1
|
Huang Y, Li J, Wang D, Ye Z, Wang L, Liu M. Diets supplemented with different solvents extracts of Lepista nuda alters longevity and fecundity, and the expression of related genes in Drosophila melanogaster (Diptera: Drosophilidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae241. [PMID: 39578891 DOI: 10.1093/jee/toae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 11/24/2024]
Abstract
Exploring the effects of different solvent extracts from Lepista nuda [(Bull. ex Fr.) Cooke] on the lifespan and reproductive capacity of Drosophila melanogaster (Diptera: Drosophilidae), the extracts of the fruiting body and mycelium of L. nuda were prepared using water, 75% ethanol, and petroleum ether, and the active components were identified. These extracts were then incorporated into culture media and administered to D. melanogaster. The impact of the extracts from different solvents on the life span and fertility, and the contents of ecdysone (20E), juvenile hormone (JH), and vitellogenin (Vg), as well as the effects of autophagy gene, 20E synthesis gene Halloween, 20E receptor gene ECR, JH methyltransferase gene JHAMT and Vg gene Yolk1 transcripts were analyzed. The extracts from the fruiting body and mycelium of L. nuda can reduce lifespan, a phenomenon associated with the varied expression of 15 compounds across 6 distinct groups. The average survival time of female fruit flies was lower than that of the male fruit flies. Fertility had also been significantly reduced, indicating a positive correlation between lifespan and fertility. In addition, with the extension of cultivation time, the content of 20E, JH, and Vg, as well as the transcripts of Halloween, ECR, JHAMT, and Yolk1 in the L. nuda fruiting body extract treatment group, all significantly decreased. Among the 3 solvent extracts, phenylalanine, citric acid, quinic acid, and punicalagin in the L. nuda aqueous extract exhibit the most potent collective toxicity toward fruit flies. The insecticidal properties of these compounds function by modulating autophagy and the expression of insect hormones.
Collapse
Affiliation(s)
- Yaqin Huang
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Jinzhe Li
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Dezhi Wang
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhaowei Ye
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Lin Wang
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Minjie Liu
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
2
|
Ye J, Cheng J, Xiong R, Chen H, Huang S, Li H, Pang J, Zhang X, Zhu H. Effects and Mechanisms of Lutein on Aging and Age-Related Diseases. Antioxidants (Basel) 2024; 13:1114. [PMID: 39334773 PMCID: PMC11428584 DOI: 10.3390/antiox13091114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Aging and age-related diseases are serious public health issues that are receiving growing attention from researchers. Lutein has a critical function in the prevention and management of these issues. Possible mechanisms mainly include suppressing inflammation and oxidative stress, regulating cell activity, and modulating the levels of toxic substances. In this narrative review paper, we sum up the most current developments in the study of the effects of lutein on aging and five age-related diseases (age-related macular degeneration, cataracts, Alzheimer's disease, Parkinson's disease, and osteoporosis), and fundamental mechanisms are reviewed. The bioavailability of lutein and the strategies to improve its bioavailability are discussed. This piece of work can bring a clearer comprehension of the protective effects of lutein against aging and age-related diseases and can be also helpful for developing lutein as functional food and dietary supplements for these age-related diseases.
Collapse
Affiliation(s)
- Jialu Ye
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Cheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruogu Xiong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haoqi Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huabin Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinzhu Pang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot City 011050, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot City 011050, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Chang Y, Zheng F, Chen M, Liu C, Zheng L. Chlorella pyrenoidosa polysaccharides supplementation increases Drosophila melanogaster longevity at high temperature. Int J Biol Macromol 2024; 276:133844. [PMID: 39004249 DOI: 10.1016/j.ijbiomac.2024.133844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Chlorella pyrenoidos polysaccharides (CPPs) are the main active components of Chlorella pyrenoidos. They possess beneficial health properties, such as antioxidant, anti-inflammatory, and immune-enhancing. This study aims to investigate the protective function and mechanism of CPPs against high-temperature stress injury. Results showed that supplementation with 20 mg/mL CPPs significantly extended the lifespan of Drosophila melanogaster under high-temperature stress, improved its motility, and enhanced its resistance to starvation and oxidative stress. These effects were mainly attributed to the activation of Nrf2 signaling and enhanced antioxidant capacity. Additionally, it has been discovered that CPPs supplementation enhanced Drosophila resilience by preventing the disruption of the intestinal barrier and accumulation of reactive oxygen species caused by heat stress. Overall, these studies suggest that CPPs could be a useful natural therapy for preventing heat stress-induced injury.
Collapse
Affiliation(s)
- Yuanyuan Chang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feng Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Miao Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
4
|
Feng J, Li X, Xiao Y, Zhang FR, Liu ZQ, Zhang HF, Yang XH. Effects of Se-enriched Chrysanthemum morifolium on lifespan and antioxidant defense-related gene expression of Drosophila melanogaster model. J Food Biochem 2022; 46:e14503. [PMID: 36331088 DOI: 10.1111/jfbc.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Chrysanthemum morifolium is a well-known edible medicinal plant in Asia and some other regions. Content of selenium in Se-enriched C. morifolium (SeCM) is significantly higher than that in traditional C. morifolium (non-Se-enriched C. morifolium, TCM). In order to understand health effects of SeCM, its chemical composition, lifespan-prolonging activities, and impacts on antioxidant defense-related gene expressions of model organism D. melanogaster were systematically studied. A total of eight phenols, including luteolin-7-O-glucoside, linarin, luteolin, apigenin, diosmetin, acacetin, 3-caffeoylquinic acid and 4,5-dicaffeoylquinic acid, were identified in SeCM extract. Compared with TCM, SeCM exhibited superior antioxidant properties. Intake of SeCM dramatically reduced malondialdehyde level and increased activities of endogenous antioxidant enzymes in fruit flies. SeCM was able to upregulate gene expressions of Cu/Zn-superoxide dismutase, Mn-superoxide dismutase and hydrogen peroxide catalase, and extend lifespans of fruit flies. Comparatively high antioxidant capacities and lifespan-prolonging activities of SeCM might be attributed to its abundant phenols and selenium, which probably ameliorated accumulation of free radicals and susceptibility to oxidative stress. These findings provide clues on further exploitation and utilization of Se-enriched C. morifolium. PRACTICAL APPLICATIONS: Chrysanthemum morifolium has been used for nutraceutical and curative purposes in China for thousands of years. Se-enriched C. morifolium typically contains more selenium than traditional C. morifolium, and is widely consumed in Asia and some other regions. Selenium is an essential micronutrient for humans, and selenium deficiency may result in several diseases such as myocardial infarction. SeCM is one of important selenium supplements. In this study, SeCM was found to upregulate gene expressions of Cu/Zn-superoxide dismutase, Mn-superoxide dismutase, and hydrogen peroxide catalase, and extend lifespans of experimental animals. These results provide supporting information for developing SeCM-based functional foods with distinct health benefits.
Collapse
Affiliation(s)
- Jing Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Xiao Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, PR China
| | - Fei-Ran Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Zi-Qi Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Hua-Feng Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Provincial Research Station of Se-enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Xiao-Hua Yang
- Research Station of Selenium-enriched Tea of Shaanxi Province, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
5
|
Du X, Wang Y, Wang J, Liu X, Chen J, Kang J, Yang X, Wang H. d-Chiro-Inositol extends the lifespan of male Drosophila melanogaster better than d-Pinitol through insulin signaling and autophagy pathways. Exp Gerontol 2022; 165:111856. [DOI: 10.1016/j.exger.2022.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
|
6
|
Iranshahy M, Javadi B, Sahebkar A. Protective effects of functional foods against Parkinson's disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother Res 2022; 36:1952-1989. [PMID: 35244296 DOI: 10.1002/ptr.7425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
In Persian Medicine (PM), PD (brain-based tremor) is a known CNS disorder with several therapeutic and preventive options. In their medical textbooks and pharmacopeias, Persian great scientists such as Rhazes (854-925 AD), Avicenna (980-1037 AD), and Jorjani (1042-1136 AD), have discussed pharmacological and nutritional strategies for the prevention, slowing progression, and treatment of PD. In the present study, we surveyed plant- and animal-based foods recommended by PM for the prevention and treatment of CNS-related tremors. In vivo and in-vitro pharmacological evidence supporting the beneficial effects of PM-recommended foods in prevention and alleviating PD, major active phytochemicals along with the relevant mechanisms of action were studied. Several PM plants possess potent antioxidant, antiinflammatory, and PD preventing properties. Garlic and allicin, cabbage and isothiocyanates, chickpea seed and its O-methylated isoflavones biochanin A and formononetin, cinnamon, and cinnamaldehyde, saffron and its crocin, crocetin, and safranal, black cumin and its thymoquinone, black pepper and piperine, pistachio and genistein and daidzein, and resveratrol are among the most effective dietary itemsagainst PD. They act through attenuating neurotoxin-induced memory loss and behavioral impairment, oxidative stress, and dopaminergic cell death. PM-recommended foods can help alleviate PD progression and also discovering and developing new neuroprotective anti-PD pharmaceuticals.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
MEN TT, KHANG DT, TUAN NT, TRANG DTX. Anti-aging effects of Lasia spinosa L. stem extract on Drosophila melanogaster. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.38721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Lee MB, Kiflezghi MG, Tsuchiya M, Wasko B, Carr DT, Uppal PA, Grayden KA, Elala YC, Nguyen TA, Wang J, Ragosti P, Nguyen S, Zhao YT, Kim D, Thon S, Sinha I, Tang TT, Tran NHB, Tran THB, Moore MD, Li MAK, Rodriguez K, Promislow DEL, Kaeberlein M. Pterocarpus marsupium extract extends replicative lifespan in budding yeast. GeroScience 2021; 43:2595-2609. [PMID: 34297314 PMCID: PMC8599564 DOI: 10.1007/s11357-021-00418-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023] Open
Abstract
As the molecular mechanisms of biological aging become better understood, there is growing interest in identifying interventions that target those mechanisms to promote extended health and longevity. The budding yeast Saccharomyces cerevisiae has served as a premier model organism for identifying genetic and molecular factors that modulate cellular aging and is a powerful system in which to evaluate candidate longevity interventions. Here we screened a collection of natural products and natural product mixtures for effects on the growth rate, mTOR-mediated growth inhibition, and replicative lifespan. No mTOR inhibitory activity was detected, but several of the treatments affected growth rate and lifespan. The strongest lifespan shortening effects were observed for green tea extract and berberine. The most robust lifespan extension was detected from an extract of Pterocarpus marsupium and another mixture containing Pterocarpus marsupium extract. These findings illustrate the utility of the yeast system for longevity intervention discovery and identify Pterocarpus marsupium extract as a potentially fruitful longevity intervention for testing in higher eukaryotes.
Collapse
Affiliation(s)
- Mitchell B. Lee
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Michael G. Kiflezghi
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Brian Wasko
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX USA
| | - Daniel T. Carr
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Priya A. Uppal
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Katherine A. Grayden
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Yordanos C. Elala
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Tu Anh Nguyen
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Jesse Wang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Priya Ragosti
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Sunny Nguyen
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Yan Ting Zhao
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA USA
| | - Deborah Kim
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Socheata Thon
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Irika Sinha
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Thao T. Tang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Ngoc H. B. Tran
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Thu H. B. Tran
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Margarete D. Moore
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Mary Ann K. Li
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Karl Rodriguez
- Department of Cell Systems and Anatomy, University of Texas Health Sciences Center, San Antonio, TX USA ,Sam and Ann Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Biology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| |
Collapse
|
9
|
Wongchum N, Dechakhamphu A. Xanthohumol prolongs lifespan and decreases stress-induced mortality in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:108994. [PMID: 33549830 DOI: 10.1016/j.cbpc.2021.108994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 11/23/2022]
Abstract
Aging is a significant risk factor that links to the genesis of human diseases. The capacity to scavenge free radicals and adapt to various stresses is essential for expanding living organisms' lifespan. The evidences on the promotion of longevity by dietary supplementation are growing. Drosophila or fruit fly is one of the most effective models for the evaluation of anti-aging compounds. Xanthohumol (XN) is a potential bioactive substance for the prevention and treatment of many diseases. The previous studies have reported its potent activities as antioxidant, anticancer, anti-inflammatory, antiviral, antibacterial antiplasmodial, and antiobesity. In this study, the effect of XN supplementation on the lifespan extension was investigated in Drosophila melanogaster. The effects of XN on the improvement of the recovery from cold and heat shock, the resistance to starvation stress, and free radical-induced oxidative stress in XN-treated flies were also evaluated. Results showed that supplementation with XN at 0.5 mg/mL diet extended the mean lifespan by 14.89%. This was consistent with a significant improvement of locomotor activity of the Drosophila fed with an XN-mixed diet compared with those fed with a control diet. XN supplementation significantly increased the antioxidant enzyme activities at both 25 and 40 days. Drosophila treated with XN exhibited increased survival after exposure to hydrogen peroxide and paraquat. Finally, XN supplementation improved the recovery from cold and heat shock, the resistance to starvation stress, and acetic acid-induced stress. The present study shows that dietary supplementation with XN revealed the longevity effect and ameliorated stress-induced mortality in Drosophila.
Collapse
Affiliation(s)
- Nattapong Wongchum
- Biology Program, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
| | - Ananya Dechakhamphu
- Thai Traditional Medicine Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand.
| |
Collapse
|
10
|
Różanowska MB, Czuba-Pelech B, Landrum JT, Różanowski B. Comparison of Antioxidant Properties of Dehydrolutein with Lutein and Zeaxanthin, and their Effects on Cultured Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2021; 10:antiox10050753. [PMID: 34068492 PMCID: PMC8151661 DOI: 10.3390/antiox10050753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Dehydrolutein accumulates in substantial concentrations in the retina. The aim of this study was to compare antioxidant properties of dehydrolutein with other retinal carotenoids, lutein, and zeaxanthin, and their effects on ARPE-19 cells. The time-resolved detection of characteristic singlet oxygen phosphorescence was used to compare the singlet oxygen quenching rate constants of dehydrolutein, lutein, and zeaxanthin. The effects of these carotenoids on photosensitized oxidation were tested in liposomes, where photo-oxidation was induced by light in the presence of photosensitizers, and monitored by oximetry. To compare the uptake of dehydrolutein, lutein, and zeaxanthin, ARPE-19 cells were incubated with carotenoids for up to 19 days, and carotenoid contents were determined by spectrophotometry in cell extracts. To investigate the effects of carotenoids on photocytotoxicity, cells were exposed to light in the presence of rose bengal or all-trans-retinal. The results demonstrate that the rate constants for singlet oxygen quenching are 0.77 × 1010, 0.55 × 1010, and 1.23 × 1010 M-1s-1 for dehydrolutein, lutein, and zeaxanthin, respectively. Overall, dehydrolutein is similar to lutein or zeaxanthin in the protection of lipids against photosensitized oxidation. ARPE-19 cells accumulate substantial amounts of both zeaxanthin and lutein, but no detectable amounts of dehydrolutein. Cells pre-incubated with carotenoids are equally susceptible to photosensitized damage as cells without carotenoids. Carotenoids provided to cells together with the extracellular photosensitizers offer partial protection against photodamage. In conclusion, the antioxidant properties of dehydrolutein are similar to lutein and zeaxanthin. The mechanism responsible for its lack of accumulation in ARPE-19 cells deserves further investigation.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Correspondence: ; Tel.: +44-292-087-5057
| | - Barbara Czuba-Pelech
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - John T. Landrum
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| | | |
Collapse
|
11
|
Yi Y, Xu W, Fan Y, Wang HX. Drosophila as an emerging model organism for studies of food-derived antioxidants. Food Res Int 2021; 143:110307. [PMID: 33992327 DOI: 10.1016/j.foodres.2021.110307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/06/2021] [Accepted: 03/06/2021] [Indexed: 01/18/2023]
Abstract
Dietary supplementation with antioxidants provides health benefits by preventing diseases caused by oxidative stress and damage. Consequently, there has been growing interest in the study of antioxidative foods and their active ingredients. Oxidative stress and antioxidative responses are mechanistically conserved from Drosophila to mammals. Therefore, as a well-established model organism with a short life cycle and advantages of genetic manipulation, the fruit fly has been increasingly employed to assess functions of antioxidants in vivo. In this review, the antioxidative defense mechanisms, methods used and assays developed in Drosophila to evaluate antioxidant supplementation, are highlighted. The main manifestations of antioxidation include reduction of reactive species, up-regulation of endogenous antioxidants, inhibition on oxidative damage to biomacromolecules, enhanced resistance against oxidative stress and extension of lifespan, which are related to the activations of nuclear factor erythroid 2-related factor 2-antioxidant response element pathway and other adaptive responses. Moreover, the key considerations and future perspectives for the application of Drosophila models in the studies of food-derived antioxidants are discussed.
Collapse
Affiliation(s)
- Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Hong-Xun Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
12
|
Fernandes EJ, Poetini MR, Barrientos MS, Bortolotto VC, Araujo SM, Santos Musachio EA, De Carvalho AS, Leimann FV, Gonçalves OH, Ramborger BP, Roehrs R, Prigol M, Guerra GP. Exposure to lutein-loaded nanoparticles attenuates Parkinson's model-induced damage in Drosophila melanogaster: Restoration of dopaminergic and cholinergic system and oxidative stress indicators. Chem Biol Interact 2021; 340:109431. [PMID: 33716020 DOI: 10.1016/j.cbi.2021.109431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's is a neurodegenerative disease, characterized by the loss of dopaminergic neurons, cholinergic alterations and oxidative damages. Lutein is widely known by its antioxidants properties. In the present study, we investigated whether lutein-loaded nanoparticles protects against locomotor damage and neurotoxicity induced by Parkinson's disease model in Drosophila melanogaster, as well as possible mechanisms of action. First, the nanoparticles were characterized by physicochemical methods, demonstrating that water affinity was improved by the encapsulation of lutein into the polymeric encapsulant matrix. The fruit flies of 1-4 days old were divided into four groups and exposed to a standard diet (control), a diet containing either rotenone (500 μM), lutein-loaded nanoparticles (6 μM) or rotenone (500 μM) and lutein-loaded nanoparticles (6 μM) for 7 days. The survival percentage was assessed, the flies were submitted to negative geotaxis, open field tasks and the determination of dopamine levels, tyrosine hydroxylase (TH) and acetylcholinesterase activities and oxidative stress indicators (superoxide dismutase, catalase, thiobarbituric acid reactive substances and glutathione S-transferase) were carried out. The exposure to lutein-loaded nanoparticles protected against locomotor damage and the decrease survival rate induced by rotenone, besides, it restored the dopamine levels, TH and acetylcholinesterase activities and oxidative stress indicators. These results provide evidence that lutein-loaded nanoparticles are an alternative treatment for rotenone-induced damage, and suggest the involvement of dopaminergic and cholinergic system and oxidative stress.
Collapse
Affiliation(s)
- Eliana Jardim Fernandes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Marcia Rósula Poetini
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Magna Sotelo Barrientos
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Amarilis Santos De Carvalho
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006, Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006, Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006, Campo Mourão, PR, Brazil
| | - Bruna Piaia Ramborger
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil.
| |
Collapse
|
13
|
Antioxidant effects of ankaferd blood stopper doped polyvinyl pyrolidon in an experimental model created in insect. Food Chem Toxicol 2020; 148:111935. [PMID: 33348050 DOI: 10.1016/j.fct.2020.111935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
This research evaluated Ankaferd Blood Stopper (ABS)-doped Polyvinylpyrrolidone (PVP) nanofiber layers which were produced with the electrospinning method for their potential for co-use in response to oxidative stress. As a result of the use of such a preparation (ABS doped PVP) in long-term treatments, the response to oxidative stress was compared to biochemical parameters, and its effect on sex was also aimed to be determined. For this purpose, Drosophila melanogaster foods were coated with 10% PVP, ABS (2 ml) and PVP-ABS. In total, 300 flies were randomized into 6 groups, each consisting of 25 female and 25 male insects, and the insects were fed with the determined coated mediums. The effects of foods on adult flies were tested for biochemical changes (Malondialdehyde-MDA and Total oxidation status-TOS, Glutathione-S-Transferase-GST, Catalase-CAT and Superoxide dismutase-SOD activities, Total antioxidant capacity-TAS) at the end of ten days. It was determined that the separate use of the two substances increased the amount of MDA in both sexes. It was found that the combined use of PVP-ABS had a positive effect similar to the control by increasing the antioxidant enzymes (SOD, CAT, GST). Feeding with ABS-doped PVP in the male insects reduced TOS (2.00 ± 0.01 μmol H2O2Eq/L), but the female insects were found to have higher OSI (40.00 ± 0.01 μmol H2O2Eq/L). As a result, PVP-ABS may be used together as an antioxidant, but more detailed studies are needed for their safe use on both sexes.
Collapse
|
14
|
Chen Q, Xu B, Huang W, Amrouche AT, Maurizio B, Simal-Gandara J, Tundis R, Xiao J, Zou L, Lu B. Edible flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
16
|
Qiu S, Shen Y, Zhang L, Ma B, Amadu AA, Ge S. Antioxidant assessment of wastewater-cultivated Chlorella sorokiniana in Drosophila melanogaster. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Arunkumar R, Gorusupudi A, Bernstein PS. The macular carotenoids: A biochemical overview. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158617. [PMID: 31931175 DOI: 10.1016/j.bbalip.2020.158617] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
Among the more than 750 carotenoids identified in nature, only lutein, zeaxanthin, meso-zeaxanthin, and their oxidative metabolites are selectively accumulated in the macula lutea region of the human retina. These retinal carotenoids are collectively referred to as the macular pigment (MP) and are obtained only through dietary sources such as green leafy vegetables and yellow and orange fruits and vegetables. Lutein- and zeaxanthin-specific binding proteins (StARD3 and GSTP1, respectively) mediate the highly selective uptake of MP into the retina. Meso-zeaxanthin is rarely present in the diet, and its unique presence in the human eye results from metabolic conversion from dietary lutein by the RPE65 enzyme. The MP carotenoids filter high-intensity, short-wavelength visible light and are powerful antioxidants in a region vulnerable to light-induced oxidative stress. This review focuses on MP chemistry, absorption, metabolism, transport, and distribution with special emphasis on animal models used for MP study. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ranganathan Arunkumar
- Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
18
|
Qiu W, Chen X, Tian Y, Wu D, Du M, Wang S. Protection against oxidative stress and anti-aging effect in Drosophila of royal jelly-collagen peptide. Food Chem Toxicol 2020; 135:110881. [DOI: 10.1016/j.fct.2019.110881] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
|
19
|
Kharat P, Sarkar P, Mouliganesh S, Tiwary V, Priya VBR, Sree NY, Annapoorna HV, Saikia DK, Mahanta K, Thirumurugan K. Ellagic acid prolongs the lifespan of Drosophila melanogaster. GeroScience 2019; 42:271-285. [PMID: 31786733 DOI: 10.1007/s11357-019-00135-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Wild-type Canton-S flies of Drosophila melanogaster were treated with ellagic acid at 100 μM and 200 μM concentrations. Longevity assay showed male flies fed with 200 μM ellagic acid displayed longer mean lifespan and maximum lifespan than control flies. Female flies fed with 200 μM ellagic acid laid less number of eggs than control. The eclosion time was less in female flies fed with 200 μM ellagic acid. Ellagic acid fed female flies performed better than male flies and control flies for heat shock tolerance and starvation stress. Male flies treated with 100 μM ellagic acid recovered faster from cold shock compared with control flies. Male and female flies treated with ellagic acid displayed increased survival following exposure to 5% hydrogen peroxide. Gene expression studies displayed upregulated expressions of CAT, dFOXO, ATG1, and SOD2 in ellagic acid-treated male flies, and upregulated expressions of dFOXO, CAT, and SOD2 in ellagic acid-treated female flies. Results from these studies show the pro-longevity effect of ellagic acid on Drosophila melanogaster.
Collapse
Affiliation(s)
- Priyanka Kharat
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Priyanka Sarkar
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - S Mouliganesh
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Vaibhav Tiwary
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - V B Ramya Priya
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - N Yamini Sree
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - H Vinu Annapoorna
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Diganta K Saikia
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Kaustav Mahanta
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Kavitha Thirumurugan
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
20
|
Zhang Y, Xu M, Hu C, Liu A, Chen J, Gu C, Zhang X, You C, Tong H, Wu M, Chen P. Sargassum fusiforme Fucoidan SP2 Extends the Lifespan of Drosophila melanogaster by Upregulating the Nrf2-Mediated Antioxidant Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8918914. [PMID: 31485301 PMCID: PMC6710776 DOI: 10.1155/2019/8918914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 01/19/2023]
Abstract
Damage accumulated in the genome and macromolecules is largely attributed to increased oxidative damage and a lack of damage repair in a cell, and this can eventually trigger the process of aging. Alleviating the extent of oxidative damage is therefore considered as a potential way to promote longevity. SFPS, a heteropolysaccharide extracted from the brown alga Sargassum fusiforme, has previously been shown to alleviate oxidative damage during the aging process in mice, but whether SFPS could extend the lifespan of an organism was not demonstrated. Furthermore, the precise component within SFPS that is responsible for the antioxidant activity and the underlying mechanism of such activity was also not resolved. In this study, SP2, a fucoidan derived from SFPS, was shown to exhibit strong antioxidant activity as measured by in vitro radical-scavenging assays. SP2 also improved the survival rate of D. melanogaster subjected to oxidative stress. The flies that were fed with a diet containing SP2 from the time of eclosion displayed significant enhancement in lifespan and reduced accumulation of triglyceride at the old-age stage. In addition, SP2 markedly improved the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and reduced the contents of the malondialdehyde (MDA) and oxidized glutathione (GSSG) in old flies. Furthermore, SP2 also upregulated the expression levels of the nuclear factor-erythroid-2-like 2 (nfe2l2 or nrf2) and its downstream target genes, accompanied by a dramatic reduction in the expression of kelch-like ECH-associated protein 1 (keap1, a canonical inhibitor of the Nrf2) in old flies. Additional support linking the crucial role of the Nrf2/ARE pathway to the antioxidant effect of SP2 was the relatively high survival rate under heat stress for D. melanogaster individuals receiving SP2 supplement, an effect that was abolished by the inclusion of inhibitors specific for the Nrf2/ARE pathway. Collectively, the results indicated that SP2, a S. fusiforme fucoidan, could promote longevity in D. melanogaster by enhancing the Nrf2-mediated antioxidant signaling pathway during the aging process.
Collapse
Affiliation(s)
- Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Department of Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC, Canada
| | - Man Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenxi Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Department of Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC, Canada
| | - Amei Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Junjie Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenfei Gu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Cuiping You
- Department of Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
21
|
Fernández-Bedmar Z, Demyda-Peyrás S, Merinas-Amo T, Del Río-Celestino M. Nutraceutic Potential of Two Allium Species and Their Distinctive Organosulfur Compounds: A Multi-Assay Evaluation. Foods 2019; 8:foods8060222. [PMID: 31234398 PMCID: PMC6617039 DOI: 10.3390/foods8060222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023] Open
Abstract
This study aimed to evaluate the biological activities of two Allium species (garlic and onion) as well as diallyl disulphide (DADS) and dipropyl disulphide (DPDS) as their representative bioactive compounds in a multi-assay experimental design. The genotoxic, antigenotoxic, and lifespan effects of garlic, onion, DADS, and DPDS were checked in Drosophila melanogaster and their cytotoxic, pro-apoptotic, and DNA-clastogenic activities were analyzed using HL60 tumoral cells. All compounds were non-genotoxic and antigenotoxic against H2O2-induced DNA damage with a positive dose-response effect and different inhibition percentages (the highest value: 95% for DADS) at all tested concentrations. Daily intake of Allium vegetables, DADS, or DPDS had no positive effects on flies' lifespan and health span. Garlic and DADS exerted the highest cytotoxic effects in a positive dose-dependent manner. Garlic and DADS exerted a DNA-internucleosomal fragmentation as an index of induced proapoptotic activity on HL60 cells. Allium vegetables and DADS were able to induce clastogenic strand breaks in the DNA of HL60 cells. This study showed the genomic safety of the assayed substances and their protective genetic effects against the hydrogen peroxide genotoxine. Long-term treatments during the whole life of the Drosophila genetic model were beneficial only at low-median concentrations. The chemo-preventive activity of garlic could be associated with its distinctive organosulfur DADS. We suggest that supplementary studies are needed to clarify the cell death pathway against garlic and DADS.
Collapse
Affiliation(s)
- Zahira Fernández-Bedmar
- Department of Genetics, University of Córdoba, Campus Rabanales, Gregor Mendel Building, 14071 Córdoba, Spain.
| | - Sebastián Demyda-Peyrás
- Institute of Veterinary Genetics (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, Campus Rabanales, Gregor Mendel Building, 14071 Córdoba, Spain.
| | | |
Collapse
|
22
|
Maitra U, Ciesla L. Using Drosophila as a platform for drug discovery from natural products in Parkinson's disease. MEDCHEMCOMM 2019; 10:867-879. [PMID: 31303984 PMCID: PMC6596131 DOI: 10.1039/c9md00099b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with no cure. Despite intensive research, most of the currently available therapies are only effective in alleviating symptoms with no effect on disease progression. There is an urgent need for new therapeutics to impede disease progression. Natural products are valuable sources of bioactive compounds that can be exploited for novel therapeutic potential in PD pathogenesis. However, rapid screening of plant-derived natural products and characterization of bioactive compounds is costly and challenging. Drosophila melanogaster, commonly known as the fruit fly, has recently emerged as an excellent model for human neurodegenerative diseases, including PD. The high degree of conserved molecular pathways with mammalian models make Drosophila PD models an inexpensive solution to preliminary phases of target validation in the drug discovery pipeline. The present review provides an overview of drug discovery from natural extracts using Drosophila as a screening platform to evaluate the therapeutic potential of phytochemicals against PD.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2320, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 7599
| | - Lukasz Ciesla
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2329, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 1828
| |
Collapse
|
23
|
Tan BL, Norhaizan ME. Carotenoids: How Effective Are They to Prevent Age-Related Diseases? Molecules 2019; 24:E1801. [PMID: 31075966 PMCID: PMC6539799 DOI: 10.3390/molecules24091801] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/30/2023] Open
Abstract
Despite an increase in life expectancy that indicates positive human development, a new challenge is arising. Aging is positively associated with biological and cognitive degeneration, for instance cognitive decline, psychological impairment, and physical frailty. The elderly population is prone to oxidative stress due to the inefficiency of their endogenous antioxidant systems. As many studies showed an inverse relationship between carotenoids and age-related diseases (ARD) by reducing oxidative stress through interrupting the propagation of free radicals, carotenoid has been foreseen as a potential intervention for age-associated pathologies. Therefore, the role of carotenoids that counteract oxidative stress and promote healthy aging is worthy of further discussion. In this review, we discussed the underlying mechanisms of carotenoids involved in the prevention of ARD. Collectively, understanding the role of carotenoids in ARD would provide insights into a potential intervention that may affect the aging process, and subsequently promote healthy longevity.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
24
|
Staats S, Wagner AE, Lüersen K, Künstner A, Meyer T, Kahns AK, Derer S, Graspeuntner S, Rupp J, Busch H, Sina C, Ipharraguerre IR, Rimbach G. Dietary ursolic acid improves health span and life span in male Drosophila melanogaster. Biofactors 2019; 45:169-186. [PMID: 30496629 DOI: 10.1002/biof.1467] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
The health and life span of Drosophila melanogaster are partly determined by intestinal barrier integrity, metabolic rate as well as stress response and the expression of longevity-associated genes, depending on genetic and dietary factors. Ursolic acid (UA) is a naturally occurring triterpenoid exhibiting potential antimicrobial, anti-inflammatory, and antiobesity activity and counteracting age-related deficits in muscle strength. In this study, UA was dietarily administered to w1118 D. melanogaster which significantly elongated the health and life span of males. Spargel (srl) is the Drosophila orthologue of mammalian peroxisome proliferator-activated receptor-gamma coactivator 1 α(PGC1α), an important regulator of energy homeostasis and mitochondrial function. Our results indicate that the health-promoting effect of UA, demonstrated by a significant increase in climbing activity, occurs via an upregulation of srl expression leading to a metabolic shift in the fly without reducing fecundity or gut integrity. Moreover, UA affected the flies' microbiota in a manner that contributed to life span extension. Srl expression and microbiota both seem to be affected by UA, as we determined by using srl-mutant and axenic flies. © 2018 BioFactors, 45(2):169-186, 2019.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Axel Künstner
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Timo Meyer
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Anna K Kahns
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | | | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
25
|
Martel J, Ojcius DM, Ko YF, Chang CJ, Young JD. Antiaging effects of bioactive molecules isolated from plants and fungi. Med Res Rev 2019; 39:1515-1552. [PMID: 30648267 DOI: 10.1002/med.21559] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Biomedical Sciences; University of the Pacific, Arthur Dugoni School of Dentistry; San Francisco California
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| | - Chih-Jung Chang
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Science; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University; Taoyuan Taiwan Republic of China
- Department of Microbiology and Immunology; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
| | - John D. Young
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| |
Collapse
|
26
|
Wang H, Sun Z, Liu D, Li X, Rehman RU, Wang H, Wu Z. Apple phlorizin attenuates oxidative stress in Drosophila melanogaster. J Food Biochem 2018; 43:e12744. [PMID: 31353567 DOI: 10.1111/jfbc.12744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Apple phlorizin has a lot of applications owing to its antioxidant and hepatoprotective properties. This study explored the antioxidant effects and life span-prolonging activity of apple phlorizin in Drosophila melanogaster. Treatment with apple phlorizin was found to significantly extend the life span and ameliorate the age-related decline of locomotor function. This life span-extending activity was associated with the increased activity of superoxide dismutase, catalase, mRNA expression of glutamate-cysteine ligase catalytic subunit, cap-n-collar (cnc, homologue of mammalian Nrf2 gene), Keap1, and deacetylase sir2, as well as the downregulation of methuselah. Computational analysis suggested phlorizin could work as a Nrf2 activator and exert its biological activities by interfering with the Keap1 and Nrf2 binding. Therefore, it was concluded that the antioxidant and anti-aging effects of phlorizin might, at least in part, be mediated through the cooperation with the endogenous stress defense system. PRACTICAL APPLICATIONS: Phlorizin, from apple peel, has been used as a nutrient for over 100 years. To date, despite extensive research on phlorizin, a report on its effect on the antioxidant system in fruit flies is yet lacking. This report demonstrates that phlorizin can exert a protective effect on antioxidant issues and prolong life in fruit flies, which is valuable in the rational utilization of phlorizin in functional foods.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China
| | - Zhenou Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Xiang Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Rizwan-Ur Rehman
- Center for Food Safety Standards, The University of Lahore-Gujrat Campus, Pakistan
| | - Huali Wang
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zijian Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
27
|
Fernández-Bedmar Z, Anter J, Alonso Moraga Á. Anti/genotoxic, longevity inductive, cytotoxic, and clastogenic-related bioactivities of tomato and lycopene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:427-437. [PMID: 29569272 DOI: 10.1002/em.22185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 05/17/2023]
Abstract
The aim of this study was to evaluate some biological activities of tomato as well as lycopene and to consider a new nutraceutic value for this fruit regarding to the protection against genetic damage and as a chemopreventive agent. Genotoxicity, DNA-protection against hydrogen peroxide, and lifespan properties of tomato and lycopene were assessed through wing spot test and longevity assay using the Drosophila in vivo model. Additionally, chemopreventive activity was investigated through cytotoxicity, DNA-fragmentation comet and annexin V FITC/PI assays using HL60 in vitro model. Results showed that: (i) tomato and lycopene are not genotoxic and protect against H2 O2 -induced damage; (ii) with respect to the lifespan, tomato and lycopene are harmless at the lowest concentration; (iii) tomato is cytotoxic in a dose-dependent manner, but not lycopene; (iv) tomato and lycopene do not induce internucleosomal DNA-fragmentation although they induce significant clastogenic activity at low level in the leukemia cells. To sum up, tomato is a good candidate to be considered as a nutraceutical substance. Furthermore, synergistic action among other components within tomato matrix could be the cause of the health effects observed in this vegetable, which are not fully explained by lycopene. Environ. Mol. Mutagen. 59:427-437, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zahira Fernández-Bedmar
- Department of Genetics, Campus Rabanales, Gregor Mendel Building, University of Córdoba, Córdoba, 14071, Spain
| | - Jaouad Anter
- Department of Genetics, Campus Rabanales, Gregor Mendel Building, University of Córdoba, Córdoba, 14071, Spain
| | - Ángeles Alonso Moraga
- Department of Genetics, Campus Rabanales, Gregor Mendel Building, University of Córdoba, Córdoba, 14071, Spain
| |
Collapse
|
28
|
Wang T, Cheng J, Wang S, Wang X, Jiang H, Yang Y, Wang Y, Zhang C, Liang W, Feng H. α-Lipoic acid attenuates oxidative stress and neurotoxicity via the ERK/Akt-dependent pathway in the mutant hSOD1 related Drosophila model and the NSC34 cell line of amyotrophic lateral sclerosis. Brain Res Bull 2018; 140:299-310. [PMID: 29842900 DOI: 10.1016/j.brainresbull.2018.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative disease with a progressive loss of motor neurons in the central nervous system (CNS). However, there are unsolved problems with the therapies for this disease. α-Lipoic acid (LA) is a natural, universal antioxidant capable of scavenging hydroxyl radicals as well as regenerating a series of antioxidant enzymes that has been widely used in clinical settings. This study aimed to evaluate the antioxidant and neuroprotective effects of LA in ALS cell and Drosophila models with mutant G85R and G93A hSOD1 genes. The biological effects of LA and the protein levels of several antioxidant factors were examined, as were those of phospho-Akt and phospho-ERK. Furthermore, specific inhibitors of the PI3K/Akt and MEK/ERK signaling pathways were used to analyze their effects on LA-induced antioxidant expression in vivo and in vitro. Evidences showed that the mutant hSOD1 resulted in the increased oxidative stress, abnormal antioxidant signaling and pathological behaviors in motor performance and survival compared with non-mutant hSOD1 models, treatment with LA improved motor activity and survival in transgenic flies, prevented NSC34 cells from mutant hSOD1 or H2O2 induced decreased antioxidant enzymes as well as increased ROS levels. In addition, LA regulated the expression levels of antioxidant proteins in a dose- and periodical time-dependent manner, which might be mediated by ERK/Akt pathway activation and independent from the mutant hSOD1 gene. Our observations suggest that LA exerts strong and positive antioxidant and neuroprotective effects through the activation of the ERK-Akt pathway in hSOD1 ALS models.
Collapse
Affiliation(s)
- Tianhang Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Jiling Cheng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Shuyu Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xudong Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Hongquan Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yueqing Yang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Ying Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Chunting Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Weiwei Liang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Honglin Feng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
29
|
Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3737-3753. [PMID: 29619822 DOI: 10.1021/acs.jafc.7b05900] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine , University of Lübeck , Ratzeburger Allee 160 , D-23538 Lübeck , Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| |
Collapse
|
30
|
Chen Y, Liu X, Wu L, Tong A, Zhao L, Liu B, Zhao C. Physicochemical characterization of polysaccharides from Chlorella pyrenoidosa and its anti-ageing effects in Drosophila melanogaster. Carbohydr Polym 2018; 185:120-126. [DOI: 10.1016/j.carbpol.2017.12.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
|
31
|
Staats S, Wagner AE, Kowalewski B, Rieck FT, Soukup ST, Kulling SE, Rimbach G. Dietary Resveratrol Does Not Affect Life Span, Body Composition, Stress Response, and Longevity-Related Gene Expression in Drosophila melanogaster. Int J Mol Sci 2018; 19:ijms19010223. [PMID: 29324667 PMCID: PMC5796172 DOI: 10.3390/ijms19010223] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we tested the effect of the stilbene resveratrol on life span, body composition, locomotor activity, stress response, and the expression of genes encoding proteins centrally involved in ageing pathways in the model organism Drosophila melanogaster. Male and female w1118 D. melanogaster were fed diets based on sucrose, corn meal, and yeast. Flies either received a control diet or a diet supplemented with 500 µmol/L resveratrol. Dietary resveratrol did not affect mean, median, and maximal life span of male and female flies. Furthermore, body composition remained largely unchanged following the resveratrol supplementation. Locomotor activity, as determined by the climbing index, was not significantly different between control and resveratrol-supplemented flies. Resveratrol-fed flies did not exhibit an improved stress response towards hydrogen peroxide as compared to controls. Resveratrol did not change mRNA steady levels of antioxidant (catalase, glutathione-S-transferase, NADH dehydrogenase, glutathione peroxidase, superoxide dismutase 2) and longevity-related genes, including sirtuin 2, spargel, and I'm Not Dead Yet. Collectively, present data suggest that resveratrol does not affect life span, body composition, locomotor activity, stress response, and longevity-associated gene expression in w1118 D. melanogaster.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, D-24118 Kiel, Germany.
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | - Bianca Kowalewski
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, D-24118 Kiel, Germany.
| | - Florian T Rieck
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institute, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany.
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institute, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany.
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institute, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, D-24118 Kiel, Germany.
| |
Collapse
|
32
|
Ding AJ, Zheng SQ, Huang XB, Xing TK, Wu GS, Sun HY, Qi SH, Luo HR. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:335-404. [PMID: 28567542 PMCID: PMC5655361 DOI: 10.1007/s13659-017-0135-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
Aging is a process characterized by accumulating degenerative damages, resulting in the death of an organism ultimately. The main goal of aging research is to develop therapies that delay age-related diseases in human. Since signaling pathways in aging of Caenorhabditis elegans (C. elegans), fruit flies and mice are evolutionarily conserved, compounds extending lifespan of them by intervening pathways of aging may be useful in treating age-related diseases in human. Natural products have special resource advantage and with few side effect. Recently, many compounds or extracts from natural products slowing aging and extending lifespan have been reported. Here we summarized these compounds or extracts and their mechanisms in increasing longevity of C. elegans or other species, and the prospect in developing anti-aging medicine from natural products.
Collapse
Affiliation(s)
- Ai-Jun Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shan-Qing Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao-Bing Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ti-Kun Xing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hua-Ying Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shu-Hua Qi
- Guangdong Key Laboratory of Marine Material Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 134 Lanhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
33
|
Chen J, Wang R, Wang T, Ding Q, Khalil A, Xu S, Lin A, Yao H, Xie W, Zhu Z, Xu J. Antioxidant Properties of Novel Dimers Derived from Natural β-Elemene through Inhibiting H 2O 2-Induced Apoptosis. ACS Med Chem Lett 2017; 8:443-448. [PMID: 28435534 DOI: 10.1021/acsmedchemlett.7b00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
A series of novel β-elemene dimer derivatives were synthesized and evaluated for their antioxidant activities. The results indicated that most of the target compounds showed more potent cytoprotective effects than positive control vitamin E. In particular, dimer D5 exhibited the strongest antioxidant activity, which was significantly superior to the active compound D1 obtained in our previous study. Besides, D5 did not produce obvious cytotoxicity in normal human umbilical vein endothelial cells (HUVECs) and increased the viability of HUVECs injured by H2O2 in a concentration-dependent manner. Further studies suggested that the cytoprotective action of D5 might be mediated, at least in part, by increasing the intracellular superoxide dismutase activity and nitric oxide secretion as well as decreasing the intracellular malonyldialdehyde content and lactate dehydrogenase release. Furthermore, D5 observably inhibited ROS generation and prevented H2O2-induced apoptosis in HUVECs possibly via inhibiting the activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jichao Chen
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Ruifan Wang
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Tianyu Wang
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Qilong Ding
- Department
of Pharmacology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Aliahmad Khalil
- Department
of Pharmacology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Shengtao Xu
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Aijun Lin
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hequan Yao
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Weijia Xie
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
34
|
Wang HL, Sun ZO, Rehman RU, Wang H, Wang YF, Wang H. Rosemary Extract-Mediated Lifespan Extension and Attenuated Oxidative Damage inDrosophila melanogasterFed on High-Fat Diet. J Food Sci 2017; 82:1006-1011. [DOI: 10.1111/1750-3841.13656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Hua-li Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Zhen-ou Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Rizwan-ur Rehman
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Hong Wang
- College of Biological Engineering; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Yi-fei Wang
- College of Biological Engineering; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Hao Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| |
Collapse
|
35
|
Synthesis of 13-β-elemene ester derivatives and evaluation of their antioxidant activity in human umbilical vein endothelial cells. Chin J Nat Med 2016; 13:618-27. [PMID: 26253495 DOI: 10.1016/s1875-5364(15)30058-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Indexed: 11/21/2022]
Abstract
In the present study, a series of 13-β-elemene ester derivatives were designed and prepared, and their antioxidant activity was investigated in the H2O2-treated human umbilical vein endothelial cells (HUVECs). Among the test compounds, the dimer compounds 5v and 5w exhibited the most potent antioxidant activity with significant ROS suppression being observed. Both compounds markedly inhibited the H2O2-induced changes in various biochemical substances, such as superoxide dismutase (SOD), malonyldialdehyde (MDA), nitric oxide (NO), and lactic dehydrogenase (LDH), which were superior to that of the positive control vitamin E. Further more, they did not produce any obvious cytotoxicity, but increased the viability of HUVECs injured by H2O2 in a dose-dependent manner. Additionally, compound 5w, designed as a prodrug-like compound, showed improved stability relative to compound 4 in vitro.
Collapse
|
36
|
Piegholdt S, Rimbach G, Wagner AE. Effects of the isoflavone prunetin on gut health and stress response in male Drosophila melanogaster. Redox Biol 2016; 8:119-26. [PMID: 26774080 PMCID: PMC4732017 DOI: 10.1016/j.redox.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/30/2023] Open
Abstract
The traditional Asian diet is rich in fruits, vegetables and soy, the latter representing a significant source of dietary isoflavones. The isoflavone prunetin was recently identified to improve intestinal epithelial barrier function in vitro and to ameliorate general survival and overall health state in vivo in male Drosophila melanogaster. However, the prunetin-mediated health benefits in the fruit fly were ascertained under standard living conditions. As the loss of intestinal integrity is closely related to a reduction in Drosophila lifespan and barrier dysfunction increases with age, effects on prunetin-modulated gut health under oxidative or pathogenic stress provocation remain to be elucidated. In this study, male adult D. melanogaster were administered either a prunetin or a control diet. Gut-derived junction protein expression and pathogen-induced antimicrobial peptide expressions as well as the stem cell proliferation in the gut were evaluated. Furthermore, survival following exposure to hydrogen peroxide was assessed. Prunetin ingestion did not attenuate bacterial infection and did not protect flies from oxidative stress. Intestinal mRNA expression levels of adherence and septate junction proteins as well as the stem cell proliferation were not altered by prunetin intake. Prunetin does not improve the resistance of flies against severe injuring, exogenous stress and therefore seems to function in a preventive rather than a therapeutic approach since the health-promoting benefits appear to be exclusively restricted to normal living circumstances. Gram-negative bacterial strains induce AMP-mediated defense in the fruit fly. Prunetin improves life and health span in male fruit flies independent of gut health. Prunetin fails to ameliorate resistance of the flies towards severe injury. AMP expression, stem cell proliferation & oxidative stress resistance are unaffected.
Collapse
Affiliation(s)
- Stefanie Piegholdt
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany
| | - Anika E Wagner
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany
| |
Collapse
|
37
|
|
38
|
Yang S, Long L, Li D, Zhang J, Jin S, Wang F, Chen J. β-Guanidinopropionic acid extends the lifespan of Drosophila melanogaster via an AMP-activated protein kinase-dependent increase in autophagy. Aging Cell 2015; 14:1024-33. [PMID: 26120775 PMCID: PMC4693457 DOI: 10.1111/acel.12371] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 01/01/2023] Open
Abstract
Previous studies have demonstrated that AMP‐activated protein kinase (AMPK) controls autophagy through the mammalian target of rapamycin (mTOR) and Unc‐51 like kinase 1 (ULK1/Atg1) signaling, which augments the quality of cellular housekeeping, and that β‐guanidinopropionic acid (β‐GPA), a creatine analog, leads to a chronic activation of AMPK. However, the relationship between β‐GPA and aging remains elusive. In this study, we hypothesized that feeding β‐GPA to adult Drosophila produces the lifespan extension via activation of AMPK‐dependent autophagy. It was found that dietary administration of β‐GPA at a concentration higher than 900 mm induced a significant extension of the lifespan of Drosophila melanogaster in repeated experiments. Furthermore, we found that Atg8 protein, the homolog of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) and a biomarker of autophagy in Drosophila, was significantly upregulated by β‐GPA treatment, indicating that autophagic activity plays a role in the effect of β‐GPA. On the other hand, when the expression of Atg5 protein, an essential protein for autophagy, was reduced by RNA interference (RNAi), the effect of β‐GPA on lifespan extension was abolished. Moreover, we found that AMPK was also involved in this process. β‐GPA treatment significantly elevated the expression of phospho‐T172‐AMPK levels, while inhibition of AMPK by either AMPK‐RNAi or compound C significantly attenuated the expression of autophagy‐related proteins and lifespan extension in Drosophila. Taken together, our results suggest that β‐GPA can induce an extension of the lifespan of Drosophila via AMPK‐Atg1‐autophagy signaling pathway.
Collapse
Affiliation(s)
- Si Yang
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Li‐Hong Long
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- The Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- Hubei Key Laboratory of Drug Target Researches and Pharmacodynamic Evaluation (HUST) Wuhan 430030 China
- The Laboratory of Neuropsychiatric Diseases The Institute of Brain Research Huazhong University of Science and Technology Wuhan 430030 China
| | - Di Li
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Jian‐Kang Zhang
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Shan Jin
- College of Life Science Hubei University Wuhan 430062 China
| | - Fang Wang
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- The Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- Hubei Key Laboratory of Drug Target Researches and Pharmacodynamic Evaluation (HUST) Wuhan 430030 China
- The Laboratory of Neuropsychiatric Diseases The Institute of Brain Research Huazhong University of Science and Technology Wuhan 430030 China
| | - Jian‐Guo Chen
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- The Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- Hubei Key Laboratory of Drug Target Researches and Pharmacodynamic Evaluation (HUST) Wuhan 430030 China
- The Laboratory of Neuropsychiatric Diseases The Institute of Brain Research Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
39
|
Kayashima Y, Murata S, Sato M, Matsuura K, Asanuma T, Chimoto J, Ishii T, Mochizuki K, Kumazawa S, Nakayama T, Yamakawa-Kobayashi K. Tea polyphenols ameliorate fat storage induced by high-fat diet in Drosophila melanogaster. Biochem Biophys Rep 2015; 4:417-424. [PMID: 29124233 PMCID: PMC5669444 DOI: 10.1016/j.bbrep.2015.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/27/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Background Polyphenols in tea are considered beneficial to human health. However, many such claims of their bioactivity still require in vitro and in vivo evidence. Results Using Drosophila melanogaster as a model multicellular organism, we assess the fat accumulation-suppressing effects of theaflavin (TF), a tea polyphenol; epitheaflagallin (ETG), which has an unknown function; and epigallocatechin gallate (EGCg), a prominent component of green tea. Dietary TF reduced the malondialdehyde accumulation related to a high-fat diet in adult flies. Other physiological and genetic responses induced by the high-fat diet, such as lipid accumulation in the fat body and expression of lipid metabolism-related genes, were ameliorated by the addition of TF, ETG, and EGCg, in some cases approaching respective levels without high-fat diet exposure. Continuous ingestion of the three polyphenols resulted in a shortened lifespan. Conclusion We provide evidence in Drosophila that tea polyphenols have a fat accumulation-suppressing effect that has received recent attention. We also suggest that tea polyphenols can provide different desirable biological activities depending on their composition and the presence or absence of other chemical components. Tea polyphenols have a fat accumulation-suppressing effect in Drosophila. Dietary theaflavin ameliorates high-fat diet-induced hydroperoxidase accumulation. The novel tea polyphenol epitheaflagallin strongly suppresses lipid accumulation. The beneficial effects of tea polyphenols can be enhanced by altering composition.
Collapse
Affiliation(s)
- Yasunari Kayashima
- Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Corresponding author at: Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan. Fax: +81 55 224 1396.Department of Food and Nutrition, Yamanashi Gakuin Junior College2-4-5 SakaoriKofu-shiYamanashi400-8575Japan
| | - Shinichi Murata
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Misaki Sato
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kanako Matsuura
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimichi Asanuma
- Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan
| | - Junko Chimoto
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takeshi Ishii
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kazuo Mochizuki
- Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan
| | - Shigenori Kumazawa
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tsutomu Nakayama
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
40
|
Lashmanova E, Proshkina E, Zhikrivetskaya S, Shevchenko O, Marusich E, Leonov S, Melerzanov A, Zhavoronkov A, Moskalev A. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol Res 2015; 100:228-41. [DOI: 10.1016/j.phrs.2015.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022]
|
41
|
Diet carotenoid lutein modulates the expression of genes related to oxygen transporters and decreases DNA damage and oxidative stress in mice. Food Chem Toxicol 2014; 70:205-13. [PMID: 24865317 DOI: 10.1016/j.fct.2014.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 01/10/2023]
Abstract
Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.
Collapse
|