactions, potentially shortening the knowledge gap in the sink of MPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China.
| | - Jing Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| |
Collapse
|
13
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Xie M, Cai K, Zhang J, Tu S, Feng J. Preparation of PBAT microplastics and their potential toxicity to zebrafish embryos and juveniles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107065. [PMID: 39213726 DOI: 10.1016/j.aquatox.2024.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The extensive use of traditional non-biodegradable plastics results in the generation of microplastics (MPs), forming a new pollutant that can pose significant environmental risks. Biodegradable plastics (BP) possess degradation properties and can partially replace conventional plastics, thereby reducing pollution. However, further investigation is needed into the toxicity of biodegradable microplastics (BMPs) on aquatic organisms. This study explores the toxic effects of PBAT microplastics (PBAT-BMPs) and microplastics produced from degradable PBAT/TPS (thermoplastic starch) composite film (PBAT/TPS-BMPs) on zebrafish embryos. Our findings indicate that the presence of microplastics on the embryo's surface increases with higher BMPs concentration. Nonetheless, PBAT-BMPs tend to aggregate and are blocked by the embryonic membrane, thus diminishing their toxic effects on the embryo. Acute toxicity experiments revealed that 30 mg/L of PBAT-BMPs significantly reduced the survival rate of zebrafish embryos, whereas PBAT/TPS-BMPs had a lesser effect on survival. Both types of BMPs influenced the hatching rate of the embryos, leading to prolonged incubation periods. Additionally, both types of BMPs impacted the locomotor behavior of zebrafish larvae, causing an increase in larval locomotor speed. However, these BMPs had little impact on larval body development and heartbeat behavior. Fluorescent microplastic tracer experiments demonstrated that PBAT-BMPs persisted in juvenile fish for at least 144 h and were difficult to metabolize and excrete. Our study aims to gain a better understanding of the potential effects of BMPs on aquatic ecosystems and biological health, as well as to propose effective strategies for reducing environmental pollution and protecting organisms.
Collapse
Affiliation(s)
- Mengmeng Xie
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai Cai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuhua Tu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
Lara-Topete GO, Castanier-Rivas JD, Bahena-Osorio MF, Krause S, Larsen JR, Loge FJ, Mahlknecht J, Gradilla-Hernández MS, González-López ME. Compounding one problem with another? A look at biodegradable microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173735. [PMID: 38857803 DOI: 10.1016/j.scitotenv.2024.173735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Environmental concerns about microplastics (MPs) have motivated research of their sources, occurrence, and fate in aquatic and soil ecosystems. To mitigate the environmental impact of MPs, biodegradable plastics are designed to naturally decompose, thus reducing the amount of environmental plastic contamination. However, the environmental fate of biodegradable plastics and the products of their incomplete biodegradation, especially micro-biodegradable plastics (MBPs), remains largely unexplored. This comprehensive review aims to assess the risks of unintended consequences associated with the introduction of biodegradable plastics into the environment, namely, whether the incomplete mineralization of biodegradable plastics could enhance the risk of MBPs formation and thus, exacerbate the problem of their environmental dispersion, representing a potentially additional environmental hazard due to their presumed ecotoxicity. Initial evidence points towards the potential for incomplete mineralization of biodegradable plastics under both controlled and uncontrolled conditions. Rapid degradation of PLA in thermophilic industrial composting contrasts with the degradation below 50 % of other biodegradables, suggesting MBPs released into the environment through compost. Moreover, degradation rates of <60 % in anaerobic digestion for polymers other than PLA and PHAs suggest a heightened risk of MBPs in digestate, risking their spread into soil and water. This could increase MBPs and adsorbed pollutants' mobilization. The exact behavior and impacts of additive leachates from faster-degrading plastics remain largely unknown. Thus, assessing the environmental fate and impacts of MBPs-laden by-products like compost or digestate is crucial. Moreover, the ecotoxicological consequences of shifting from conventional plastics to biodegradable ones are highly uncertain, as there is insufficient evidence to claim that MBPs have a milder effect on ecosystem health. Indeed, literature shows that the impact may be worse depending on the exposed species, polymer type, and the ecosystem complexity.
Collapse
Affiliation(s)
- Gary Ossmar Lara-Topete
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Juan Daniel Castanier-Rivas
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - María Fernanda Bahena-Osorio
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Joshua R Larsen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Frank J Loge
- Department of Civil & Environmental Engineering, University of California - Davis, Davis, CA, United States of America; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Martín Esteban González-López
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico.
| |
Collapse
|
16
|
Wang C, Zhang Y, Wang C, He M. Enhancing aggregation of microalgae on polystyrene microplastics by high light: Processes, drivers, and environmental risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135062. [PMID: 38959831 DOI: 10.1016/j.jhazmat.2024.135062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Microplastics (MPs) are emerging pollutants, causing potential threats to aquatic ecosystems and serious concern in aggregating with microalgae (critical primary producers). When entering water bodies, MPs are expected to sink below the water surface and disperse into varying water compartments with different light intensities. However, how light influences the aggregation processes of algal cells onto MPs and the associated molecular coupling mechanisms and derivative risks remain poorly understood. Herein, we investigated the aggregation behavior between polystyrene microplastics (mPS, 10 µm) and Chlorella pyrenoidosa under low (LL, 15 μmol·m-2·s-1), normal (NL, 55 μmol·m-2·s-1), and high light (HL, 150 μmol·m-2·s-1) conditions from integrated in vivo and in silico assays. The results indicated that under LL, the mPS particles primarily existed independently, whereas under NL and HL, C. pyrenoidosa tightly bounded to mPS by secreting more protein-rich extracellular polymeric substances. Infrared spectroscopy analysis and density functional theory calculation revealed that the aggregation formation was driven by non-covalent interaction involving van der Waals force and hydrogen bond. These processes subsequently enhanced the deposition and adherence capacity of mPS and relieved its phytotoxicity. Overall, our findings advance the practical and theoretical understanding of the ecological impacts of MPs in complex aquatic environments.
Collapse
Affiliation(s)
- Chun Wang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yaru Zhang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China.
| | - Meilin He
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Kukkola A, Chetwynd AJ, Krause S, Lynch I. Beyond microbeads: Examining the role of cosmetics in microplastic pollution and spotlighting unanswered questions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135053. [PMID: 38976961 DOI: 10.1016/j.jhazmat.2024.135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The presence of microplastics in cosmetics and personal care products (C&PCPs) has been increasingly in the public eye since the early 2010s. Despite increasing research into the potential environmental and health effects of microplastics, most research to date on microplastics in C&PCPs has investigated "rinse-off" products, while the potential impacts of "leave-on" C&PCPs have been largely neglected, despite these products being purchased in greater volumes and often having two or more microplastic ingredients in their formulations(CosmeticsEurope, 2018b). This review aims to synthesize the current knowledge of microplastic in C&PCPs, assessing the potential environmental and human health impacts of C&PCPs and discussing the regulatory implications. The lack of studies on leave-on C&PCPs is significant, suggesting a severe knowledge gap regarding microplastic presence in, and emissions from, C&PCPs. There is a noticeable lack of studies on the (eco)toxicological consequences of microplastic exposure from C&PCPs. As a result, significant aspects of microplastic contamination may be overlooked in the microplastic legislations emerging globally (including from the European Commission), which intend to restrict microplastic use in C&PCPs but focus on rinse-off C&PCPs only. This review highlights the potential consequences of microplastics in leave-on C&PCPs for regulatory decision-making, particularly as alternatives to microplastics are considered during the phase-out periods and spotlights the need for sufficient monitoring and research on these alternatives, to avoid unforeseen consequences.
Collapse
Affiliation(s)
- Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Andrew J Chetwynd
- Centre for Proteome Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; LEHNA, Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, 3-6 Rue Raphaël Dubois, Villeurbanne 69622, France; Institute of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Institute of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
18
|
Deo L, Benjamin LK, Osborne JW. Critical review on unveiling the toxic and recalcitrant effects of microplastics in aquatic ecosystems and their degradation by microbes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:896. [PMID: 39230754 DOI: 10.1007/s10661-024-13023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Production of synthetic plastic obtained from fossil fuels are considered as a constantly growing problem and lack in the management of plastic waste has led to severe microplastic pollution in the aquatic ecosystem. Plastic particles less than 5mm are termed as microplastics (MPs), these are pervasive in water and soil, it can also withstand longer period of time with high durability. It can be broken down into smaller particles and can be adsorbed by various life-forms. Most marine organisms tend to consume plastic debris that can be accumulated easily into the vertebrates, invertebrates and planktonic entities. Often these plastic particles surpass the food chain, resulting in the damage of various organs and inhibiting the uptake of food due to the accumulation of microplastics. In this review, the physical and chemical properties of microplastics, as well as their effects on the environment and toxicity of their chemical constituents are discussed. In addition, the paper also sheds light on the potential of microorganisms such as bacteria, fungi, and algae which play a pivotal role in the process of microplastics degradation. The mechanism of microbial degradation, the factors that affect degradation, and the current advancements in genetic and metabolic engineering of microbes to promote degradation are also summarized. The paper also provides information on the bacterial, algal and fungal degradation mechanism including the possible enzymes involved in microplastic degradation. It also investigates the difficulties, limitations, and potential developments that may occur in the field of microbial microplastic degradation.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
19
|
Yin Y, Ma Y, Li Q, Chen N, Wen S. Stressful Effects of Individual and Combined Exposure to Low-Concentration Polylactic Acid Microplastics and Chromium on Marine Medaka Larvae ( Oryzias melastigma). TOXICS 2024; 12:594. [PMID: 39195695 PMCID: PMC11359823 DOI: 10.3390/toxics12080594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Microplastics and heavy metal pollution frequently co-occur in the marine environment, raising concerns about their potentially harmful impacts on marine fish. This study undertook a comprehensive evaluation of the individual and combined stress effects of polylactide microplastics (PLA-MPs) and chromium (Cr) on marine medaka larvae. Following a 14-day exposure to PLA-MPs (100 μg/L) and Cr (50 μg/L), both individually and in combination, significant increases in heart rate and body length were observed. Notably, the combined exposure to PLA-MPs and Cr caused marked histopathological alterations, including shedding, atrophy, and lysis of the intestinal tissues. Furthermore, both individual and combined exposure induced oxidative stress in fish larvae, leading to changes in various enzyme activity indices. Individual exposure to either PLA-MPs or Cr led to anxious behavior in the larvae, whereas combined exposure not only caused anxious behavior but also altered swimming patterns. These findings suggest that combined exposure to PLA-MPs and Cr can exacerbate the toxic effects on marine medaka larvae.
Collapse
Affiliation(s)
- Yuan Yin
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Y.Y.)
| | - Yini Ma
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiang Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Y.Y.)
| | - Nan Chen
- Hainan Ecological Environmental Monitoring Center, Haikou 570100, China
| | - Shaobai Wen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Y.Y.)
| |
Collapse
|
20
|
Li L, Liu Q, Li B, Zhao Y. The Effecting Mechanisms of 100 nm Sized Polystyrene Nanoplastics on the Typical Coastal Alexandrium tamarense. Int J Mol Sci 2024; 25:7297. [PMID: 39000403 PMCID: PMC11242399 DOI: 10.3390/ijms25137297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Due to the increase in nanoplastics (NPs) abundance in aquatic environments, their effects on phytoplankton have aroused large research attention. In this study, 100 nm sized polystyrene NPs were chosen to investigate their effecting performance and mechanisms on a typical dinoflagellates Alexandrium tamarense. The results indicated the population growth and photosynthetic efficiencies of A. tamarense were significantly inhibited by NPs exposure, as well as the increase in cellular total carotenoids and paralytic shellfish toxins (PSTs). Meanwhile, the cellar ROS levels increased, corresponding to the increased activities or contents of multiple antioxidant components, including SOD, CAT, GPX, GR, GSH and GSSG. The transcriptional results support the physiological-biochemical results and further revealed the down-regulation of genes encoding the light reaction centers (PSI and PSII) and up-regulation of genes encoding the antioxidant components. Up-regulation of genes encoding key enzymes of the Calvin cycle and glycolytic pathway together with the TCA cycle could accelerate organic carbon and ATP production for A. tamarense cells resistant to NPs stress. Finally, more Glu and acetyl-CoA produced by the enhanced GSH cycle and the glycolytic pathway, respectively, accompanied by the up-regulation of Glu and Arg biosynthesis genes supported the increase in the PST contents under NPs exposure. This study established a data set involving physiological-biochemical changes and gene information about marine dinoflagellates responding to NPs, providing a data basis for further evaluating the ecological risk of NPs in marine environments.
Collapse
Affiliation(s)
- Luying Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China;
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Qian Liu
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China;
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Qingdao 266104, China
| | - Bo Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Yan Zhao
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
21
|
Cheng X, Hou Y, Lin X, Wang C, Shen B, Zhuo S, Li Z, Peng L, Su Z. UV aging may enhance adsorption capacity of Poly (butylene adipate-co-terephthalate) (PBAT) to heavy metals and toxicity to zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106938. [PMID: 38788459 DOI: 10.1016/j.aquatox.2024.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Compared with the fossil-based plastics, biodegradable plastics are more easily decomposed into small-sized particles (e.g., microplastics). However, the role of aged biodegradable plastics in being vector of co-existed pollutants and potential toxicological effects remain to be elucidated. The present study selected micro-sized biodegradable polymer Poly (butylene adipate-co-terephthalate) (PBAT) as the object, aiming to explore its aging process, environmental behavior with heavy metals (Cu and Pb), and the toxic effects on zebrafish. The results showed that distinct changes such as cracks and severe deformation can be observed on the surface of PBAT after 60 days of UV aging, and the functional groups changed consequently. The maximum adsorption capacity of aged PBAT for Cu and Pb reached 0.967 and 0.939 mg·g-1, which increased by 1.32 and 1.46 times, respectively. The results of 7-day acute toxicology experiments suggested that the adsorption behavior of aged PBAT may alleviate the toxic effects of heavy metals Cu and Pb on zebrafish in short-term exposure, however it could simultaneously cause a serious imbalance of intestinal microorganisms in zebrafish. As demonstrated, the coexistence of aged PBAT and heavy metals (Cu, Pb) can seriously reduce the intestinal microbial diversity and richness of zebrafish, which may induce more serious toxicity and disease in long-term exposure to pollutants. This study could provide fundamental data for better understanding on the adsorption behavior and ecological risk of aged biodegradable plastics with coexisted pollutants.
Collapse
Affiliation(s)
- Xing Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province./Center for Eco-Environment Restoration Engineering of Hainan Province/School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China
| | - Yipeng Hou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province./Center for Eco-Environment Restoration Engineering of Hainan Province/School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China
| | - Xubing Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province./Center for Eco-Environment Restoration Engineering of Hainan Province/School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China
| | - Chudan Wang
- Hainan Provincial Key Laboratory of Marine Geological Resources and Environment, Haikou 570203, China
| | - Baozhen Shen
- Hainan Provincial Key Laboratory of Marine Geological Resources and Environment, Haikou 570203, China
| | - Shengchi Zhuo
- Eternal Materials Co., Ltd. Suzhou, Jiangsu 215000, PR China
| | - Zhen Li
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province./Center for Eco-Environment Restoration Engineering of Hainan Province/School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China.
| | - Zengjian Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province./Center for Eco-Environment Restoration Engineering of Hainan Province/School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
22
|
Wang D, Xiong F, Wu L, Liu Z, Xu K, Huang J, Liu J, Ding Q, Zhang J, Pu Y, Sun R. A progress update on the biological effects of biodegradable microplastics on soil and ocean environment: A perfect substitute or new threat? ENVIRONMENTAL RESEARCH 2024; 252:118960. [PMID: 38636648 DOI: 10.1016/j.envres.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.
Collapse
Affiliation(s)
- Daqin Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingjie Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhihui Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Barari F, Eydi Gabrabad M, Bonyadi Z. Recent progress on the toxic effects of microplastics on Chlorella sp. in aquatic environments. Heliyon 2024; 10:e32881. [PMID: 38975222 PMCID: PMC11226894 DOI: 10.1016/j.heliyon.2024.e32881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Microplastics (MPs) are emerging contaminants that have harmful effects on ecosystems. Microalgae are important primary producers in aquatic environments, providing nutrients for various organisms. These microorganisms may be affected by MPs. Therefore, it is important to investigate the toxicity aspects of different MPs on Chlorella species. It can be seen that the BG-11 culture medium was the most commonly used medium in 40 % of the studies for the growth of Chlorella sp. Chlorella sp. grows optimally at a temperature of 25 °C and a pH of 7. Most studies show that Chlorella sp. can grow in the range of 3000-6000 lux. Moreover, various techniques have been used to analyze the morphological properties of MPs in different studies. These techniques included scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and transmission electron microscopy (TEM), which were used in 65 %, 35 %, and 27 % of the studies, respectively. 53 % of the research has focused on the toxic effects of PS on Chlorella sp. Findings show that 41 % of the studies investigated MPs concentrations in the range of 10-100 mg/L, followed by 32 % of the studies in the range of 100-1000 mg/L. The studies found that MPs were used in a spherical shape in 45 % of the cases. The enzymes most affected by MPs were superoxide dismutase (SOD) and Malondialdehyde (MDA), accounting for 48 % of the studies each. Additionally, exposure to MPs increased the activity of enzymes such as SOD and MDA. In general, it can be concluded that MPs had a relatively high negative effect on the growth of Chlorella sp.
Collapse
Affiliation(s)
- Fateme Barari
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Eydi Gabrabad
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Gheorghe V, Gheorghe CG, Popovici DR, Mihai S, Dragomir RE, Somoghi R. Reduction of Oxygen Production by Algal Cells in the Presence of O-Chlorobenzylidene Malononitrile. Bioengineering (Basel) 2024; 11:623. [PMID: 38927859 PMCID: PMC11200456 DOI: 10.3390/bioengineering11060623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Chemical compounds, such as the CS gas employed in military operations, have a number of characteristics that impact the ecosystem by upsetting its natural balance. In this work, the toxicity limit and microorganism's reaction to the oxidative stress induced by O-chlorobenzylidenemalonitrile, a chemical found in CS gas, were assessed in relation to the green algae Chlorella pyrenoidosa. A number of parameters, including the cell growth curve, the percent inhibition in yield, the dry cell weight, the percentage viability and productivity of algal biomass flocculation activity, and the change in oxygen production, were analyzed in order to comprehend the toxicological mechanisms of O-chlorobenzylidenemalonitrile on algal culture. Using fluorescence and Fourier transform infrared spectroscopy (FTIR), the content of chlorophyll pigments was determined. The values obtained for pH during the adaptation period of the C. pyrenoidosa culture were between 6.0 and 6.8, O2 had values between 6.5 and 7.0 mg/L, and the conductivity was 165-210 µS/cm. For the 20 µg/mL O-chlorobenzylidenemalonitrile concentration, the cell viability percentage was over 97.4%, and for the 150 µg/mL O-chlorobenzylidenemalonitrile concentration was 74%. The ECb50 value for C. pyrenoidosa was determined from the slope of the calibration curve; it was estimated by extrapolation to the value of 298.24 µg/mL. With the help of this study, basic information on the toxicity of O-chlorobenzylidenemalonitrile to aquatic creatures will be available, which will serve as a foundation for evaluating the possible effects on aquatic ecosystems. The management of the decontamination of the impacted areas could take the results into consideration.
Collapse
Affiliation(s)
| | - Catalina Gabriela Gheorghe
- Chemistry and Chemical Engineering Department, Petroleum—Gas University of Ploiesti, 39 Bvd. Bucuresti, 100520 Ploiesti, Romania
| | - Daniela Roxana Popovici
- Chemistry and Chemical Engineering Department, Petroleum—Gas University of Ploiesti, 39 Bvd. Bucuresti, 100520 Ploiesti, Romania
| | | | | | | |
Collapse
|
25
|
Chu WC, Gao YY, Wu YX, Liu FF. Biofilm of petroleum-based and bio-based microplastics in seawater in response to Zn(II): Biofilm formation, community structure, and microbial function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172397. [PMID: 38608889 DOI: 10.1016/j.scitotenv.2024.172397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Microplastic biofilms are novel vectors for the transport and spread of pathogenic and drug-resistant bacteria. With the increasing use of bio-based plastics, there is an urgent need to investigate the microbial colonization characteristics of these materials in seawater, particularly in comparison with conventional petroleum-based plastics. Furthermore, the effect of co-occurring contaminants, such as heavy metals, on the formation of microplastic biofilms and bacterial communities remains unclear. In this study, we compared the biofilm bacterial community structure of petroleum-based polyethylene (PE) and bio-based polylactic acid (PLA) in seawater under the influence of zinc ions (Zn2+). Our findings indicate that the biofilm on PLA microplastics in the late stage was impeded by the formation of a mildly acidic microenvironment resulting from the hydrolysis of the ester group on PLA. The PE surface had higher bacterial abundance and diversity, with a more intricate symbiotic pattern. The bacterial structures on the two types of microplastics were different; PE was more conducive to the colonization of anaerobic bacteria, whereas PLA was more favorable for the colonization of aerobic and acid-tolerant species. Furthermore, Zn increased the proportion of the dominant genera that could utilize microplastics as a carbon source, such as Alcanivorax and Nitratireductor. PLA had a greater propensity to harbor and disseminate pathogenic and drug-resistant bacteria, and Zn promoted the enrichment and spread of harmful bacteria such as, Pseudomonas and Clostridioides. Therefore, further research is essential to fully understand the potential environmental effects of bio-based microplastics and the role of heavy metals in the dynamics of bacterial colonization.
Collapse
Affiliation(s)
- Wang-Chao Chu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yuan-Yuan Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yu-Xin Wu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
26
|
Xu SY, Mo YH, Liu YJ, Wang X, Li HY, Yang WD. Physiological and genetic responses of the benthic dinoflagellate Prorocentrum lima to polystyrene microplastics. HARMFUL ALGAE 2024; 136:102652. [PMID: 38876530 DOI: 10.1016/j.hal.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Microplastics are well known as contaminants in marine environments. With the development of biofilms, most microplastics will eventually sink and deposit in benthic environment. However, little research has been done on benthic toxic dinoflagellates, and the effects of microplastics on benthic dinoflagellates are unknown. Prorocentrum lima is a cosmopolitan toxic benthic dinoflagellate, which can produce a range of polyether metabolites, such as diarrhetic shellfish poisoning (DSP) toxins. In order to explore the impact of microplastics on marine benthic dinoflagellates, in this paper, we studied the effects of polystyrene (PS) on the growth and toxin production of P. lima. The molecular response of P. lima to microplastic stress was analyzed by transcriptomics. We selected 100 nm, 10 μm and 100 μm PS, and set three concentrations of 1 mg L-1, 10 mg L-1 and 100 mg L-1. The results showed that PS exposure had limited effects on cell growth, but increased the OA and extracellular polysaccharide content at high concentrations. After exposure to PS MPs, genes associated with DSP toxins synthesis, carbohydrate synthesis and energy metabolism, such as glycolysis, TCA cycle and pyruvate metabolism, were significantly up-regulated. We speculated that after exposure to microplastics, P. lima may increase the synthesis of DSP toxins and extracellular polysaccharides, improve the level of energy metabolism and gene expression of ABC transporter, thereby protecting algal cells from damage. Our findings provide new insights into the effects of microplastics on toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Si-Yuan Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yan-Hang Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
27
|
Ahsan WA, Lin C, Hussain A, Sheraz M. Sustainable struggling: decoding microplastic released from bioplastics-a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:554. [PMID: 38760486 DOI: 10.1007/s10661-024-12721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review delves into the complex issue of plastic pollution, focusing on the emergence of biodegradable plastics (BDPs) as a potential alternative to traditional plastics. While BDPs seem promising, recent findings reveal that a large number of BDPs do not fully degrade in certain natural conditions, and they often break down into microplastics (MPs) even faster than conventional plastics. Surprisingly, research suggests that biodegradable microplastics (BDMPs) could have more significant and long-lasting effects than petroleum-based MPs in certain environments. Thus, it is crucial to carefully assess the ecological consequences of BDPs before widely adopting them commercially. This review thoroughly examines the formation of MPs from prominent BDPs, their impacts on the environment, and adsorption capacities. Additionally, it explores how BDMPs affect different species, such as plants and animals within a particular ecosystem. Overall, these discussions highlight potential ecological threats posed by BDMPs and emphasize the need for further scientific investigation before considering BDPs as a perfect solution to plastic pollution.
Collapse
Affiliation(s)
- Wazir Aitizaz Ahsan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan
| | - Chitsan Lin
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan.
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan.
| | - Adnan Hussain
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan
| | - Mahshab Sheraz
- Advanced Textile R&D, Department Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| |
Collapse
|
28
|
Zhang D, Zhang L, Yuan C, Zhai K, Xia W, Duan Y, Zhao B, Chu J, Yao X. Brassinolide as potential rescue agent for Pinellia ternata grown under microplastic condition: Insights into their modulatory role on photosynthesis, redox homeostasis, and AsA-GSH cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134116. [PMID: 38547753 DOI: 10.1016/j.jhazmat.2024.134116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Microplastic (MP), as a new pollutant, not only affects the growth and development of plants but also may affect the secondary metabolites of plants. The anti-tumor role of Pinellia ternata is related to secondary metabolites. The role of brassinolide (BR) in regulating plant resistance is currently one of the research hotspots. The paper mainly explores the regulation of BR on growth and physiology of Pinellia ternata under MP stress. The experimental design includes two levels of MP (0, 1%) and two levels of BR (0, 0.1 mg/L). MP led to a marked reduction in plant height (15.0%), Fv/Fm (3.2%), SOD and APX activity (15.0%, 5.1%), whereas induced an evident raise in the rate of O2·- production (29.6%) and GSH content (4.4%), as well as flavonoids (6.8%), alkaloids (75%), and β-sitosterol (26.5%) contents. Under MP addition, BR supply significantly increased plant height (15.7%), aboveground and underground biomass (16.1%, 10.3%), carotenoid and GSH content (11.8%, 4.2%), Fv/Fm (2.9%), and activities of SOD, GR, and MDHAR (32.2%, 21.08%, 20.9%). These results indicate that MP suppresses the growth of P. ternata, although it promotes secondary metabolism. BR can alleviate the inhibitory effect of MP on growth by improving photosynthesis, redox homeostasis, and the AsA-GSH cycle.
Collapse
Affiliation(s)
- Dan Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Lulu Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Chengwei Yuan
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Kuizhi Zhai
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Bingnan Zhao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
29
|
Gao M, Peng H, Zhao X, Xiao Z, Qiu W, Song Z. Effect of cadmium on polystyrene transport in parsley roots planted in a split-root system and assessment of the combined toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171633. [PMID: 38471591 DOI: 10.1016/j.scitotenv.2024.171633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Micro and nanoplastics (MPs/NPs) coupled with heavy metals are prevalent in both aquatic and terrestrial ecosystems. Their ecological toxicity and combined adverse effects have obtained significant concern. Past studies primarily focused on how MPs/NPs influence the behavior of heavy metals. Yet, the possible effects of heavy metals on MP/NP transport and toxicity within co-contaminated systems are still not well-understood. In this study, we conducted split-root experiments to explore the transport and toxicity of polystyrene (PS) particles of varying sizes in parsley seedlings, both with and without the addition of cadmium (Cd). Both the PS-NPs (100 nm) and PS-MPs (300 nm) traveled from the PS-spiked roots (Roots-1) to the non-PS-spiked roots (Roots-2), with or without Cd, possibly because of phloem transport. Furthermore, the presence of Cd reduced the accumulation and movement of PS-NP/MP in the roots, likely due to the increased positive charge (Cd2+) on the PS surface. PS-NPs/MPs in both Roots-1 and Roots-2 were observed using transmission electron microscopy (TEM). When Cd was added to either Roots-1 (PS + Cd|H) or Roots-2 (PS|Cd), there was a minor reduction in the chlorophyll a and carotenoids content in leaves with PS|H. The adverse impacts of MPs|H on both indicators were influenced by the MP concentration. However, chlorophyll b significantly increased in the PS|H, PS + Cd|H, and PS|Cd treatments. Consequently, the chlorophyll a/b ratio declined, indicating inhibition of photosynthesis. The dehydrogenase content showed a minor change in Roots-1 and Roots-2 without Cd stress, whereas it significantly decreased on the Cd-spiked side and subsequently inhibited root growth. In contrast, the marked rise in glutathione (GSH) levels within Cd-spiked roots suggested, based on Gaussian analysis, that GSH and Cd chelation were instrumental in mitigating Cd toxicity. When Cd was introduced to both Roots-1 and Roots-2 simultaneously (PS + Cd|Cd), the aforementioned index showed a notable decline.
Collapse
Affiliation(s)
- Minling Gao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Hongchang Peng
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Xuesong Zhao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Zhengzhen Xiao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Hamilton 3240, New Zealand
| | - Zhengguo Song
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China.
| |
Collapse
|
30
|
Du M, Pu Q, Xu Y, Li Y, Li X. Improved microalgae carbon fixation and microplastic sedimentation in the lake through in silico method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171623. [PMID: 38485006 DOI: 10.1016/j.scitotenv.2024.171623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The impact of microplastics in lake water environments on microalgae carbon fixation and microplastic sedimentation has attracted global attention. The molecular dynamic simulation method was used to design microplastic additive proportioning schemes for improving microalgae carbon fixation and microplastic sedimentation. Results showed that the harm of microplastics can be effectively alleviated by adjusting the proportioning scheme of plastic additives. Besides, the decabromodiphenyl oxide (DBDPO) was identified as the main additive that affect the microalgae carbon fixation and microplastic sedimentation. Thus, a molecular modification based on CiteSpace visual analysis was firstly used and 12 DBDPO derivatives were designed. After the screening, DBDPO-2 and DBDPO-5 became the environmentally friendly DBDPO alternatives, with the highest microalgae carbon fixation and microplastic sedimentation ability enhancement of over 25 %. Compared to DBDPO, DBDPO derivatives were found easier to stimulate the adsorption and binding ability of surrounding hotspot amino acids to CO2 and ribulose-5-phosphate, increasing the solvent-accessible surface area of microplastics, thus improving the microalgae carbon fixation and microplastic sedimentation ability. This study provides theoretical support for simultaneously promoting the microalgae carbon fixation and microplastic sedimentation in the lake water environment and provides scientific basis for the protection and sustainable development of lake water ecosystem.
Collapse
Affiliation(s)
- Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yingjie Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's A1B 3X5, Canada.
| |
Collapse
|
31
|
Lou Y, Wang Y, Li S, Yu F, Liu X, Cong Y, Li Z, Jin F, Zhang M, Yao Z, Wang J. Different responses of marine microalgae Phaeodactylum tricornutum upon exposures to WAF and CEWAF of crude oil: A case study coupled with stable isotopic signatures. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133833. [PMID: 38401215 DOI: 10.1016/j.jhazmat.2024.133833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024]
Abstract
Increasing use of chemical dispersants for oil spills highlights the need to understand their adverse effects on marine microalgae and nutrient assimilation because the toxic components of crude oil can be more bioavailable. We employed the crude oil water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) to compare different responses in marine microalgae (Phaeodactylum tricornutum) coupled with stable isotopic signatures. The concentration and proportion of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs), which are key toxic components in crude oil, increased after dispersant addition. CEWAF exposure caused higher percent growth inhibition and a lower chlorophyll-a level of microalgae than those after WAF exposure. Compared with WAF exposure, CEWAF led to an enhancement in the self-defense mechanism of P. tricornutum, accompanied by an increased content of extracellular polymeric substances. 13C-depletion and carbon assimilation were altered in P. tricornutum, suggesting more HMW PAHs could be utilized as carbon sources by microalgae under CEWAF. CEWAF had no significant effects on the isotopic fractionation or assimilation of nitrogen in P. tricornutum. Our study unveiled the impact on the growth, physiological response, and nutrient assimilation of microalgae upon WAF and CEWAF exposures. Our data provide new insights into the ecological effects of dispersant applications for coastal oil spills.
Collapse
Affiliation(s)
- Yadi Lou
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Shiyue Li
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Fuwei Yu
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China; School of Chemical, Dalian University of Technology, Dalian 116024, China
| | - Xing Liu
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yi Cong
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhaochuan Li
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Fei Jin
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Mingxing Zhang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ziwei Yao
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Juying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
32
|
Du Y, Huang Q, Li S, Cai M, Liu F, Huang X, Zheng F, Lin L. Carbon sequestration reduced by the interference of nanoplastics on copper bioavailability. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133841. [PMID: 38394898 DOI: 10.1016/j.jhazmat.2024.133841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Microplastics (MPs) have been recognized as a serious new pollutant, especially nanoplastics (NPs) pose a greater threat to marine ecosystem than larger MPs. Within these ecosystems, phytoplankton serve as the foundational primary producers, playing a critical role in carbon sequestration. Copper (Cu), a vital cofactor for both photosynthesis and respiration in phytoplankton, directly influences their capacity to regulate atmospheric carbon. Therefore, we assessed the impact of NPs on Cu bioavailability and carbon sequestration capacity. The results showed that polystyrene nanoplastics (PS-NPs) could inhibit the growth of Thalassiosira weissflogii (a commonly used model marine diatom) and Chlorella pyrenoidosa (a standard strain of green algae). The concentration of Cu uptake by algae has a significant negative correlation with COPT1 (a Cu uptake protein), but positive with P-ATPase (a Cu efflux protein). Interestingly, PS-NPs exposure could reduce Cu uptake and carbon Cu sequestration capacity of algae, i.e., when the concentration of PS-NPs increases by 1 mg/L, the concentration of fixed carbon dioxide decreases by 0.0023 ppm. This provides a new perspective to reveal the influence mechanisms of PS-NPs on the relationship between Cu biogeochemical cycling and carbon source and sink.
Collapse
Affiliation(s)
- Yanting Du
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Qianyan Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shunxing Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Minggang Cai
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Fengjiao Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Fengying Zheng
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Luxiu Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
33
|
Yu Y, Liu J, Zhu J, Lei M, Huang C, Xu H, Liu Z, Wang P. The interfacial interaction between typical microplastics and Pb 2+ and their combined toxicity to Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170591. [PMID: 38309345 DOI: 10.1016/j.scitotenv.2024.170591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Microplastics (MPs), a new type of pollutant, have attracted much attention worldwide. MPs are often complexed with other pollutants such as heavy metals, resulting in combined toxicity to organisms in the environment. Studies on the combined toxicity of MPs and heavy metals have usually focused on the marine, while on the freshwater are lacking. In order to understand the combined toxic effects of MPs and heavy metals in the freshwater, five typical MPs (PVC, PE, PP, PS, PET) were selected to investigate the adsorption characteristics of MPs to Pb2+ before and after the MPs aging by ultraviolet (UV) irradiation through static adsorption tests. The results showed that UV aging enhanced adsorption of Pb2+ by MPs. It is noteworthy that MPs-PET had the highest adsorption capacity for Pb2+, and the interaction between MPs-PET and Pb2+ was the strongest. We specifically selected MPs-PET to study its combined toxicity with Pb2+ to Chlorella pyrenoidosa. In the combined toxicity test, MPs-PET and Pb2+ had significant toxic effects on Chlorella pyrenoidosa in the individual exposure, and the toxicity of individual Pb2+ exposure was greater than that of individual MPs-PET exposure. In the combined exposure, when MPs-PET and Pb2+ without adsorption (MPs-PET/Pb2+), MPs-PET and Pb2+ had a synergistic effect, which would produce strong physical and chemical stress on Chlorella pyrenoidosa simultaneously, and the toxic effect was the most significant. After the adsorption of MPs-PET and Pb2+ (MPs-PET@Pb2+), the concentration and activity of Pb2+ decreased due to the adsorption and fixation of MPs-PET, and the chemical stress on Chlorella pyrenoidosa was reduced, but the physical stress of MPs-PET still existed and posed a serious threat to the survival of Chlorella pyrenoidosa. This study has provided a theoretical basis for further assessment of the potential environmental risks of MPs in combination with other pollutants such as heavy metals.
Collapse
Affiliation(s)
- Yi Yu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiahao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Mingjing Lei
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Department of Biology, Eastern New Mexico University, NM 88130, USA
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
34
|
Tao S, Li T, Li M, Yang S, Shen M, Liu H. Research advances on the toxicity of biodegradable plastics derived micro/nanoplastics in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170299. [PMID: 38272086 DOI: 10.1016/j.scitotenv.2024.170299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The detrimental effects of plastic and microplastic accumulation on ecosystems are widely recognized and indisputable. The emergence of biodegradable plastics (BPs) offers a practical solution to plastic pollution. Problematically, however, not all BPs can be fully degraded in the environment. On the contrary, the scientific community has demonstrated that BPs are more likely than conventional plastics (CPs) to degrade into micro/nanoplastics and release additives, which can have similar or even worse effects than microplastics. However, there is very limited information available on the environmental toxicity assessment of BMPs. The absence of a toxicity evaluation system and the uncertainty regarding combined toxicity with other pollutants also impede the environmental toxicity assessment of BMPs. Currently, research is focused on thoroughly exploring the toxic effects of biodegradable microplastics (BMPs). This paper reviews the pollution status of BMPs in the environment, the degradation behavior of BPs and the influencing factors. This paper comprehensively summarizes the ecotoxicological effects of BPs on ecosystems, considering animals, plants, and microorganisms in various environments such as water bodies, soil, and sediment. The focus is on distinguishing between BMPs and conventional microplastics (CMPs). In addition, the combined toxic effects of BMPs and other pollutants are also being investigated. The findings suggest that BMPs may have different or more severe impacts on ecosystems. The rougher and more intricate surface of BMPs increases the likelihood of causing mechanical damage to organisms and breaking down into smaller plastic particles, releasing additives that lead to a series of cascading negative effects on related organisms and ecosystems. In the case of knowledge gaps, future research is also proposed and anticipated to investigate the toxic effects of BMPs and their evaluation.
Collapse
Affiliation(s)
- Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Mingyu Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shengxin Yang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Hui Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
35
|
Tang B, Zhang L, Salam M, Yang B, He Q, Yang Y, Li H. Revealing the environmental hazard posed by biodegradable microplastics in aquatic ecosystems: An investigation of polylactic acid's effects on Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123347. [PMID: 38215868 DOI: 10.1016/j.envpol.2024.123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
The influence of petroleum-based microplastics (MPs) on phytoplankton has been extensively studied, while research on the impact of biodegradable MPs, derived from alternative plastics to contest the environmental crisis, remains limited. This study performed a 63 days co-incubation experiment to assess the effect of polylactic acid MPs (PLA-MPs) on the growth, physiology, and carbon utilization of M. aeruginosa and the change in PLA-MPs surface properties. The results showed that despite PLA-MPs induced oxidative stress and caused membrane damage in M. aeruginosa, the presence of PLA-MPs (10, 50, and 200 mg/L) triggered significant increases (p < 0.05) in the density of M. aeruginosa after 63 days. Specifically, the algal densities upon 50 and 200 mg/L PLA-MPs exposure were increased by 20.91% and 36.31% relative to the control, respectively. Meanhwhile, the reduced C/O ratio on PLA-MPs surface and change in PLA-MPs morphological characterization, which is responsible for substantially increase in the aquatic dissolved inorganic carbon concentration during the co-incubation, implying the degradation of PLA-MPs; thus, provided sufficient carbon resources that M. aeruginosa could assimilate. This was in line with the declined intracellular carbonic anhydrase content in M. aeruginosa. This study is the first attempt to uncover the interaction between PLA-MPs and M. aeruginosa, and the finding that their interaction promotes the degrading of PLA-MPs meanwhile favoring M. aeruginosa growth will help elucidate the potential risk of biodegradable MPs in aquatic environment.
Collapse
Affiliation(s)
- Bingran Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing, 400044, China
| | - Lixue Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing, 400044, China
| | - Muhammad Salam
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Bing Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Ecological and Environment Monitoring Center of Chongqing, Chongqing, 401147, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing, 400044, China
| | - Yongchuan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing, 400044, China.
| |
Collapse
|
36
|
Nik Mut NN, Na J, Jung J. A review on fate and ecotoxicity of biodegradable microplastics in aquatic system: Are biodegradable plastics truly safe for the environment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123399. [PMID: 38242301 DOI: 10.1016/j.envpol.2024.123399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Plastic products are extensively used worldwide, but inadequate management of plastic waste results in significant plastic pollution. Biodegradable plastic (BPs) offers an alternative to traditional plastics, however, not all BPs can fully degrade under natural conditions. Instead, they may deteriorate into biodegradable microplastic (BMPs) at a faster rate than conventional plastic, thereby posing an additional hazard to aquatic environments. This study provides a comprehensive overview of the fate of BPs in aquatic systems and their eco-toxicological effects on aquatic organisms such as algae, invertebrates, and fish. The findings highlight that BMPs have comparable or heightened effects compared to conventional microplastics (MPs) which physiochemical characteristic of the polymer itself or by the chemical leached from the polymeric matrix can affect aquatic organisms. While BPs is not a flawless solution to address plastic pollution, future research should prioritize investigating their production, environmental behavior, ecological impact, and whether BMPs inflict greater harm than conventional MPs.
Collapse
Affiliation(s)
- Nik Nurhidayu Nik Mut
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- OJEong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
37
|
Ding S, Gu X, Sun S, He S. Optimization of microplastic removal based on the complementarity of constructed wetland and microalgal-based system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169081. [PMID: 38104829 DOI: 10.1016/j.scitotenv.2023.169081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
As one of the emblematic emerging contaminants, microplastics (MPs) have aroused great public concern. Nevertheless, the global community still insufficiently acknowledges the ecological health risks and resolution strategies of MP pollution. As the nature-based biotechnologies, the constructed wetland (CW) and microalgal-based system (MBS) have been applied in exploring the removal of MPs recently. This review separately presents the removal research (mechanism, interactions, implications, and technical defects) of MPs by a single method of CWs or MBS. But one thing with certitude is that the exclusive usage of these techniques to combat MPs has non-negligible and formidable challenges. The negative impacts of MP accumulation on CWs involve toxicity to macrophytes, substrates blocking, and nitrogen-removing performance inhibition. While MPs restrict MBS practical application by making troubles for separation difficulties of microalgal-based aggregations from effluent. Hence the combined strategy of microalgal-assisted CWs is proposed based on the complementarity of biotechnologies, in an attempt to expand the removing size range of MPs, create more biodegradable conditions and improve the effluent quality. Our work evaluates and forecasts the potential of integrating combination for strengthening micro-polluted wastewater treatment, completing the synergistic removal of MP-based co-pollutants and achieving long-term stability and sustainability, which is expected to provide new insights into MP pollution regulation and control.
Collapse
Affiliation(s)
- Shaoxuan Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
38
|
Zhang Y, Wang JX, Liu Y, Zhang JT, Wang JH, Chi ZY. Effects of environmental microplastic exposure on Chlorella sp. biofilm characteristics and its interaction with nitric oxide signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169659. [PMID: 38159749 DOI: 10.1016/j.scitotenv.2023.169659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Microalgal biofilm is promising in simultaneous pollutants removal, CO2 fixation, and biomass resource transformation when wastewater is used as culturing medium. Nitric oxide (NO) often accumulates in microalgal cells under wastewater treatment relevant abiotic stresses such as nitrogen deficiency, heavy metals, and antibiotics. However, the influence of emerging contaminants such as microplastics (MPs) on microalgal intracellular NO is still unknown. Moreover, the investigated MPs concentrations among existing studies were mostly several magnitudes higher than in real wastewaters, which could offer limited guidance for the effects of MPs on microalgae at environment-relevant concentrations. Therefore, this study investigated three commonly observed MPs in wastewater at environment-relevant concentrations (10-10,000 μg/L) and explored their impacts on attached Chlorella sp. growth characteristics, nutrients removal, and anti-oxidative responses (including intracellular NO content). The nitrogen source NO3--N at 49 mg/L being 20 % of the nitrogen strength in classic BG-11 medium was selected for MPs exposure experiments because of least intracellular NO accumulation, so that disturbance of intracellular NO by nitrogen availability could be avoided. Under such condition, 10 μg/L polyethylene (PE) MPs displayed most significant microalgal growth inhibition comparing with polyvinyl chloride (PVC) and polyamide (PA) MPs, showing extraordinarily low chlorophyll a/b ratios, and highest superoxide dismutase (SOD) activity and intracellular NO content after 12 days of MPs exposure. PVC MPs exposed cultures displayed highest malonaldehyde (MDA) content because of the toxic characteristics of organochlorines, and most significant correlations of intracellular NO content with conventional anti-oxidative parameters of SOD, CAT (catalase), and MDA. MPs accelerated phosphorus removal, and the type rather than concentration of MPs displayed higher influences, following the trend of PE > PA > PVC. This study expanded the knowledge of microalgal biofilm under environment-relevant concentrations of MPs, and innovatively discovered the significance of intracellular NO as a more sensitive indicator than conventional anti-oxidative parameters under MPs exposure.
Collapse
Affiliation(s)
- Ying Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yang Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Tian Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
39
|
Kim JY, Kim KY, Jung WS, Kim HS, Oh B, Park J, Choi YE. Effects of micro-sized biodegradable plastics on Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169044. [PMID: 38061645 DOI: 10.1016/j.scitotenv.2023.169044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 12/17/2023]
Abstract
Plethora of plastics are being used in current society, generating huge amounts of plastic waste. Non-biodegradability of conventional plastics is one of the main challenges to treat plastic waste. In an effort to increase the efficiency of plastic waste treatment, biodegradable plastics have gained attention. Although the use of biodegradable plastics has been increased, their potential effects on the environments are not fully elucidated yet. In this study, the impacts of micro-sized non-biodegradable plastic (i.e., polystyrene (PS)) and micro-sized biodegradable plastics (i.e., polycaprolactone (PCL) and polylactic acid (PLA)) on Microcystis aeruginosa were investigated. Regardless of microplastic (MP) types, MP treatments inhibited the growth of M. aeruginosa at the beginning (4 days) while significant dose-dependent effect was not observed in the range of 0.1 to 10 mg/L. However, after long-term exposure (12 days), micro-sized biodegradable plastics stimulated the growth of M. aeruginosa (up to 73 % increase compared to the control). The photosynthetic activity showed a similar trend to the cell growth. The MP treatments induced the production of extracellular polymeric substances (EPS). Indeed, micro-sized PCL and PLA stimulated the production of protein compounds in EPS. These might have affected the releases of chemicals from PCL and PLA, suggesting that the chemicals in biodegradable plastic leachates would promote the growth of M. aeruginosa in long-term exposure. The MP treatments also induced cyanotoxin (microcystin-LR) productions. Our results give a new insight into the cyanobacterial blooming and suggest a novel relationship between harmful algal blooms (HABs) and biodegradable plastics.
Collapse
Affiliation(s)
- Jee Young Kim
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| | - Ka Young Kim
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| | - Woo Shik Jung
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul 01890, Republic of Korea
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, Seoul 01890, Republic of Korea
| | - Jaewon Park
- Department of Biomedical Engineering, Konkuk University, Chungcheongbuk-do 27478, Republic of Korea.
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
40
|
Kaing V, Guo Z, Sok T, Kodikara D, Breider F, Yoshimura C. Photodegradation of biodegradable plastics in aquatic environments: Current understanding and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168539. [PMID: 37981156 DOI: 10.1016/j.scitotenv.2023.168539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Direct and indirect photolysis are important abiotic processes in aquatic environments through which plastics can be transformed physically and chemically. Transport of biodegradable plastics in water is influenced by vertical mixing and turbulent flow, which make biodegradable plastics remain susceptible to sunlight and photolysis despite their high density. In general, biodegradable plastics are composed of ester containing polymers (e.g., poly(butylene succinate), polyhydroxyalkanoate, and polylactic acid), whereas non-biodegradable plastics are composed of long chains of saturated aliphatic hydrocarbons in their backbones (e.g., polyethylene, polypropylene, and polystyrene). Based on the reviewed knowledge and discussion, we may hypothesize that 1) direct photolysis is more pronounced for non-biodegradation than for biodegradable plastics, 2) smaller plastics such as micro/nano-plastics are more prone to photodegradation and photo-transformation by direct and indirect photolysis, 3) the production rate of reactive oxygen species (ROS) on the surface of biodegradable plastics is higher than that of non-biodegradable plastics, 4) the photodegradation of biodegradable plastics may be promoted by ROS produced from biodegradable plastics themselves, and 5) the subsequent reactions of ROS are more active on biodegradable plastics than non-biodegradable plastics. Moreover, micro/nanoplastics derived from biodegradable plastics serve as more effective carriers of organic pollutants than those from non-biodegradable plastics and thus biodegradable plastics may not necessarily be more ecofriendly than non-biodegradable plastics. However, biodegradable plastics have been largely unexplored from the viewpoint of direct or indirect photolysis. Roles of reactive oxygen species originating from biodegradable plastics should be further explored for comprehensively understanding the photodegradation of biodegradable plastics.
Collapse
Affiliation(s)
- Vinhteang Kaing
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ty Sok
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia; Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Dilini Kodikara
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Florian Breider
- EPFL - Ecole Polytechnique Fédérale de Lausanne, Central Environmental Laboratory, Institute of Environmental Engineering, ENAC, station 2, CH-1015 Lausanne, Switzerland
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
41
|
Wang N, Wang Q, Song S, Sun Z, Zhao A, Ali A, Xu G, Zhong X, Wang F, Xu H. Microplastics drive community dynamics of periphytic protozoan fauna in marine environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13327-13334. [PMID: 38244160 DOI: 10.1007/s11356-024-32054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
The pollution of microplastics (MPs) to the marine environment has become a widespread focus of attention. To assess MP-induced ecotoxicity on marine ecosystems, periphytic protozoan communities were used as test organisms and exposed to five concentrations of MPs: 0, 1, 5, 25, and 125 mg l-1. Protozoan samples were collected using microscope slides from coastal waters of the Yellow Sea, northern China. A total of 13 protozoan species were identified and represented different tolerance to MP-induced ecotoxicity. Inhibition effects of MPs on the test protozoan communities were clearly shown in terms of both the species richness and individual abundance and followed linear relationships to MP concentrations. The community patterns were driven by MPs and significantly shifted at concentrations over 5 mg l-1. Our findings demonstrated that MPs may induce the community-level ecotoxic response of periphytic protozoan fauna and followed significant community dynamics. Thus, it is suggested that periphytic protozoan fauna may be used as useful community-based test model organisms for evaluating MP-induced ecotoxicity in marine environments.
Collapse
Affiliation(s)
- Ning Wang
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Qiaoling Wang
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Suihan Song
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Zhiyi Sun
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Anqi Zhao
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Awais Ali
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiaoxiao Zhong
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Henglong Xu
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
42
|
Huang W, Zhang J, Zhang Z, Gao H, Xu W, Xia X. Insights into adsorption behavior and mechanism of Cu(II) onto biodegradable and conventional microplastics: Effect of aging process and environmental factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123061. [PMID: 38042467 DOI: 10.1016/j.envpol.2023.123061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
The widespread promotion attempt of biodegradable plastics is considered as an effective solution to address conventional plastic pollution. However, the interaction of microplastics (MPs) easily broken down from biodegradable plastics with the coexisting pollutants in aquatic environments has gained less attention. Herein, we investigated the effects of the aging process and environmental factors on copper (Cu(II)) adsorption behavior by biodegradable polylactic acid and conventional polystyrene MPs. Results demonstrated that the aging process significantly altered physicochemical properties of both types of MPs, and PLA showed less resistance to aging. The aged polylactic acid MPs (aged-PLA) exhibited the far highest Cu(II) maximum adsorption capacity (7.13 mg/g) mainly due to its abundant oxygen-containing functional groups (OCFGs), followed by pristine polylactic acid (PLA, 6.08 mg/g), aged polystyrene (aged-PS, 0.489 mg/g) and pristine polystyrene (PS, 0.365 mg/g). The adsorption kinetics of Cu(II) on PLA MPs were controlled by film and intraparticle diffusion, while film diffusion governed the Cu(II) adsorption onto PS MPs. In addition to roles of rougher surface structure, greater surface area and pore filling, the complexation of OCFGs and electrostatic interaction were critical to the adsorption mechanism of aged-PLA and aged-PS, and cation-π interaction was associated with adsorption of aged-PS. Moreover, the adsorption capacity of Cu(II) on aged MPs gradually grew with the increasing pH from 4 to 7. Besides, humic acid significantly promoted the adsorption of Cu(II) at a low concentration (0-20 mg/L) due to the formation of binary mixtures of MPs-HA but inhibited the adsorption at a high concentration (50 mg/L) because of its competitive effect, suggesting the dual roles of humic acid in the adsorption process. Overall, our findings provide a better understanding of the adsorption behavior of metals on biodegradable MPs and emphasize their non-negligible risk as carriers of contaminant.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jie Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Zhenrui Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Hui Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Wenhao Xu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
43
|
Yan H, Chen Z, Hao Ngo H, Wang QP, Hu HY. Nitrogen and phosphorus removal performance of sequential batch operation for algal cultivation through suspended-solid phase photobioreactor. BIORESOURCE TECHNOLOGY 2024; 393:130143. [PMID: 38042434 DOI: 10.1016/j.biortech.2023.130143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Nitrogen (N) and phosphorus (P) absorbed by algae in the suspended-solid phase photobioreactor (ssPBR) have emerged as an efficient pathway to purify the effluent of wastewater treatment plants (WWTPs). However, the key operational parameters of the ssPBR need to be optimized. In this study, the stability of the system after sequential batch operations and the efficiency under various influent P concentrations were evaluated. The results demonstrated that the ssPBR maintained a high N/P removal efficiency of 96 % and 98 %, respectively, after 5 cycles. When N was kept at 15 mg/L and P ranged from 1.5 to 3.0 mg/L, the system yielded plenty of algae products and guaranteed the effluent quality that met the discharge standards. Notably, the carriers were a key contributor to the high metabolism of algae and high performance. This work provided theoretical ideas and technical guidance for effluent quality improvement in WWTPs.
Collapse
Affiliation(s)
- Han Yan
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Qiu-Ping Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215163, China
| |
Collapse
|
44
|
Pedroza RHP, David C, Lodeiro P, Rey-Castro C. Interactions of humic acid with pristine poly (lactic acid) microplastics in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168366. [PMID: 37939936 DOI: 10.1016/j.scitotenv.2023.168366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Microplastics and natural organic matter are present in the aquatic environment and their reciprocal interaction plays important roles in the transport and behavior of nutrients and contaminants. Nevertheless, we lack mechanistic understanding on these interactions, especially in the case of biodegradable plastics. Here we investigate the adsorption of a commercial humic acid onto poly (lactic acid) (PLA) microplastics in aqueous solution. While the pseudo-second order kinetic model provided a more accurate representation of the adsorption kinetics, the Elovich model also produced a good fit, suggesting that chemisorption may be the rate-limiting step. The equilibrium data was better fit by the Langmuir model, that provided a maximum adsorption capacity of 0.118 ± 0.006 mg·g-1. The obtained values for the separation factor (RL) and free energy (E) suggest that adsorption of humic acid onto PLA is controlled by physisorption. We studied the effects of pH, ionic strength, and PLA concentration on the adsorption of humic acid onto PLA and demonstrated that electrostatic interactions and aggregation are important. The humic acid was characterized by Fourier-transform infrared (FTIR) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, and parallel factor analysis (PARAFAC), before and after interacting with PLA. This set of analyses demonstrated that PLA caused alterations in the molecular structure of humic acid, primarily attributed to modifications in hydrogen bonding and hydrophobic interactions. Therefore, we hypothesize that the carboxylic groups of humic acid formed dimers in contact with PLA. This study provides new insights into the interactions between organic matter and a biodegradable microplastic in aqueous systems.
Collapse
Affiliation(s)
- Ricardo H P Pedroza
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Calin David
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Pablo Lodeiro
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
| | - Carlos Rey-Castro
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
45
|
An G, Na J, Song J, Jung J. Chronic toxicity of biodegradable microplastic (Polylactic acid) to Daphnia magna: A comparison with polyethylene terephthalate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106790. [PMID: 38070395 DOI: 10.1016/j.aquatox.2023.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
The increase in the usage of biodegradable microplastics (MPs) as an alternative to conventional plastics has necessitated comprehensive ecotoxicity assessments of biodegradable MPs alongside conventional MPs. This study aimed to assess ecotoxicity of biodegradable polylactic acid (PLA) MPs at concentration of 1 and 5 mgL-1 including a genetic analysis of Daphnia magna, and compared to effects of conventional polyethylene terephthalate (PET) MPs. The survival rate for D. magna exposed to 5 mg L-1 of PLA-MPs declined to 52.4 %, signifying a higher rate of mortality when contrasted with PET-MPs, which exhibited 85.7 % survival rate. Chronic exposure to 1 and 5 mgL-1 PLA-MPs resulted in a decrease of offspring, while increasing the sex ratio and deformed embryo. Interestingly, down-regulation of the SOD and AK genes was observed in D. magna after exposure to 5 mgL-1 of PLA-MPs, while 1 mgL-1 of PLA-MPs up-regulated. These results means that 5 mgL-1 PLA-MP could not produce energy and cope with oxidative stress, resulting in high mortality, and 1 mgL-1 of MP was maintained survival due to energy production and antioxidant action. This study contributes to our understanding of biodegradable microplastics (BMPs) toxic effects on D. magna which could be similar to conventional MPs and provide the importance of ecotoxicological data for risk assessment of BMPs in aquatic organisms.
Collapse
Affiliation(s)
- Gersan An
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- OJeong Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea.
| | - Jinyoung Song
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
46
|
Li J, Zheng X, Liu X, Zhang L, Zhang S, Li Y, Zhang W, Li Q, Zhao Y, Chen X, Wang X, Huang H, Fan Z. Effect and mechanism of microplastics exposure against microalgae: Photosynthesis and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167017. [PMID: 37717764 DOI: 10.1016/j.scitotenv.2023.167017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
The occurrence of microplastics (MPs) within aquatic ecosystems attracts a major environmental concern. It was demonstrated MPs could cause various ecotoxicological effects on microalgae. However, existing data on the effects of MPs on microalgae showed great variability among studies. Here, we performed a meta-analysis of the latest studies on the effects of MPs on photosynthesis and oxidative stress in microalgae. A total of 835 biological endpoints were investigated from 55 studies extracted, and 37 % of them were significantly affected by MPs. In this study, the impact of MPs against microalgae was concentration-dependent and size-dependent, and microalgae were more susceptible to MPs stress in freshwater than marine. Additionally, we summarized the biological functions of microalgae that are primarily affected by MPs. Under MPs exposure, the content of chlorophyll a (Chl-a) was reduced and electron transfer in the photosynthetic system was hindered, causing electron accumulation and oxidative stress damage, which may also affect biological processes such as energy production, carbon fixation, lipid metabolism, and nucleic acid metabolism. Finally, our findings provide important insights into the effects of MPs stress on photosynthesis and oxidative stress in microalga and enhance the current understanding of the potential risk of MPs pollution on aquatic organisms.
Collapse
Affiliation(s)
- Jue Li
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
| | - Xiaowei Zheng
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| | - Xianglin Liu
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
| | - Liangliang Zhang
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
| | - Shun Zhang
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| | - Yanyao Li
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Qihui Li
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yuqiang Zhao
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiangrong Wang
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| | - Honghui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China.
| | - Zhengqiu Fan
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| |
Collapse
|
47
|
Liu D, Wang H, Teng Y, Wu Q, Tang C, Gao X, Chen C, Zhu L. Biochemical responses of freshwater microalgae Chlorella sorokiniana to combined exposure of Zn(Ⅱ) and estrone with simultaneous pollutants removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119392. [PMID: 37879179 DOI: 10.1016/j.jenvman.2023.119392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
With the development of livestock industry, contaminants such as divalent zinc ions (Zn (Ⅱ)) and estrone are often simultaneously detected in livestock wastewater. Nevertheless, the combined toxicity of these two pollutants on microalgae is still unclear. Moreover, microalgae have the potential for biosorption and bioaccumulation of heavy metals and organic compounds. Thus, this study investigated the joint effects of Zn (Ⅱ) and estrone on microalgae Chlorella sorokiniana, in terms of growth, photosynthetic activity and biomolecules, as well as pollutants removal by algae. Interestingly, a low Zn (Ⅱ) concentration promoted C. sorokiniana growth and photosynthetic activity, while the high concentration experienced inhibition. As the increase of estrone concentration, chlorophyll a content increased continuously to resist the environmental stress. Concurrently, the secretion of extracellular polysaccharides and proteins by algae increased with exposure to Zn (Ⅱ) and estrone, reducing toxicity of pollutants to microalgae. Reactive oxygen species and superoxide dismutase activity increased as the increase of pollutant concentration after 96 h cultivation, but high pollutant concentrations resulted in damage of cells, as proved by increased MDA content. Additionally, C. sorokiniana displayed remarkable removal efficiency for Zn (Ⅱ) and estrone, reaching up to 86.14% and 84.96% respectively. The study provides insights into the biochemical responses of microalgae to pollutants and highlights the potential of microalgae in pollutants removal.
Collapse
Affiliation(s)
- Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Hanzhi Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Yue Teng
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Chunming Tang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Xinxin Gao
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Chaoqi Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China.
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
48
|
Sansing J, Karapetrova A, Gan J. A multi-factor analysis evaluating the toxicity of microplastics on algal growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166140. [PMID: 37562627 DOI: 10.1016/j.scitotenv.2023.166140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Marine and freshwater bodies are the primary destinations of microplastics (MPs), where MPs can interact closely with algae. Here, we synthesized existing literature on the effect of MPs on algal growth. Studies examining the effects of MPs on algal growth have yielded conflicting results. Some studies reported growth inhibition, whereas others showed no significant effect or even growth enhancement. Data from 71 studies in the subject area were evaluated using cross-tables, scatterplots, and chi-square tests of independence, and four factors (polymer type, algal type, MP size, MP concentration) likely influencing the observations were identified. Experiments using certain polymers of plastic, such as polyvinyl chloride, and algal phyla, such as Chlorophyta, were more likely to show growth inhibition. Higher MP concentrations were more likely to reduce algal growth, which was further amplified by exposure time. However, MP size appeared to exhibit a nonlinear relationship with algal growth inhibition, suggesting that different MP sizes may elicit different effects. Finally, this review highlights the need for more standardized data collection and analysis methods as well as future research focused on exploring the possible mechanisms of growth hindrance and algae exposure to environmentally relevant conditions.
Collapse
Affiliation(s)
- Julia Sansing
- Department of Earth, Environmental & Planetary Sciences, Brown University, Providence, RI 02912, USA.
| | | | - Jay Gan
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| |
Collapse
|
49
|
Rex M C, Mukherjee A. The comparative effects of visible light and UV-A radiation on the combined toxicity of P25 TiO 2 nanoparticles and polystyrene microplastics on Chlorella sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122700-122716. [PMID: 37975986 DOI: 10.1007/s11356-023-30910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The ubiquitous presence of TiO2 nanoparticles (nTiO2) and microplastics (MPs) in marine ecosystems has raised serious concerns about their combined impact on marine biota. This study investigated the combined toxic effect of nTiO2 (1 mg/L) and NH2 and COOH surface functionalized polystyrene MPs (PSMPs) (2.5 and 10 mg/L) on Chlorella sp. All the experiments were carried out under both visible light and UV-A radiation conditions to elucidate the impact of light on the combined toxicity of these pollutants. Growth inhibition results indicated that pristine nTiO2 exhibited a more toxic effect (38%) under UV-A radiation when compared to visible light conditions (27%). However, no significant change in the growth inhibitory effects of pristine PSMPs was observed between visible light and UVA radiation conditions. The combined pollutants (nTiO2 + 10 mg/L PSMPs) under UV-A radiation exhibited more growth inhibition (nTiO2 + NH2 PSMPs 66%; nTiO2 + COOH PSMPs 50%) than under visible light conditions (nTiO2 + NH2 PSMPs 55%; TiO2 + COOH PSMPs 44%). Independent action modeling indicated that the mixture of nTiO2 with PSMPs (10 mg/L) exhibited an additive effect on the algal growth inhibition under both the light conditions. The photoactive nTiO2 promoted increased production of reactive oxygen species under UV-A exposure, resulting in cellular damage, lipid peroxidation, and impaired photosynthesis. The effects were more pronounced in case of the mixtures where PSMPs added to the oxidative stress. The toxic effects of the binary mixtures of nTiO2 and PSMPs were further confirmed through the field emission electron microscopy, revealing specific morphological abnormalities. This study provides valuable insights into the potential risks associated with the combination of nTiO2 and MPs in marine environments, considering the influence of environmentally relevant light conditions and the test medium.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India
| | | |
Collapse
|
50
|
Procházková P, Mácová S, Aydın S, Zlámalová Gargošová H, Kalčíková G, Kučerík J. Effects of biodegradable P3HB on the specific growth rate, root length and chlorophyll content of duckweed, Lemna minor. Heliyon 2023; 9:e23128. [PMID: 38076089 PMCID: PMC10703853 DOI: 10.1016/j.heliyon.2023.e23128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 10/16/2024] Open
Abstract
The extensive production and use of plastics have led to widespread pollution of the environment. As a result, biodegradable polymers (BDPs) are receiving a great deal of attention because they are expected to degrade entirely in the environment. Therefore, in this work, we tested the effect of two fractions (particles <63 μm and particles from 63 to 125 μm) of biodegradable poly-3-hydroxybutyrate (P3HB) at different concentrations on the specific growth rate, root length, and photosynthetic pigment content of the freshwater plant Lemna minor. Microparticles with similar properties made of polyethylene terephthalate (PET) were also tested for comparison. No adverse effects on the studied parameters were observed for either size fraction; the only effect was the root elongation with increasing P3HB concentration. PET caused statistically significant root elongation only in the highest concentration, but the effect was not as extensive as for P3HB. The development of a biofilm on P3HB particles was observed during the experiment, and the nutrient sorption experiment showed that the sorption capacity of P3HB was greater than PET's. Therefore, depleting the nutrients from the solution could force the plant to increase the root surface area by their elongation. The results suggest that biodegradable microplastics may cause secondary nutrient problems in the aquatic environment due to their biodegradability.
Collapse
Affiliation(s)
- Petra Procházková
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Sabina Mácová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Seçil Aydın
- Department of Chemical Engineering, Faculty of Chemistry-Metallurgical, Yıldız Technical University, 34210, Davutpasa Esenler, Istanbul, Turkiye
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, SI-1000, Ljubljana, Slovenia
| | - Jiří Kučerík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|