1
|
Zhang Y, Zhao T, Zhang Y, Song Q, Meng Q, Zhou S, Wei L, Qi Y, Guo Y, Cong J. Accumulation and depuration of tire wear particles in zebrafish (Danio rerio) and toxic effects on gill, liver, and gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175625. [PMID: 39163933 DOI: 10.1016/j.scitotenv.2024.175625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
The toxic effects of tire wear particles (TWPs) in the environment are a growing concern for a variety of aquatic organisms. However, studies about TWPs toxicity on aquatic organisms are limited. This study investigated the accumulation and depuration of TWPs in zebrafish at three different concentrations (5 mg/L, 10 mg/L, and 20 mg/L), as well as the toxic effects on the gill, liver, and gut. We found that TWPs could accumulate in the gill and gut for a long time, and the number of TWPs at the high-concentration (20 mg/L) was higher than at the low-concentration (5 mg/L). TWPs induced oxidative stress in the gill and liver. The liver transcriptome profiles indicated that the high concentration of TWPs tended to up-regulate metabolic processes, whereas the low concentration of TWPs was inclined to down-regulate cellular processes. The high-concentration treatment significantly increased xenobiotic biodegradation and metabolism, and lipid metabolism-related pathways, whereas the low-concentration treatment distinctly altered amino acid metabolism-related pathways. The expression of gstt1b, ugt1a1, mgst3b, miox, hsd17b3, and cyp8b1 gene was up-regulated in all TWPs treatments. In addition, Gemmobacter and Shinella enriched in the high-concentration treatment were closely correlated with the degradation of TWPs. These findings provided objective evidence for the toxicity evaluation of TWPs on zebrafish.
Collapse
Affiliation(s)
- Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yanan Zhang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266000, China
| | - Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Lijuan Wei
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yinuo Qi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yinyuan Guo
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
2
|
Gupta P, Mahapatra A, Manna B, Suman A, Ray SS, Singhal N, Singh RK. Sorption of PFOS onto polystyrene microplastics potentiates synergistic toxic effects during zebrafish embryogenesis and neurodevelopment. CHEMOSPHERE 2024; 366:143462. [PMID: 39368493 DOI: 10.1016/j.chemosphere.2024.143462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Microplastics (MPs) have become an emerging anthropogenic pollutant, and their ability to sorb contaminants potentially enhances the threats to the ecosystem. Only a few studies are available to understand the combined effects of microplastics and other pollutants. The present study investigated the sorption of perfluorooctane sulfonic acid (PFOS) onto polystyrene microplastics (PS-MPs) at varying concentrations, using molecular dynamics simulation (MDS) to preliminarily explore the adsorption behavior. The MDS results revealed negative interaction energies between PFOS and PS-MPs, underscoring PS-MPs' role as a potential adsorbent for PFOS in an aqueous solution. Thereafter, zebrafish embryos were employed to explore the toxic effects of combined exposure to PS-MPs and PFOS. Fluorescence and Scanning Electron Microscopy (SEM) suggested PS-MP accumulation individually and in combination with PFOS on the embryonic chorion membrane. As a result, the exposed group showed increased inner pore size of the chorionic membrane and accelerated heartbeat, indicating hypoxic conditions and hindered gaseous exchange. PS-MPs aggravated the toxicity of PFOS during larval development manifested by delayed hatching rate, increased mortality, and malformation rate. Additionally, increased ROS accumulation and altered antioxidant enzymatic status were observed in all the exposed groups suggesting perturbation of the redox state. Additionally, co-exposure of zebrafish larvae to PS-MPs and PFOS resulted in an abrupt behavioral response, which decreased AChE activity and altered neurotransmitter levels. Taken together, our results emphasize that PS-MPs can act as a potential vector for PFOS, exerting synergistic toxic effects in the aquatic environment, and hence their health risks cannot be ignored.
Collapse
Affiliation(s)
- Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| | - Bharat Manna
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand; Water Research Centre, University of Auckland, Auckland, 1142, New Zealand.
| | - Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Shubhendu Shekhar Ray
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand; Water Research Centre, University of Auckland, Auckland, 1142, New Zealand.
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
3
|
Xiao QH, Xiang H, Tian YN, Huang JL, Li MQ, Wang PQ, Lian K, Yu PX, Xu MY, Zhang RN, Zhang Y, Huang J, Zhang WC, Duan P. Polystyrene microplastics alleviate the developmental toxicity of silver nanoparticles in embryo-larval zebrafish (Danio rerio) at the transcriptomic level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176485. [PMID: 39341243 DOI: 10.1016/j.scitotenv.2024.176485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Since silver nanoparticles (AgNPs) and polystyrene microplastics (PS-MP) share common environmental niches, their interactions can modulate their hazard impacts. Herein, we assessed the developmental toxicity of 1 mg/L PS-MP, 0.5 mg/L AgNPs and the mixtures of AgNPs and PS-MP on embryo-larval zebrafish. We found that AgNPs co-exposure with PS-MP remarkably decreased mortality rates, malformation rates, heart rates and yolk sac area, while it increased hatching rates and eye size compared to the AgNPs group. These phenomena revealed that the cell cycle, oxidative stress, apoptosis, lipid metabolism, ferroptosis and p53 signalling pathway were obviously affected by single AgNPs exposure at 96 hpf (hours post fertilization). Interestingly, all these effects were effectively ameliorated by co-exposure with PS-MP. The combination of transcriptomic and metabolomic analyses showed that the imbalance of DEGs (differentially expressed genes) and DEMs (differentially expressed metabolites) (PI, phosphatidylinositol and TAG-FA, triacylglycerol-fatty acid) disturbed both the cell cycle and lipid metabolism following single AgNPs exposure and co-exposure with PS-MP. These findings suggest that PS-MP attenuates the developmental toxicity of AgNPs on embryo-larval zebrafish. Overall, this study provides important insight into understanding the transcriptional responses and mechanisms of AgNPs alone or in combination with PS-MPs on embryo-larval zebrafish, providing a reference for ecological risk assessment of combined exposure to PS-MP and metal nanoparticles.
Collapse
Affiliation(s)
- Qiao-Hong Xiao
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Hao Xiang
- Department of Nuclear Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ya-Nan Tian
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Jiao-Long Huang
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ming-Qun Li
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Pu-Qing Wang
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Kai Lian
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Peng-Xia Yu
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Meng-Yao Xu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ruo-Nan Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Yan Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Jie Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Wei-Cheng Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Peng Duan
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China.
| |
Collapse
|
4
|
Zhao W, Deng J, Wang J, Ge C, Yang H. Adverse effects of microplastics on the growth, photosynthesis, and astaxanthin synthesis of Haematococcus pluvialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176427. [PMID: 39326759 DOI: 10.1016/j.scitotenv.2024.176427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Due to the widespread pollution, microplastics (MPs) have garnered increasing attention. Research has shown that MPs negatively affect many organisms. Microalgae are primary producers in aquatic environments and play a crucial role in the stability of aquatic ecosystems. However, research on the effects of MPs on microalgae is relatively limited. Haematococcus pluvialis is known for its ability to produce astaxanthin, a powerful antioxidant, in response to environmental stress. MP exposure is also an environmental stressor, and we are curious whether MP stress will affect astaxanthin synthesis in H. pluvialis. To investigate the effects and mechanisms of MPs on H. pluvialis growth and astaxanthin synthesis, we exposed H. pluvialis to 5 μm polystyrene MPs at different concentrations (0.1, 1, and 10 mg/L) for 18 days, followed by high light induction of astaxanthin synthesis. Growth and photosynthesis-related indicators suggested that PS-MPs had a hormesis-like effect on H. pluvialis, with short-term exposure stimulating photosynthetic activity and growth, and long-term exposure inhibiting them. Morphological observations, oxidative stress markers, soluble proteins, and extracellular polymeric substance indicators showed that prolonged PS-MP exposure primarily disrupted the morphology and normal physiological functions of H. pluvialis by inducing oxidative stress. Although H. pluvialis actively resists the oxidative stress caused by PS-MPs, it cannot fully counteract the adverse effects. Prolonged PS-MP exposure ultimately resulted in reduced levels of photosynthetic pigments and inhibited photosynthetic activity, as well as the decreased expression of genes related to astaxanthin synthesis and reduced astaxanthin production. Integrated biomarker response analysis further indicated that the overall toxic effects of MPs on H. pluvialis exhibit a dose-dependent pattern. MP exposure potentially weakens the survival capability of H. pluvialis under adverse conditions. These findings highlight the impact of MP pollution on the stability of aquatic ecosystems and underscore the urgent need for policies and actions to mitigate MP pollution and protect aquatic environments.
Collapse
Affiliation(s)
- Weibin Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China
| | - Jiaye Deng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiamei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Pinto EP, Scott J, Hess K, Paredes E, Bellas J, Gonzalez-Estrella J, Minghetti M. Role of UV radiation and oxidation on polyethylene micro- and nanoplastics: impacts on cadmium sorption, bioaccumulation, and toxicity in fish intestinal cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47974-47990. [PMID: 39017862 PMCID: PMC11297841 DOI: 10.1007/s11356-024-34301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
This study investigated the role of ultraviolet (UV) radiation and oxidation in high-density polyethylene microplastics (2-15 μm) and nanoplastics (0.2-9.9 μm) (NMPs) on particle chemistry, morphology, and reactivity with cadmium (Cd). Additionally, toxicity of NMPs alone and with Cd was evaluated using RTgutGC cells, a model of the rainbow trout (Oncorhynchus mykiss) intestine. The role on NMPs on Cd bioaccumulation in RTgutGC cells was also evaluated. Dynamic light scattering indicated that after UV radiation NPs agglomerated size increased from 0.8 to 28 µm, and to 8 µm when Cd was added. Oxidized MPs agglomerated size increased from 11 and 7 to 46 and 27 µm in non-UV- and UV-aged oxidized MPs when adding Cd, respectively. Cd-coated particles exhibited generally significantly higher zeta potential than non-Cd-coated particles, while attenuated total reflectance-Fourier transform infrared spectroscopy showed that the functional chemistry of the particles was oxidized and modified after being exposed to UV radiation. Presence of NMPs resulted in a significant decrease in Cd bioaccumulation in RTgutGC cells (100.5-87.9 ng Cd/mg protein) compared to Cd alone (138.1 ng Cd/mg protein), although this was not quite significant for co-exposures with UV-aged NPs (105.7 ng Cd/mg protein). No toxicity was observed in RTgutGC cells exposed to NMPs alone for 24 h. Moreover, co-exposures with Cd indicated that NMPs reduce the toxicity of Cd. Altogether these results show that UV aging enhances NMP surface reactivity, increasing Cd absorption in solution, which resulted in a reduction in Cd bioavailability and toxicity.
Collapse
Affiliation(s)
- Estefanía Pereira Pinto
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Laboratorio de Ecoloxía Costeira (ECOCOST), 36310, Universidade de Vigo, Vigo, Spain.
| | - Justin Scott
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kendra Hess
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Estefanía Paredes
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Laboratorio de Ecoloxía Costeira (ECOCOST), 36310, Universidade de Vigo, Vigo, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
6
|
Yadav R, Kumar D, Singh J, Jangra A. Environmental toxicants and nephrotoxicity: Implications on mechanisms and therapeutic strategies. Toxicology 2024; 504:153784. [PMID: 38518838 DOI: 10.1016/j.tox.2024.153784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Kidneys are one of the most important organs in the human body. In addition to filtering 200 liters of fluid every 24 hours, the kidney also regulates acid-base balance, maintains electrolyte balance, and removes waste and toxicants from the body. Nephrotoxicity is the term used to describe the deterioration of kidney function caused by the harmful effects of medications and various types of environmental toxicants. Exposure to environmental toxicants is an inevitable side effect in the world's increasing industrialization and even more prevalent in underdeveloped nations. Growing data over the past few years has illuminated the probable connection between environmental toxicants and nephrotoxicity. Phthalates, microplastics, acrylamide and bisphenol A are environmental toxicants of particular concern, which are known to have nephrotoxic effects. Such toxicants may accumulate in the kidneys of humans after being consumed, inhaled, or come into contact with the skin. They can enter cells through endocytosis and accumulate in the cytoplasm. Small-sized nephrotoxicants can cause a variety of ailments including inflammation with increased production of pro-inflammatory cytokines, oxidative stress, mitochondrial dysfunction, autophagy, and apoptosis. This study uncovers the potential for new insights concerning the relationship between various environmental toxicants and kidney health. The objectives of this review is to establish information gaps, assess and identify the toxicity mechanisms of different nephrotoxicants, identify innovative pharmacological therapies that demonstrate promising therapeutic benefits/ relevance, and discuss the predictions for the future based on the analysis of the literature.
Collapse
Affiliation(s)
- Rachna Yadav
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India.
| | - Jiten Singh
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India.
| |
Collapse
|
7
|
Zhao Y, Chen H, Liang H, Zhao T, Ren B, Li Y, Liang H, Liu Y, Cao H, Cui N, Wei W. Combined toxic effects of polyethylene microplastics and lambda-cyhalothrin on gut of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116296. [PMID: 38593498 DOI: 10.1016/j.ecoenv.2024.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.
Collapse
Affiliation(s)
- Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
8
|
Sheng S, Han N, Wei Y, Wang J, Han W, Xing B, Xing M, Zhang W. Liver Injury Induced by Exposure to Polystyrene Microplastics Alone or in Combination with Cadmium in Mice Is Mediated by Oxidative Stress and Apoptosis. Biol Trace Elem Res 2024; 202:2170-2183. [PMID: 37736782 DOI: 10.1007/s12011-023-03835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Microplastics (MPs) have been considered an emerging environmental pollutant which, when combined with toxic metals, enter the circulatory system of mammals and eventually cause damage. Therefore, it is important to study the toxicity of the mixture of MPs and heavy metals for evaluating risk assessment of mammals. In the present study, the toxicological effects of different concentrations of polystyrene (PS)-MPs alone or in combination with cadmium chloride (CdCl2) during chronic exposure (8 weeks) were evaluated using intragastric administration in mice. Using comparative analysis, it was revealed that PS-MPs alone or in combination with Cd could destroy the normal structural morphology of liver tissue and increase the levels of two biochemical indicators of liver damage, thereby inducing changes in antioxidant and hyperoxide capacities. In addition, PS-MPs and/or Cd activated the antioxidant signaling pathway Nrf2-Keap1 and affected the endogenous apoptosis signaling pathway p53-Bcl-2/Bax, thus promoting apoptosis. These findings suggested that exposure to MPs alone or in combination with Cd led to adverse effects on the liver. Furthermore, it was revealed that co-exposure to MPs and Cd reduced Cd toxicity, thereby highlighting the possibility MPs may act as carriers of other toxic substances and coordinate with them. Therefore, evaluating the synergistic or anti-agonistic effects of MPs on the toxicity and bioavailability of xenobiotics is in the future critical in environmental toxicological studies.
Collapse
Affiliation(s)
- Shuai Sheng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ningxin Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yufeng Wei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jinghan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Wei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Boyu Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| | - Wen Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
9
|
Sun Y, Deng Q, Zhang Q, Zhou X, Chen R, Li S, Wu Q, Chen H. Hazards of microplastics exposure to liver function in fishes: A systematic review and meta-analysis. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106423. [PMID: 38442589 DOI: 10.1016/j.marenvres.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Microplastics (5 mm - 1 μm) have become one of the major pollutants in the environment. Numerous studies have shown that microplastics can have negative impacts on aquatic organisms, affecting their liver function levels. However, the extent of these effects and their potential toxicological mechanisms are largely unknown. In this study, a meta-analysis and systematic review were conducted to assess the effects of microplastics on fish liver function and summarize the potential toxicological mechanisms of microplastic-induced liver toxicity. The meta-analysis results indicate that compared to the control group, exposure to microplastics significantly affects fish liver indicators: aspartate aminotransferase (AST) (p < 0.001), alanine aminotransferase (ALT) (p < 0.001), alkaline phosphatase (ALP) (p < 0.001), total protein (TP) (p < 0.001), and lactate dehydrogenase (LDH) (p < 0.001), including oxidative stress indicators: superoxide dismutase (SOD) (p < 0.001), glutathione S-transferase (GST) (p < 0.001), glutathione (GSH) (p < 0.001), and malondialdehyde (MDA) (p < 0.001) in fish liver. For fish living in different environments, the potential toxicological mechanisms of microplastics exposure on fish liver may exhibit some differences. For freshwater fish, the mechanism may be that microplastics exposure causes overproduction of reactive oxygen species (ROS) in fish hepatocyte mitochondria. ROS promotes the expression of toll-like receptor 2 (TLR2) and activates downstream molecules myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6) of the TLR2 signaling pathway, leading to phosphorylation of NF-κB p65. This leads to the release of inflammatory factors and oxidative stress and inflammation in fish liver. In addition, for seawater fish, the mechanism may be that microplastics exposure can cause damage or death of fish hepatocytes, leading to continuous pathological changes, inflammation, lipid and energy metabolism disorders, thereby causing significant changes in liver function indexes.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Siyu Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qing Wu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Innovation Laboratory, The Third Experiment Middle School, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
10
|
Zhang J, Bai Y, Meng H, Zhu Y, Yue H, Li B, Wang J, Wang J, Zhu L, Du Z. Combined toxic effects of polystyrene microplastics and 3,6-dibromocarbazole on zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169787. [PMID: 38181941 DOI: 10.1016/j.scitotenv.2023.169787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Microplastics (MPs) and polyhalogenated carbazoles (PHCZs) are widely detected in the aquatic environment, and their ecological risks have become a research focus. Although there is an extensive co-distribution of MPs and PHCZs, their combined toxicity to aquatic organisms is still unclear. This study investigated the toxic effects of polystyrene microplastics (PS-MPs) and 3,6-dibromocarbazole (3,6-DBCZ) on zebrafish embryos by individual/combined exposure. This study showed that individual or combined exposure of PS-MPs (10 mg/L) and 3,6-DBCZ (0.5 mg/L) could significantly increase the rate of zebrafish embryo deformity, whereas no significant effect was observed on mortality and hatching rate. Furthermore, exposure to 3,6-DBCZ or PS-MPs increased reactive oxygen species (ROS) levels in zebrafish embryos, and the resulting oxidative stress induced apoptosis. Comparably, the levels of oxidative stress and apoptosis in zebrafish embryos were significantly reduced with the combined exposure of 3,6-DBCZ and PS-MPs. These observations suggest that the combined exposure of 3,6-DBCZ and PS-MPs has an antagonistic effect on oxidative stress and apoptosis. Fluorescence PS-MPs tracing and 3,6-DBCZ enrichment analysis showed that, with the protection of chorion, the entry of PS-MPs (5 and 50 μm) into the embryonic stage (55 hpf) of zebrafish was prevented. Moreover, after exposure for 96-144 hpf, PS-MPs served as a carrier to promote the 3,6-DBCZ accumulation and its dioxin-like toxicity in zebrafish larvae through ingestion. Compared with 5-μm PS-MPs, 50-μm PS-MPs promoted higher accumulation and dioxin-like toxicity of 3,6-DBCZ in zebrafish larvae. These findings provide that MPs can be used as an important carrier of PHCZs, influencing their toxicity and bioaccumulation in the organisms.
Collapse
Affiliation(s)
- Jie Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yao Bai
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Haoran Meng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yangzhe Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Huizhu Yue
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
11
|
He L, Lu Z, Zhang Y, Yan L, Ma L, Dong X, Wu Z, Dai Z, Tan B, Sun R, Sun S, Li C. The effect of polystyrene nanoplastics on arsenic-induced apoptosis in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115814. [PMID: 38100851 DOI: 10.1016/j.ecoenv.2023.115814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Microplastics are detrimental to the environment. However, the combined effects of microplastics and arsenic (As) remain unclear. In this study, we investigated the combined effects of polystyrene (PS) microplastics and As on HepG2 cells. The results showed that PS microplastics 20, 50, 200, and 500 nm in size were taken up by HepG2 cells, causing a decrease in cellular mitochondrial membrane potential. The results of lactate dehydrogenase release and flow cytometry showed that PS microplastics, especially those of 50 nm, enhanced As-induced apoptosis. In addition, transcriptome analysis revealed that TP53, AKT1, CASP3, ACTB, BCL2L1, CASP8, XIAP, MCL1, NFKBIA, and CASP7 were the top 10 hub genes for PS that enhanced the role of As in HepG2 cell apoptosis. Our results suggest that nano-PS enhances As-induced apoptosis. Furthermore, this study is important for a better understanding of the role of microplastics in As-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Yuanyuan Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Linhong Yan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Lihua Ma
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Xiaoling Dong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Zijie Wu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Baoyi Tan
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
12
|
Zhang Q, Xia W, Zhou X, Yang C, Lu Z, Wu S, Lu X, Yang J, Jin C. PS-MPs or their co-exposure with cadmium impair male reproductive function through the miR-199a-5p/HIF-1α-mediated ferroptosis pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122723. [PMID: 37838317 DOI: 10.1016/j.envpol.2023.122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Microplastics (MPs) and cadmium (Cd) exist extensively in ambient environments and probably influence negatively on human health. However, the potential reproductive toxicity of MPs or MPs + Cd remains unknown. This study was aimed to observe the reproductive changes of male mice treated orally for 35 days with PS-MPs (100 mg/kg), CdCl2 (5 mg/kg) and PS-MPs plus CdCl2 mixture. We found that subchronic exposure to PS-MPs damaged mouse testicular tissue structure, reduced sperm quality and testosterone levels. Moreover, the reproductive toxicity in 0.1 μm group was stronger than 1 μm group, and mixture group was more severe than single particle size ones. Meanwhile, co-exposure of PS-MPs and Cd exacerbated reproductive injury in male mice, with an ascending toxicity of Cd, 1 μm + Cd, 0.1 μm + Cd, and 0.1+1 μm + Cd. In addition, we discovered that the testicular damage induced by PS-MPs or PS-MPs + Cd was associated with interfering the miR-199a-5p/HIF-1α/ferroptosis pathway. Promisingly, these findings will shed new light on how PS-MPs and PS-MPs + Cd damage male reproductive function.
Collapse
Affiliation(s)
- Qingpeng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Wenting Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China
| | - Xingyue Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chengying Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Ziwei Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
13
|
Qiu W, Ye J, Su Y, Zhang X, Pang X, Liao J, Wang R, Zhao C, Zhang H, Hu L, Tang Z, Su R. Co-exposure to environmentally relevant concentrations of cadmium and polystyrene nanoplastics induced oxidative stress, ferroptosis and excessive mitophagy in mice kidney. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121947. [PMID: 37270049 DOI: 10.1016/j.envpol.2023.121947] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Nanoplastics (NPs) are defined as a group of emerging pollutants. However, the adverse effect of NPs and/or heavy metals on mammals is still largely unclear. Therefore, we performed a 35-day chronic toxicity experiment with mice to observe the impacts of exposure to Cadmium (Cd) and/or polystyrene nanoplastics (PSNPs). This study revealed that combined exposure to Cd and PSNPs added to the mice's growth toxicity and kidney damage. Moreover, Cd and PSNPs co-exposure obviously increased the MDA level and expressions of 4-HNE and 8-OHDG while decreasing the activity of antioxidase in kidneys via inhibiting the Nrf2 pathway and its downstream genes and proteins expression. More importantly, the results suggested for the first time that Cd and PSNPs co-exposure synergistically increased iron concentration in kidneys, and induced ferroptosis through regulating expression levels of SLC7A11, GPX4, PTGS2, HMGB1, FTH1 and FTL. Simultaneously, Cd and PSNPs co-exposure further increased the expression levels of Pink, Parkin, ATG5, Beclin1, and LC3 while significantly reducing the P62 expression level. In brief, this study found that combined exposure to Cd and PSNPs synergistically caused oxidative stress, ferroptosis and excessive mitophagy ultimately aggravating kidney damage in mice, which provided new insight into the combined toxic effect between heavy metals and PSNPs on mammals.
Collapse
Affiliation(s)
- Wenyue Qiu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Jiali Ye
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Yiman Su
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Rongmei Wang
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Cuiyan Zhao
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Hui Zhang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Chen Q, Zhao H, Liu Y, Jin L, Peng R. Factors Affecting the Adsorption of Heavy Metals by Microplastics and Their Toxic Effects on Fish. TOXICS 2023; 11:490. [PMID: 37368590 DOI: 10.3390/toxics11060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
Fish not only constitute an important trophic level in aquatic ecosystems but also serve as an important source of protein for human beings. The health of fish is related to the sustained and healthy development of their entire aquatic ecosystem. Due to the widespread use, mass production, high disposal frequency, and degradation resistance of plastics, these pollutants are released into aquatic environments on a large scale. They have become one of the fastest growing pollutants and have a substantial toxic effect on fish. Microplastics have intrinsic toxicity and can absorb heavy metals discharged into water. The adsorption of heavy metals onto microplastics in aquatic environments is affected by many factors and serves as a convenient way for heavy metals to migrate from the environment to organisms. Fish are exposed to both microplastics and heavy metals. In this paper, the toxic effects of heavy metal adsorption by microplastics on fish are reviewed, and the focus is on the toxic effects at the individual (survival, feeding activity and swimming, energy reserves and respiration, intestinal microorganisms, development and growth, and reproduction), cellular (cytotoxicity, oxidative damage, inflammatory response, neurotoxicity, and metabolism) and molecular (gene expression) levels. This facilitates an assessment of the pollutants' impact on ecotoxicity and contributes to the regulation of these pollutants in the environment.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yinai Liu
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Libo Jin
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renyi Peng
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
15
|
Hassine MBH, Venditti M, Rhouma MB, Minucci S, Messaoudi I. Combined effect of polystyrene microplastics and cadmium on rat blood-testis barrier integrity and sperm quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56700-56712. [PMID: 36928700 DOI: 10.1007/s11356-023-26429-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The harmful effects of microplastics and Cd on the testicular activity of sexually mature rats are here documented. Oral treatment with both substances caused testicular impairment that was evidenced by histological and biomolecular alterations, such as MP accumulation in the seminiferous epithelium, imbalance of oxidative status, and reduced sperm quality. Importantly, the cytoarchitecture of the blood-testis barrier was compromised, as revealed by the down-regulation of protein levels of structural occludin, Van Gogh-like protein 2, and connexin 43 and activation of regulative kinases proto-oncogene tyrosine-protein kinase and focal adhesion kinase. Interestingly, for the first time, MPs are reported to activate the autophagy pathway in germ cells, to reduce damaged organelles and molecules, probably in an attempt to avoid apoptosis. Surprisingly, the results obtained with the simultaneous Cd + MPs treatment showed more harmful effects than those produced by MPs alone but less severe than with Cd alone. This might be due to the different ways of administration to rats (oral gavage for MPs and in drinking water for Cd), which might favor the adsorption, in the gastrointestinal tract, of Cd by MPs, which, by exploiting the Trojan horse effect, reduces the bioavailability of Cd.
Collapse
Affiliation(s)
- Majida Ben Hadj Hassine
- Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia
| | - Massimo Venditti
- Dipartimento Di Medicina Sperimentale, Sez. Fisiologia Umana E Funzioni Biologiche Integrate "F. Bottazzi, Università Degli Studi Della Campania "Luigi Vanvitelli,", Via Costantinopoli, 16, 80138, Naples, NA, Italy
| | - Mariem Ben Rhouma
- Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia
| | - Sergio Minucci
- Dipartimento Di Medicina Sperimentale, Sez. Fisiologia Umana E Funzioni Biologiche Integrate "F. Bottazzi, Università Degli Studi Della Campania "Luigi Vanvitelli,", Via Costantinopoli, 16, 80138, Naples, NA, Italy.
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia
| |
Collapse
|
16
|
Venditti M, Ben Hadj Hassine M, Messaoudi I, Minucci S. The simultaneous administration of microplastics and cadmium alters rat testicular activity and changes the expression of PTMA, DAAM1 and PREP. Front Cell Dev Biol 2023; 11:1145702. [PMID: 36968197 PMCID: PMC10033688 DOI: 10.3389/fcell.2023.1145702] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
This paper confirms the damaging effects produced by MP and Cd on testicular activity in the rat. Oral treatment with both chemicals resulted in testicular damage, documented by biomolecular and histological alterations, particularly by impaired morphometric parameters, increased apoptosis, reduced testosterone synthesis, and downregulation of the steroidogenic enzyme 3β-HSD. We also demonstrated, for the first time, that both MP and Cd can affect the protein level of PTMA, a small peptide that regulates germ cell proliferation and differentiation. Interestingly, the cytoarchitecture of testicular cells was also altered by the treatments, as evidenced by the impaired expression and localization of DAAM1 and PREP, two proteins involved in actin- and microtubule-associated processes, respectively, during germ cells differentiation into spermatozoa, impairing normal spermatogenesis. Finally, we showed that the effect of simultaneous treatment with MP and Cd were more severe than those produced by MP alone and less harmful than those of Cd alone. This could be due to the different ways of exposure of the two substances to rats (in drinking water for Cd and in oral gavage for MP), since being the first contact in the animals’ gastrointestinal tract, MP can adsorb Cd, reducing its bioavailability through the Trojan-horse effect.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
- *Correspondence: Massimo Venditti, ; Sergio Minucci,
| | - Majida Ben Hadj Hassine
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
- *Correspondence: Massimo Venditti, ; Sergio Minucci,
| |
Collapse
|
17
|
Zou H, Chen Y, Qu H, Sun J, Wang T, Ma Y, Yuan Y, Bian J, Liu Z. Microplastics Exacerbate Cadmium-Induced Kidney Injury by Enhancing Oxidative Stress, Autophagy, Apoptosis, and Fibrosis. Int J Mol Sci 2022; 23:ijms232214411. [PMID: 36430889 PMCID: PMC9694236 DOI: 10.3390/ijms232214411] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) is a potential pathogenic factor in the urinary system that is associated with various kidney diseases. Microplastics (MPs), comprising of plastic particles less than 5 mm in diameter, are a major carrier of contaminants. We applied 10 mg/L particle 5 μm MPs and 50 mg/L CdCl2 in water for three months in vivo assay to assess the damaging effects of MPs and Cd exposure on the kidney. In vivo tests showed that MPs exacerbated Cd-induced kidney injury. In addition, the involvement of oxidative stress, autophagy, apoptosis, and fibrosis in the damaging effects of MPs and Cd on mouse kidneys were investigated. The results showed that MPs aggravated Cd-induced kidney injury by enhancing oxidative stress, autophagy, apoptosis, and fibrosis. These findings provide new insights into the toxic effects of MPs on the mouse kidney.
Collapse
|