1
|
Antunes Filho S, Pizzorno Backx B, Foguel D. Green nanotechnology in phytosynthesis and its efficiency in inhibiting bacterial biofilm formation: implications for medicine. BIOFOULING 2024; 40:645-659. [PMID: 39319552 DOI: 10.1080/08927014.2024.2407036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Nanotechnology is used in several biomedical applications, including antimicrobial and antibiofilm applications using nanomaterials. Bacterial biofilm varies according to the strain; the matrix is very strong and resistant. In this sense, phytosynthesis is an important method for combating bacterial biofilms through the use of metallic nanoparticles (silver, gold, or copper) with increased marketing and technical-scientific potential. In this review, we seek to gather the leading publications on the use of phytosynthesized metallic nanoparticles against bacterial biofilms. Furthermore, this study aims to understand the main characteristics and parameters of these nanomaterials, their antibiofilm efficiency, and the presence or absence of cytotoxicity in these developed technologies.
Collapse
Affiliation(s)
- Sérgio Antunes Filho
- NUMPEX - UFRJ, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Nadeem T, Kaleem M, Minhas LA, Batool S, Sattar MM, Bashir R, Mumtaz AS. Biogenic synthesis and characterization of antimicrobial, antioxidant, and antihemolytic zinc oxide nanoparticles from Desertifilum sp. TN-15 cell extract. DISCOVER NANO 2024; 19:161. [PMID: 39356402 PMCID: PMC11447203 DOI: 10.1186/s11671-024-04076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 10/03/2024]
Abstract
Cyanobacteria, being a prominent category of phototrophic organism, exhibit substantial potential as a valuable source of bioactive compounds and phytonutrients, including liposomes, amino derivatives, proteins, and carotenoids. In this investigation, a polyphasic approach was employed to isolate and characterize a newly discovered cyanobacterial strain from a rice field in the Garh Moor district of Jhang. Desertifilum sp. TN-15, a unique and less explored cyanobacterial strain, holds significant promise as a novel candidate for the synthesis of nanoparticles. This noticeable research gap underscores the novelty and untapped potential of Desertifilum sp. TN-15 in the field of nanomedicine. The characterization of the biogenically synthesized ZnO-NPs involved the application of diverse analytical techniques. Ultraviolet-visible spectroscopy revealed a surface plasmon resonance peak at 298 nm. Fourier transform infrared spectral analysis was utilized to confirm the involvement of biomolecules in the biogenic synthesis and stability. Scanning electron microscopy was employed to probe the surface morphology of the biogenic ZnO-NPs unveiling their size of 94.80 nm and star-shaped. Furthermore, X-ray diffraction analysis substantiated the crystalline nature of ZnO-NPs, with a crystalline size measuring 46 nm. To assess the physical stability of ZnO-NPs, zeta potential and dynamic light scattering measurements were conducted, yielding values of + 31.6 mV, and 94.80 nm, respectively, indicative of favorable stability. The antibacterial capabilities of Desertifilum sp. TN-15 are attributed to its abundance of bioactive components, including proteins, liposomes, amino derivatives, and carotenoids. Through the synthesis of zinc oxide nanoparticles (ZnO-NPs) with this strain, we have effectively used these chemicals to generate nanoparticles that exhibit noteworthy antibacterial activity against Staphylococcus aureus (MIC: 30.05 ± 0.003 µg/ml). Additionally, the ZnO-NPs displayed potent antifungal activity and antioxidant properties, as well as significant antihemolytic effects on red blood cells (IC50: 4.8 µg/ml). Cytotoxicity assessment using brine shrimps revealed an IC50 value of 3.1 µg/ml. The multifaceted actions of the biogenically synthesized ZnO-NPs underscore their potential applications in pharmacological and therapeutic fields. This study proposes a novel method for ZnO-NPs production utilizing the recently identified cyanobacterial strain Desertifilum sp. TN-15, highlighting the growing significance of biological systems in the environmentally friendly fabrication of metallic oxide nanomaterials.
Collapse
Affiliation(s)
- Taswar Nadeem
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Kaleem
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Lubna Anjum Minhas
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saima Batool
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Muzamil Sattar
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rifat Bashir
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
3
|
Irede EL, Awoyemi RF, Owolabi B, Aworinde OR, Kajola RO, Hazeez A, Raji AA, Ganiyu LO, Onukwuli CO, Onivefu AP, Ifijen IH. Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Adv 2024; 14:20992-21034. [PMID: 38962092 PMCID: PMC11220610 DOI: 10.1039/d4ra02452d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
This paper presents a comprehensive review of recent advancements in utilizing zinc oxide nanoparticles (ZnO NPs) to enhance antimicrobial and UV protective properties in healthcare solutions. It delves into the synthesis techniques of ZnO NPs and elucidates their antimicrobial efficacy, exploring the underlying mechanisms governing their action against a spectrum of pathogens. Factors impacting the antimicrobial performance of ZnO NPs, including size, surface characteristics, and environmental variables, are extensively analyzed. Moreover, recent studies showcasing the effectiveness of ZnO NPs against diverse pathogens are critically examined, underscoring their potential utility in combatting microbial infections. The study further investigates the UV protective capabilities of ZnO NPs, elucidating the mechanisms by which they offer UV protection and reviewing recent innovations in leveraging them for UV-blocking applications in healthcare. It also dissects the factors influencing the UV shielding performance of ZnO NPs, such as particle size, dispersion quality, and surface coatings. Additionally, the paper addresses challenges associated with integrating ZnO NPs into healthcare products and presents future perspectives for overcoming these hurdles. It emphasizes the imperative for continued research efforts and collaborative initiatives to fully harness the potential of ZnO NPs in developing advanced healthcare solutions with augmented antimicrobial and UV protective attributes. By advancing our understanding and leveraging innovative approaches, ZnO NPs hold promise for addressing pressing healthcare needs and enhancing patient care outcomes.
Collapse
Affiliation(s)
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University Starkville Mississippi MS 39762 USA
| | - Babatunde Owolabi
- Department of Civil Engineering, University of Alabama Tuscaloosa Alabama AL 35487 USA
| | | | - Rofiat Odunayo Kajola
- Department of Biomedical Engineering, University of Rochester 500 Joseph C. Wilson Blvd. Rochester NY 14627 USA
| | - Ajibola Hazeez
- Department of Urban and Regional Planning, University of Lagos Lagos Nigeria
| | - Ayuba Adawale Raji
- Department of Surveying and Geo-Informatics, Bells University of Technology Ota Ogun State Nigeria
| | | | - Chimezie O Onukwuli
- Department of Chemistry, Eastern New Mexico University Portales New Mexico USA
| | - Asishana Paul Onivefu
- Department of Chemistry and Biochemistry, University of Delaware Newark DE 19716 USA
| | - Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| |
Collapse
|
4
|
Qurashi SZ, Okla MK, Saleh IA, Zomot N, Zaman U, Ur Rehman K, Khan D, Khan SU, Khan SU, Abdel-Maksoud MA. Alkaline protease based hydrothermal synthesis of novel Pd/CuO/ZnO nanocomposite: A new entry into photocatalytic and biomedical applications. Int J Biol Macromol 2024; 266:131155. [PMID: 38547944 DOI: 10.1016/j.ijbiomac.2024.131155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Here, we reported the process for the production of Pd/CuO/ZnO nanocomposite utilizing alkaline protease from Phalaris minor seed extract, which is a unique, effective biogenic approach. Alkaline protease performed a crucial part in the reduction, capping and stabilization of Pd/CuO/ZnO nanocomposites. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of Pd/CuO/ZnO nanocomposites. The notable performance of the synthesized nanocomposite as a photocatalyst and an antibacterial disinfectant was astonishing. The Pd/CuO/ZnO nanocrystals showed considerable photocatalytic activity by eliminating 99 % of the methylene blue (MB) in <30 min of exposure. After three test cycles, the nanocatalyst demonstrated exceptional reliability as a photocatalyst. The nanocomposite was also discovered to be an effective antibacterial agent, with zones of inhibitory activity for Staphylococcus aureus and Escherichia coli bacteria of 30(±0.2), 27(±0.3), 22(±0.2), and 21(±0.3) mm, respectively, in both light and dark conditions. Moreover, the Pd/CuO/ZnO nanocomposites showed strong antioxidant activity by efficiently scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The photocatalytic, antibacterial and antioxidative performance of Pd, CuO, ZnO, and CuO/ZnO were also assessed for the sake of comparison. This work shows that biogenic nanocomposites may be employed as a feasible alternative photocatalyst for the decomposition of dyes in waste water as well as a sustainable antibacterial agent.
Collapse
Affiliation(s)
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa 13110, Jordan
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, KPK, Pakistan.
| | - Dilfaraz Khan
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, KPK, Pakistan.
| | - Shahid Ullah Khan
- Integrative Science Centre of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KP, Pakistan
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Azizan A, Samsudin AA, Shamshul Baharin MB, Dzulkiflee MH, Rosli NR, Abu Bakar NF, Adlim M. Cellulosic fiber nanocomposite application review with zinc oxide antimicrobial agent nanoparticle: an opt for COVID-19 purpose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16779-16796. [PMID: 35084685 PMCID: PMC8793331 DOI: 10.1007/s11356-022-18515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/01/2022] [Indexed: 05/08/2023]
Abstract
Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
Collapse
Affiliation(s)
- Amizon Azizan
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Aisyah Afiqah Samsudin
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | | | - Muhammad Harith Dzulkiflee
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Nor Roslina Rosli
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Noor Fitrah Abu Bakar
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Muhammad Adlim
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, 23111 Darussalam Banda Aceh, Kuala, Indonesia
- Chemistry Department, FKIP, Universitas Syiah Kuala, 23111 Darussalam Banda Aceh, Kuala, Indonesia
| |
Collapse
|
6
|
Nieri P, Carpi S, Esposito R, Costantini M, Zupo V. Bioactive Molecules from Marine Diatoms and Their Value for the Nutraceutical Industry. Nutrients 2023; 15:464. [PMID: 36678334 PMCID: PMC9861441 DOI: 10.3390/nu15020464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
The search for novel sources of nutrients is among the basic goals for achievement of sustainable progress. In this context, microalgae are relevant organisms, being rich in high-value compounds and able to grow in open ponds or photobioreactors, thus enabling profitable exploitation of aquatic resources. Microalgae, a huge taxon containing photosynthetic microorganisms living in freshwater, as well as in brackish and marine waters, typically unicellular and eukaryotic, include green algae (Chlorophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae) and diatoms (Bacillariophyceae). In recent decades, diatoms have been considered the most sustainable sources of nutrients for humans with respect to other microalgae. This review focuses on studies exploring their bio-pharmacological activities when relevant for human disease prevention and/or treatment. In addition, we considered diatoms and their extracts (or purified compounds) when relevant for specific nutraceutical applications.
Collapse
Affiliation(s)
- Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Center of Marine Pharmacology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sara Carpi
- National Enterprise for NanoScience and Nanotechnology (NEST), Piazza San Silvestro, 56127 Pisa, Italy
| | - Roberta Esposito
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Maria Costantini
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
| | - Valerio Zupo
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80077 Ischia, Italy
| |
Collapse
|
7
|
Kiani BH, Ajmal Q, Akhtar N, Haq IU, Abdel-Maksoud MA, Malik A, Aufy M, Ullah N. Biogenic Synthesis of Zinc Oxide Nanoparticles Using Citrullus colocynthis for Potential Biomedical Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020362. [PMID: 36679076 PMCID: PMC9865101 DOI: 10.3390/plants12020362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 05/29/2023]
Abstract
Green nanoparticle synthesis is considered the most efficient and safe nanoparticle synthesis method, both economically and environmentally. The current research was focused on synthesizing zinc oxide nanoparticles (ZnONPs) from fruit and leaf extracts of Citrullus colocynthis. Four solvents (n-hexane, methanol, ethyl acetate, and aqueous) were used to prepare the extracts from both plant parts by maceration and extraction. Zinc acetate was used to synthesize the nanoparticles (NPs), and color change indicated the synthesis of ZnONPs. X-ray diffraction, UV spectroscopy, and scanning electron microscopy were used to study the ZnONPs. UV-visible spectroscopy revealed an absorbance peak in the 350-400 nm range. XRD patterns revealed the face-centered cubic structure of the ZnONPs. SEM confirmed a spherical morphology and a size range between 64 and 82 nm. Phytochemical assays confirmed that the complete flavonoid, phenolic, and alkaloid concentrations were higher in unrefined solvent extracts than in nanoparticles. Nanoparticles of C. colocynthis fruit aqueous extracts showed stronger antioxidant activity compared with the crude extracts. Strong antifungal activity was exhibited by the leaves, crude extracts, and nanoparticles of the n-hexane solvent. In a protein kinase inhibition assay, the maximum bald zone was revealed by nanoparticles of ethyl acetate extracts from leaves. The crude extracts and nanoparticles of leaves showed high cytotoxic activities of the n-hexane solvent, with LC50 values of 42.08 and 46.35, respectively. Potential antidiabetic activity was shown by the n-hexane (93.42%) and aqueous (82.54%) nanoparticles of the fruit. The bioactivity of the plant showed that it is a good candidate for therapeutic use. The biosynthesized ZnONPs showed promising antimicrobial, cytotoxic, antidiabetic, and antioxidant properties. Additionally, the in vivo assessment of a nano-directed drug delivery system for future therapeutic use can be conducted based on this study.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Qudsia Ajmal
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mostafa A. Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11149, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1010 Vienna, Austria
| | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
8
|
Ali SG, Jalal M, Ahmad H, Umar K, Ahmad A, Alshammari MB, Khan HM. Biosynthesis of Gold Nanoparticles and Its Effect against Pseudomonas aeruginosa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248685. [PMID: 36557818 PMCID: PMC9781250 DOI: 10.3390/molecules27248685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography-mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates.
Collapse
Affiliation(s)
- Syed Ghazanfar Ali
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Jalal
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Hilal Ahmad
- SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
- Correspondence: (K.U.); (A.A.)
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (K.U.); (A.A.)
| | - Mohammed B. Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Haris Manzoor Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
9
|
Tabasum H, Bhat BA, Sheikh BA, Mehta VN, Rohit JV. Emerging perspectives of plant-derived nanoparticles as effective antimicrobial agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Bekru A, Tufa LT, Zelekew OA, Goddati M, Lee J, Sabir FK. Green Synthesis of a CuO-ZnO Nanocomposite for Efficient Photodegradation of Methylene Blue and Reduction of 4-Nitrophenol. ACS OMEGA 2022; 7:30908-30919. [PMID: 36092591 PMCID: PMC9453957 DOI: 10.1021/acsomega.2c02687] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 05/15/2023]
Abstract
CuO-ZnO nanocomposites (NCs) were synthesized using an aqueous extract of Verbascum sinaiticum Benth. (GH) plant. X-ray diffraction (XRD), spectroscopic, and microscopic methods were used to explore the crystallinity, optical properties, morphology, and other features of the CuO-ZnO samples. Furthermore, catalytic performances were investigated for methylene blue (MB) degradation and 4-nitrophenol (4-NP) reduction. According to the results, CuO-ZnO NCs with 20 wt % CuO showed enhanced photocatalytic activity against MB dye with a 0.017 min-1 rate constant compared to 0.0027 min-1 for ZnO nanoparticles (NPs). Similarly, a ratio constant of 5.925 min-1 g-1 4-NP reductions was achieved with CuO-ZnO NCs. The results signified enhanced performance of CuO-ZnO NCs relative to ZnO NPs. The enhancement could be due to the synergy between ZnO and CuO, resulting in improved absorption of visible light and reduced electron-hole (e-/h+) recombination rate. In addition, variations in the CuO content affected the performance of the CuO-ZnO NCs. Thus, the CuO-ZnO NCs prepared using V. sinaiticum Benth. extract could make the material a desirable catalyst for the elimination of organic pollutants.
Collapse
Affiliation(s)
- Aklilu
Guale Bekru
- Department
of Applied Chemistry, Adama Science and
Technology University, Adama 1888, Ethiopia
| | - Lemma Teshome Tufa
- Department
of Applied Chemistry, Adama Science and
Technology University, Adama 1888, Ethiopia
- Research
Institute of Materials Chemistry, Chungnam
National University, Daejeon 34134, Republic of Korea
| | - Osman Ahmed Zelekew
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
- ,
| | - Mahendra Goddati
- Department
of Chemistry, Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaebeom Lee
- Department
of Chemistry, Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Fedlu Kedir Sabir
- Department
of Applied Chemistry, Adama Science and
Technology University, Adama 1888, Ethiopia
| |
Collapse
|
11
|
Khalid A, Ahmad P, Muhammad S, Khan A, Khandaker MU, Alam MM, Asim M, Din IU, Iqbal J, Rehman IU, Razzaq Z, Pandian S, Sharma R, Emran TB, Sayyed MI, Aldawood S, Sulieman A. Synthesis of Boron-Doped Zinc Oxide Nanosheets by Using Phyllanthus Emblica Leaf Extract: A Sustainable Environmental Applications. Front Chem 2022; 10:930620. [PMID: 35903193 PMCID: PMC9314885 DOI: 10.3389/fchem.2022.930620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
The use of Phyllanthus emblica (gooseberry) leaf extract to synthesize Boron-doped zinc oxide nanosheets (B-doped ZnO-NSs) is deliberated in this article. Scanning electron microscopy (SEM) shows a network of synthesized nanosheets randomly aligned side by side in a B-doped ZnO (15 wt% B) sample. The thickness of B-doped ZnO-NSs is in the range of 20–80 nm. B-doped ZnO-NSs were tested against both gram-positive and gram-negative bacterial strains including Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli. Against gram-negative bacterium (K. pneumonia and E. coli), B-doped ZnO displays enhanced antibacterial activity with 26 and 24 mm of inhibition zone, respectively. The mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), mean free path (MFP), half-value layer (HVL), and tenth value layer (TVL) of B-doped ZnO were investigated as aspects linked to radiation shielding. These observations were carried out by using a PTW® electron detector and VARIAN® irradiation with 6 MeV electrons. The results of these experiments can be used to learn more about the radiation shielding properties of B-doped ZnO nanostructures.
Collapse
Affiliation(s)
- Awais Khalid
- Department of Physics, Hazara University Mansehra, Mansehra, Pakistan
| | - Pervaiz Ahmad
- Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
- *Correspondence: Pervaiz Ahmad, ; Mayeen Uddin Khandaker,
| | - Saleh Muhammad
- Department of Physics, Hazara University Mansehra, Mansehra, Pakistan
| | - Abdulhameed Khan
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Mayeen Uddin Khandaker
- Center for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Subang Jaya, Malaysia
- Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Pervaiz Ahmad, ; Mayeen Uddin Khandaker,
| | - Md Mottahir Alam
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Asim
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Israf Ud Din
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Ibad Ur Rehman
- Department of Physics, Hazara University Mansehra, Mansehra, Pakistan
| | - Zohaib Razzaq
- Department of Physics, Hazara University Mansehra, Mansehra, Pakistan
| | - Sivakumar Pandian
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - M. I. Sayyed
- Department of Physics, Faculty of Science, Isra University, Amman, Jordan
| | - Saad Aldawood
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdelmoneim Sulieman
- Department of Radiology and Medical Imaging, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
12
|
Kamaruzaman NH, Mohd Noor NN, Radin Mohamed RMS, Al-Gheethi A, Ponnusamy SK, Sharma A, Vo DVN. Applicability of bio-synthesized nanoparticles in fungal secondary metabolites products and plant extracts for eliminating antibiotic-resistant bacteria risks in non-clinical environments. ENVIRONMENTAL RESEARCH 2022; 209:112831. [PMID: 35123962 DOI: 10.1016/j.envres.2022.112831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The abundance of antibiotic-resistant bacteria in the prawn pond effluents can substantially impact the natural environment. The settlement ponds, which are the most common treatment method for farms wastewater, might effectively reduce the suspended solids and organic matter. However, the method is insufficient for bacterial inactivation. The current paper seeks to highlight the environmental issue associated with the distribution of antibiotic resistant bacteria (ARB) from prawn farm wastewater and their impact on the microbial complex community in the surface water which receiving these wastes. The inactivation of antibiotic-resistant bacteria in prawn wastewater is strongly recommended because the presence of antibiotic-resistant bacteria in the environment causes water pollution and public health issues. The nanoparticles are more efficient for bacterial inactivation. They are widely accepted due to their high chemical and mechanical stability, broad spectrum of radiation absorption, high catalytic activity, and high antimicrobial activity. Many studies have examined the use of fungi or plants extract to synthesis zinc oxide nanoparticles (ZnO NPs). It is evident from recent papers in the literature that green synthesized ZnO NPs from microbes and plant extracts are non-toxic and effective. ZnO NPs inactivate the bacterial cells as a function for releasing reactive oxygen species (ROS) and zinc ions. The inactivation of antibiotic-resistant bacteria tends to be more than 90% which exhibit strong antimicrobial behavior against bacterial species.
Collapse
Affiliation(s)
- Nur Hazirah Kamaruzaman
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Nur Nabilah Mohd Noor
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Ajit Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
13
|
Rajalakshmi A, Ramesh M, Divya E, Kavitha K, Puvanakrishnan R, Ramesh B. Production and characterization of naturally occurring antibacterial magnetite nanoparticles from magnetotactic Bacillus sp. MTB17. J Appl Microbiol 2021; 132:2683-2693. [PMID: 34859544 DOI: 10.1111/jam.15395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
AIMS This study envisaged the isolation and characterization of magnetite nanoparticles (MNPs) from magnetotactic bacteria (MTB) and the evaluation of their antibacterial efficacy. METHODS AND RESULTS MNPs were extracted from 20 motile but morphologically different MTB, and they were subjected to antibacterial activity assay. These MNPs were found to be highly effective against Vibrio cholerae. MTB17 was considered as the potent MTB strain based on the antibacterial activity. The MNPs of MTB17 were isolated and validated by UV-Visible spectroscopy, particle size analysis, FTIR analysis, and PXRD. CONCLUSIONS Isolation and characterization of ~85 nm MNPs from MTB is reported, and it is highly active against all the gram-positive and gram-negative strains tested. SIGNIFICANCE AND IMPACT OF THE STUDY This study focuses on a novel use of biogenic magnetite MNPs as an antibacterial agent, which can be further explored using in vivo studies.
Collapse
Affiliation(s)
- Arumugam Rajalakshmi
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| | - Manickam Ramesh
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| | - Ellappan Divya
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| | - Kuppuswamy Kavitha
- Research Department of Microbiology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| | - Rengarajulu Puvanakrishnan
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| | - Balasubramanian Ramesh
- Research Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
14
|
Fernandes J, Vaz T, Anvekar TS. Antimicrobial and antioxidant therapy with bioactive plant molecules on Fe3O4 phytohybrid nanoplatforms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Nanobiomedicines have gained increasing attention for their potential to improve efficacy and are emerging as a promising therapeutic paradigm. Magnetic nanoconjugates loaded with bioactive drugs have the advantage of sustained circulation in the bloodstream and significantly reduced toxicity of therapeutic agents in a precise manner. The well-developed surface chemistry of Fe3O4 has led to the development better tools, promoting them as nanoplatforms with potential technological applications in biomedical sciences.
Results
Fe3O4 phytohybrids with Laxmitaru extract as the primary coating and loaded with Eugenol and Ylang-Ylang essential oils were successfully synthesized. The X-ray diffraction technique has revealed the high purity nanoparticle materials, as no additional impurity peaks were observed. Fourier transform infra-red spectra have confirmed the presence of a primary coating of Laxmitaru extract and a secondary layer of essential oil, as additional peaks and broadening are observed in drug-loaded Fe3O4 nanoparticles. Magnetic susceptibility values indicate the material's superparamagnetic nature. Transmission electron microscopy images have ensured that the particles were spherical, monodispersed, and in the range of 4.30 nm to 13.98 nm. Antimicrobial studies show inhibition zones on the microorganisms S. Aureus and E. Coli with enhanced activity. Drug entrapment efficiency studies revealed the encapsulation of drug molecules onto Fe3O4-Laxmitaru composite. Dynamic light scattering studies confirm the increase in hydrodynamic size, indicating the loading of essential oils and the decrease in polydispersity index ensures monodispersed nanoparticles. The antioxidant study showed the essential oils retained their antioxidant activity even after they were conjugated on Fe3O4-Lax composites.
Conclusions
Laxmitaru phytochemical-coated Fe3O4 nanoparticles were successfully conjugated with Eugenol and Ylang-Ylang essential oils. Our results provide a model therapeutic approach for the development of new alternative strategies for enhancing antimicrobial and antioxidant therapy, with potential advantages in the field of nanobiomedicine.
Collapse
|
15
|
Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, Shilpa N, Singh SB, Thriveni MC, Aiyaz M, Angaswamy N, Lakshmidevi N, Adil SF, Hatshan MR, Amruthesh KN. Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics 2021; 13:1662. [PMID: 34683954 PMCID: PMC8540056 DOI: 10.3390/pharmaceutics13101662] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles' research and applications are discussed.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Nataraj Kalegowda
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Hittanahallikoppal G. Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Natarajamurthy Shilpa
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Sudarshana B. Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - M. C. Thriveni
- Central Sericultural Germplasm Resources Centre, Central Silk Board, Ministry of Textiles, Thally Road, TVS Nagar, Hosur 635109, Tamil Nadu, India;
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Nataraju Angaswamy
- Department of Biochemistry, Karnataka State Open University, Mukthagangotri, Mysuru 570006, Karnataka, India;
| | - Nanjaiah Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| |
Collapse
|
16
|
Ansari MA, Akhtar S, Rauf MA, Alomary MN, AlYahya S, Alghamdi S, Almessiere MA, Baykal A, Khan F, Adil SF, Khan M, Hatshan MR. Sol-Gel Synthesis of Dy-Substituted Ni 0.4Cu 0.2Zn 0.4(Fe 2-xDy x)O 4 Nano Spinel Ferrites and Evaluation of Their Antibacterial, Antifungal, Antibiofilm and Anticancer Potentialities for Biomedical Application. Int J Nanomedicine 2021; 16:5633-5650. [PMID: 34434046 PMCID: PMC8381027 DOI: 10.2147/ijn.s316471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Background The constant rise of microbial biofilm formation and drug resistance to existing antimicrobial drugs poses a significant threat to community health around the world because it reduces the efficacy and efficiency of treatments, increasing morbidity, mortality, and health-care expenditures. As a result, there is an urgent need to develop novel antimicrobial agents that inhibit microbial biofilm formation. Methods The [Ni0.4Cu0.2Zn0.4](Fe2-xDyx)O4(x≤0.04) (Ni-Cu-Zn) nano spinel ferrites (NSFs) have been synthesized by the sol–gel auto-combustion process and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and transmission electron microscopy (TEM). The antimicrobial, antibiofilm and antiproliferative activities of Ni-Cu-Zn NSFs were also examined. Results The XRD pattern confirms the secondary phase DyFeO3 and Fe2O3 for substituted Dy3+ samples, and the crystallite size ranged from 10 to 19 nm. TEM analysis of NSFs revealed that the particles were cube-shaped and 15nm in size. NSFs exhibited significant antimicrobial, antibiofilm and antiproliferative activity. At concentration of 1 mg/mL, it was found that the NSFs (ie, x=0.0, x=0.01, x=0.02, x=0.03 and x=0.04) inhibit biofilm formation by 27.6, 26.2, 58.5, 33.3 and 25% for methicillin-resistant Staphylococcus aureus (MRSA) and 47.5, 43.5, 48.6, 58.3 and 26.6% for Candida albicans, respectively. SEM images demonstrate that treating MRSA and C. albicans biofilms with NSFs significantly reduces cell adhesion, colonization and destruction of biofilm architecture and extracellular polymeric substances matrices. Additionally, SEM and TEM examination revealed that NSFs extensively damaged the cell walls and membranes of MRSA and C. albicans. Huge ultrastructural alteration such as deformation, disintegration and separation of cell wall and membrane from the cells was observed, indicating significant loss of membrane integrity, which eventually led to cell death. Furthermore, it was observed that NSF inhibited the cancer cell growth and proliferation of HCT-116 in a dose-dependent manner. Conclusion The current study demonstrated that the synthesized Ni-Cu-Zn NSFs could be used to develop potential antimicrobial surface coatings agents for a varieties of biomedical-related materials and devices in order to prevent the biofilms formation and their colonization. Furthermore, the enhanced antiproliferative properties of manufactured SNFs suggest a wide range of biomedical applications.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Sami AlYahya
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - M A Almessiere
- Department of Biophysics, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.,Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nanomedicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Firdos Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Green synthesis of silver nanoparticles (AgNPs) by filamentous algae extract: comprehensive evaluation of antimicrobial and anti-biofilm effects against nosocomial pathogens. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00808-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Quan C, Lin H, Xiao H, Zhao J. Inhibitory effect of carboxylated nanodiamond on oral pathogenic bacteria Streptococcus mutans. J Clin Lab Anal 2021; 35:e23872. [PMID: 34407267 PMCID: PMC8373339 DOI: 10.1002/jcla.23872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Nanodiamonds (NDs) have been demonstrated to have bactericidal activity on several microorganisms and can be used in various kinds of dental materials. NDs are potential candidates for antibacterial dental materials. However, the possible inhibitory effect of NDs on oral pathogenic bacteria is largely unknown. This study was performed to investigate the inhibitory effects of carboxylated nanodiamond (cND) on Streptococcus mutans. METHODS Fourier transform infrared spectroscopy was used to confirm carboxyl groups on the surface of commercial cND. The inhibitory effect of serially diluted cND on S. mutans was evaluated by spectrophotometry and plating methods. Escherichia coli was treated as a positive control in spectrophotometry. Chlorhexidine was used as a positive control in plating methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to confirm the antibacterial activity of cND. RESULTS The results showed that cND exhibited a significant inhibitory effect on S. mutans. For S. mutans, the minimum inhibitory concentration was 4 μg/ml and the minimum bactericidal concentration was 16 μg/ml. SEM and TEM results indicated that cND functioned as an antibacterial agent, likely due to its ability to disrupt the cell membrane of S. mutans. CONCLUSION In conclusion, these findings demonstrated an inhibitory effect of cND on S. mutans and suggest its use as a potential antibacterial dental material.
Collapse
Affiliation(s)
- Chuntian Quan
- Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Haiyan Lin
- Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Hui Xiao
- Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianjiang Zhao
- Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
19
|
Ansari MA, Kalam A, Al-Sehemi AG, Alomary MN, AlYahya S, Aziz MK, Srivastava S, Alghamdi S, Akhtar S, Almalki HD, Adil SF, Khan M, Hatshan MR. Counteraction of Biofilm Formation and Antimicrobial Potential of Terminalia catappa Functionalized Silver Nanoparticles against Candida albicans and Multidrug-Resistant Gram-Negative and Gram-Positive Bacteria. Antibiotics (Basel) 2021; 10:725. [PMID: 34208591 PMCID: PMC8234839 DOI: 10.3390/antibiotics10060725] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms not only protect bacteria and Candida species from antibiotics, but they also promote the emergence of drug-resistant strains, making eradication more challenging. As a result, novel antimicrobial agents to counteract biofilm formation are desperately needed. In this study, Terminalia catappa leaf extract (TCE) was used to optimize the TCE-capped silver nanoparticles (TCE-AgNPs) via a one-pot single-step method. Varied concentrations of TCE have yielded different sized AgNPs. The physico-chemical characterization of TCE-AgNPs using UV-Vis, SEM, TEM, FTIR, and Raman spectroscopy have confirmed the formation of nanostructures, their shape and size and plausible role of TCE bio-active compounds, most likely involved in the synthesis as well as stabilization of NPs, respectively. TCE-AgNPs have been tested for antibiofilm and antimicrobial activity against multidrug-resistant Pseudomonas aeruginosa (MDR-PA), methicillin-resistant Staphylococcus aureus (MRSA), and Candida albicans using various microbiological protocols. TCE-Ag-NPs-3 significantly inhibits biofilm formation of MDR-PA, MRSA, and C. albicans by 73.7, 69.56, and 63.63%, respectively, at a concentration of 7.8 µg/mL, as determined by crystal violet microtiter assay. Furthermore, SEM micrograph shows that TCE-AgNPs significantly inhibit the colonization and adherence of biofilm forming cells; individual cells with loss of cell wall and membrane integrity were also observed, suggesting that the biofilm architecture and EPS matrix were severely damaged. Moreover, TEM and SEM images showed that TCE-AgNPs brutally damaged the cell wall and membranes of MDR-PA, MRSA, and C. albicans. Additionally, extreme ultrastructural changes such as deformation, disintegration, and separation of cell wall and membrane from the cells, have also been observed, indicating significant loss of membrane and cell wall integrity, which eventually led to cell death. Overall, the research revealed a simple, environmentally friendly, and low-cost method for producing colloidal TCE-AgNPs with promising applications in advanced clinical settings against broad-spectrum biofilm-forming antibiotic-resistant bacteria and candida strains.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abul Kalam
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (M.N.A.); (S.A.)
| | - Sami AlYahya
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (M.N.A.); (S.A.)
| | - Mohammad Kashif Aziz
- Department of Chemistry, Faculty of Science, University of Allahabad, Allahabad 211001, Uttar Pradesh, India; (M.K.A.); (S.S.)
| | - Shekhar Srivastava
- Department of Chemistry, Faculty of Science, University of Allahabad, Allahabad 211001, Uttar Pradesh, India; (M.K.A.); (S.S.)
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24231, Saudi Arabia;
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Hussain D. Almalki
- Department of Chemistry, University College in Al-Qunfudah, Umm Al-Qura University, Makkah Al-Mukarramah 1109, Saudi Arabia;
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (M.R.H.)
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (M.R.H.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (M.R.H.)
| |
Collapse
|
20
|
Ebadi M, Zolfaghari MR, Aghaei SS, Zargar M, Noghabi KA. Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles. J Appl Microbiol 2021; 132:221-236. [PMID: 34101961 DOI: 10.1111/jam.15177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
AIMS The use of cyanobacterial cell extracts for the synthesis of zinc oxide nanoparticles (ZnO NPs) seems to be superior to other methods of synthesis because of its a green, environmentally friendly and low-cost approach. In this study, the cell extract of a newly characterized cyanobacterial strain Desertifilum sp. EAZ03 was used for the biosynthesis of ZnO NPs. The antimicrobial, antibiofilm and anticancer activities of the biosynthesized ZnO NPs (hereinafter referred to as CED-ZnO NPs) were examined as well. METHODS AND RESULTS UV-Vis spectroscopy analysis of CED-ZnO NPs showed an absorbance band at 364 nm, and powder X-ray diffraction analysis confirmed the purity of the synthesized nanoparticles. The analyses of scanning electron microscopy and transmission electron microscopy images revealed that CED-ZnO NPs were rod-shaped with a size of 88 nm. The study of the biological features of CED-ZnO NPs showed a significant antimicrobial potential against the bacterial strains tested. CED-ZnO NPs were able to impede the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa up to 80%, 89% and 85%, respectively. The nanoparticles also showed 69%, 70% and 62% degrading activity against S. aureus, E. coli and P. aeruginosa 1-day-old biofilms, respectively. The antibiofilm activity of the synthesized nanoparticles was investigated by confocal laser scanning microscopy. The MTT assay showed that CED-ZnO NPs, at a concentration of 100 μg/ml, had less cytotoxicity towards normal lung (MRC-5) cells, at the half, compared to cancerous lung alveolar epithelial (A549) cells. The minimum inhibitory concentration and minimum bactericidal concentration values of CED-ZnO NPs against E. coli, P. aeruginosa and S. aureus were 1500, 2000 and 32 μg/ml, and 2500, 3500 and 64 μg/ml, respectively. CONCLUSIONS The multifunctional CED-ZnO NPs seem to be promising for possible applications in the therapeutic and pharmaceutical industries. SIGNIFICANCE AND IMPACT OF THE STUDY This study proposes a new approach for the biosynthesis of zinc oxide nanoparticles using a newly characterized cyanobacterial strain Desertifilum sp. EAZ03. The considerable antimicrobial, antibiofilm and anticancer activities of the biosynthesized zinc oxide nanoparticles further emphasize the emerging role of microbial systems in the green synthesis of metal oxide nanoparticles.
Collapse
Affiliation(s)
- Mojgan Ebadi
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | | - Mohsen Zargar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Kambiz Akbari Noghabi
- Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
21
|
Hemmati F, Ghotaslou R, Salehi R, Kafil HS, Hasani A, Gholizadeh P, Nouri R, Rezaee MA. Effects of Gentamicin-Loaded Chitosan-ZnO Nanocomposite on Quorum-Sensing Regulation of Pseudomonas Aeruginosa. Mol Biotechnol 2021; 63:746-756. [PMID: 34003434 DOI: 10.1007/s12033-021-00336-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
Cell density-based intercellular signaling mechanism is known as Quorum sensing (QS); it serves a significant role in regulating the pathogenic factors. The objective of the present study was to assess the influence of chitosan-zinc oxide nanocomposite (CH-ZnO nanocomposite), alone and in combination with gentamicin, on the sensitivity to hydrogen peroxide (H2O2), the production of pathogenic factors and QS-regulated genes of Pseudomonas aeruginosa. The efficacy of the minimum inhibitory concentration (MIC) and 1/4 MIC of the CH-ZnO nanocomposite, alone and in combination with gentamicin, on the sensitivity to H2O2, pyocyanin secretion, swarming and twitching motilities was evaluated. In addition, the expression of some QS-regulated genes including rhlI, rhlR, lasI and lasR genes was measured by Real-time quantitative PCR (RT-qPCR) following exposure to the nanocomposite. The results demonstrated that at MIC concentrations, the gentamicin-loaded CH-ZnO nanocomposite significantly inhibited QS-regulated phenotypes such as pyocyanin secretion (82.4%), swarming (76%) and twitching (73.6%) motilities; further it increased the inhibition growth zone (134.5%), as well as, at 1/4 MIC concentration decreased the expression of lasI (72%), lasR (78%), rhlI (76%) and rhlR (82%) genes; as compared to untreated P. aeruginosa PAO1 (P < 0.05). Our results also demonstrated that the CH-ZnO nanocomposite combined with gentamicin could be a potential innovative candidate, which could be broadly applied in the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Alka Hasani
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|